JP4805998B2 - Permanent magnet and permanent magnet motor and generator using the same - Google Patents

Permanent magnet and permanent magnet motor and generator using the same Download PDF

Info

Publication number
JP4805998B2
JP4805998B2 JP2008295431A JP2008295431A JP4805998B2 JP 4805998 B2 JP4805998 B2 JP 4805998B2 JP 2008295431 A JP2008295431 A JP 2008295431A JP 2008295431 A JP2008295431 A JP 2008295431A JP 4805998 B2 JP4805998 B2 JP 4805998B2
Authority
JP
Japan
Prior art keywords
permanent magnet
phase
magnet
atomic
range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008295431A
Other languages
Japanese (ja)
Other versions
JP2010123722A (en
Inventor
新哉 桜田
陽介 堀内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2008295431A priority Critical patent/JP4805998B2/en
Publication of JP2010123722A publication Critical patent/JP2010123722A/en
Application granted granted Critical
Publication of JP4805998B2 publication Critical patent/JP4805998B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Description

本発明は永久磁石とそれを用いた永久磁石モータおよび発電機に関する。   The present invention relates to a permanent magnet, a permanent magnet motor and a generator using the permanent magnet.

高性能な希土類磁石としてはSm−Co系磁石やNd−Fe−B系磁石等が知られており、モータや発電機等の電気機器に使用されている。これらの磁石には鉄(Fe)やコバルト(Co)が多量に含まれており、飽和磁化の増大に寄与している。さらに、サマリウム(Sm)やネオジム(Nd)等の希土類元素は結晶場中における4f電子の挙動に由来して大きな磁気異方性をもたらしている。これらによって、大きな保磁力が得られることから、高性能な永久磁石が実現されている。   Sm—Co magnets, Nd—Fe—B magnets, and the like are known as high performance rare earth magnets, and are used in electric devices such as motors and generators. These magnets contain a large amount of iron (Fe) and cobalt (Co) and contribute to an increase in saturation magnetization. Furthermore, rare earth elements such as samarium (Sm) and neodymium (Nd) have a large magnetic anisotropy due to the behavior of 4f electrons in the crystal field. Since a large coercive force can be obtained by these, a high-performance permanent magnet is realized.

永久磁石を用いた各種電気機器に対する小型軽量化や低消費電力化の要求が高まり、それらに対応するために永久磁石のより一層の高性能化が求められている。具体的には、最大磁気エネルギー積(BHmax)を向上させた、より高性能な永久磁石が求められている。さらに、最近ではハイブリッド自動車(HEV)や電気自動車(EV)等のモータに永久磁石を使用するにあたって、永久磁石の耐熱性を高めることが求められている。   There are increasing demands for reduction in size and weight and reduction in power consumption for various electric devices using permanent magnets, and in order to meet these demands, there is a demand for higher performance of permanent magnets. Specifically, there is a demand for a higher performance permanent magnet with an improved maximum magnetic energy product (BHmax). Furthermore, recently, when a permanent magnet is used for a motor of a hybrid vehicle (HEV), an electric vehicle (EV) or the like, it is required to increase the heat resistance of the permanent magnet.

HEVやEV用のモータには、主としてNd−Fe−B系磁石が適用されている。このような用途では高い耐熱性が求められるため、ネオジム(Nd)の一部をジスプロシウム(Dy)で置換して保磁力を高めた(Nd,Dy)−Fe−B系磁石が用いられている。Dyは希少元素の一つであることから、HEVやEV用のモータの本格的な普及に際してDyを使用しない永久磁石が強く求められている。このような点に対して、Sm−Co系磁石はDyを使用しない系で優れた耐熱性を示すことが知られている。   Nd-Fe-B magnets are mainly applied to HEV and EV motors. Since high heat resistance is required in such applications, (Nd, Dy) -Fe-B magnets in which a part of neodymium (Nd) is replaced with dysprosium (Dy) to increase coercivity are used. . Since Dy is one of rare elements, there is a strong demand for permanent magnets that do not use Dy when HEV and EV motors are widely used. On the other hand, it is known that Sm—Co magnets exhibit excellent heat resistance in a system that does not use Dy.

Sm−Co系の永久磁石としては、SmとCoとの二元系金属間化合物に基づくSmCo型磁石と、ThZn17型結晶相とCaCu型結晶相との二相分離組織を有し、磁壁ピンニング型の保磁力発現機構により磁石特性を得ているSmCo17型磁石(特許文献1〜3参照)とが知られている。SmCo17型磁石はSmCo型磁石に比べて保磁力や最大磁気エネルギー積等の磁石特性に優れ、また高いキュリー温度に由来して優れた耐熱性を有している。しかしながら、Sm−Co系磁石はCoを多量に含むために高コストであり、さらにNd−Fe−B系磁石に比べて磁化が小さいという難点を有している。 The Sm-Co permanent magnet has an SmCo 5 type magnet based on a binary intermetallic compound of Sm and Co, and a two-phase separation structure of a Th 2 Zn 17 type crystal phase and a CaCu 5 type crystal phase. In addition, Sm 2 Co 17 type magnets (see Patent Documents 1 to 3) that have obtained magnetic properties by a domain wall pinning type coercive force generation mechanism are known. The Sm 2 Co 17 type magnet is superior to the SmCo 5 type magnet in magnetic properties such as coercive force and maximum magnetic energy product, and has excellent heat resistance due to a high Curie temperature. However, the Sm—Co based magnet is expensive because it contains a large amount of Co, and further has the disadvantage that the magnetization is smaller than that of the Nd—Fe—B based magnet.

SmCo17型磁石の磁化の向上には、飽和磁化の大きいFeの含有量を増加させることが有効である。また、Fe含有量を増加させることでSmCo17型磁石を低コスト化することができる。しかし、Fe含有量の増加はSmCo17型磁石の前駆体であるTbCu型結晶相(高温相)の不安定化を招き、その結果としてThZn17型結晶相とCaCu型結晶相との二相分離組織が得られなくなる。このようなことから、Fe濃度が高い組成でTbCu型結晶相を安定化させ、それに時効処理を施して得られるThZn17型結晶相とCaCu型結晶相との二相分離組織のFe濃度を増加させることによって、SmCo17型磁石の磁化の向上や低コスト化を図ることが求められている。
特開昭52−96923号公報 特開昭52−115000号公報 特開昭53−137022号公報
In order to improve the magnetization of the Sm 2 Co 17 type magnet, it is effective to increase the content of Fe having a large saturation magnetization. Further, by increasing the Fe content, the cost of the Sm 2 Co 17 type magnet can be reduced. However, the increase in Fe content leads to instability of the TbCu 7 type crystal phase (high temperature phase) that is a precursor of the Sm 2 Co 17 type magnet, and as a result, the Th 2 Zn 17 type crystal phase and the CaCu 5 type crystal. A two-phase separated structure with the phase cannot be obtained. For this reason, a two-phase separation structure of a Th 2 Zn 17 type crystal phase and a CaCu 5 type crystal phase obtained by stabilizing a TbCu 7 type crystal phase with a composition having a high Fe concentration and subjecting it to an aging treatment. Increasing the Fe concentration is required to improve the magnetization and reduce the cost of the Sm 2 Co 17 type magnet.
JP 52-96923 A JP 52-115000 A Japanese Patent Laid-Open No. 53-137002

本発明の目的は、耐熱性に優れるSm−Co系磁石のFe濃度を、磁石特性をもたらす結晶構造等を維持しつつ高めることによって、磁化の向上および低コスト化を図ることを可能にした永久磁石とそれを用いた永久磁石モータおよび発電機を提供することにある。   The object of the present invention is to improve the magnetization and reduce the cost by increasing the Fe concentration of the Sm—Co magnet having excellent heat resistance while maintaining the crystal structure and the like that bring about the magnet characteristics. An object is to provide a magnet and a permanent magnet motor and a generator using the magnet.

本発明の態様に係る永久磁石は、
組成式:R(FeSiCuCo1−p−q−r−s100−x
(式中、RはYを含む希土類元素から選ばれる少なくとも1種の元素、MはTi、ZrおよびHfから選ばれる少なくとも1種の元素を示し、xは8≦x≦20原子%を満足する数、p、q、rおよびsはそれぞれ原子比で0.3≦p≦0.6、0.005≦q≦0.1、0.005≦r≦0.1、0.005≦s≦0.15を満足する数である)
で表される組成を有し、かつ主としてThZn17型結晶相とCaCu型結晶相とからなる組織を有することを特徴としている。
The permanent magnet according to an aspect of the present invention is:
Composition formula: R x (Fe p M q Si r Cu s Co 1-p-q-r-s) 100-x
(Wherein R represents at least one element selected from rare earth elements including Y, M represents at least one element selected from Ti, Zr and Hf, and x satisfies 8 ≦ x ≦ 20 atomic%. The numbers, p, q, r, and s are atomic ratios of 0.3 ≦ p ≦ 0.6, 0.005 ≦ q ≦ 0.1, 0.005 ≦ r ≦ 0.1, and 0.005 ≦ s ≦, respectively. It is a number that satisfies 0.15)
And a structure mainly composed of a Th 2 Zn 17 type crystal phase and a CaCu 5 type crystal phase.

本発明の他の態様に係る永久磁石モータは、本発明の態様に係る永久磁石を具備することを特徴としている。本発明のさらに他の態様に係る発電機は、本発明の態様に係る永久磁石を具備することを特徴としている。   A permanent magnet motor according to another aspect of the present invention includes the permanent magnet according to the aspect of the present invention. The generator which concerns on the further another aspect of this invention comprises the permanent magnet which concerns on the aspect of this invention, It is characterized by the above-mentioned.

本発明の態様に係る永久磁石によれば、Feを高濃度に含む組成でThZn17型結晶相とCaCu型結晶相との二相分離組織を安定して得ることができる。従って、低コストで磁気特性に優れ、耐熱性の良好な永久磁石を提供することが可能となる。 According to the permanent magnet according to the aspect of the present invention, a two-phase separated structure of a Th 2 Zn 17 type crystal phase and a CaCu 5 type crystal phase can be stably obtained with a composition containing Fe at a high concentration. Therefore, it is possible to provide a permanent magnet having excellent magnetic properties and good heat resistance at low cost.

以下、本発明を実施するための形態について説明する。この実施形態の永久磁石は、
組成式:R(FeSiCuCo1−p−q−r−s100−x …(1)
(式中、RはYを含む希土類元素から選ばれる少なくとも1種の元素、MはTi、ZrおよびHfから選ばれる少なくとも1種の元素を示し、xは8≦x≦20原子%を満足する数、p、q、rおよびsはそれぞれ原子比で0.3≦p≦0.6、0.005≦q≦0.1、0.005≦r≦0.1、0.005≦s≦0.15を満足する数である)
で表される組成を有している。
Hereinafter, modes for carrying out the present invention will be described. The permanent magnet of this embodiment is
Composition formula: R x (Fe p M q Si r Cu s Co 1-p-q-r-s) 100-x ... (1)
(Wherein R represents at least one element selected from rare earth elements including Y, M represents at least one element selected from Ti, Zr and Hf, and x satisfies 8 ≦ x ≦ 20 atomic%. The numbers, p, q, r, and s are atomic ratios of 0.3 ≦ p ≦ 0.6, 0.005 ≦ q ≦ 0.1, 0.005 ≦ r ≦ 0.1, and 0.005 ≦ s ≦, respectively. It is a number that satisfies 0.15)
It has the composition represented by these.

この実施形態の永久磁石は(1)式の組成を満足した上で、主としてThZn17型結晶相とCaCu型結晶相とからなる組織を有している。すなわち、この実施形態の永久磁石はR(主としてSm)−Co系を基本とし、これにFe、元素M(Ti、ZrおよびHfから選ばれる少なくとも1種)、CuおよびSiを配合することで、高Fe濃度組成でThZn17型結晶相とCaCu型結晶相との二相分離組織を実現したものである。 The permanent magnet of this embodiment satisfies the composition of the formula (1) and has a structure mainly composed of a Th 2 Zn 17 type crystal phase and a CaCu 5 type crystal phase. That is, the permanent magnet of this embodiment is based on R (mainly Sm) -Co system, and by blending Fe, element M (at least one selected from Ti, Zr and Hf), Cu and Si, A two-phase separation structure of a Th 2 Zn 17 type crystal phase and a CaCu 5 type crystal phase is realized with a high Fe concentration composition.

ここで、ThZn17型結晶相(以下、2−17相と記す)とCaCu型結晶相(以下、1−5相と記す)との二相分離組織を有するR−Co系永久磁石(RCo17型磁石)は、前述したように高温相であるTbCu型結晶相(以下、1−7相と記す)を前駆体とし、これに時効処理を施して2−17相と1−5相とに相分離させることによって、磁壁ピンニング型の保磁力発現機構により磁石特性を得ている。 Here, an R—Co permanent magnet having a two-phase separated structure of a Th 2 Zn 17 type crystal phase (hereinafter referred to as 2-17 phase) and a CaCu 5 type crystal phase (hereinafter referred to as 1-5 phase). (R 2 Co 17- type magnet) has a TbCu 7- type crystal phase (hereinafter referred to as 1-7 phase), which is a high-temperature phase as described above, as a precursor, and is subjected to an aging treatment to obtain a 2-17 phase. By separating the phase into 1-5 phases, magnet characteristics are obtained by a domain wall pinning type coercive force generation mechanism.

上述したような前駆体(1−7相)から相分離(2−17相と1−5相)させて永久磁石を作製するにあたって、高Fe濃度を実現するためには前駆体の安定性、すなわち高Fe濃度での1−7相の安定性を高める必要がある。このような点に対して、この実施形態ではR−(Co,Fe,M,Cu)系に、さらにSiを含有させているため、従来よりも高Fe濃度組成で1−7相を安定化させることができる。   In producing a permanent magnet by phase separation (2-17 phase and 1-5 phase) from the precursor (1-7 phase) as described above, in order to achieve a high Fe concentration, the stability of the precursor, That is, it is necessary to improve the stability of the 1-7 phase at a high Fe concentration. In contrast, in this embodiment, since the Si is further contained in the R- (Co, Fe, M, Cu) system in this embodiment, the 1-7 phase is stabilized with a higher Fe concentration composition than before. Can be made.

そして、高Fe濃度の1−7相を出発材料とし、これに適当な条件で時効熱処理を施すことによって、従来のSm−Co系磁石よりも高Fe濃度組成で2−17相と1−5相との二相分離組織を得ることができる。従って、耐熱性に優れるR−Co系永久磁石の磁石特性(磁化等)の向上並びに低コスト化を実現することが可能となる。高Fe濃度の1−7相を安定化できた理由としては、Siの電気陰性度が高いこと、またSiの原子半径がFeと近いこと等が挙げられる。   Then, the 1-7 phase having a high Fe concentration is used as a starting material, and an aging heat treatment is applied thereto under appropriate conditions, so that the 2-17 phase and 1-5 have a higher Fe concentration composition than the conventional Sm—Co magnet. A two-phase separated structure with the phase can be obtained. Therefore, it is possible to improve the magnet characteristics (magnetization and the like) of the R—Co permanent magnet having excellent heat resistance and reduce the cost. The reason why the 1-7 phase having a high Fe concentration can be stabilized is that the electronegativity of Si is high and the atomic radius of Si is close to that of Fe.

この実施形態のR−Co系永久磁石は(1)式で表される組成を有する。(1)式において、元素RとしてはYを含む希土類元素から選ばれる少なくとも1種の元素が使用される。R元素はいずれも磁石材料に大きな磁気異方性をもたらし、高い保磁力を付与するために8〜20原子%の範囲で配合される。元素Rの配合量が8原子%未満であると、多量のα−Fe相が析出して大きな保磁力を得ることができない。元素Rの配合量が20原子%を超えると飽和磁化の低下が著しい。元素Rの配合量は10〜15原子%の範囲とすることがより好ましく、さらに好ましくは10.5〜12.5原子%の範囲である。   The R—Co permanent magnet of this embodiment has a composition represented by the formula (1). In the formula (1), at least one element selected from rare earth elements including Y is used as the element R. Any of the R elements brings about a large magnetic anisotropy to the magnet material, and is added in a range of 8 to 20 atomic% in order to impart a high coercive force. When the blending amount of the element R is less than 8 atomic%, a large amount of α-Fe phase is precipitated and a large coercive force cannot be obtained. When the compounding amount of the element R exceeds 20 atomic%, the saturation magnetization is remarkably lowered. The compounding amount of the element R is more preferably in the range of 10 to 15 atomic%, further preferably in the range of 10.5 to 12.5 atomic%.

元素Rとしてはサマリウム(Sm)、ネオジム(Nd)およびプラセオジム(Pr)から選ばれる少なくとも1種の元素を使用することが好ましく、特にSmを用いることが望ましい。Smは磁石材料の性能、とりわけ保磁力を高めるのに有効である。このような点から、元素Rの総量の50原子%以上をSmとすることが好ましく、さらに好ましくは元素Rの総量の70原子%以上をSmとすることである。   As the element R, it is preferable to use at least one element selected from samarium (Sm), neodymium (Nd) and praseodymium (Pr), and it is particularly preferable to use Sm. Sm is effective in enhancing the performance of the magnet material, particularly the coercive force. From such a point, it is preferable that 50 atomic% or more of the total amount of the element R is Sm, and more preferably 70 atomic% or more of the total amount of the element R is Sm.

元素Mとしてはチタン(Ti)、ジルコニウム(Zr)およびハフニウム(Hf)から選ばれる少なくとも1種の元素が用いられる。元素Mを配合することによって、高Fe濃度組成で大きな保磁力を発現させることができる。元素Mの配合量は(1)式のq値として0.005≦q≦0.1の範囲、すなわちFe、Co、Cu、元素MおよびSiの総量の0.5〜10原子%の範囲とする。   As the element M, at least one element selected from titanium (Ti), zirconium (Zr), and hafnium (Hf) is used. By blending the element M, a large coercive force can be expressed with a high Fe concentration composition. The compounding amount of the element M is in the range of 0.005 ≦ q ≦ 0.1 as the q value of the formula (1), that is, in the range of 0.5 to 10 atomic% of the total amount of Fe, Co, Cu, elements M and Si. To do.

元素Mの配合量がFe、Co、Cu、元素MおよびSiの総量の10原子%を超えると磁化の低下が著しくなり、また0.5原子%未満であるとFe濃度を高める効果を十分に得ることができない。元素Mの配合量は0.01≦q≦0.06の範囲とすることが好ましく、さらに好ましくは0.02≦q≦0.04の範囲である。さらに、M元素の総量の50原子%以上をZrとすることによって、保磁力をより一層高めることができる。元素Mのうち、HfはTiやZrに比べて高価であるため、Hfを使用する場合においても元素Mの総量の20原子%未満とすることが望ましい。   When the amount of element M exceeds 10 atomic% of the total amount of Fe, Co, Cu, element M and Si, the magnetization is remarkably lowered, and when it is less than 0.5 atomic%, the effect of increasing the Fe concentration is sufficiently obtained. Can't get. The blending amount of the element M is preferably in the range of 0.01 ≦ q ≦ 0.06, more preferably in the range of 0.02 ≦ q ≦ 0.04. Furthermore, the coercive force can be further increased by setting Zr to 50 atomic% or more of the total amount of M elements. Of the elements M, Hf is more expensive than Ti and Zr. Therefore, even when Hf is used, it is desirable to make it less than 20 atomic% of the total amount of the elements M.

ケイ素(Si)は上述したように高Fe濃度組成における1−7相の安定化に寄与するものであり、これにより磁化の向上並びに低コスト化を実現することが可能となる。Siの配合量は(1)式のr値として0.005≦r≦0.1の範囲、すなわちFe、Co、Cu、元素MおよびSiの総量の0.5〜10原子%の範囲とする。これよりSiを多量に配合すると磁化の低下が著しく、またこれより少量であるとFe濃度を高める効果を十分に得ることができない。Siの配合量は0.01≦r≦0.05の範囲とすることがより好ましく、さらに好ましくは0.01≦r≦0.03の範囲である。   As described above, silicon (Si) contributes to the stabilization of the 1-7 phase in a high Fe concentration composition, and this makes it possible to improve the magnetization and reduce the cost. The compounding amount of Si is in the range of 0.005 ≦ r ≦ 0.1 as the r value in the formula (1), that is, in the range of 0.5 to 10 atomic% of the total amount of Fe, Co, Cu, element M and Si. . If a larger amount of Si is added than this, the magnetization is remarkably lowered, and if it is less than this, the effect of increasing the Fe concentration cannot be obtained sufficiently. The amount of Si is more preferably 0.01 ≦ r ≦ 0.05, and still more preferably 0.01 ≦ r ≦ 0.03.

Siの一部はGeおよびSnから選ばれる少なくとも1種の元素Xで置換してもよい。これによって、保磁力等の磁石特性を高めることができる。ただし、元素XによるSiの置換量が過剰になると高Fe濃度組成における1−7相の安定化効果が低下するおそがある。このため、元素Xによる置換量はSi量の20原子%以下とすることが好ましい。   A part of Si may be substituted with at least one element X selected from Ge and Sn. Thereby, magnet characteristics such as coercive force can be enhanced. However, if the substitution amount of Si by the element X becomes excessive, the stabilizing effect of the 1-7 phase at a high Fe concentration composition may be lowered. For this reason, the substitution amount by the element X is preferably 20 atomic% or less of the Si amount.

銅(Cu)はR−Co系永久磁石において高い保磁力を発現させるために必須の元素である。Cuの配合量は(1)式のs値として0.005≦s≦0.15の範囲、すなわちFe、Co、Cu、元素MおよびSiの総量の0.5〜15原子%の範囲とする。Cuの配合量がFe、Co、Cu、元素MおよびSiの総量の15原子%を超えると磁化の低下が著しくなり、また0.5原子%未満であると高い保磁力を得ることが困難になる。Cuの配合量を示すs値は0.02≦r≦0.1の範囲とすることがより好ましく、さらに好ましくは0.03≦s≦0.08の範囲である。   Copper (Cu) is an essential element for developing a high coercive force in the R—Co permanent magnet. The compounding amount of Cu is in the range of 0.005 ≦ s ≦ 0.15 as the s value of the formula (1), that is, in the range of 0.5 to 15 atomic% of the total amount of Fe, Co, Cu, element M and Si. . When the amount of Cu exceeds 15 atomic% of the total amount of Fe, Co, Cu, element M and Si, the magnetization is remarkably lowered, and when it is less than 0.5 atomic%, it is difficult to obtain a high coercive force. Become. As for s value which shows the compounding quantity of Cu, it is more preferable to set it as the range of 0.02 <= r <= 0.1, More preferably, it is the range of 0.03 <= s <= 0.08.

鉄(Fe)は主として磁石材料の磁化を担うものである。Feの配合量を増やすことによって、磁石材料の飽和磁化を高めることができる。ただし、Feの配合量が過剰になるとα−Fe相が析出したり、また2−17相と1−5相との二相分離組織が得られにくくなって、保磁力が低下するおそれがある。Feの配合量は(1)式のp値として0.3≦p≦0.6の範囲、すなわちFe、Co、Cu、元素MおよびSiの総量の30〜60原子%の範囲とする。Feの配合量を示すp値は0.3≦p≦0.5の範囲とすることがより好ましく、さらに好ましくは0.35≦p≦0.45の範囲である。   Iron (Fe) is mainly responsible for the magnetization of the magnet material. By increasing the amount of Fe, the saturation magnetization of the magnet material can be increased. However, if the amount of Fe is excessive, the α-Fe phase is precipitated, or it is difficult to obtain a two-phase separated structure of 2-17 phase and 1-5 phase, which may reduce the coercive force. . The blending amount of Fe is in the range of 0.3 ≦ p ≦ 0.6 as the p value of the formula (1), that is, in the range of 30 to 60 atomic% of the total amount of Fe, Co, Cu, element M and Si. The p value indicating the blending amount of Fe is more preferably in the range of 0.3 ≦ p ≦ 0.5, and further preferably in the range of 0.35 ≦ p ≦ 0.45.

コバルト(Co)は磁石材料の磁化を担うと共に、高い保磁力を発現させるために重要な元素である。また、Coを多く配合するとキュリー温度が向上し、磁石特性の熱安定性を高めることができる。Coの配合量が少ないとこれらの効果が小さくなる。ただし、Coを過剰に配合すると相対的にFeの配合量が減少し、Fe濃度の増加に基づく磁化の向上効果が低下する。Coの配合量はFe、Co、Cu、元素MおよびSiの総量に対する各元素の配合量、特にFeの配合量が30〜60原子%の範囲となるように設定される。   Cobalt (Co) plays an important role in magnetizing the magnetic material and is an important element for developing a high coercive force. Further, when a large amount of Co is blended, the Curie temperature is improved, and the thermal stability of the magnet characteristics can be enhanced. If the amount of Co is small, these effects are reduced. However, when Co is blended excessively, the blending amount of Fe is relatively decreased, and the effect of improving magnetization based on the increase in Fe concentration is lowered. The blending amount of Co is set so that the blending amount of each element with respect to the total amount of Fe, Co, Cu, elements M and Si, particularly the blending amount of Fe is in the range of 30 to 60 atomic%.

Coの一部はNi、V、Cr、Mn、Al、Ga、Nb、TaおよびWから選ばれる少なくとも1種の元素Zで置換してもよい。これによって、保磁力等の磁石特性を高めることができる。ただし、元素ZによるCoの置換量が過剰になると磁化の低下を招くおそれがあるため、元素Zによる置換量はCo量の20原子%以下とすることが好ましい。   A part of Co may be substituted with at least one element Z selected from Ni, V, Cr, Mn, Al, Ga, Nb, Ta and W. Thereby, magnet characteristics such as coercive force can be enhanced. However, if the amount of substitution of Co by the element Z becomes excessive, there is a risk of lowering the magnetization. Therefore, the amount of substitution by the element Z is preferably 20 atomic% or less of the amount of Co.

上述した組成を有するR−Co系永久磁石は、CuリッチなCaCu相(1−5相)とFeリッチなThZn17型結晶相(2−17相)とが二相分離した微細組織を有しており、このような二相分離組織に基づいて磁石特性を示すものである。そして、この実施形態では主としてThZn17型結晶相(2−17相)のFe濃度を高めているため、R−Co系永久磁石の磁化を向上させ、さらに低コスト化することが可能となる。 The R—Co permanent magnet having the above-described composition has a microstructure in which a Cu-rich CaCu 5 phase (1-5 phase) and a Fe-rich Th 2 Zn 17 type crystal phase (2-17 phase) are separated into two phases. And exhibits magnet characteristics based on such a two-phase separated structure. In this embodiment, since the Fe concentration of the Th 2 Zn 17 type crystal phase (2-17 phase) is mainly increased, the magnetization of the R—Co permanent magnet can be improved and the cost can be further reduced. Become.

この実施形態の永久磁石は、例えば以下のようにして作製される。まず、各元素を所定量含む合金粉末を作製する。合金粉末は合金原料をアーク溶解や高周波溶解した後に鋳造した合金インゴットを粉砕して調製される。合金粉末はストリップキャスト法等でフレーク状の合金薄帯を作製した後に粉砕して調整してもよい。合金粉末の他の調製方法としては、メカニカルアロイング法、メカニカルグラインディング法、ガスアトマイズ法、還元拡散法等が挙げられる。合金粉末または粉砕前の合金に対して必要に応じて熱処理を施して均質化してもよい。合金の粉砕はジェットミル、ボールミル等を用いて実施される。粉砕は粉末の酸化を防止するために、不活性ガス雰囲気中で行うことが好ましい。   The permanent magnet of this embodiment is produced as follows, for example. First, an alloy powder containing a predetermined amount of each element is prepared. The alloy powder is prepared by pulverizing a cast alloy ingot after arc melting or high frequency melting of the alloy raw material. The alloy powder may be prepared by pulverizing and preparing a flake-like alloy ribbon by a strip casting method or the like. Other methods for preparing the alloy powder include mechanical alloying method, mechanical grinding method, gas atomization method, reduction diffusion method and the like. The alloy powder or the alloy before pulverization may be homogenized by performing a heat treatment as necessary. The alloy is pulverized using a jet mill, a ball mill, or the like. The pulverization is preferably performed in an inert gas atmosphere in order to prevent oxidation of the powder.

次いで、電磁石等による磁場中に設置した金型内に合金粉末を充填し、磁場を印加しながら加圧成形することによって、合金粉末の結晶軸を配向させた圧粉体を作製する。このような圧粉体を1200℃〜1300℃の範囲の温度で0.5〜15時間の条件で焼結することによって、緻密な焼結体が得られる。焼結は酸化等を防止するために、通常真空中やアルゴンガス等の不活性ガス雰囲気中で実施される。   Next, a powder compact in which the crystal axis of the alloy powder is oriented is manufactured by filling the alloy powder in a mold placed in a magnetic field by an electromagnet or the like and applying pressure while applying the magnetic field. By sintering such a green compact at a temperature in the range of 1200 ° C. to 1300 ° C. for 0.5 to 15 hours, a dense sintered body can be obtained. Sintering is usually performed in a vacuum or in an inert gas atmosphere such as argon gas in order to prevent oxidation or the like.

焼結温度が1200℃未満の場合には焼結体の密度が低下し、1300℃を超えると粉末中のSm等が蒸発して良好な磁気特性が得られない。焼結温度は1150〜1250℃の範囲とすることがより好ましい。焼結時間が0.5時間未満の場合には焼結体の密度が不均一となり、15時間を超えると粉末中のSm等が蒸発して良好な磁気特性が得られない。焼結時間は1〜5時間の範囲とすることがより好ましい。   When the sintering temperature is less than 1200 ° C., the density of the sintered body is lowered, and when it exceeds 1300 ° C., Sm in the powder evaporates and good magnetic properties cannot be obtained. The sintering temperature is more preferably in the range of 1150 to 1250 ° C. When the sintering time is less than 0.5 hours, the density of the sintered body becomes non-uniform, and when it exceeds 15 hours, Sm and the like in the powder evaporate and good magnetic properties cannot be obtained. The sintering time is more preferably in the range of 1 to 5 hours.

次に、焼結体に溶体化熱処理および時効熱処理を施して結晶組織を制御する。溶体化熱処理は前駆体である1−7相を得るために、1130〜1230℃の範囲の温度で0.5〜8時間保持することが好ましい。時効熱処理は前駆体である1−7相を2−17相と1−5相とに相分離させるために、700〜900℃の範囲の温度で0.5〜20時間保持した後に400℃まで徐冷し、引き続いて室温まで冷却することにより実施することが好ましい。時効熱処理後の徐冷は0.5〜5℃/分の範囲の冷却速度で実施することが好ましい。結晶組織の制御は保磁力を制御する上で重要である。   Next, the crystal structure is controlled by subjecting the sintered body to solution heat treatment and aging heat treatment. The solution heat treatment is preferably held at a temperature in the range of 1130 to 1230 ° C. for 0.5 to 8 hours in order to obtain the precursor 1-7 phase. Aging heat treatment is carried out at a temperature in the range of 700 to 900 ° C. for 0.5 to 20 hours and then to 400 ° C. in order to separate the precursor 1-7 phase into 2-17 and 1-5 phases. It is preferable to carry out by slowly cooling and subsequently cooling to room temperature. The slow cooling after the aging heat treatment is preferably performed at a cooling rate in the range of 0.5 to 5 ° C./min. Control of the crystal structure is important for controlling the coercive force.

溶体化熱処理温度が1130℃未満の場合には1−7相の割合を十分に高めることができず、良好な磁気特性が得られない。溶体化熱処理温度が1230℃を超える場合にも1−7相の割合が減少し、良好な磁気特性が得られない。溶体化熱処理温度は1150〜1210℃の範囲とすることがより好ましい。溶体化熱処理時間が0.5時間未満の場合には構成相が不均一となり、8時間を超えると焼結体中のSm等が蒸発して良好な磁気特性が得られない。溶体化熱処理時間は1〜4時間の範囲とすることがより好ましい。溶体化熱処理は酸化防止のため、真空中やアルゴンガス等の不活性ガス雰囲気中で実施される。   When the solution heat treatment temperature is lower than 1130 ° C., the ratio of the 1-7 phase cannot be sufficiently increased, and good magnetic properties cannot be obtained. Even when the solution heat treatment temperature exceeds 1230 ° C., the ratio of the 1-7 phase decreases, and good magnetic properties cannot be obtained. The solution heat treatment temperature is more preferably in the range of 1150 to 1210 ° C. When the solution heat treatment time is less than 0.5 hours, the constituent phases become non-uniform, and when it exceeds 8 hours, Sm and the like in the sintered body evaporate and good magnetic properties cannot be obtained. The solution heat treatment time is more preferably in the range of 1 to 4 hours. The solution heat treatment is performed in vacuum or in an inert gas atmosphere such as argon gas in order to prevent oxidation.

時効熱処理温度が700℃未満または900℃を超えると、均質な2−17相と1−5相との混合相が得られない。時効熱処理温度は750〜900℃の範囲とすることがより好ましい。時効熱処理時間が0.5時間未満の場合には、1−7相から2−17相と1−5相への相分離を完了させることができず、20時間を超えると結晶粒の粗大化等により磁気特性が低下するおそれがある。時効熱処理時間は1〜10時間の範囲とすることがより好ましい。時効熱処理は酸化防止のために、通常真空中やアルゴンガス等の等の不活性ガス雰囲気中で実施される。   When the aging heat treatment temperature is less than 700 ° C. or exceeds 900 ° C., a homogeneous mixed phase of 2-17 phase and 1-5 phase cannot be obtained. The aging heat treatment temperature is more preferably in the range of 750 to 900 ° C. If the aging heat treatment time is less than 0.5 hours, phase separation from the 1-7 phase to the 2-17 phase and the 1-5 phase cannot be completed, and if it exceeds 20 hours, the crystal grains become coarse There is a risk that the magnetic properties may be deteriorated due to the above. The aging heat treatment time is more preferably in the range of 1 to 10 hours. Aging heat treatment is usually performed in an inert gas atmosphere such as vacuum or argon gas in order to prevent oxidation.

上述したような製造方法を適用することによって、高Fe濃度で2−17相と1−5相との二相分離組織を有する永久磁石、具体的には焼結磁石を得ることができる。この実施形態の永久磁石は焼結磁石に限らず、ボンド磁石であってもよい。ボンド磁石は、例えば結晶構造等を制御した磁石材料(合金粉末)を樹脂系バインダやメタルバインダ等のバインダ成分と混合し、この混合物を所望の磁石形状に圧縮成形して作製される。   By applying the manufacturing method as described above, a permanent magnet, specifically a sintered magnet, having a two-phase separated structure of 2-17 phase and 1-5 phase at a high Fe concentration can be obtained. The permanent magnet of this embodiment is not limited to a sintered magnet but may be a bonded magnet. The bonded magnet is produced, for example, by mixing a magnet material (alloy powder) having a controlled crystal structure and the like with a binder component such as a resin binder or a metal binder, and compression-molding the mixture into a desired magnet shape.

この実施形態の永久磁石は、主として永久磁石モータや発電機に用いられる。永久磁石モータ(発電機)は従来の誘導モータ(発電機)と比較して効率に優れ、小型化や低騒音化等の利点を有することから、鉄道車両、ハイブリッド自動車(HEV)、電気自動車(EV)等の駆動モータや発電機として普及が進んでいる。この実施形態の永久磁石を具備する永久磁石モータや発電機、すなわち本発明の実施形態による永久磁石モータや発電機によれば、高効率化、小型化、低コスト化等を実現することが可能となる。さらに、R−Co系永久磁石は耐熱性に優れることから、鉄道車両、HEV、EV等の駆動モータや発電機に好適である。なお、永久磁石モータや発電機には各種公知の構成が適用される。   The permanent magnet of this embodiment is mainly used for a permanent magnet motor or a generator. Permanent magnet motors (generators) are more efficient than conventional induction motors (generators) and have advantages such as downsizing and noise reduction. Therefore, railway vehicles, hybrid vehicles (HEV), electric vehicles ( EV) and the like are becoming widespread as drive motors and generators. According to the permanent magnet motor and the generator having the permanent magnet of this embodiment, that is, the permanent magnet motor and the generator according to the embodiment of the present invention, it is possible to realize high efficiency, downsizing, cost reduction, and the like. It becomes. Furthermore, since R-Co permanent magnets are excellent in heat resistance, they are suitable for drive motors and generators such as railway vehicles, HEVs, and EVs. Various known configurations are applied to the permanent magnet motor and the generator.

さらに、この実施形態の永久磁石は、例えば特開2008−29148号公報や特開2008−43172号公報に開示されているような可変磁束ドライブシステムにおける可変磁石や固定磁石としても有効である。可変磁石または固定磁石の少なくとも一方に実施形態の永久磁石を適用することによって、可変磁束ドライブシステムの高効率化、小型化、低コスト化等を実現することができる。   Furthermore, the permanent magnet of this embodiment is also effective as a variable magnet or a fixed magnet in a variable magnetic flux drive system as disclosed in, for example, Japanese Patent Application Laid-Open Nos. 2008-29148 and 2008-43172. By applying the permanent magnet of the embodiment to at least one of the variable magnet and the fixed magnet, the variable magnetic flux drive system can be improved in efficiency, size, cost, and the like.

次に、本発明の具体的な実施例について説明する。   Next, specific examples of the present invention will be described.

(実施例1〜4)
まず、高純度の各原料を表1に示す割合で調合し、これらをArガス雰囲気中でアーク溶解して合金インゴットを作製した。次いで、これら合金インゴットを乳鉢で粗粉砕した後、ボールミルを用いてそれぞれ平均粒径が数μm程度となるように微粉砕した。これら微粉末をそれぞれ磁場中でプレス成型して圧粉体を成形した後、Arガス雰囲気中にて1250℃×1時間の条件で焼結することによって、それぞれ焼結体を作製した。
(Examples 1-4)
First, high-purity raw materials were prepared at the ratios shown in Table 1, and these were arc-melted in an Ar gas atmosphere to produce an alloy ingot. Subsequently, these alloy ingots were coarsely pulverized in a mortar, and then finely pulverized using a ball mill so that the average particle diameter was about several μm. Each of these fine powders was press-molded in a magnetic field to form a green compact, and then sintered in an Ar gas atmosphere under conditions of 1250 ° C. × 1 hour, thereby producing sintered bodies.

次に、これらの焼結体を1180℃×1時間の条件で真空熱処理することによって、焼結体の結晶組織の制御を行った。各焼結体のX線回折を実施した結果、熱処理後の焼結体は全てTbCu型構造を示し、その結晶c軸が磁場方向に配向していることが確認された。これらの焼結体を真空中にて850℃×10時間の条件で熱処理した後、400℃まで1℃/分の冷却速度で徐冷し、400℃で1時間保持した後に室温まで炉冷することによって、それぞれ目的とする焼結磁石を得た。 Next, the crystal structure of the sintered body was controlled by subjecting these sintered bodies to vacuum heat treatment under conditions of 1180 ° C. × 1 hour. As a result of performing X-ray diffraction of each sintered body, it was confirmed that all the sintered bodies after the heat treatment exhibited a TbCu 7 type structure and the crystal c-axis was oriented in the magnetic field direction. These sintered bodies are heat-treated in vacuum at 850 ° C. for 10 hours, then gradually cooled to 400 ° C. at a cooling rate of 1 ° C./minute, held at 400 ° C. for 1 hour, and then cooled to room temperature. As a result, intended sintered magnets were obtained.

このようにして作製した焼結磁石の組織(時効熱処理後の生成相)をTEM観察したところ、いずれも2−17相と1−5相との二相分離組織を有していることが確認された。このような焼結磁石を後述する特性評価に供した。   When the structure of the sintered magnet thus produced (the formed phase after aging heat treatment) was observed with a TEM, it was confirmed that both had a two-phase separated structure of 2-17 phase and 1-5 phase. It was done. Such a sintered magnet was subjected to the characteristic evaluation described later.

(比較例1、2)
高純度の各原料を表1に示す割合で調合して調製した原料粉末を用いて、実施例1と同様にして焼結体をそれぞれ作製した。得られた焼結体のX線回折を実施したところ、2−17相の生成を示す回折ピークが観測された。このような焼結体からなる磁石を後述する特性評価に供した。
(Comparative Examples 1 and 2)
Sintered bodies were produced in the same manner as in Example 1 using raw material powders prepared by preparing high-purity raw materials at the ratios shown in Table 1. When the obtained sintered body was subjected to X-ray diffraction, a diffraction peak indicating the formation of a 2-17 phase was observed. A magnet made of such a sintered body was subjected to the characteristic evaluation described later.

次に、実施例1〜4および比較例1〜2の各焼結磁石について、残留磁化、保磁力、BHmaxをBHトレーサで測定した。これらの測定結果を表1に示す。表1から明らかなように、Siを配合した実施例1〜4の焼結磁石では200kA/m以上の保磁力が得られている。さらに、残留磁化も1.0T以上と高いことが確認された。これに対して、比較例1、2の焼結磁石は保磁力が200kA/m未満と低いものであった。   Next, for each of the sintered magnets of Examples 1 to 4 and Comparative Examples 1 to 2, residual magnetization, coercive force, and BHmax were measured with a BH tracer. These measurement results are shown in Table 1. As is clear from Table 1, the coercive force of 200 kA / m or more was obtained in the sintered magnets of Examples 1 to 4 in which Si was blended. Further, it was confirmed that the remanent magnetization was as high as 1.0 T or more. In contrast, the sintered magnets of Comparative Examples 1 and 2 had a low coercive force of less than 200 kA / m.

Figure 0004805998
Figure 0004805998

Claims (7)

組成式:R(FeSiCuCo1−p−q−r−s100−x
(式中、RはYを含む希土類元素から選ばれる少なくとも1種の元素、MはTi、ZrおよびHfから選ばれる少なくとも1種の元素を示し、xは8≦x≦20原子%を満足する数、p、q、rおよびsはそれぞれ原子比で0.3≦p≦0.6、0.005≦q≦0.1、0.005≦r≦0.1、0.005≦s≦0.15を満足する数である)
で表される組成を有し、かつ主としてThZn17型結晶相とCaCu型結晶相とからなる組織を有することを特徴とする永久磁石。
Composition formula: R x (Fe p M q Si r Cu s Co 1-p-q-r-s) 100-x
(Wherein R represents at least one element selected from rare earth elements including Y, M represents at least one element selected from Ti, Zr and Hf, and x satisfies 8 ≦ x ≦ 20 atomic%. The numbers, p, q, r, and s are atomic ratios of 0.3 ≦ p ≦ 0.6, 0.005 ≦ q ≦ 0.1, 0.005 ≦ r ≦ 0.1, and 0.005 ≦ s ≦, respectively. It is a number that satisfies 0.15)
And a structure mainly composed of a Th 2 Zn 17 type crystal phase and a CaCu 5 type crystal phase.
請求項1記載の永久磁石において、
前記元素Rの総量の50原子%以上がSmであることを特徴とする永久磁石。
The permanent magnet according to claim 1,
50% or more of the total amount of the element R is Sm.
請求項1または請求項2記載の永久磁石において、
前記元素Mの総量の50原子%以上がZrであることを特徴とする永久磁石。
The permanent magnet according to claim 1 or 2,
50% or more of the total amount of the element M is Zr.
請求項1ないし請求項3のいずれか1項記載の永久磁石において、
前記Coの一部が20原子%以下の範囲でNi、V、Cr、Mn、Al、Ga、Nb、TaおよびWから選ばれる少なくとも1種で置換されていることを特徴とする永久磁石。
The permanent magnet according to any one of claims 1 to 3,
A permanent magnet, wherein a part of Co is substituted with at least one selected from Ni, V, Cr, Mn, Al, Ga, Nb, Ta and W within a range of 20 atomic% or less.
請求項1ないし請求項4のいずれか1項記載の永久磁石において、
前記Siの一部が20原子%以下の範囲でGeおよびSnから選ばれる少なくとも1種で置換されていることを特徴とする永久磁石。
The permanent magnet according to any one of claims 1 to 4,
A permanent magnet, wherein a part of the Si is substituted with at least one selected from Ge and Sn in a range of 20 atomic% or less.
請求項1ないし請求項5のいずれか1項記載の永久磁石を具備することを特徴とする永久磁石モータ。   A permanent magnet motor comprising the permanent magnet according to any one of claims 1 to 5. 請求項1ないし請求項5のいずれか1項記載の永久磁石を具備することを特徴とする発電機。   A generator comprising the permanent magnet according to any one of claims 1 to 5.
JP2008295431A 2008-11-19 2008-11-19 Permanent magnet and permanent magnet motor and generator using the same Active JP4805998B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008295431A JP4805998B2 (en) 2008-11-19 2008-11-19 Permanent magnet and permanent magnet motor and generator using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008295431A JP4805998B2 (en) 2008-11-19 2008-11-19 Permanent magnet and permanent magnet motor and generator using the same

Publications (2)

Publication Number Publication Date
JP2010123722A JP2010123722A (en) 2010-06-03
JP4805998B2 true JP4805998B2 (en) 2011-11-02

Family

ID=42324810

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008295431A Active JP4805998B2 (en) 2008-11-19 2008-11-19 Permanent magnet and permanent magnet motor and generator using the same

Country Status (1)

Country Link
JP (1) JP4805998B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5259668B2 (en) * 2010-09-24 2013-08-07 株式会社東芝 PERMANENT MAGNET, MANUFACTURING METHOD THEREOF, AND MOTOR AND GENERATOR USING THE SAME
JP5479395B2 (en) * 2011-03-25 2014-04-23 株式会社東芝 Permanent magnet and motor and generator using the same
JP5504233B2 (en) * 2011-09-27 2014-05-28 株式会社東芝 PERMANENT MAGNET AND ITS MANUFACTURING METHOD, AND MOTOR AND GENERATOR USING THE SAME
JP5487228B2 (en) * 2012-03-15 2014-05-07 株式会社東芝 Permanent magnet and motor and generator using the same
JP6076705B2 (en) * 2012-11-20 2017-02-08 株式会社東芝 Permanent magnet and motor and generator using the same
JP5665906B2 (en) * 2013-03-26 2015-02-04 株式会社東芝 Permanent magnet and motor and generator using the same
JP6129812B2 (en) * 2014-12-05 2017-05-17 株式会社東芝 permanent magnet
JP6129813B2 (en) * 2014-12-05 2017-05-17 株式会社東芝 Motor or generator and car
JP6448675B2 (en) * 2017-02-03 2019-01-09 株式会社東芝 Permanent magnets, motors, generators, and cars
JP6377800B2 (en) * 2017-04-11 2018-08-22 株式会社東芝 Permanent magnets, motors, generators, and cars
JP7187791B2 (en) * 2018-03-22 2022-12-13 日立金属株式会社 Alloys for rare earth magnets
CN110129680B (en) * 2019-06-13 2020-10-09 北京科技大学 Medium-manganese light Q & P steel and preparation method thereof

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5386625A (en) * 1977-09-14 1978-07-31 Hitachi Metals Ltd Permanent magnet alloy
JPS5576037A (en) * 1978-12-05 1980-06-07 Seiko Epson Corp Permanent magnet material
JPS6027167B2 (en) * 1979-02-09 1985-06-27 日立金属株式会社 permanent magnet
JPS56150152A (en) * 1980-04-18 1981-11-20 Seiko Epson Corp Permanent magnet material
JPS59204208A (en) * 1983-05-07 1984-11-19 Hitachi Metals Ltd Manufacture of rare earth cobalt magnet
JP3057448B2 (en) * 1988-05-26 2000-06-26 信越化学工業株式会社 Rare earth permanent magnet
JPH02102501A (en) * 1988-10-12 1990-04-16 Hitachi Metals Ltd Permanent magnet
JP3792737B2 (en) * 1994-09-16 2006-07-05 株式会社東芝 Magnet material and permanent magnet using the same
JP5259351B2 (en) * 2008-11-19 2013-08-07 株式会社東芝 Permanent magnet and permanent magnet motor and generator using the same

Also Published As

Publication number Publication date
JP2010123722A (en) 2010-06-03

Similar Documents

Publication Publication Date Title
JP5259351B2 (en) Permanent magnet and permanent magnet motor and generator using the same
JP4805998B2 (en) Permanent magnet and permanent magnet motor and generator using the same
JP5767788B2 (en) R-T-B rare earth permanent magnet, motor, automobile, generator, wind power generator
US10102950B2 (en) Permanent magnet and method for manufacturing the same, and motor and power generator using the same
JP5504233B2 (en) PERMANENT MAGNET AND ITS MANUFACTURING METHOD, AND MOTOR AND GENERATOR USING THE SAME
JP5558447B2 (en) Permanent magnet and motor and generator using the same
JP5258860B2 (en) Permanent magnet, permanent magnet motor and generator using the same
WO2012002059A1 (en) R-t-b type rare earth permanent magnet, motor, automobile, power generator, and wind power generation system
JP5501828B2 (en) R-T-B rare earth permanent magnet
WO2010113371A1 (en) Alloy material for r-t-b-type rare-earth permanent magnet, process for production of r-t-b-type rare-earth permanent magnet, and motor
JP4951703B2 (en) Alloy material for RTB-based rare earth permanent magnet, method for manufacturing RTB-based rare earth permanent magnet, and motor
JP5586648B2 (en) Permanent magnet and motor and generator using the same
JP3715573B2 (en) Magnet material and manufacturing method thereof
JP4900085B2 (en) Rare earth magnet manufacturing method
JP5743458B2 (en) Alloy material for RTB-based rare earth permanent magnet, method for manufacturing RTB-based rare earth permanent magnet, and motor
JP2853839B2 (en) Manufacturing method of rare earth permanent magnet
JP6623998B2 (en) Method for producing RTB based sintered magnet
JP4534553B2 (en) R-T-B system sintered magnet and manufacturing method thereof
JP2002025810A (en) Anisotropic rare earth sintered magnet and its manufacturing method
JPH0461042B2 (en)
WO2017191790A1 (en) Rare-earth permanent magnet, and method for manufacturing same
JP2014220503A (en) Motor and power generator
JP5501833B2 (en) R-T-B permanent magnet
JP6462754B2 (en) Permanent magnets, motors, generators, and cars
JP6084720B2 (en) Automobile

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110325

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110706

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110719

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110811

R151 Written notification of patent or utility model registration

Ref document number: 4805998

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140819

Year of fee payment: 3