JP2002294413A - Magnet material and manufacturing method therefor - Google Patents

Magnet material and manufacturing method therefor

Info

Publication number
JP2002294413A
JP2002294413A JP2001097415A JP2001097415A JP2002294413A JP 2002294413 A JP2002294413 A JP 2002294413A JP 2001097415 A JP2001097415 A JP 2001097415A JP 2001097415 A JP2001097415 A JP 2001097415A JP 2002294413 A JP2002294413 A JP 2002294413A
Authority
JP
Japan
Prior art keywords
phase
magnet material
alloy
type
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001097415A
Other languages
Japanese (ja)
Other versions
JP3727863B2 (en
Inventor
Takeshi Ume
武 梅
Shinya Sakurada
新哉 桜田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2001097415A priority Critical patent/JP3727863B2/en
Publication of JP2002294413A publication Critical patent/JP2002294413A/en
Application granted granted Critical
Publication of JP3727863B2 publication Critical patent/JP3727863B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0573Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes obtained by reduction or by hydrogen decrepitation or embrittlement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/059Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and Va elements, e.g. Sm2Fe17N2

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve such a problem that a conventional magnet material has an insufficient mean grain-size of crystal grains, a low magnetic flux density (Br), and an insufficient maximum magnetic energy product (BH) max. SOLUTION: The objective magnet material is characterized by including a R (Y or rare earth elements, for example) -T (Fe or Co) -M (one or more among Nb, Zr, Ti, Cr, Ta, V, W, Mn, Ni, Mo, and Hf) -A (N or B) base, and an added Cu element for introducing a Cu-rich phase of 0.2-10 vol.% into the base, and by having the mean grain size of 150 nm or less. Hereby, a magnet material of ultra fine crystals capable of realizing high magnetic characteristics, can be provided. The method for manufacturing the material includes hydrogenation and decomposition reaction treatment which keeps pulverized particles at 450-850 deg.C for 1-8 hours in hydrogen gas inert gas (except for nitrogen gas), after a pulverization step, and dehydrogenation and recombination reaction treatment which keeps them at 600 deg.C-950 deg.C for 0.1-2 hours in vacuum.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は磁石材料及びその製
造方法に関する。
The present invention relates to a magnet material and a method for manufacturing the same.

【0002】[0002]

【従来の技術】高性能希土類磁石としてはSm−Co磁
石、Nd−Fe−B磁石などが知られており、現在量産
されている。このような高性能磁石は主としてモータ、
スピーカ、計測器等の電気機器に使用されている。近
年、各種電気機器の小型軽量化、低消費電力化の要求が
高まり、これに対応するために永久磁石の最大磁気エネ
ルギー積(BH)maxを向上させた、より高性能の永
久磁石が求められている。新しい高性能磁石材料の候補
としては1990年にSm−Fe−N系材料がCoey
らによって発表され注目を集めている。Sm−Fe−N
はNd−Fe−Bに匹敵する高い飽和磁化とNd−Fe
−Bを凌駕する大きな磁気異方性を有するため、高性能
磁石としての応用が期待されている。
2. Description of the Related Art Sm-Co magnets, Nd-Fe-B magnets and the like are known as high-performance rare earth magnets, and are currently mass-produced. Such high performance magnets are mainly motors,
Used for electrical equipment such as speakers and measuring instruments. In recent years, there has been a growing demand for smaller and lighter electrical appliances and lower power consumption of various electric appliances. ing. As a candidate for a new high-performance magnet material, Sm-Fe-N based material was
Announced by them and attracting attention. Sm-Fe-N
Shows high saturation magnetization comparable to Nd-Fe-B and Nd-Fe
Since it has a large magnetic anisotropy exceeding -B, it is expected to be applied as a high-performance magnet.

【0003】R−T−N系永久磁石材料(Rは希土類元
素の1種または2種以上、TはFeまたはFeとCo)
において、高い磁気特性を実現するには、窒化処理条件
を最適化する必要がある他、結晶粒を微細化することが
重要である。結晶の微細により保磁力(iHc)を高め
られる他、微粒子の間に交換結合力が働き、残留磁束密
度(Br)、最大磁気エネルギー積(BH)maxが向
上する。
R-T-N permanent magnet materials (R is one or more rare earth elements, T is Fe or Fe and Co)
In order to realize high magnetic characteristics, it is necessary to optimize nitriding conditions and to make crystal grains finer. In addition to increasing the coercive force (iHc) due to the fineness of the crystal, an exchange coupling force acts between the fine particles, and the residual magnetic flux density (Br) and the maximum magnetic energy product (BH) max are improved.

【0004】微細化手段としては、溶湯急冷法や水素化
・分解反応・脱水素・再結合反応処理(HDDR法)に
より結晶を微細化する方法、などがある。溶湯急冷法は
非常に速い溶湯急冷速度(例えば冷却ロールの回転周速
度が約30m/秒以上)を要し、設備コストが増大す
る。さらに、微細、かつ均一な合金組織を得るため、高
精度の急冷制御技術を要し、生産上の課題を残してい
る。HDDR法は汎用性に富んだ製造方法である。
[0004] As means for refining the crystal, there are a method of quenching a molten metal and a method of refining a crystal by a hydrogenation / decomposition reaction / dehydrogenation / recombination reaction treatment (HDDR method). The molten metal quenching method requires a very fast molten metal quenching speed (for example, the rotation peripheral speed of the cooling roll is about 30 m / sec or more), and equipment cost increases. Furthermore, in order to obtain a fine and uniform alloy structure, high-precision quenching control technology is required, leaving a problem in production. The HDDR method is a versatile manufacturing method.

【0005】HDDR法によって高性能SmFeNを開
発しようとする試みはCoeyらの発表後、いくつかの
研究グループによってなされており、例えばX.Che
nとZ.AltounianはSm2Fe17における
Feの一部を各種元素(Ti,V,Cr,Zr,Nb,
Mo,Hf,Ta,W)で置換してHDDR反応挙動を
詳しく調べ、TiまたはNbで置換した場合には高い磁
気特性が得られることを見出した(Journal of Applied
Physics, 75(10)(1991)p6012)。飛世らはSm2Fe1
7にTi,Bを添加し、結晶粒の平均粒径が200nm
まで微細化できることを報告した(Proceedings of 16
th International Workshop on RE Magnetsand Their A
pplications(2000) p793)。
[0005] Attempts to develop high-performance SmFeN by the HDDR method have been made by several research groups since the publication of Coey et al. Che
n and Z. Altunian converts a part of Fe in Sm2Fe17 into various elements (Ti, V, Cr, Zr, Nb,
Mo, Hf, Ta, W) and examined the HDDR reaction behavior in detail, and found that high magnetic properties can be obtained when substituted with Ti or Nb (Journal of Applied).
Physics, 75 (10) (1991) p6012). Tobiyo Sm2Fe1
7, Ti and B were added, and the average grain size of the crystal grains was 200 nm.
(Proceedings of 16
th International Workshop on RE Magnetsand Their A
pplications (2000) p793).

【0006】しかしながら、結晶粒の微細化がまだ不十
分であり、溶湯急冷法により得られたものと比較する
と、磁束密度(Br)が小さく、最大磁気エネルギー積
(BH)maxが足りないといった課題を有する。
However, the problem is that the crystal grains are still not sufficiently refined, the magnetic flux density (Br) is small, and the maximum magnetic energy product (BH) max is insufficient as compared with those obtained by the melt quenching method. Having.

【0007】また、HDDR法によって高性能NdFe
Bの開発も進められており、合金組成の調整または処理
processの適切化によって異方性の合金粉末が得られる
ことを見出したが(Journal of Magnetic Society of J
apan, 23(1999)p300)、結晶粒の平均粒径が300nm
であり、更なる微細な組織と高特性が求められている。
Further, high performance NdFe
Development of B is also underway, and adjustment or treatment of alloy composition
It has been found that anisotropic alloy powder can be obtained by optimizing the process (Journal of Magnetic Society of J
apan, 23 (1999) p300), the average grain size of the crystal grains is 300 nm.
Therefore, a finer structure and higher characteristics are required.

【0008】[0008]

【発明が解決しようとする課題】上述したように、従来
においては、結晶粒が微細化まだ不十分で、また、磁束
密度(Br)が小さく、充分な最大磁気エネルギー積
(BH)maxが得られていないという課題がある。
As described above, in the prior art, the crystal grains are not sufficiently refined yet, the magnetic flux density (Br) is small, and a sufficient maximum magnetic energy product (BH) max is obtained. There is a problem that has not been done.

【0009】本発明はこのような課題に対処するために
なされたもので、高い磁気特性を実現できる超微細結晶
体の磁石材料及び製造方法を提供することを目的として
いる。
SUMMARY OF THE INVENTION The present invention has been made to address such a problem, and an object of the present invention is to provide a magnet material of an ultrafine crystal and a method of manufacturing the same, which can realize high magnetic properties.

【0010】[0010]

【課題を解決するための手段】本発明者らは上記した目
的を達成するために鋭意研究を重ねた結果、 一般式 R(T1−u−vCu1−x−y (式中、RはYを含む希土類元素から選ばれる少なくと
も1種の元素、TはFeまたはCoから選ばれる少なく
とも1種の元素 MはNb,Zr,Ti,Cr,Ta,V,W,Mn,N
i,Mo,Hfから選ばれる少なくとも1種の元素 AはNまたはBから選ばれる少なくとも1種の元素 x,y,u,vはそれぞれ原子比で 0.04≦x≦0.2、 0.001≦y≦0.2、 0.002≦u≦0.2、 0≦v≦0.2 ) で実質的に表され、TbCu型、NdFe14
型,ThNi17型,ThZn17型のいずれか結
晶構造を有する相を主相とし、20原子%以上のCuを
含む非磁性相を0.2〜10体積%含み、前記主相と前
記非磁性相の平均結晶粒径がそれぞれ150nm以下で
あることを特徴とする磁石材料において、結晶粒を超微
細化することが可能であることを見出した。
The present inventors have SUMMARY OF THE INVENTION As a result of extensive studies to achieve the above object, the general formula R x (T 1-u- v Cu u M v) 1-x-y A y (where R is at least one element selected from rare earth elements including Y, T is at least one element selected from Fe or Co, M is Nb, Zr, Ti, Cr, Ta, V, W , Mn, N
at least one element selected from i, Mo, Hf; A is at least one element selected from N or B; x, y, u, and v each have an atomic ratio of 0.04 ≦ x ≦ 0.2; 001 ≦ y ≦ 0.2, 0.002 ≦ u ≦ 0.2, 0 ≦ v ≦ 0.2), TbCu 7 type, Nd 2 Fe 14 B
Type, Th 2 Ni 17 type, a phase having any crystal structure of Th 2 Zn 17 type as the main phase, comprising a non-magnetic phase containing 20 atomic% or more of Cu 0.2 to 10 vol%, the main phase And a magnet material characterized in that the average crystal grain size of the non-magnetic phase is 150 nm or less.

【0011】即ち、本発明の磁石材料は、R−T−A系
を基本としてCu元素を添加し、Cu−rich相を導
入することを特徴としている。これまでTの一部にM、
Cuを置換したことが報告されているが、Cu−ric
h相を形成することに至っていない。上記Cu−ric
h相の導入によって、Cu−rich相が存在していな
い場合と比較して結晶粒を超微細化することが可能とな
ったものである。
That is, the magnetic material of the present invention is characterized by adding a Cu element and introducing a Cu-rich phase based on the RTA system. Until now, part of T was M,
It is reported that Cu was replaced, but Cu-ric
An h phase has not been formed. The above Cu-ric
The introduction of the h phase makes it possible to make crystal grains ultrafine compared to the case where no Cu-rich phase is present.

【0012】HDDR処理には主として水素化・分解反
応(HD反応:粗大な主相―>T相+R水素化物)と脱
水素・再結合反応(DR反応:T相+R水素化物―>微
細な主相)という複雑な反応が発生しており、超微細か
つ均一な結晶粒を得るため、HD反応とDR反応の制御
が極めて重要である。制御のポイントは、反応中の粒成
長を抑制したまま反応を終えることである。そのため、
合金の水素反応温度を下げることが好ましい。また、粒
成長阻止のpinning siteとして他の合金相の導入は反
応中の粒成長の抑制には極めて有効であり、特に好まし
い。しかし、導入した合金相が軟磁性ではないことが磁
気特性に極めて重要である。例えば、Ti,V,Nbな
どM元素がFeとMFe2,MFe3など軟磁性相を形
成しやすいため、M元素の添加のみでは、pinning相の
導入は困難である。本発明者はR−T−M−Cu合金系
を長年研究しており(特願平11−375478号)、
R−T―M―Cu系に高T濃度のR−T相と非磁性Cu
―rich相との共存関係を見出した。非磁性相Cu−
rich相の導入によってHDDR法超微細化の可能性
を探ることが着想され、本願発明を完成することに至っ
た。
The HDDR treatment mainly includes a hydrogenation / decomposition reaction (HD reaction: coarse main phase-> T phase + R hydride) and a dehydrogenation / recombination reaction (DR reaction: T phase + R hydride-> fine main phase). In order to obtain ultra-fine and uniform crystal grains, control of the HD reaction and the DR reaction is extremely important. The point of control is to end the reaction while suppressing grain growth during the reaction. for that reason,
It is preferable to lower the hydrogen reaction temperature of the alloy. The introduction of another alloy phase as a pinning site for inhibiting grain growth is extremely effective in suppressing grain growth during the reaction, and is particularly preferable. However, it is extremely important for the magnetic properties that the introduced alloy phase is not soft magnetic. For example, since an M element such as Ti, V and Nb easily forms a soft magnetic phase such as Fe and MFe2 and MFe3, it is difficult to introduce a pinning phase only by adding the M element. The inventor has been studying the RTM-Cu alloy system for many years (Japanese Patent Application No. 11-375478),
High T concentration RT phase and non-magnetic Cu in RTM-Cu system
-I found a coexistence relationship with the rich phase. Non-magnetic phase Cu-
It was conceived to explore the possibility of ultra-miniaturization of the HDDR method by introducing the rich phase, and completed the present invention.

【0013】[0013]

【発明の実施の形態】以下、本発明を実施するための形
態について説明する。
Embodiments of the present invention will be described below.

【0014】本発明の磁石材料は、上述したように 一般式 R(T1−u−vCu1−x−y (式中、RはYを含む希土類元素から選ばれる少なくと
も1種の元素、TはFeまたはCoから選ばれる少なく
とも1種の元素 MはNb,Zr,Ti,Cr,Ta,V,W,Mn,N
i,Mo,Hfから選ばれる少なくとも1種の元素 AはNまたはBから選ばれる少なくとも1種の元素 x,y,u,vはそれぞれ原子比で 0.04≦x≦0.2、 0.001≦y≦0.2、 0.002≦u≦0.2、 0≦v≦0.2 ) で実質的に表され、TbCu型、NdFe14
型,ThNi17型,ThZn17型のいずれか結
晶構造を有する相を主相とし、20原子%以上のCuを
含む非磁性相を0.2〜10体積%含み、前記主相と前
記非磁性相の平均結晶粒径がそれぞれ150nm以下で
あることを特徴とするものである。以下、本発明の磁石
材料を構成する各成分について詳細に説明する。 (1)R元素 RとしてはYを含む希土類元素から選ばれる少なくとも
1種の元素が使用される。R元素はいずれも磁石材料に
大きな磁気異方性をもたらし、高い保磁力を付与するた
めに4〜20原子%の範囲で配合される。R元素の総量
が4原子%未満にすると多量のα−Feが析出して大き
な保磁力が得られず、一方20原子%を超えると飽和磁
化の低下が著しい。より好ましいR元素の配合量は8〜
12原子%であり、さらに好ましくは9〜11原子%で
ある。R元素としてはSm,Nd,Prを用いることが
好ましく、Sm,Ndは特に好ましい。Rの総量の50
原子%以上、さらに好ましくは70原子%以上をSmと
することにより、磁石材料の性能、とりわけ保磁力を高
めるのに有効である。 (2)T元素 T元素はFeまたはCoから選ばれる少なくとも1種の
元素であるが、主として磁石材料の磁化を担うものであ
る。Tを多量に配合することにより磁石材料の飽和磁化
を高めることができるが、過剰に配合するとα−Fe相
の析出により保磁力を低下させる恐れがある。 (3)Cu Cuは合金組織微細化のために有効な元素である。適量
なCu添加は母合金中にCu−rich合金相(Cu量
が20原子%以上)を形成し、粒成長阻止のpinning s
iteとして粒成長の抑制には極めて有効であり、組織を
超微細させる効果を有する。そのほか、M元素の置換は
合金のHD反応温度を高める場合があるが、CuとMを
複合添加することによって、HD反応およびDR反応が
より低い温度および/または短時間で完成でき、結晶粒
の微細化に有効である。Cuの配合量をT,M,Cuの
総量の0.2原子%未満にするとその配合効果を十分に
達成できず、一方T,M,Cuの総量の20原子%を超
えると飽和磁化の低下を招く。より好ましいCu元素の
配合量はT,M,Cuの総量の0.5〜10原子%であ
り、さらに好ましくは1.0〜7原子%である。前記C
uの50原子%以下をSi,Ga,Zn,Al,La,
Geから選ばれる少なくとも1種の元素で置換されるこ
とを許容する。 (4)M元素 M元素はNb,Zr,Ti,Cr,Ta,V,Ta,
W,Mn,Ni,Mo,Hfから選ばれる少なくとも1
種の元素であるが、母合金中のα−Fe相の析出を抑制
できる他、合金組織の微細化に有効である。ただ、M元
素の置換は合金のHD反応温度を高め、M元素のみの微
細化効果が不十分である。M元素は主として主相中のT
元素が占めるサイトを置換するが、Mの配合量を、T,
M,Cuの総量の20原子%を超えると飽和磁化の低下
が著しい。より好ましいM元素の配合量はT,M,Cu
の総量の1〜10原子%であり、さらに好ましくは1.
5〜8原子%である。M元素としてはNb,Zr,T
i,V,Hfを用いることが好ましく、NbとZrは特
に好ましい。 (5)A Aは主として主相のインタースティシャル位置に存在
し、Aを含まない場合と比較して結晶格子を拡大させた
り、電子構造を変化させることにより、キュリー温度、
磁気異方性、飽和磁化を向上させる働きを有する。Aは
主にBを用いる場合は主相の結晶構造はNdFe14
B型であり、Aは主にNを用いる場合は主相の結晶構造
はTbCu型,ThNi17型,ThZn17
のいずれかである。Aの配合量を0.1原子%未満にす
るとその配合効果を十分に達成できず、一方20原子%
を超えると飽和磁化の低下を招く。より好ましいAの配
合量は10〜15原子%である。前記Aの50原子%以
下をH,C,S,P,Oから選ばれる少なくとも1種の
元素で置換されることを許容する。H,C,S,P,O
の置換またはNとBの複合添加により母合金またHDD
R処理途中の合金中には微細な水素化合物相、B−ri
ch相,C−rich相などを形成し、組織を更に微細
させるなどの効果を有する。Aは主にNを用いる場合で
もBを用いることが好ましい。
[0014] magnet material of the present invention, as described above general formula R x (T 1-u- v Cu u M v) 1-x-y A y ( wherein, R selected from rare earth elements including Y And T is at least one element selected from Fe or Co. M is Nb, Zr, Ti, Cr, Ta, V, W, Mn, N
at least one element selected from i, Mo, Hf; A is at least one element selected from N or B; x, y, u, and v each have an atomic ratio of 0.04 ≦ x ≦ 0.2; 001 ≦ y ≦ 0.2, 0.002 ≦ u ≦ 0.2, 0 ≦ v ≦ 0.2), TbCu 7 type, Nd 2 Fe 14 B
Type, Th 2 Ni 17 type, a phase having any crystal structure of Th 2 Zn 17 type as the main phase, comprising a non-magnetic phase containing 20 atomic% or more of Cu 0.2 to 10 vol%, the main phase And the non-magnetic phase has an average crystal grain size of 150 nm or less. Hereinafter, each component constituting the magnet material of the present invention will be described in detail. (1) R element As R, at least one element selected from rare earth elements including Y is used. Each of the R elements brings a large magnetic anisotropy to the magnet material, and is added in the range of 4 to 20 atomic% in order to provide a high coercive force. If the total amount of the R element is less than 4 atomic%, a large amount of α-Fe precipitates and a large coercive force cannot be obtained, while if it exceeds 20 atomic%, the saturation magnetization is significantly reduced. A more preferable blending amount of the R element is 8 to
It is 12 at%, and more preferably 9 to 11 at%. It is preferable to use Sm, Nd, and Pr as the R element, and Sm and Nd are particularly preferable. 50 of the total amount of R
By setting Sm to at least atomic%, more preferably at least 70 atomic%, it is effective to enhance the performance of the magnetic material, especially the coercive force. (2) T element The T element is at least one element selected from Fe and Co, and mainly plays a role in magnetization of the magnet material. The saturation magnetization of the magnet material can be increased by blending a large amount of T, but if it is blended excessively, the coercive force may decrease due to the precipitation of the α-Fe phase. (3) Cu Cu is an element effective for refining the alloy structure. Addition of an appropriate amount of Cu forms a Cu-rich alloy phase (Cu content of 20 atomic% or more) in the mother alloy, and prevents pinning s for preventing grain growth.
The ite is extremely effective in suppressing grain growth and has the effect of making the structure ultrafine. In addition, the substitution of the element M may increase the HD reaction temperature of the alloy. However, by adding Cu and M in combination, the HD reaction and the DR reaction can be completed at a lower temperature and / or a shorter time, and the crystal grain size can be reduced. It is effective for miniaturization. If the compounding amount of Cu is less than 0.2 atomic% of the total amount of T, M, Cu, the effect of the compounding cannot be sufficiently achieved, while if it exceeds 20 atomic% of the total amount of T, M, Cu, the saturation magnetization decreases. Invite. A more preferred blending amount of the Cu element is 0.5 to 10 atomic% of the total amount of T, M, and Cu, and still more preferably 1.0 to 7 atomic%. Said C
50% by atom or less of Si, Ga, Zn, Al, La,
It is allowed to be substituted with at least one element selected from Ge. (4) M element The M element is Nb, Zr, Ti, Cr, Ta, V, Ta,
At least one selected from W, Mn, Ni, Mo, Hf
Although it is a kind of element, it can suppress the precipitation of the α-Fe phase in the mother alloy and is effective in refining the alloy structure. However, the substitution of the element M increases the HD reaction temperature of the alloy, and the effect of miniaturization of the element M alone is insufficient. M element is mainly T in the main phase.
The site occupied by the element is replaced.
If the total amount of M and Cu exceeds 20 atomic%, the saturation magnetization is significantly reduced. More preferred amounts of the M element are T, M, Cu
Is 1 to 10 atomic% of the total amount, more preferably 1.
5 to 8 atomic%. N elements such as Nb, Zr, and T
It is preferable to use i, V, and Hf, and Nb and Zr are particularly preferable. (5) A A is mainly present at the interstitial position of the main phase. By expanding the crystal lattice and changing the electronic structure as compared with the case where A is not contained, the Curie temperature,
It has the function of improving magnetic anisotropy and saturation magnetization. When A mainly uses B, the crystal structure of the main phase is Nd 2 Fe 14
The crystal structure of the main phase is any of TbCu 7 type, Th 2 Ni 17 type, and Th 2 Zn 17 type when A mainly uses N. If the compounding amount of A is less than 0.1 atomic%, the effect of compounding cannot be sufficiently achieved.
Exceeding this causes a decrease in saturation magnetization. A more preferable compounding amount of A is 10 to 15 atomic%. 50% by atom or less of A is allowed to be replaced by at least one element selected from H, C, S, P and O. H, C, S, P, O
Alloy or HDD with composite addition of N and B
A fine hydride phase, B-ri
It has an effect of forming a ch phase, a C-rich phase, etc., and further refining the structure. It is preferable to use B even when A mainly uses N.

【0015】各元素の配合量や製造プロセスによって
は、TbCu型、NdFe14B型,ThNi
17型,ThZn17型、ThMn12相,RFe
29相などを主相とすることがあるが、TbCu型,
NdFe14B型,ThNi 17型,ThZn
17型のいずれかを主相とする場合に、特に高い磁石特
性が得られる。ここで、前記主相とは磁石材料を構成す
る各結晶相および非晶質相のうちで最大の体積占有率を
有する相を意味するものである。本発明の磁石材料は5
0原子%以上のTを含む軟磁性相を体積率で0.5〜4
0%含むことができる。この場合は、保磁力がある程度
低下するが、高いBrが得られる。平均結晶粒径および
合金相の体積比率は電子顕微鏡や光学顕微鏡による観
察、X線回折等を併用して総合的に判断されるが、磁石
材料断面を撮影した透過型電子顕微鏡写真の面積分析法
により求めることができる。本発明の磁石材料は酸化物
などの不可避的不純物を含有することを許容する。
Depending on the amount of each element and the manufacturing process
Is TbCu7Type, Nd2Fe14B type, Th2Ni
17Type, Th2Zn17Type, ThMn12Phase, R3Fe
29Phase may be the main phase, but TbCu7Type,
Nd2Fe14B type, Th2Ni 17Type, Th2Zn
17If one of the molds has
Property is obtained. Here, the main phase constitutes a magnet material.
Maximum volume occupancy among the crystalline and amorphous phases
Means a phase having The magnet material of the present invention is 5
The soft magnetic phase containing 0 atomic% or more of T is 0.5 to 4 by volume.
0% can be contained. In this case, the coercive force is
Although reduced, a high Br is obtained. Average grain size and
The volume ratio of the alloy phase can be observed with an electron microscope or an optical microscope.
It is judged comprehensively by using together with X-ray diffraction, etc.
Area analysis of transmission electron micrographs of material cross sections
Can be obtained by The magnet material of the present invention is an oxide
It is allowed to contain inevitable impurities such as.

【0016】次に、本発明に係わる磁石材料の製造方法
の例について説明する。
Next, an example of a method for manufacturing a magnet material according to the present invention will be described.

【0017】まず所定量のR、T、M、Cu、A元素を
含む合金粗粉末を作製する。Aを主にNにする場合に
は、HDDR処理の後ガス処理を用いて窒素含有させ
る。合金粗粉末はアーク溶解や高周波溶解やなどして得
られた母合金を平均粉末粒径3〜500μmに粉砕して
得ることが出来る。strip-casting溶解で合金薄帯を作
製したそのまままたは後に粉砕して得ることが出来る。
このようにして得られた合金粉末または粉砕前の合金に
対して必要に応じて熱処理を施して均質化することが可
能である。合金粉末の調整法や熱処理の条件によって主
相の種類や体積占有率を制御することも可能である。好
ましい母合金の組織はR−T−M−Cu−A硬質磁性相
とCu−rich相を含み、Cu−rich相を体積率
で0.1〜10%である。
First, an alloy coarse powder containing predetermined amounts of R, T, M, Cu and A elements is prepared. When A is mainly N, nitrogen is contained by gas treatment after HDDR treatment. The alloy coarse powder can be obtained by pulverizing a mother alloy obtained by arc melting, high frequency melting or the like into an average powder particle size of 3 to 500 μm. It can be obtained by pulverizing the alloy ribbon as it is produced by strip-casting melting or as it is afterwards.
The alloy powder thus obtained or the alloy before pulverization can be subjected to a heat treatment as necessary to be homogenized. It is also possible to control the type and volume occupancy of the main phase by adjusting the alloy powder and heat treatment conditions. A preferable structure of the mother alloy includes an RTM-Cu-A hard magnetic phase and a Cu-rich phase, and the volume ratio of the Cu-rich phase is 0.1 to 10%.

【0018】次に、本発明に好適なHDDR条件を説明
する。水素化・分解反応処理(HD処理)は0.1〜1
0atmの水素ガス中または水素ガス分圧を有した不活
性ガス(窒素ガスを除く)中で450〜950℃、1〜
8時間保持して行なう。HD過程では、水素化・分解反
応により母合金中の主相がR水素化物とT、T−M、T
−M−Cu,Cuへ分解し、R水素化物が粗大化する前
にHD処理を終えることが微細な組織と良好な磁気特性
を得るために好ましい。HD過程がより低温側および/
または短時間側では分解反応が全く起こらないか、ある
いは母合金の一部だけしか分解反応が起こらない。この
場合、分解反応が起こらなかった部分は結晶粒が微細化
しないため、後処理のDR過程、窒化処理(Aは主にN
とする場合のみ)を経て得られた磁石粉末のBr,iH
c、(BH)maxが低い。他方、HD過程がより高温
側および/または長時間側ではHD処理後の組織が粗大
粒化し、このためDR処理、窒化処理(Aは主にNとす
る場合のみ)後の硬質磁性相が粗大化するため磁気特性
が劣化する。好ましいHD処理条件は合金主相の結晶構
造に依存するが、NdFe14B構造の場合には60
0−800℃、2−4時間であり、その以外には500
−700℃、2−4時間である。なお、HD処理を多段
化することも組織の超微細化に有効である。
Next, HDDR conditions suitable for the present invention will be described. Hydrogenation / decomposition reaction treatment (HD treatment) is 0.1 to 1
In a hydrogen gas of 0 atm or an inert gas having a hydrogen gas partial pressure (excluding nitrogen gas),
Hold for 8 hours. In the HD process, the main phase in the mother alloy is converted to R hydride and T, T-M, T by a hydrogenation / decomposition reaction.
It is preferable to finish the HD treatment before decomposing into -M-Cu and Cu and the R hydride is coarsened in order to obtain a fine structure and good magnetic properties. HD process on lower temperature side and / or
Alternatively, on the short time side, no decomposition reaction occurs, or only a part of the mother alloy decomposes. In this case, since the crystal grains are not refined in the portion where the decomposition reaction did not occur, the post-treatment DR process and the nitriding treatment (A is mainly N
Br, iH of the magnet powder obtained through
c, (BH) max is low. On the other hand, when the HD process is at a higher temperature side and / or a longer time side, the structure after the HD treatment is coarsened, so that the hard magnetic phase after the DR treatment and the nitriding treatment (A is mainly N) is coarse. Magnetic properties are degraded. Preferred HD treatment conditions depend on the crystal structure of the main alloy phase, but in the case of the Nd 2 Fe 14 B
0-800 ° C, 2-4 hours, otherwise 500
-700 ° C, 2-4 hours. It should be noted that increasing the number of stages of HD processing is also effective for making the structure ultra-fine.

【0019】脱水素・再結合反応処理(DR処理)は1
3.33224Pa以下の真空中に600℃〜950℃
で0.1〜2時間保持して行なう。DR過程では、脱水
素・再結合反応によりR水素化物が消失し、TbCu
型、NdFe14B型,ThNi17型,Th
17型のいずれか結晶構造を有する相に再結晶する
が、再結晶粒が粗大化する前にDR処理を終えることが
良好な磁気特性を得るために好ましい。DR過程がより
低温側および/または短時間側では再結合反応が全く起
こらないか、あるいは一部だけしか再結合反応が起こら
ない。この場合、再結合反応が起こらなかった部分は軟
磁性相であるT相が残っているため、窒化処理(Aは主
にNとする場合のみ)を経て得られた磁石粉末のiHc
が低い。他方、DR過程がより高温側および/または長
時間側ではDR処理後の組織が粗大粒化し、このためD
R処理、窒化処理(Aは主にNとする場合のみ)後の硬
質磁性相が粗大化するため磁気特性が劣化する。好まし
いHD処理条件は合金主相の結晶構造に依存するが、N
Fe14B構造の場合には13.33224PPa
以下の真空中,700−850℃、0.2〜1時間であ
り、その以外には13.33224Pa以下の真空中,
600−750℃、0.2〜1時間である。
The dehydrogenation / recombination reaction treatment (DR treatment) is 1
600 ° C to 950 ° C in a vacuum of 3.333224 Pa or less
For 0.1 to 2 hours. In the DR process, R hydride disappears due to a dehydrogenation / recombination reaction, and TbCu 7
Type, Nd 2 Fe 14 B type, Th 2 Ni 17 type, Th 2 Z
Recrystallization to a phase having any of the n17- type crystal structures is preferably performed before DR processing is completed before the recrystallized grains become coarse in order to obtain good magnetic properties. At a lower temperature and / or shorter time in the DR process, no recombination reaction occurs or only a part of the recombination reaction occurs. In this case, since the T phase, which is a soft magnetic phase, remains in the portion where the recombination reaction did not occur, the iHc of the magnet powder obtained through the nitriding treatment (A is mainly N) is obtained.
Is low. On the other hand, when the DR process is performed on a higher temperature side and / or a longer time side, the structure after the DR process is coarsened, so that the D
The hard magnetic phase after the R treatment and the nitriding treatment (A is mainly used only when N) is coarsened, so that the magnetic properties are deteriorated. Preferred HD treatment conditions depend on the crystal structure of the main alloy phase,
13.33224 PPa in the case of d 2 Fe 14 B structure
In the following vacuum, 700-850 ° C., 0.2-1 hour, otherwise, in a vacuum of 13.33224 Pa or less,
600-750 ° C, 0.2-1 hour.

【0020】Aを主にNにする場合には、次に、前記合
金粉末に対してNを含有させる。この場合、0.1〜1
00気圧の窒素ガス雰囲気中で0.1〜100時間、3
00〜900℃の温度下で熱処理することが望ましい。
前記熱処理の雰囲気は、窒素ガスに代えてアンモニア等
の窒素化合物ガスを用いても良い。窒素ガスあるいは窒
素化合物ガスと水素ガスとを混合して用いることで窒化
反応を制御することも可能である。アンモニア等の窒素
化合物ガスを用いたり、水素ガスを混合したりすること
によりNの一部をHで置換することが可能となる。
If A is mainly N, then N is added to the alloy powder. In this case, 0.1 to 1
0.1-100 hours in a nitrogen gas atmosphere at 00 atm.
It is desirable to heat-treat at a temperature of 00 to 900 ° C.
As the atmosphere for the heat treatment, a nitrogen compound gas such as ammonia may be used instead of the nitrogen gas. The nitridation reaction can be controlled by using a mixture of a nitrogen gas or a nitrogen compound gas and a hydrogen gas. It is possible to partially replace N with H by using a nitrogen compound gas such as ammonia or by mixing hydrogen gas.

【0021】本発明の磁石材料から磁石体を製造する場
合、所定量のR、T、M、Cu,N、を含有する合金粉
末をホットプレス、熱間静水圧プレス、放電プラズマ焼
結などにより高密度の成形体として一体化することによ
り製造できる。
When a magnet body is manufactured from the magnet material of the present invention, an alloy powder containing a predetermined amount of R, T, M, Cu, N is subjected to hot pressing, hot isostatic pressing, discharge plasma sintering or the like. It can be manufactured by integrating as a high-density molded body.

【0022】本発明の磁石材料はボンド磁石として利用
することも可能である。バインダーとしては従来どおり
エポキシ系あるいはナイロン系などの樹脂を用いてもよ
いが、低融点金属または低融点合金をバインダーとして
メタルボンド磁石を製造することも可能である。
The magnet material of the present invention can be used as a bonded magnet. As the binder, a resin such as an epoxy-based resin or a nylon-based resin may be used as before, but it is also possible to manufacture a metal-bonded magnet using a low-melting-point metal or a low-melting-point alloy as a binder.

【0023】[0023]

【実施例】次に、本発明の具体的な実施例について説明
する。 (実施例1〜10)まず、高純度の各原料を表1に示す
所定の割合で調合し、Ar雰囲気中で高周波溶解して母
合金インゴットを作製し、乳鉢を用いて平均粉末粒径1
06μm以下に粉砕した。ひきつづきこの合金粉末を1
atmの水素ガス中で500〜800℃で1〜8時間保
持する水素化及び分解反応処理を行ない、次に13.3
3224Pa以下の真空中に600℃〜800℃で0.
1〜2時間保持する脱水素及び再結合反応処理を行なっ
た後、1気圧の窒素ガス雰囲気中、450℃温度で50
時間熱処理を施して磁石粉末を作製した。
Next, specific examples of the present invention will be described. (Examples 1 to 10) First, high-purity raw materials were prepared at predetermined ratios shown in Table 1, and were subjected to high-frequency melting in an Ar atmosphere to prepare a mother alloy ingot, and the average powder particle size was determined using a mortar.
It was pulverized to not more than 06 μm. Continue to add this alloy powder to 1
A hydrogenation and decomposition reaction treatment is performed at 500 to 800 ° C. for 1 to 8 hours in hydrogen gas of atm, and then 13.3.
0.2 to 600 ° C. to 800 ° C. in a vacuum of 3224 Pa or less.
After performing the dehydrogenation and recombination reaction treatment for 1 to 2 hours, the mixture is heated at 450 ° C. in a nitrogen gas atmosphere of 1 atm.
Heat treatment was performed for a time to produce a magnet powder.

【0024】各処理段階の各合金粉末の生成相をX線回
折分析とTEM/EDSで調べたところ、HD処理後は
主にSm水化物とα―Fe相となり、DR処理と窒化処
理後は主に均一かつ超微細な主相とCu−rich相と
なった。主相の結晶構造はTbCu型、ThNi
17型,ThZn17型のいずれであることが確認さ
れた。各合金にあるCu−rich相の組成は主にCu
量が20原子%以上であることが分析された。次に各合
金粉末を同方性ボンド磁石を作製してB−H trac
erで磁気測定を行った。実施例6の合金の場合、Br
=0.74Tという高いBrが測定された。実施例1〜
10の各合金組成、HDDR処理温度、平均結晶粒径、
および等方性ボンド磁石の磁気特性測定結果を表1に示
す。 (比較例1〜4)実施例1〜10と同様にして合金粉
末、等方性ボンド磁石を作製し、同様のB−H測定を行
った。比較例1〜4の各合金組成、HDDR処理温度お
よびB−H測定結果を表1に併記する。実施例の合金が
Cu―rich相を含むのに対し、比較例の合金は比較
例1〜3がCuを含まない場合、比較例4がCuを含
み、Cu−rich相を含まない場合である。Cu―r
ich相を含むことにより合金結晶粒径はこれが全く無
い場合より微細であり、磁気特性が優れることがわかっ
た。 (実施例11〜15)まず、高純度の各原料を表2に示
す所定の割合で調合し、Ar雰囲気中で高周波溶解して
母合金インゴットを作製し、乳鉢を用いて平均粉末粒径
106μm以下に粉砕した。ひきつづきこの合金粉末を
1atmの水素ガス中で600〜850℃、1〜8時間
保持する水素化・分解反応処理を行ない、次に13.3
3224Pa以下の真空中に700℃〜950℃で0.
1〜2時間保持する脱水素・再結合反応処理を施して磁
石粉末を作製した。
X-ray diffraction analysis and TEM / EDS analysis of the formed phase of each alloy powder at each processing stage showed that after HD treatment, it was mainly Sm hydrate and α-Fe phase, and after DR treatment and nitriding treatment, Mainly, it became a uniform and ultrafine main phase and a Cu-rich phase. The crystal structure of the main phase is TbCu 7 type, Th 2 Ni
17-, it was confirmed that any of the Th 2 Zn 17 type. The composition of the Cu-rich phase in each alloy is mainly Cu
The amount was analyzed to be at least 20 atomic%. Next, an isotropic bonded magnet was prepared from each of the alloy powders to obtain a BH trace.
The er measurements were taken. In the case of the alloy of Example 6, Br
A high Br of 0.74 T was measured. Example 1
10 alloy composition, HDDR processing temperature, average grain size,
Table 1 shows the measurement results of the magnetic properties of the isotropic bonded magnet. (Comparative Examples 1 to 4) An alloy powder and an isotropic bonded magnet were prepared in the same manner as in Examples 1 to 10, and the same BH measurement was performed. Table 1 also shows the alloy compositions, HDDR processing temperatures, and BH measurement results of Comparative Examples 1 to 4. While the alloys of the examples include the Cu-rich phase, the alloys of the comparative examples are cases where Comparative Examples 1 to 3 do not include Cu, Comparative Example 4 includes Cu, and do not include the Cu-rich phase. . Cu-r
It was found that by including the ich phase, the crystal grain size of the alloy was finer than in the case where it was not present at all, and the magnetic properties were excellent. (Examples 11 to 15) First, high-purity raw materials were mixed at predetermined ratios shown in Table 2, and were subjected to high frequency melting in an Ar atmosphere to produce a mother alloy ingot, and the average powder particle diameter was 106 µm using a mortar. It was ground to the following. Subsequently, the alloy powder was subjected to a hydrogenation / decomposition reaction treatment in hydrogen gas of 1 atm at 600 to 850 ° C. for 1 to 8 hours, and then 13.3.
In a vacuum of 3224 Pa or less, at a temperature of 700 ° C. to 950 ° C.
A dehydrogenation / recombination reaction treatment for 1 to 2 hours was performed to produce a magnet powder.

【0025】各処理段階の各合金粉末の生成相をX線回
折分析とTEM/EDSで調べたところ、HD処理後は
主にNd水化物とα―Fe相となり、DR処理後は主に
均一かつ超微細な主相とCu−rich相となった。主
相の結晶構造はNdFe B型であることが確認さ
れた。各合金にあるCu−rich相の組成は主にCu
量が20原子%以上であることが分析された。次に各合
金粉末を同方性ボンド磁石を作製してB−H trac
erで磁気測定を行った。実施例14の合金の場合、B
r=0.68Tという高いBrが測定された。実施例1
1〜15の各合金組成、HDDR処理温度、平均結晶粒
径、および等方性ボンド磁石の磁気特性測定結果を表1
に示す。 (比較例5〜7)実施例1と同様にして合金粉末、等方
性ボンド磁石を作製し、同様のB−H測定を行った。比
較例1〜3の各合金組成、HDDR処理温度およびB−
H測定結果を表2に併記する。実施例の合金がCu―r
ich相を含むのに対し、比較例の合金は比較例5〜6
がCuを含まない場合、比較例7がCuを含み、Cu−
rich相を含まない場合である。Cu―rich相を
含むことにより合金結晶粒径はこれが全く無い場合より
微細であることがわかった。
X-ray diffraction analysis and TEM / EDS analysis of the formed phase of each alloy powder at each processing stage showed that after HD treatment, it was mainly Nd hydrate and α-Fe phase, and after DR treatment, it was mainly uniform. In addition, an ultrafine main phase and a Cu-rich phase were formed. The crystal structure of the main phase was confirmed to be Nd 2 Fe 1 4 B type. The composition of the Cu-rich phase in each alloy is mainly Cu
The amount was analyzed to be at least 20 atomic%. Next, an isotropic bonded magnet was prepared from each of the alloy powders to obtain a BH trace.
The er measurements were taken. In the case of the alloy of Example 14, B
A high Br of r = 0.68T was measured. Example 1
Table 1 shows the alloy compositions of Nos. 1 to 15, the HDDR processing temperature, the average crystal grain size, and the results of measuring the magnetic properties of the isotropic bonded magnet.
Shown in (Comparative Examples 5 to 7) An alloy powder and an isotropic bonded magnet were produced in the same manner as in Example 1, and the same BH measurement was performed. Each alloy composition, HDDR processing temperature and B-
The results of the H measurement are also shown in Table 2. The alloy of the embodiment is Cu-r
While the alloy of Comparative Example contains the ich phase, Comparative Examples 5 to 6
Does not contain Cu, Comparative Example 7 contains Cu,
This is the case where no rich phase is included. The inclusion of the Cu-rich phase revealed that the alloy crystal grain size was finer than in the absence of this alloy.

【表1】 [Table 1]

【表2】 なお、表1及び表2において、TbCu型、Nd
14B型,ThZn17型について記述したが、T
Ni17型も上記3つの結晶構造と同様な結果が得
られており、また、MもNbやCrなど以外の、Zn、
Al、La、Geであっても同様であり、さらに、Cu
の50%以下の置換をSi,Ga、Znなどで行っても
良い。
[Table 2] In Tables 1 and 2, TbCu 7 type, Nd 2 F
e 14 B type and Th 2 Zn 17 type have been described.
The same results as those of the above three crystal structures were obtained for the h 2 Ni 17 type, and M was Zn other than Nb or Cr.
The same applies to Al, La, and Ge.
May be replaced by Si, Ga, Zn or the like.

【0026】[0026]

【発明の効果】以上説明したように、本発明の磁石材料
によれば、高い磁気特性を実現できる超微細結晶体の磁
石材料を提供することができる。
As described above, according to the magnet material of the present invention, it is possible to provide an ultrafine crystalline magnet material which can realize high magnetic properties.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C22C 1/04 C22C 1/04 H H01F 1/053 H01F 1/04 A Fターム(参考) 4K017 AA01 BA03 BA06 BB04 BB05 BB08 BB09 BB12 CA06 DA02 EA03 FA02 FA03 4K018 AA11 AA27 BA05 BA18 BB04 BB06 BC01 BC02 BD01 KA46 5E040 AA04 AA06 NN01 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C22C 1/04 C22C 1/04 H H01F 1/053 H01F 1/04 A F term (Reference) 4K017 AA01 BA03 BA06 BB04 BB05 BB08 BB09 BB12 CA06 DA02 EA03 FA02 FA03 4K018 AA11 AA27 BA05 BA18 BB04 BB06 BC01 BC02 BD01 KA46 5E040 AA04 AA06 NN01

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】一般式 R(T1−u−vCu1−x−y (式中、RはYを含む希土類元素から選ばれる少なくと
も1種の元素、 TはFeまたはCoから選ばれる少なくとも1種の元素 MはNb,Zr,Ti,Cr,Ta,V,W,Mn,N
i,Mo,Hfから選ばれる少なくとも1種の元素 AはNまたはBから選ばれる少なくとも1種の元素 x,y,u,vはそれぞれ原子比で 0.04≦x≦0.2、 0. 001≦y≦0.2、 0. 002≦u≦0.2、 0≦v≦0.2 ) で実質的に表され、TbCu型、NdFe14
型,ThNi17型,ThZn17型のいずれか結
晶構造を有する相を主相とし、20原子%以上のCuを
含む非磁性相を0.2〜10体積%含み、前記主相と前
記非磁性相の平均結晶粒径がそれぞれ150nm以下で
あることを特徴とする磁石材料。
1. A compound represented by the general formula: R x (T 1 -uvCu u Mv ) 1 -xy A y (where R is at least one element selected from rare earth elements including Y, and T is At least one element M selected from Fe or Co is Nb, Zr, Ti, Cr, Ta, V, W, Mn, N
at least one element selected from i, Mo, Hf; A is at least one element selected from N or B; x, y, u, and v each have an atomic ratio of 0.04 ≦ x ≦ 0.2; 001 ≦ y ≦ 0.2, 0. 002 ≦ u ≦ 0.2, 0 ≦ v ≦ 0.2), TbCu 7 type, Nd 2 Fe 14 B
Type, Th 2 Ni 17 type, a phase having any crystal structure of Th 2 Zn 17 type as the main phase, comprising a non-magnetic phase containing 20 atomic% or more of Cu 0.2 to 10 vol%, the main phase And a non-magnetic phase having an average crystal grain size of 150 nm or less.
【請求項2】 前記Mは、NbまたはZrから選ばれる
少なくとも1種の元素を必ず含むことを特徴とする請求
項1記載の磁石材料。
2. The magnetic material according to claim 1, wherein M always includes at least one element selected from Nb and Zr.
【請求項3】 前記Cuの50原子%以下をSi,G
a,Zn,Al,La,Geから選ばれる少なくとも1
種の元素で置換されることを特徴とする請求項1または
2記載の磁石材料。
3. The method according to claim 1, wherein 50% by atom or less of said Cu is Si, G
at least one selected from a, Zn, Al, La, and Ge
The magnetic material according to claim 1, wherein the magnetic material is replaced with a seed element.
【請求項4】 前記Aの50原子%以下をH,C,S,
P,Oから選ばれる少なくとも1種の元素で置換される
ことを特徴とする請求項1ないし3記載の磁石材料。
4. The method according to claim 1, wherein 50% by atom or less of A is H, C, S,
4. The magnet material according to claim 1, wherein the magnet material is substituted with at least one element selected from P and O.
【請求項5】 請求項1ないし4のいずれか記載の磁石
材料を製造する際、平均粉末粒径3〜500μmに粉砕
し、続いて0.1〜10atmの水素ガス中または水素
ガス分圧を有した不活性ガス(窒素ガスを除く)中で4
50〜850℃で1〜8時間保持する水素化及び分解反
応処理を行ない、次に13.33224Pa以下の真空
中に600℃〜950℃で0.1〜2時間保持する脱水
素及び再結合反応処理を行なうことを特徴とする磁石材
料の製造方法。
5. The method of producing a magnetic material according to claim 1, wherein the powder is pulverized to an average powder particle size of 3 to 500 μm, and then the hydrogen gas or the hydrogen gas partial pressure is reduced to 0.1 to 10 atm. 4 in inert gas (excluding nitrogen gas)
A hydrogenation and decomposition reaction treatment is performed at 50 to 850 ° C. for 1 to 8 hours, and then a dehydrogenation and recombination reaction is performed at 600 to 950 ° C. for 0.1 to 2 hours in a vacuum of 13.33224 Pa or less. A method for producing a magnet material, comprising performing a treatment.
JP2001097415A 2001-03-29 2001-03-29 Manufacturing method of magnet material Expired - Fee Related JP3727863B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001097415A JP3727863B2 (en) 2001-03-29 2001-03-29 Manufacturing method of magnet material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001097415A JP3727863B2 (en) 2001-03-29 2001-03-29 Manufacturing method of magnet material

Publications (2)

Publication Number Publication Date
JP2002294413A true JP2002294413A (en) 2002-10-09
JP3727863B2 JP3727863B2 (en) 2005-12-21

Family

ID=18951200

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001097415A Expired - Fee Related JP3727863B2 (en) 2001-03-29 2001-03-29 Manufacturing method of magnet material

Country Status (1)

Country Link
JP (1) JP3727863B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011030387A1 (en) * 2009-09-11 2011-03-17 株式会社 東芝 Magnet material, permanent magnet, and motor and electricity generator each utilizing the permanent magnet
JP2015005550A (en) * 2013-06-19 2015-01-08 株式会社村田製作所 Rare earth magnet powder
CN105355354A (en) * 2015-12-15 2016-02-24 北京科技大学 Samarium iron nitrogen-based anisotropy rare-earth permanent magnet powder and preparation method thereof
CN105489332A (en) * 2016-01-05 2016-04-13 江苏南方永磁科技有限公司 Permanent magnet material containing multiple rare earth phases and preparation method
JP2017103442A (en) * 2015-11-19 2017-06-08 住友電気工業株式会社 Rare earth magnet manufacturing method, and rare earth magnet
WO2017130712A1 (en) * 2016-01-28 2017-08-03 株式会社村田製作所 STARTING MATERIAL FOR MAGNETS, WHICH IS MAINLY COMPOSED OF Sm-Fe BINARY ALLOY, METHOD FOR PRODUCING SAME, AND MAGNET
EP3220396A1 (en) * 2016-03-18 2017-09-20 Kabushiki Kaisha Toshiba Permanent magnet, rotary electrical machine, and vehicle
CN107424701A (en) * 2017-09-04 2017-12-01 京磁材料科技股份有限公司 The superfine powder reuse method of sintered neodymium iron boron material
US10593448B2 (en) * 2012-11-20 2020-03-17 Kabushiki Kaisha Toshiba Permanent magnet, and motor and power generator using the same
CN111599566A (en) * 2020-05-22 2020-08-28 横店集团东磁股份有限公司 Nanocrystalline permanent magnet material and preparation method thereof

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2011030387A1 (en) * 2009-09-11 2013-02-04 株式会社東芝 Magnet material, permanent magnet, and motor and generator using the same
WO2011030387A1 (en) * 2009-09-11 2011-03-17 株式会社 東芝 Magnet material, permanent magnet, and motor and electricity generator each utilizing the permanent magnet
US10593448B2 (en) * 2012-11-20 2020-03-17 Kabushiki Kaisha Toshiba Permanent magnet, and motor and power generator using the same
JP2015005550A (en) * 2013-06-19 2015-01-08 株式会社村田製作所 Rare earth magnet powder
JP2017103442A (en) * 2015-11-19 2017-06-08 住友電気工業株式会社 Rare earth magnet manufacturing method, and rare earth magnet
CN105355354A (en) * 2015-12-15 2016-02-24 北京科技大学 Samarium iron nitrogen-based anisotropy rare-earth permanent magnet powder and preparation method thereof
CN105489332A (en) * 2016-01-05 2016-04-13 江苏南方永磁科技有限公司 Permanent magnet material containing multiple rare earth phases and preparation method
CN105489332B (en) * 2016-01-05 2018-01-12 江苏南方永磁科技有限公司 More rare-earth phase permanent-magnet materials and preparation method
JPWO2017130712A1 (en) * 2016-01-28 2018-10-18 株式会社村田製作所 Magnet raw material mainly composed of Sm-Fe binary alloy, method for producing the same, and magnet
WO2017130712A1 (en) * 2016-01-28 2017-08-03 株式会社村田製作所 STARTING MATERIAL FOR MAGNETS, WHICH IS MAINLY COMPOSED OF Sm-Fe BINARY ALLOY, METHOD FOR PRODUCING SAME, AND MAGNET
US10632533B2 (en) 2016-01-28 2020-04-28 Murata Manufacturing Co., Ltd. Raw material for magnet, which comprises Sm—Fe binary alloy as main component, method for producing the same, and magnet
CN107204223A (en) * 2016-03-18 2017-09-26 株式会社东芝 Permanent magnet, electric rotating machine and vehicle
EP3220396A1 (en) * 2016-03-18 2017-09-20 Kabushiki Kaisha Toshiba Permanent magnet, rotary electrical machine, and vehicle
CN107424701B (en) * 2017-09-04 2019-05-24 京磁材料科技股份有限公司 The superfine powder reuse method of sintered neodymium iron boron material
CN107424701A (en) * 2017-09-04 2017-12-01 京磁材料科技股份有限公司 The superfine powder reuse method of sintered neodymium iron boron material
CN111599566A (en) * 2020-05-22 2020-08-28 横店集团东磁股份有限公司 Nanocrystalline permanent magnet material and preparation method thereof

Also Published As

Publication number Publication date
JP3727863B2 (en) 2005-12-21

Similar Documents

Publication Publication Date Title
JP3143156B2 (en) Manufacturing method of rare earth permanent magnet
TWI673732B (en) R-Fe-B based sintered magnet and manufacturing method thereof
JP5259351B2 (en) Permanent magnet and permanent magnet motor and generator using the same
JP4805998B2 (en) Permanent magnet and permanent magnet motor and generator using the same
JP2001189206A (en) Permanent magnet
EP1365422A1 (en) Method for preparation of permanent magnet
JP3715573B2 (en) Magnet material and manufacturing method thereof
JP3254229B2 (en) Manufacturing method of rare earth permanent magnet
JP2000114017A (en) Permanent magnet and material thereof
JP7187920B2 (en) Polycrystalline rare earth transition metal alloy powder and method for producing the same
JP3727863B2 (en) Manufacturing method of magnet material
JP2853838B2 (en) Manufacturing method of rare earth permanent magnet
JP4170468B2 (en) permanent magnet
JP2024020341A (en) Anisotropic rare earth sintered magnet and method for manufacturing the same
JPWO2014112406A1 (en) Magnetic material and method for manufacturing magnetic material
JP2853839B2 (en) Manufacturing method of rare earth permanent magnet
JP3645312B2 (en) Magnetic materials and manufacturing methods
JP3143157B2 (en) Manufacturing method of rare earth permanent magnet
JPH06124812A (en) Nitride magnet powder and its synthesizing method
US20240021349A1 (en) Permanent magnet and its manufacturing method, and device
WO2021193334A1 (en) Anisotropic rare earth sintered magnet and method for producing same
JPH11340020A (en) Magnet material, its manufacture, and bonded magnet using the same
JP2926161B2 (en) Manufacturing method of permanent magnet
JP5235264B2 (en) Rare earth sintered magnet and manufacturing method thereof
JP2005286174A (en) R-t-b-based sintered magnet

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050329

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050526

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050823

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050902

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050927

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050929

R151 Written notification of patent or utility model registration

Ref document number: 3727863

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081007

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091007

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101007

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111007

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111007

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121007

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131007

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees