JP2002124407A - Anisotropic sintered rare-earth manget and its manufacturing method - Google Patents

Anisotropic sintered rare-earth manget and its manufacturing method

Info

Publication number
JP2002124407A
JP2002124407A JP2000315403A JP2000315403A JP2002124407A JP 2002124407 A JP2002124407 A JP 2002124407A JP 2000315403 A JP2000315403 A JP 2000315403A JP 2000315403 A JP2000315403 A JP 2000315403A JP 2002124407 A JP2002124407 A JP 2002124407A
Authority
JP
Japan
Prior art keywords
mass
magnet
rare earth
manufacturing
earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000315403A
Other languages
Japanese (ja)
Inventor
Minoru Endo
実 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2000315403A priority Critical patent/JP2002124407A/en
Publication of JP2002124407A publication Critical patent/JP2002124407A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a new high-performance anisotropic sintered rare-earth magnet in which no R-rich phase substantially exists, and to provide a method of manufacturing the magnet. SOLUTION: The anisotropic sintered rare-earth magnet is composed of 5-30 mass% rear-earth element R, 0.3-5 mass% boron B, 0.01-7 mass% dopant M1 (at least one kind selected from among Ti, Zr, and Hf), 0.01-7 mass% dopant M2 (at least one kind selected from among Al, Cr, Ni, Cu, Zn, Ga, and Mn), 0.01-50 mass % Co, and the balance Fe and impurities which are inevitable from the manufacturing point of view.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はSmCo、Sm
Co17、Nd−Fe−B系焼結磁石とは異なる新規の
異方性の希土類磁石及びその製造方法に関する。
The present invention relates to SmCo 5 , Sm 2
The present invention relates to a novel anisotropic rare earth magnet different from a Co 17 , Nd—Fe—B sintered magnet and a method for producing the same.

【0002】[0002]

【従来の技術】希土類焼結磁石にはSmCo、Sm
Co17、Nd−Fe−B系焼結磁石がある。それぞれ
の磁石には特徴があり、それに応じた用途に適用されて
いる。SmCo、SmCo17系焼結磁石は磁気特
性はNd−Fe−B系焼結磁石より劣るが、熱安定性に
優れるためモータ、発電機等の高温で使用される用途に
主に使用される。一方、Nd−Fe−B系焼結磁石は優
れた磁気特性を有し,且つ安価なため、現在希土類磁石
の主流となっている。この磁石は熱安定性、耐食性が悪
いため、ハードディスクドライブ、CD等の多くの用途
にNiめっき等を行って製品としている。Nd−Fe−
B系焼結磁石にはハードな磁気特性を担うNdFe
14B以外にNdリッチ相、Nd1.1Fe(B
リッチ相)、酸化物相を含んでいる(M. Sagawa et al,
Japanese Journal of Applied Physics 26, 785(198
7))。
2. Description of the Related Art Rare earth sintered magnets include SmCo 5 and Sm 2.
There is a Co 17 , Nd—Fe—B based sintered magnet. Each magnet has its own characteristics, and it is applied to the corresponding application. SmCo 5 and Sm 2 Co 17 based sintered magnets are inferior in magnetic properties to Nd—Fe—B based sintered magnets, but have excellent thermal stability and are mainly used for high temperature applications such as motors and generators. Is done. On the other hand, Nd-Fe-B sintered magnets have excellent magnetic properties and are inexpensive, so they are currently the mainstream of rare earth magnets. Since this magnet has poor thermal stability and corrosion resistance, it is made into a product by Ni plating or the like for many uses such as hard disk drives and CDs. Nd-Fe-
Nd 2 Fe, which has hard magnetic properties, is used for B-based sintered magnets.
Nd-rich phase in addition to 14 B, Nd 1.1 Fe 4 B 4 (B
Rich phase) and oxide phase (M. Sagawa et al,
Japanese Journal of Applied Physics 26, 785 (198
7)).

【0003】[0003]

【発明が解決しようとする課題】従来、高性能なNd−
Fe−B系焼結磁石を得るためには、保磁力を向上させ
るDy,Al,Ga,Cu等の添加物量を低減し、Bリ
ッチ相、酸化物相を低減することにより磁気特性の改善
を行ってきた。しかし、Ndリッチ相は主相粒子(Nd
Fe14B)を取り囲み、粒界をクリーニングする効
果があり、保磁力を発生するためには必要不可欠である
ため、この相をなくすことはできない。また、希土類磁
石の高性能化のためには希土類元素量を低減し、Fe,
Coといった遷移金属の量を増やす必要があるが、現状
のNd−Fe−B系焼結磁石ではできなかった。これは
遷移金属量を増加させると、Ndリッチ相が実質的に存
在しなくなるため、粒界をクリーニングできず、高い保
磁力が得られないためである。そこで、本発明者は希土
類元素添加量を低減する一方、遷移金属の添加量を増加
して、Rリッチ相が実質的に存在しない新規で高性能な
異方性希土類焼結磁石を発明した(特願2000−20467号
公報参照)。しかし、本系磁石は保磁力が低く、高いエ
ネルギー積が得られないといった欠点があった。そこ
で、種々の添加元素を検討し、 Al,Cr,Ni,C
u,Zn,Ga,Mnの少なくとも1種類の添加は保磁
力及び最大エネルギー積の改善に効果のあることを見出
した。
Conventionally, high-performance Nd-
In order to obtain an Fe-B based sintered magnet, the amount of additives such as Dy, Al, Ga, and Cu for improving the coercive force is reduced, and the magnetic properties are improved by reducing the B-rich phase and the oxide phase. I went. However, the Nd-rich phase is composed of the main phase particles (Nd
2 Fe 14 B) has the effect of cleaning the grain boundaries and is indispensable for generating a coercive force, so that this phase cannot be eliminated. Further, in order to improve the performance of rare earth magnets, the amount of rare earth elements is reduced, and Fe,
It is necessary to increase the amount of transition metal such as Co, but this cannot be done with the current Nd-Fe-B based sintered magnet. This is because, when the amount of the transition metal is increased, the Nd-rich phase does not substantially exist, so that the grain boundary cannot be cleaned and a high coercive force cannot be obtained. Therefore, the present inventor has invented a new and high-performance anisotropic rare earth sintered magnet in which the amount of the rare earth element is reduced while the amount of the transition metal is increased, and the R-rich phase is not substantially present ( See Japanese Patent Application No. 2000-20467). However, this system magnet has the disadvantage that the coercive force is low and a high energy product cannot be obtained. Therefore, we examined various additive elements and found that Al, Cr, Ni, C
It has been found that the addition of at least one of u, Zn, Ga, and Mn is effective in improving the coercive force and the maximum energy product.

【0004】[0004]

【課題を解決するための手段】前記課題を解決するた
め、本発明は下記の構成を要素とする。 (1)組成が、希土類元素R:5〜30mass%、硼
素B:0.3〜5mass%、C:0.01〜5mas
s%、と添加元素M(Ti,Zr,Hfの少なくとも
1種類):0.01〜7mass%、添加元素M(A
l,Cr,Ni,Cu,Zn,Ga,Mnの少なくとも
1種類):0.01〜5mass%、Co:0.01〜
50mass%、残部:Fe及び製造上不可避的不純物
からなる異方性希土類焼結磁石であり、(2)組成が、
希土類元素R:5〜30mass%、硼素B:0.3〜
5mass%、C:0.01〜5mass%、と添加元
素M(Ti,Zr,Hfの少なくとも1種類):0.
01〜7mass%、添加元素M(Al,Cr,N
i,Cu,Zn,Ga,Mnの少なくとも1種類):
0.01〜5mass%、Co:0.01〜50mas
s%、残部:Fe及び製造上不可避不純物からなる合金
を配合し、溶解し、鋳造して鋳塊を作り、前記鋳塊を粉
砕し、その後、炭素C原料としてステアリン酸金属、パ
ラフィンワックスもしくはTiC,ZrC,HfC粉末
の少なくとも1種を0.01〜5mass%添加して、
成形、焼結、熱処理することを特徴とする異方性希土類
磁石の製造方法である。
Means for Solving the Problems In order to solve the above problems, the present invention comprises the following constitutions. (1) Composition: rare earth element R: 5 to 30 mass%, boron B: 0.3 to 5 mass%, C: 0.01 to 5 mass
s%, and additional element M 1 (at least one of Ti, Zr, Hf): 0.01 to 7 mass%, and additional element M 2 (A
1, at least one of Cr, Ni, Cu, Zn, Ga and Mn): 0.01 to 5 mass%, Co: 0.01 to
50 mass%, balance: an anisotropic rare earth sintered magnet composed of Fe and unavoidable impurities in production.
Rare earth element R: 5 to 30 mass%, boron B: 0.3 to
5 mass%, C: 0.01 to 5 mass%, and additional element M 1 (at least one of Ti, Zr, Hf): 0.
01 to 7 mass%, additional element M 2 (Al, Cr, N
i, at least one of Cu, Zn, Ga, and Mn):
0.01-5 mass%, Co: 0.01-50mas
s%, balance: alloy composed of Fe and unavoidable impurities in production, blended and melted, cast to form an ingot, pulverized the ingot, and then as a carbon C raw material, metal stearate, paraffin wax or TiC , ZrC, HfC powder at 0.01 to 5 mass%,
This is a method for producing an anisotropic rare earth magnet, which comprises forming, sintering, and heat-treating.

【0005】これまでのR−Fe−B系焼結磁石はNd
リッチ相が保磁力発生に不可欠であるため、28〜35
mass%程度の希土類元素が必要となる。R−Fe−
B系焼結磁石の最低必要希土類量は酸素量との兼ね合い
によって決まる。即ち、酸素量が2000ppm以下の
場合、希土類量は29〜31mass%でも高い保磁力
が得られるが、酸素量が10,000ppmを越える場
合は、希土類量は35mass%程度は必要となる。こ
のため、次なるBrの高い磁石材料を開発するには酸素
量を低減すると同時にNdリッチ相がなくても高い保磁
力を得ることが必要となる。これにより、R元素量を低
減し、Fe,Co量を多くし、高い飽和磁化及びBrが
得られると考えられる。本発明者はR−Fe−B系焼結
磁石において、Rリッチ相の生成しない組成で高保磁力
が得られるか種々の組成を検討した。その結果、R−
(Fe,Co)−(B,C)系にTi,Zr,Hfを複
合添加することにより、R元素量が少ない組成域におい
ても永久磁石としての特性が得られることを見出した。
この磁石に相構成はRFe14B相、(Ti,Zr,
Hf)リッチ相、酸化物相、FeCo等からなり、Nd
リッチ相がないことが特徴である。通常のNd−Fe−
B系焼結磁石はNdリッチ相がないと高保磁力が得られ
なかった。この点で本発明の磁石はNd−Fe−B系焼
結磁石とは異なる磁石と言える。特願2000−204
67号の磁石はフェライト磁石を越える特性を有する
が、さらに(BH)Maxを高くするためには保磁力の
向上が不可欠であった。そこで、添加元素として種々の
元素を検討し、 Al,Cr,Ni,Cu,Zn,G
a,Mnの1種類以上が保磁力向上に効果のあることを
見出した。
[0005] The conventional R-Fe-B based sintered magnet is Nd
Since the rich phase is indispensable for the generation of coercive force, 28 to 35
Rare earth elements of about mass% are required. R-Fe-
The minimum required rare earth amount of the B-based sintered magnet is determined by a balance with the oxygen amount. That is, when the oxygen content is 2000 ppm or less, a high coercive force can be obtained even when the rare earth content is 29 to 31 mass%, but when the oxygen content exceeds 10,000 ppm, the rare earth content needs to be about 35 mass%. For this reason, in order to develop the next magnet material with a high Br, it is necessary to reduce the amount of oxygen and at the same time obtain a high coercive force without an Nd-rich phase. Thus, it is considered that the amount of the R element is reduced, the amounts of Fe and Co are increased, and high saturation magnetization and Br are obtained. The present inventor has studied various compositions for obtaining a high coercive force with a composition that does not generate an R-rich phase in an R—Fe—B based sintered magnet. As a result, R-
It has been found that by adding Ti, Zr, and Hf to the (Fe, Co)-(B, C) system in combination, characteristics as a permanent magnet can be obtained even in a composition range in which the amount of the R element is small.
The phase composition of this magnet is R 2 Fe 14 B phase, (Ti, Zr,
Hf) It is composed of a rich phase, an oxide phase, FeCo, etc.
The feature is that there is no rich phase. Normal Nd-Fe-
A high coercive force could not be obtained for the B-based sintered magnet without the Nd-rich phase. In this regard, the magnet of the present invention can be said to be a magnet different from the Nd-Fe-B based sintered magnet. Japanese Patent Application 2000-204
The magnet of No. 67 has properties exceeding those of a ferrite magnet, but in order to further increase (BH) Max, improvement of the coercive force was indispensable. Therefore, various elements were examined as additive elements, and Al, Cr, Ni, Cu, Zn, G
It has been found that at least one of a and Mn is effective in improving coercive force.

【0006】[0006]

【発明の実施の形態】本発明の異方性希土類焼結磁石の
製造方法は、R−(Fe,Co)−(B,C)−(T
i,Zr,Hfの少なくとも1種)−(Al,Cr,N
i,Cu,Zn,Ga,Mnの少なくとも1種)系合金
を溶解により作製し、これに水素を吸蔵・脱水素させた
後、該合金をバンタムミル等により解砕し、さらに微粉
砕を行う。微粉砕はボールミルもしくはジェットミルに
より行われる。得られた微粉にさらにC原料を添加し、
Vブレンダー等で混合する。C原料は平均粒径が10μ
m以下のグラファイト粉末、もしくはステアリン酸金
属、ワックス等のCを含有する化合物を使う。もしく
は、TiC,ZrC,HfCの粉末でも良い。微粉は縦
磁場、横磁場もしくはパルス磁場により配向し、油圧成
形もしくはメカプレス、サーボプレスにより成形され
る。得られた成形体は1000〜1200℃の範囲で焼
結し、400〜900℃の範囲で熱処理を行う。
BEST MODE FOR CARRYING OUT THE INVENTION The method for producing a sintered anisotropic rare earth magnet according to the present invention is based on R- (Fe, Co)-(B, C)-(T
i, Zr, Hf)-(Al, Cr, N
An alloy of at least one of i, Cu, Zn, Ga, and Mn) is prepared by melting, hydrogen is absorbed and dehydrogenated, and then the alloy is pulverized by a bantam mill or the like and further finely pulverized. Fine pulverization is performed by a ball mill or a jet mill. C material is further added to the obtained fine powder,
Mix with a V blender or the like. Material C has an average particle size of 10μ
m or less graphite powder, or a C-containing compound such as metal stearate or wax. Alternatively, powders of TiC, ZrC, and HfC may be used. The fine powder is oriented by a vertical magnetic field, a horizontal magnetic field, or a pulse magnetic field, and is formed by hydraulic molding, mechanical press, or servo press. The obtained molded body is sintered at a temperature in the range of 1000 to 1200 ° C and heat-treated at a temperature in the range of 400 to 900 ° C.

【0007】(実施例1)Nd:13、Pr:13、
B:1.1、Zr:3.0、Ga:0,1,2,3,
4、Co:10Fe:bal、Nd:13、Pr:1
3、B:1.1、Zr:3.0、Ga:0,1,2,
3,4、Co:20、Fe:bal、Pr:26、B:
1.1、Zr:3.0、Ga0,1,2,3,4、C
o:30、Fe:balの各合金をストリップキャスト
法により作製した。これらの合金に水素吸蔵・脱水素処
理を行った後、バンタムミルにより解砕した。次にジェ
ットミルにより微粉砕を行った後、各微粉にステアリン
酸Znを0.06wt%添加し、V型混合器で混合し
た。微粉は横磁場成形し、得られた成形体を1100〜
1140℃で真空焼結した。得られた焼結体の磁気特性
を図1に示す。
(Example 1) Nd: 13, Pr: 13,
B: 1.1, Zr: 3.0, Ga: 0, 1, 2, 3,
4, Co: 10Fe: bal, Nd: 13, Pr: 1
3, B: 1.1, Zr: 3.0, Ga: 0,1,2,2
3, 4, Co: 20, Fe: bal, Pr: 26, B:
1.1, Zr: 3.0, Ga0, 1, 2, 3, 4, C
Each alloy of o: 30 and Fe: bal was produced by strip casting. After hydrogen absorbing and dehydrogenating these alloys, they were crushed by a bantam mill. Next, after finely pulverizing by a jet mill, Zn stearate was added to each fine powder at 0.06 wt% and mixed with a V-type mixer. The fine powder is subjected to transverse magnetic field molding,
Vacuum sintering was performed at 1140 ° C. FIG. 1 shows the magnetic properties of the obtained sintered body.

【0008】(実施例2)実施例1と同じ合金を用い
て、実施例1と同様に室温で水素吸蔵・脱水素処理を行
った後、バンタムミルで解砕した。次にジェットミルに
より微粉砕を行った後、各々の微粉に平均粒径1μmの
C粉末を0.2wt%添加し、V型混合器で混合した。
微粉は横磁場成形し、得られた成形体を1100〜11
40℃で真空焼結した。得られた焼結体の磁気特性を図
2に示す。C粉末を0.2wt%添加することにより角
型性が改善され、(BH)maxが向上している。
(Example 2) Using the same alloy as in Example 1, hydrogen absorption and dehydrogenation treatment was performed at room temperature in the same manner as in Example 1, and then crushed with a bantam mill. Next, after fine pulverization was performed by a jet mill, 0.2 wt% of C powder having an average particle diameter of 1 μm was added to each fine powder and mixed with a V-type mixer.
The fine powder is subjected to transverse magnetic field molding, and the obtained compact is subjected to 1100 to 11
Vacuum sintering was performed at 40 ° C. FIG. 2 shows the magnetic properties of the obtained sintered body. By adding 0.2 wt% of C powder, squareness is improved and (BH) max is improved.

【0009】(実施例3)組成、Nd:13、Pr:1
3、B:1.1、Zr:3.0、(Al,Mn):0,
1,2、Co:20、Fe:bal、Nd:13、P
r:13、B:1.1、Zr:3.0、(Cr,N
i):0,2.5,5、Co:20、Fe:balの合
金をストリップキャスト法により作製した。これらの各
合金に水素吸蔵・脱水素処理を行った後、バンタムミル
により解砕した。次にジェットミルにより微粉砕を行っ
た後、各微粉にパラフィンワックス(融点63℃)を
0.08wt%添加した。微粉は横磁場成形し、得られ
た成形体を1100〜1140℃で真空焼結した。得ら
れた焼結体の磁気特性を図3に示す。各添加元素により
磁気特性が改善されていることが分かる。
Example 3 Composition, Nd: 13, Pr: 1
3, B: 1.1, Zr: 3.0, (Al, Mn): 0,
1, 2, Co: 20, Fe: bal, Nd: 13, P
r: 13, B: 1.1, Zr: 3.0, (Cr, N
i): Alloys of 0, 2.5, 5, Co: 20, Fe: bal were produced by strip casting. Each of these alloys was subjected to a hydrogen storage / dehydrogenation treatment and then pulverized by a bantam mill. Next, after finely pulverizing with a jet mill, 0.08 wt% of paraffin wax (melting point: 63 ° C.) was added to each fine powder. The fine powder was subjected to transverse magnetic field molding, and the obtained compact was vacuum-sintered at 1100 to 1140 ° C. FIG. 3 shows the magnetic properties of the obtained sintered body. It can be seen that the magnetic properties are improved by each additive element.

【0010】(実施例4)組成、Nd:13、Pr:1
3、B:1.1、Zr:3.0、Cu:0,1,2,
3,4、Co:10、Fe:bal、Nd:13、P
r:13、B:1.1、Zr:3.0、Cu:0,1,
2,3,4、Co:20、Fe:bal、Pr:26、
B:1.1、Zr:3.0、Cu:0,1,2,3,
4、Co:30、Fe:balの各合金をストリップキ
ャスト法により作製した。これらの合金に水素吸蔵・脱
水素処理を行った後、バンタムミルにより解砕した。次
にジェットミルにより微粉砕を行った後、各微粉にステ
アリン酸Znを0.2wt%添加し、V型混合器で混合
した。微粉は横磁場成形し、得られた成形体を1100
〜1140℃で真空焼結し、熱処理は950℃×2h後
に1.0℃/minの冷却速度で400℃以下に冷却し
た。得られた磁石の磁気特性を図4に示す。
(Example 4) Composition, Nd: 13, Pr: 1
3, B: 1.1, Zr: 3.0, Cu: 0, 1, 2, 2,
3,4, Co: 10, Fe: bal, Nd: 13, P
r: 13, B: 1.1, Zr: 3.0, Cu: 0, 1,
2, 3, 4, Co: 20, Fe: bal, Pr: 26,
B: 1.1, Zr: 3.0, Cu: 0, 1, 2, 3,
4, alloys of Co: 30 and Fe: bal were produced by strip casting. After hydrogen absorbing and dehydrogenating these alloys, they were crushed by a bantam mill. Next, after finely pulverizing with a jet mill, 0.2% by weight of Zn stearate was added to each fine powder and mixed with a V-type mixer. The fine powder is subjected to transverse magnetic field molding, and the obtained compact is 1100
Vacuum sintering was performed at 11140 ° C., and the heat treatment was performed at 950 ° C. × 2 hours and cooled to 400 ° C. or less at a cooling rate of 1.0 ° C./min. FIG. 4 shows the magnetic properties of the obtained magnet.

【0011】(実施例5)組成、Nd:10、Pr:1
4、B:1.0、C:0.2、Ti:1.6、Co:1
0、Fe:balの合金をストリップキャスト法により
作製した。この合金に水素吸蔵・脱水素処理を行った
後、バンタムミルにより解砕した。次にジェットミルに
より微粉砕を行った後、各微粉に平均粒径20μmのZ
n粉末を0,1,2wt%添加し、V型混合器で混合し
た。微粉は横磁場成形し、得られた成形体を1100〜
1140℃で真空焼結した後、700℃×2hの熱処理
を行った。得られた磁石の磁気特性を表1に示す。
Example 5 Composition, Nd: 10, Pr: 1
4, B: 1.0, C: 0.2, Ti: 1.6, Co: 1
0, an alloy of Fe: bal was produced by a strip casting method. After hydrogen absorbing and dehydrogenating the alloy, it was crushed by a bantam mill. Next, after finely pulverizing by a jet mill, each fine powder was made of Z having an average particle size of 20 μm.
The n powder was added in an amount of 0.1, 2 wt% and mixed with a V-type mixer. The fine powder is subjected to transverse magnetic field molding,
After vacuum sintering at 1140 ° C., a heat treatment at 700 ° C. × 2 h was performed. Table 1 shows the magnetic properties of the obtained magnet.

【0012】[0012]

【表1】 [Table 1]

【0013】[0013]

【発明の効果】SmCo、SmCo17、Nd−F
e−B系焼結磁石とは異なる新規異方性希土類焼結磁石
を得た。本系磁石はR−Fe−B系をベースとしている
が、Rリッチ相がなく、保磁力発生機構が異なる新規な
磁石である。この新規な磁石の磁気特性を改善する添加
元素として、 Al,Cr,Ni,Cu,Zn,Ga,
Mnを使用し、保磁力、角型性がさらに改善され、応用
範囲の広い磁石材料である。
According to the present invention, SmCo 5 , Sm 2 Co 17 , Nd-F
A new anisotropic rare earth sintered magnet different from the EB based sintered magnet was obtained. The present magnet is based on the R-Fe-B system, but has no R-rich phase and is a novel magnet having a different coercive force generating mechanism. As additional elements for improving the magnetic properties of this novel magnet, Al, Cr, Ni, Cu, Zn, Ga,
Coercive force and squareness are further improved using Mn, and it is a magnet material with a wide range of applications.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の異方性希土類焼結磁石の磁気特性を示
す線図である。
FIG. 1 is a diagram showing magnetic characteristics of an anisotropic rare earth sintered magnet of the present invention.

【図2】本発明の異方性希土類焼結磁石の磁気特性を示
す線図である。
FIG. 2 is a diagram showing the magnetic properties of the anisotropic rare earth sintered magnet of the present invention.

【図3】本発明の異方性希土類焼結磁石の磁気特性を示
す線図である。
FIG. 3 is a diagram showing the magnetic properties of the anisotropic rare earth sintered magnet of the present invention.

【図4】本発明の異方性希土類焼結磁石の磁気特性を示
す線図である。
FIG. 4 is a diagram showing magnetic properties of the anisotropic rare earth sintered magnet of the present invention.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C22C 38/00 303 C22C 38/00 303D H01F 1/053 H01F 1/04 A ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C22C 38/00 303 C22C 38/00 303D H01F 1/053 H01F 1/04 A

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 組成が、希土類元素R:5〜30mas
s%、硼素B:0.3〜5mass%、C:0.01〜
5mass%、添加元素M(Ti,Zr,Hfの少な
くとも1種類):0.01〜7mass%、添加元素M
(Al,Cr,Ni,Cu,Zn,Ga,Mnの少な
くとも1種類):0.01〜5mass%、Co:0.
01〜50mass%、残部:Fe及び製造上不可避的
不純物からなることを特徴とする異方性希土類焼結磁
石。
1. The composition is a rare earth element R: 5 to 30 mas.
s%, boron B: 0.3 to 5 mass%, C: 0.01 to
5 mass%, additional element M 1 (at least one of Ti, Zr, Hf): 0.01 to 7 mass%, additional element M
2 (at least one of Al, Cr, Ni, Cu, Zn, Ga, and Mn): 0.01 to 5 mass%;
An anisotropic rare earth sintered magnet, characterized in that it is composed of 01 to 50 mass%, the balance being Fe and unavoidable impurities in production.
【請求項2】 組成が、希土類元素R:5〜30mas
s%、硼素B:0.3〜5mass%、C:0.01〜
5mass%、と添加元素M(Ti,Zr,Hfの少
なくとも1種類):0.01〜7mass%、添加元素
(Al,Cr,Ni,Cu,Zn,Ga,Mnの少
なくとも1種類):0.01〜5mass%、Co:
0.01〜50mass%、残部:Fe及び製造上不可
避的不純物からなる合金を配合し、溶解し、鋳造して鋳
塊を作り、前記鋳塊を粉砕し、その後、炭素C原料とし
てステアリン酸金属、パラフィンワックスもしくはTi
C,ZrC,HfC粉末の少なくとも1種を0.01〜
5mass%添加し、次いで成形、焼結、熱処理するこ
とを特徴とする異方性希土類磁石の製造方法。
2. The composition has a rare earth element R of 5 to 30 mas.
s%, boron B: 0.3 to 5 mass%, C: 0.01 to
5 mass%, and additional element M 1 (at least one of Ti, Zr, Hf): 0.01 to 7 mass%, additional element M 2 (at least one of Al, Cr, Ni, Cu, Zn, Ga, Mn) : 0.01 to 5 mass%, Co:
0.01-50 mass%, balance: alloy composed of Fe and unavoidable impurities in production, blended, melted and cast to form an ingot, pulverized, and then metal stearate as carbon C raw material , Paraffin wax or Ti
C, ZrC, HfC powder at least one of 0.01 to
A method for producing an anisotropic rare earth magnet, comprising adding 5 mass%, followed by molding, sintering, and heat treatment.
JP2000315403A 2000-10-16 2000-10-16 Anisotropic sintered rare-earth manget and its manufacturing method Pending JP2002124407A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000315403A JP2002124407A (en) 2000-10-16 2000-10-16 Anisotropic sintered rare-earth manget and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000315403A JP2002124407A (en) 2000-10-16 2000-10-16 Anisotropic sintered rare-earth manget and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2002124407A true JP2002124407A (en) 2002-04-26

Family

ID=18794514

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000315403A Pending JP2002124407A (en) 2000-10-16 2000-10-16 Anisotropic sintered rare-earth manget and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2002124407A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006295140A (en) * 2005-03-16 2006-10-26 Tdk Corp Rare earth permanent magnet
US7399368B2 (en) 2002-08-22 2008-07-15 Hitachi, Ltd. Motor using magnet
JP2008192903A (en) * 2007-02-06 2008-08-21 Hitachi Metals Ltd Iron-based rare- earth alloy magnet
WO2010106964A1 (en) * 2009-03-19 2010-09-23 本田技研工業株式会社 Rare earth permanent magnet and method for producing same
JP2022535480A (en) * 2019-11-21 2022-08-09 フージャン チャンティン ゴールデン ドラゴン レア-アース カンパニー リミテッド Neodymium-iron-boron magnet material, raw material composition, manufacturing method, and application

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7399368B2 (en) 2002-08-22 2008-07-15 Hitachi, Ltd. Motor using magnet
JP2006295140A (en) * 2005-03-16 2006-10-26 Tdk Corp Rare earth permanent magnet
JP2008192903A (en) * 2007-02-06 2008-08-21 Hitachi Metals Ltd Iron-based rare- earth alloy magnet
JP4687662B2 (en) * 2007-02-06 2011-05-25 日立金属株式会社 Iron-based rare earth alloy magnet
WO2010106964A1 (en) * 2009-03-19 2010-09-23 本田技研工業株式会社 Rare earth permanent magnet and method for producing same
JP2010222601A (en) * 2009-03-19 2010-10-07 Honda Motor Co Ltd Rare earth permanent magnet and method for producing the same
EP2410067A1 (en) * 2009-03-19 2012-01-25 Honda Motor Co., Ltd. Rare earth permanent magnet and method for producing same
CN102356172A (en) * 2009-03-19 2012-02-15 本田技研工业株式会社 Rare earth permanent magnet and method for producing same
EP2410067A4 (en) * 2009-03-19 2012-08-01 Honda Motor Co Ltd Rare earth permanent magnet and method for producing same
JP2022535480A (en) * 2019-11-21 2022-08-09 フージャン チャンティン ゴールデン ドラゴン レア-アース カンパニー リミテッド Neodymium-iron-boron magnet material, raw material composition, manufacturing method, and application
JP7220301B2 (en) 2019-11-21 2023-02-09 フージャン チャンティン ゴールデン ドラゴン レア-アース カンパニー リミテッド Neodymium-iron-boron magnet material, raw material composition, manufacturing method, and application

Similar Documents

Publication Publication Date Title
JP4805998B2 (en) Permanent magnet and permanent magnet motor and generator using the same
JP2001189206A (en) Permanent magnet
JPWO2007063969A1 (en) Rare earth sintered magnet and manufacturing method thereof
JP4951703B2 (en) Alloy material for RTB-based rare earth permanent magnet, method for manufacturing RTB-based rare earth permanent magnet, and motor
JP3121824B2 (en) Sintered permanent magnet
JPH07105289B2 (en) Rare earth permanent magnet manufacturing method
JP2002038245A (en) Rare earth alloy powder for rermanent magnet and method for manufacturing rare earth permanent magnet
JP5743458B2 (en) Alloy material for RTB-based rare earth permanent magnet, method for manufacturing RTB-based rare earth permanent magnet, and motor
JP2009010305A (en) Method for manufacturing rare-earth magnet
JP2853839B2 (en) Manufacturing method of rare earth permanent magnet
JP2002124407A (en) Anisotropic sintered rare-earth manget and its manufacturing method
Kuhrt Processing of permanent magnet materials based on rare earth-transition metal intermetallics
JP2002025810A (en) Anisotropic rare earth sintered magnet and its manufacturing method
JP6623998B2 (en) Method for producing RTB based sintered magnet
JP2747236B2 (en) Rare earth iron permanent magnet
JP2018060997A (en) Method for manufacturing r-t-b based sintered magnet
JP4534553B2 (en) R-T-B system sintered magnet and manufacturing method thereof
JP2739860B2 (en) MAGNETIC MATERIAL, MAGNET COMPRISING THE SAME, AND PROCESS FOR PRODUCING THEM
JP3053187B2 (en) Manufacturing method of permanent magnet
JP2019169560A (en) Manufacturing method of r-t-b-based sintered magnet
JPH0547533A (en) Sintered permanent magnet and manufacture thereof
JPH0535211B2 (en)
JP5235264B2 (en) Rare earth sintered magnet and manufacturing method thereof
JP4687493B2 (en) Rare earth sintered magnet and manufacturing method thereof
JP2951006B2 (en) Permanent magnet material, manufacturing method thereof, and bonded magnet

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040526

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070613