JPH04308063A - Magnet alloy containing rare earth element and permanent magnet containing rare earth element - Google Patents

Magnet alloy containing rare earth element and permanent magnet containing rare earth element

Info

Publication number
JPH04308063A
JPH04308063A JP3096242A JP9624291A JPH04308063A JP H04308063 A JPH04308063 A JP H04308063A JP 3096242 A JP3096242 A JP 3096242A JP 9624291 A JP9624291 A JP 9624291A JP H04308063 A JPH04308063 A JP H04308063A
Authority
JP
Japan
Prior art keywords
rare earth
atoms
alloy
magnet
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3096242A
Other languages
Japanese (ja)
Inventor
Takeshi Ohashi
健 大橋
Sukehito Yoneda
米田 祐仁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP3096242A priority Critical patent/JPH04308063A/en
Publication of JPH04308063A publication Critical patent/JPH04308063A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To improve magnetic characteristics and oxidation resistance by reducing the amt. of the tertiary element of a compd. in the high Fe region of a prescribed compsn. consisting of rare earth elements, Ze, Hf, Bi, Fe, Co, V, Cr, Mn, Mo, C, etc. CONSTITUTION:This magnet alloy contg. rare earth elements has a compsn. represented by a formula R1-XM1X[(Fe1-YCoY)1-ZM2Z]UAW (where R is one or more kinds of rare earth elements, M1 is element selected from Zr, Hf or Bi, M2 is element selected from Ti, V, Cr, Mn, Mo, W, Nb, Ta, Si or Al, A is C and/or N, X is 0.01-0.4, Y is 0-0.5, Z is 0.01-0.2, U is 10-13 and W is 0.1-2) and has a principal phase having body-centered tetragonal system TnMn12 structure. In this alloy, M1 atoms substitute for part of R atoms, M2 atoms substitute for part of Fe or Co atoms and A atoms are present as interstitial atoms. When this alloy is pulverized, molded under orientation in a magnetic field, sintered and aged, a permanent magnet contg. rare earth elements is obtd.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、ThMn12構造をも
つ新規でかつ高い磁気特性を有する希土類磁石合金およ
び希土類永久磁石に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a new rare earth magnet alloy having a ThMn12 structure and high magnetic properties, and a rare earth permanent magnet.

【0002】0002

【従来の技術】体心正方晶ThMn12型の希土類−遷
移金属化合物において、高Fe量の3元化合物が本発明
者らによって以前に発明された(特許公開番号昭62−
241302、62−241303、62−24130
5、63−248102、63−248103、63−
273302、63−273303、平01−0535
07、01−067902号参照)ThMn12型のR
Fe12化合物は存在せず、第3元素の導入により初め
て高Fe領域の化合物が安定化したものである。典型的
な化学量論比としてはSmTiFe11、SmV2Fe
10,SmCr2Fe10,SmMo2Fe10,Sm
WFe11,SmSi2Fe10,SmReFe11な
どが知られている。もちろんSmに限定されるものでは
なく、殆どすべての希土類元素(R)について同じ化学
量論比を有する化合物が存在する。このような高Fe領
域のThMn12構造を有する化合物を、R( MFe
)12 と表わすとき、これらの化合物はほとんどのも
のが 300℃以上のキュリー温度(Tc)を有し、し
かも高Fe量であるため高い飽和磁束密度(Ms)を有
している。また、中でもSm系化合物は著しく高い異方
性磁場を有しており、永久磁石材料として最適であり、
実際に液体超急冷磁石では10KOe 以上の高い保磁
力が得られている。このような高Fe領域での3元化合
物としては、他にNd2Fe14Bが知られているのみ
である。
BACKGROUND OF THE INVENTION Among body-centered tetragonal ThMn12 type rare earth-transition metal compounds, a ternary compound with a high Fe content was previously invented by the present inventors (Patent Publication No. 1983-
241302, 62-241303, 62-24130
5, 63-248102, 63-248103, 63-
273302, 63-273303, Hei 01-0535
07, 01-067902) ThMn12 type R
No Fe12 compound exists, and the compound in the high Fe region is stabilized for the first time by introducing a third element. Typical stoichiometry is SmTiFe11, SmV2Fe
10, SmCr2Fe10, SmMo2Fe10, Sm
WFe11, SmSi2Fe10, SmReFe11, etc. are known. Of course, it is not limited to Sm, and there are compounds having the same stoichiometric ratio for almost all rare earth elements (R). A compound having such a ThMn12 structure in a high Fe region is converted into R(MFe
)12 Most of these compounds have a Curie temperature (Tc) of 300° C. or higher, and also have a high saturation magnetic flux density (Ms) due to their high Fe content. Among them, Sm-based compounds have a significantly high anisotropic magnetic field, making them optimal as permanent magnet materials.
In fact, a high coercive force of 10 KOe or more has been obtained with a liquid ultra-quenched magnet. Nd2Fe14B is the only other known ternary compound in such a high Fe region.

【0003】R( MFe)12 化合物は前述のごと
くたいへん高い磁気特性を有しているが、第3元素(M
)は非磁性元素であり、その量に比例して磁性を薄める
のみならず、M元素に由来する伝導電子がFe原子の磁
気モーメントを薄めてしまうために、Feの平均磁気モ
ーメントが大幅に低下している。従って、例えばNd2
Fe14BとSmTiFe11化合物を比較すると、F
e原子の原子百分比はほぼ同等であるのに飽和磁化の大
きさは後者の方がかなり低い。このためR( MFe)
12 系で第3元素Mの比率をできるだけ低下させ、で
きれば零に近づけて飽和磁化を高める努力が続けられて
いる。しかし、RTiFe11化合物等におけるM元素
の比率より更に下げることには成功していない。
[0003] The R(MFe)12 compound has very high magnetic properties as mentioned above, but it
) is a non-magnetic element, and not only does it dilute the magnetism in proportion to its amount, but also the conduction electrons derived from the M element dilute the magnetic moment of the Fe atom, resulting in a significant decrease in the average magnetic moment of Fe. are doing. Therefore, for example, Nd2
Comparing Fe14B and SmTiFe11 compounds, F
Although the atomic percentages of e atoms are almost the same, the magnitude of saturation magnetization is considerably lower in the latter. For this reason R(MFe)
Efforts are being continued to reduce the ratio of the third element M in the 12 series as much as possible, and if possible, to bring it close to zero to increase the saturation magnetization. However, no success has been achieved in lowering the ratio of M element further than in RTiFe11 compounds and the like.

【0004】一方、菱面体晶Th2Zn17 (または
六方晶Th2Ni17)構造のR2Fe17 化合物は
キュリー温度が低く、結晶磁気異方性定数も負であるた
め、永久磁石素材としては不適であった。しかし、最近
になり炭素Cまたは窒素Nを原子間位置に導入すること
が可能であることがわかった。侵入型で導入することに
より格子が広がるため、キュリー温度が大幅に上昇し、
しかも結晶磁気異方性もまた大幅な上昇を示すことがわ
かった。この結果、特に Sm2Fe17Ax(A=C
またはN)は磁石素材として、SmCo17やNd2F
e14Bに匹敵する非常に高い値を示すことがわかった
(X.P.ZHONG,et al.,J.Magn.
Magn.Mater.86,333(1990).,
 J.M.D.Coey and Hong SUN,
J.Magn.Magn.Mater.87,L251
(1990).参照)。しかしSm2Fe17AX は
良好な磁気特性を示すが、錆び易く耐酸化性の面で問題
があった。
On the other hand, the R2Fe17 compound having a rhombohedral Th2Zn17 (or hexagonal Th2Ni17) structure has a low Curie temperature and a negative crystal magnetic anisotropy constant, so it is not suitable as a permanent magnet material. However, it has recently been found that it is possible to introduce carbon C or nitrogen N at interatomic positions. By interstitial introduction, the lattice widens, resulting in a significant increase in the Curie temperature,
Furthermore, it was found that the magnetocrystalline anisotropy also showed a significant increase. As a result, especially Sm2Fe17Ax (A=C
Or N) is a magnet material such as SmCo17 or Nd2F.
It was found that it showed a very high value comparable to e14B (X.P. ZHONG, et al., J. Magn.
Magn. Mater. 86, 333 (1990). ,
J. M. D. Coey and Hong SUN,
J. Magn. Magn. Mater. 87,L251
(1990). reference). However, although Sm2Fe17AX exhibits good magnetic properties, it easily rusts and has problems in terms of oxidation resistance.

【0005】[0005]

【発明が解決しようとする課題】以上の観点から本発明
は、高Fe領域の化合物であるR( MFe)12 化
合物の第3元素Mを減らして磁気特性の向上を図ると同
時に、耐酸化性に優れたThMn12構造の希土類磁石
合金および希土類永久磁石を提供しようとするものであ
る。
[Problems to be Solved by the Invention] From the above points of view, the present invention aims to improve the magnetic properties by reducing the third element M of the R(MFe)12 compound, which is a compound in the high Fe region, and at the same time improve the oxidation resistance. It is an object of the present invention to provide a rare earth magnet alloy and a rare earth permanent magnet having a ThMn12 structure with excellent properties.

【0006】[0006]

【課題を解決するための手段】本発明者らはR( MF
e)12 化合物におけるM元素の役割について研究を
重ねた結果、これまでTh2Mn12 構造を安定化さ
せるために導入していた第3元素MとしてRサイトを置
換するM1元素のZr,Hf 等、鉄サイトを置換する
M2元素のTi, V,Cr 等がCやNと反応して安
定な炭化物や窒化物を生成し易く、耐酸化性を向上させ
ることを見出し、諸条件を充分検討して本発明を完成さ
せたもので、合金組成式が (R1−XM1X[(Fe
1−YCoY)1−ZM2Z]U AW (但し、Rは
希土類元素の1種もしくは2種以上、M1はZr,Hf
,Biから選らばれた1種または2種以上の元素、M2
はTi, V,Cr,Mn,Mo,W,Nb,Ta,S
i,Alから選らばれた1種または2種以上の元素、A
はCまたはNの1種以上、0.01≦X ≦0.4、0
≦Y ≦0.5、0.01≦Z ≦0.2、10≦U 
≦13、0.1≦W ≦2)からなり、その主相が体心
正方晶ThMn12構造でかつM1原子がR原子を置換
し、M2原子が鉄あるいはコバルト原子を置換し、かつ
A原子が格子間原子として存在することを特徴とする希
土類磁石合金、およびこの希土類磁石合金を微粉砕し、
磁場中配向成形し、焼結、時効して成る希土類永久磁石
、並びにこの希土類磁石合金粉末に有機バインダーを混
合し、磁場中配向成形、硬化させて成る希土類ボンド磁
石を要旨とするものである。
[Means for solving the problem] The present inventors have developed R(MF
e) As a result of repeated research on the role of the M element in 12 compounds, we found that the iron site, such as Zr and Hf of the M1 element, replaces the R site as the third element M, which had been introduced to stabilize the Th2Mn12 structure. It was discovered that M2 elements such as Ti, V, Cr, etc. that replace the oxide react with C and N to easily generate stable carbides and nitrides, improving oxidation resistance, and after thorough consideration of various conditions, the present invention was developed. is completed, and the alloy composition formula is (R1-XM1X[(Fe
1-YCoY)1-ZM2Z]U AW (However, R is one or more rare earth elements, M1 is Zr, Hf
, one or more elements selected from Bi, M2
are Ti, V, Cr, Mn, Mo, W, Nb, Ta, S
i, one or more elements selected from Al, A
is one or more of C or N, 0.01≦X≦0.4, 0
≦Y ≦0.5, 0.01≦Z ≦0.2, 10≦U
13,0.1 A rare earth magnetic alloy characterized by the presence of interstitial atoms, and finely pulverizing this rare earth magnetic alloy,
The gist is a rare earth permanent magnet formed by oriented forming in a magnetic field, sintering, and aging, and a rare earth bonded magnet formed by mixing an organic binder with this rare earth magnet alloy powder, oriented forming in a magnetic field, and hardening.

【0007】以下、本発明を詳細に説明する。M元素は
その格子がFeより少し大きい場合には、Feを置換し
て格子を押し広げ、ThMn12構造を安定化すると考
えられる。 M元素が広い固溶限をもっているバナジュウムV元素の
場合には、V量の減少とともに格子が縮小することがわ
かっている。つまり、M元素無しでは格子が小さくなり
、Fe原子が本来入るべき空間が小さくなり過ぎる。し
かしまた、M原子がFe原子よりかなり大きい場合は、
格子を大幅に押し広げなければならないため、ThMn
12構造を安定化できない。このような理由でR( M
Fe)12 化合物を安定化する元素が限定され、しか
も置換量も狭い幅の中に制限されるものと考えられる。
The present invention will be explained in detail below. When the lattice of the M element is slightly larger than that of Fe, it is thought that the M element replaces Fe, expands the lattice, and stabilizes the ThMn12 structure. It is known that when the M element is vanadium V, which has a wide solid solubility limit, the lattice shrinks as the V amount decreases. In other words, without the M element, the lattice becomes small, and the space in which Fe atoms should originally enter becomes too small. But also, if the M atom is much larger than the Fe atom,
Since the lattice must be expanded significantly, ThMn
12 structure cannot be stabilized. For this reason, R( M
It is thought that the elements that stabilize the Fe)12 compound are limited and the amount of substitution is also limited within a narrow range.

【0008】以上の考察から、原子間に侵入型で入るか
、鉄サイトを大きめの原子で置換することによって結晶
格子を押し広げるか、もしくはRサイトに希土類原子よ
りも小さめの原子で置換することによって隙間を作れば
、鉄原子の入るべき空間の制限が緩和され、第3元素の
置換量を少なくすることが可能と考えられる。R2Fe
17 化合物において、CやNが侵入型で入ることがわ
かっているので (R,M1)(Fe,M2)12 に
おいてCやNによるThMn12構造の安定化を調べた
結果、可能であることがわかった。一方、第3元素Mと
してRサイトを置換するM1元素のZr,Hf 等、鉄
サイトを置換するM2元素のTi, V,Cr 等がC
やNと反応して安定な炭化物や窒化物を生成し易いこと
も判明した。
From the above considerations, it is possible to expand the crystal lattice by interstitially entering between atoms, replacing the iron site with a larger atom, or replacing the R site with an atom smaller than the rare earth atom. It is thought that if a gap is created by this, the restriction on the space in which iron atoms should enter will be relaxed, and it will be possible to reduce the amount of substitution of the third element. R2Fe
17 It is known that C and N enter in the interstitial form in the compound (R, M1) (Fe, M2) 12. As a result of investigating the stabilization of the ThMn12 structure by C and N in (R, M1) (Fe, M2) 12, it was found that it is possible. Ta. On the other hand, as the third element M, M1 elements such as Zr, Hf, etc. that substitute the R site, and M2 elements, such as Ti, V, Cr, etc. that substitute the iron site, substitute C.
It was also found that stable carbides and nitrides are easily produced by reacting with carbon and nitrogen.

【0009】以上のことから、RFe12化合物にRサ
イト、Feサイトを夫々置換するM1、M2 元素を添
加してThMn12構造を安定化させ、さらにCやNの
導入により安定な炭化物や窒化物の保護膜を形成するこ
とにより、磁気特性に優れかつ耐蝕性にも優れた高Fe
領域の希土類遷移金属化合物を得ることが可能であるこ
とが判った。さらに、M1、M2 及びCやNを複合し
て添加することによりThMn12構造を夫々単独で安
定化させるよりもより少ない量で安定化させることが出
来るため、磁気的な希釈が少なく、これまでの単独安定
化のものよりも磁気特性が優れているという効果が得ら
れた。
From the above, it is possible to stabilize the ThMn12 structure by adding M1 and M2 elements that substitute the R site and Fe site, respectively, to the RFe12 compound, and to protect stable carbides and nitrides by introducing C and N. By forming a film, high Fe material with excellent magnetic properties and corrosion resistance can be produced.
It has been found that it is possible to obtain rare earth transition metal compounds in the region. Furthermore, by adding M1, M2, C, and N in combination, the ThMn12 structure can be stabilized with a smaller amount than when each of them is stabilized alone, so there is less magnetic dilution, compared to the conventional method. The effect was that the magnetic properties were superior to those stabilized alone.

【0010】ここでRはYを含む La,Ce,Pr,
Nd,Pm,Sm,Eu,Gd,Tb,Dy,Ho,E
r,Tm,YbおよびLu等の内から選ばれる希土類元
素の1種または2種以上、好ましくはSmまたはSmを
主体とする2種以上の元素である。CやNは組成式 (
R,M1)(Fe,M2)12 A3 で最大3原子ま
で侵入可能であるが、実際には3原子侵入はできず、高
々2原子までである。添加量が少なすぎるとM元素の炭
化物や窒化物からなる保護膜の形成が不充分となり、満
足できる耐酸化性が得られないため、0.1 原子以上
の添加が必要であり、従って 0.1≦W ≦2の範囲
が好ましい。Fe原子はCo原子で置換することが可能
で、Co置換によりキュリー温度が向上し、磁気特性の
温度安定性が改善される。また、Co置換により飽和磁
化も少し上昇するが、逆に結晶磁気異方性は減少するの
でCo置換量は Y≦0.5以下がよい。遷移金属の量
は U<10ではR2Fe17 AWが安定化され、U
>13ではFeが主相となりThMn12構造が安定化
されないため、この範囲内であることが必要である。
[0010] Here, R includes Y La, Ce, Pr,
Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, E
One or more rare earth elements selected from r, Tm, Yb, Lu, etc., preferably Sm or two or more elements mainly composed of Sm. C and N are compositional formulas (
R,M1)(Fe,M2)12A3 Up to three atoms can penetrate, but in reality three atoms cannot penetrate, and only two atoms at most. If the amount added is too small, the formation of a protective film made of carbide or nitride of element M will be insufficient, and satisfactory oxidation resistance will not be obtained. Therefore, it is necessary to add 0.1 atom or more. The range of 1≦W≦2 is preferable. Fe atoms can be replaced with Co atoms, and Co substitution increases the Curie temperature and improves the temperature stability of magnetic properties. Furthermore, although the saturation magnetization increases slightly due to Co substitution, the crystal magnetic anisotropy decreases on the contrary, so the amount of Co substitution is preferably Y≦0.5 or less. The amount of transition metal is as follows: When U<10, R2Fe17 AW is stabilized, and U
If >13, Fe will become the main phase and the ThMn12 structure will not be stabilized, so it is necessary that it be within this range.

【0011】また添加金属元素Mの量は、Rサイトを置
換する元素M1の量X は0.01以上0.4以下が、
Feサイトを置換するM2元素の量Z は0.01以上
0.2 以下が望ましい。 M1元素が0.01よりも少なく、かつM2元素が0.
01よりも少ないと、やはり満足出来る耐蝕性は得られ
ない。また、M1量が0.4 よりも多いとRFe12
系磁性合金の磁気異方性が主にR元素に依存しているこ
とから異方性の面で、またM2元素も0.2 よりも多
いと主に飽和磁化をFe原子の量に依存していることか
ら飽和磁化の面で、夫々磁気特性が悪くなってしまう。 ここで、RはY、Th、Sm を主体とする希土類元素
からなる群から選択される1種または2種以上の元素に
適用される。
[0011] The amount of the added metal element M is such that the amount X of the element M1 substituting the R site is 0.01 or more and 0.4 or less.
The amount Z of the M2 element substituting the Fe site is desirably 0.01 or more and 0.2 or less. M1 element is less than 0.01, and M2 element is less than 0.01.
If it is less than 01, satisfactory corrosion resistance cannot be obtained. Furthermore, if the amount of M1 is more than 0.4, RFe12
Since the magnetic anisotropy of the system magnetic alloy mainly depends on the R element, in terms of anisotropy, and if the M2 element also exceeds 0.2, the saturation magnetization mainly depends on the amount of Fe atoms. As a result, their magnetic properties deteriorate in terms of saturation magnetization. Here, R is applied to one or more elements selected from the group consisting of rare earth elements mainly consisting of Y, Th, and Sm.

【0012】本発明の磁石合金の作製において、(R,
M1)(Fe,M2)12 CW 、(R,M1)(F
e,M2)12NW および (R,M1)(Fe,M
2)12 C1−W NW の場合では作製方法が少し
異なる。C系では、構成金属とCを所定比に秤量後、高
周波炉やアーク炉等で混合して溶解し合金を作製する。 Cの形態としては、純Cの粉末や塊もしくは Fe−C
やR− Cのような炭化物を用いても良い。一方、N系
では構成金属を秤量・溶解後に、合金を粉砕し、 10
0℃以上の高温に保持した状態で窒素ガス雰囲気もしく
はアンモニアガス雰囲気中で窒化処理して合金中に窒素
を導入する。使用するガス圧は高ければ高いほどよいが
、好ましくは1気圧以上あればよく、またそのときの温
度は 700℃以下でないと侵入したNが安定化しなく
なる。また、窒化処理はCを導入したC系にさらに付加
してもよい。
In producing the magnetic alloy of the present invention, (R,
M1) (Fe, M2) 12 CW , (R, M1) (F
e,M2)12NW and (R,M1)(Fe,M
2) In the case of 12 C1-W NW, the manufacturing method is slightly different. In the case of C-based metals, the constituent metals and C are weighed in a predetermined ratio, and then mixed and melted in a high-frequency furnace, arc furnace, etc. to produce an alloy. The form of C is pure C powder or lump, or Fe-C
A carbide such as or R-C may also be used. On the other hand, for N-based alloys, after weighing and melting the constituent metals, the alloy is crushed and 10
Nitrogen is introduced into the alloy by performing nitriding treatment in a nitrogen gas atmosphere or an ammonia gas atmosphere while maintaining the alloy at a high temperature of 0° C. or higher. The higher the gas pressure used, the better, but it is preferably 1 atm or higher, and the temperature at that time must be 700° C. or lower, otherwise the intruded N will not be stabilized. Further, nitriding treatment may be further added to the C-based material into which C is introduced.

【0013】本発明の磁石合金の磁石化は種々の手段に
よって可能である。典型的な手段としては、焼結磁石ま
たはボンド磁石化が挙げられる。得られた合金はジェッ
トミル等で微粉砕して磁石合金粉末を作製する。この微
粉砕には液体超急冷法、メカニカルアロイング法やガス
アトマイズ法等を使用してもよい。焼結磁石については
磁石合金粉末を磁場中で配向させながら成形し、これを
1,000 〜 1,300℃の温度範囲で焼結し、そ
の後500 〜900 ℃で時効処理を行う。ボンド磁
石については磁石合金粉末を有機バインダーと混合し、
磁場中で配向させた後、有機バインダーを硬化させてボ
ンド磁石とすれば良い。
The magnetic alloy of the present invention can be magnetized by various means. Typical means include sintered magnets or bonded magnetization. The obtained alloy is finely pulverized using a jet mill or the like to produce a magnet alloy powder. For this fine pulverization, a liquid super-quenching method, a mechanical alloying method, a gas atomization method, or the like may be used. For sintered magnets, magnet alloy powder is formed while being oriented in a magnetic field, sintered at a temperature in the range of 1,000 to 1,300°C, and then aged at 500 to 900°C. For bonded magnets, magnet alloy powder is mixed with an organic binder,
After orientation in a magnetic field, the organic binder may be cured to form a bonded magnet.

【0014】[0014]

【実施例】以下、本発明の実施態様を実施例、比較例を
挙げて具体的に説明するが、本発明はこれらに限定され
るものではない。 (実施例1)純度99%のSmメタル、純度99.9%
のFe、Co、添加金属元素M1、M2 及びCを各々
表1(合金番号2〜7)のように秤量し、不活性ガス中
で高周波溶解を行い、溶湯を銅鋳型で冷却した。該イン
ゴットを粗粉砕後、N2ガスによるジェットミルで3〜
5μm径に微粉砕を行なった。該微粉を15KOe の
静磁場中で配向させた状態で、1ton/cm2 の圧
力でプレス成形を行なった後、該成形体を不活性ガス中
1,050 〜1,250 ℃の温度で1〜2時間焼結
を行い、引続き 500〜 900℃の温度範囲で1時
間以上熱処理を行なった後急冷した。該焼結体の磁気特
性 iHcを自記磁束計で測定した結果を表1に示した
。比較例としてCを添加しない合金を合金No. 1と
して作製し、表1に併記した。  表1に示したように
、Cを添加したものは無添加合金に比較して磁気特性が
向上している。また、添加元素M1、M2 およびCを
添加したものは、M1元素を単独で添加したものよりも
M1元素の添加量が少量で済むため、磁気的な希釈が少
なくて済み、磁気特性が向上している(従来の技術の欄
の特開昭、特開平各号参照)。 耐蝕性試験・・・合金番号1、2の焼結磁石を空気中温
度80℃、湿度90%下に放置し、iHc の初期値に
対する減少率即ち劣化の度合いについて測定する。耐蝕
性試験の結果を表2に示した。C添加合金の方が耐蝕性
に優れていることが判る。
[Examples] Hereinafter, embodiments of the present invention will be explained in detail with reference to Examples and Comparative Examples, but the present invention is not limited thereto. (Example 1) 99% purity Sm metal, 99.9% purity
Fe, Co, and additional metal elements M1, M2, and C were each weighed as shown in Table 1 (alloy numbers 2 to 7), high-frequency melting was performed in an inert gas, and the molten metal was cooled in a copper mold. After coarsely pulverizing the ingot, it is crushed in a jet mill using N2 gas for 3~
Fine pulverization was performed to a diameter of 5 μm. The fine powder was oriented in a static magnetic field of 15 KOe and press-molded at a pressure of 1 ton/cm2, and then the molded product was molded in an inert gas at a temperature of 1,050 to 1,250°C for 1 to 2 hours. Sintering was performed for a period of time, followed by heat treatment at a temperature range of 500 to 900° C. for 1 hour or more, followed by rapid cooling. Table 1 shows the results of measuring the magnetic properties iHc of the sintered body using a self-recording magnetometer. As a comparative example, an alloy without C added was alloy No. 1 and are also listed in Table 1. As shown in Table 1, the magnetic properties of the C-added alloys are improved compared to the C-added alloys. In addition, in the case of adding the additive elements M1, M2 and C, the amount of M1 element added is smaller than that of adding the M1 element alone, so magnetic dilution is reduced and the magnetic properties are improved. (Refer to JP-A-Sho and JP-A-Hei in the prior art column). Corrosion resistance test: The sintered magnets of alloy numbers 1 and 2 are left in the air at a temperature of 80°C and a humidity of 90%, and the rate of decrease in iHc from the initial value, that is, the degree of deterioration, is measured. The results of the corrosion resistance test are shown in Table 2. It can be seen that the C-added alloy has better corrosion resistance.

【0015】[0015]

【表 1】[Table 1]

【表2】[Table 2]

【0016】(実施例2)実施例1において微粉砕後の
粉末をN2ガス中 400〜 550℃で24時間窒化
処理を行なった(窒化処理しない粉末もボンド磁石化し
て iHcを測定して併記した。)。その粉末をエポキ
シ樹脂中に分散させた後、15KOe の静磁場中で磁
場配向させ樹脂を硬化させてボンド磁石を作製し、その
磁気特性 iHcを測定して表3に示した。比較例(合
金番号1)としてカーボン無添加品の窒化処理の有無に
ついてボンド磁石化したものを表3に併記した。表3に
示したように窒化処理を行なったものは行なわなかった
ものに較べて磁気特性が向上している。
(Example 2) In Example 1, the finely pulverized powder was subjected to nitriding treatment at 400 to 550°C in N2 gas for 24 hours (powder that was not nitrided was also made into a bond magnet, and the iHc was measured and recorded. ). After dispersing the powder in an epoxy resin, the resin was hardened by magnetic orientation in a static magnetic field of 15 KOe to produce a bonded magnet, and its magnetic properties iHc were measured and shown in Table 3. As a comparative example (alloy number 1), carbon-free products that were made into bonded magnets with and without nitriding treatment are also listed in Table 3. As shown in Table 3, those subjected to nitriding have improved magnetic properties compared to those not subjected to nitriding.

【0017】[0017]

【表3】[Table 3]

【0018】[0018]

【発明の効果】本発明によれば、従来ZrやTiを夫々
希土類サイトや遷移金属サイトに置換しなければ安定化
出来なかったThMn12構造のR(Fe,Co)12
 磁性体が持つ問題点、即ち、非磁性元素による置換に
より飽和磁束密度やキュリー点等の磁気特性が理想的な
値よりも劣るという問題点を、CやNを導入することに
より置換元素を減らすことができ、それにより良好な磁
気特性を得ることができる。また、高価なCoではなく
、Feを主原料とするため、従来のSmCo系磁石に比
べ、コスト的なメリットは大きい。さらに、Zr,Ti
 等の置換元素が微量とはいえ、CやNと安定な炭化物
や窒化物を磁石および磁石合金粉末の表面に保護膜とし
て形成するため、従来酸化し易く、取扱が困難であった
磁石合金粉末の酸化による磁気特性の劣化を回避するこ
とができ、さらにNd2Fe14B系磁石のようにメッ
キ、樹脂コーティング等施工する必要がなく成形焼結す
ればそのまま使用可能という利点があり、産業上その利
用価値は極めて大きい。
Effects of the Invention According to the present invention, R(Fe,Co)12 of ThMn12 structure, which conventionally could not be stabilized unless Zr and Ti were replaced with rare earth sites or transition metal sites, respectively.
The problem with magnetic materials, that is, magnetic properties such as saturation magnetic flux density and Curie point become inferior to ideal values due to substitution with non-magnetic elements, can be solved by reducing the number of substitution elements by introducing C and N. As a result, good magnetic properties can be obtained. Moreover, since Fe is used as the main raw material instead of expensive Co, it has a large cost advantage compared to conventional SmCo-based magnets. Furthermore, Zr, Ti
Magnet alloy powder, which used to be easy to oxidize and difficult to handle, forms a protective film on the surface of magnets and magnet alloy powder, as carbides and nitrides, which are stable with C and N, are formed as a protective film on the surface of magnets and magnet alloy powder, although the amount of substitution elements such as C and N is small. It is possible to avoid the deterioration of magnetic properties due to oxidation of magnets, and it also has the advantage that unlike Nd2Fe14B magnets, there is no need for plating, resin coating, etc., and it can be used as is after forming and sintering. Extremely large.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】合金組成式が (R1−XM1X[(Fe
1−YCoY)1−ZM2Z]U AW (但し、Rは
希土類元素の1種もしくは2種以上、M1はZr,Hf
,Biから選らばれた1種または2種以上の元素、M2
はTi, V,Cr,Mn,Mo,W,Nb,Ta,S
i,Alから選らばれた1種または2種以上の元素、A
はCまたはNの1種以上、0.01≦X ≦0.4、0
≦Y ≦0.5、0.01≦Z ≦0.2、10≦U 
≦13、0.1≦W ≦2)からなり、その主相が体心
正方晶ThMn12構造でかつM1原子がR原子を置換
し、M2原子が鉄あるいはコバルト原子を置換し、かつ
A原子が格子間原子として存在することを特徴とする希
土類磁石合金。
Claim 1: The alloy composition formula is (R1-XM1X[(Fe
1-YCoY)1-ZM2Z]U AW (However, R is one or more rare earth elements, M1 is Zr, Hf
, one or more elements selected from Bi, M2
are Ti, V, Cr, Mn, Mo, W, Nb, Ta, S
i, one or more elements selected from Al, A
is one or more of C or N, 0.01≦X≦0.4, 0
≦Y ≦0.5, 0.01≦Z ≦0.2, 10≦U
13,0.1 A rare earth magnetic alloy characterized by the presence of interstitial atoms.
【請求項2】請求項1に記載の希土類磁石合金を微粉砕
し、磁場中配向成形し、焼結、時効して成ることを特徴
とする希土類永久磁石。
2. A rare earth permanent magnet, which is obtained by finely pulverizing the rare earth magnet alloy according to claim 1, orientation forming in a magnetic field, sintering, and aging.
【請求項3】請求項1に記載の希土類磁石合金を微粉砕
し、粉末に有機バインダーを混合し、磁場中配向成形、
硬化させて成ることを特徴とする希土類ボンド磁石。
3. The rare earth magnet alloy according to claim 1 is finely pulverized, an organic binder is mixed with the powder, and oriented molding in a magnetic field is performed.
A rare earth bonded magnet characterized by being made by hardening.
JP3096242A 1991-04-02 1991-04-02 Magnet alloy containing rare earth element and permanent magnet containing rare earth element Pending JPH04308063A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3096242A JPH04308063A (en) 1991-04-02 1991-04-02 Magnet alloy containing rare earth element and permanent magnet containing rare earth element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3096242A JPH04308063A (en) 1991-04-02 1991-04-02 Magnet alloy containing rare earth element and permanent magnet containing rare earth element

Publications (1)

Publication Number Publication Date
JPH04308063A true JPH04308063A (en) 1992-10-30

Family

ID=14159764

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3096242A Pending JPH04308063A (en) 1991-04-02 1991-04-02 Magnet alloy containing rare earth element and permanent magnet containing rare earth element

Country Status (1)

Country Link
JP (1) JPH04308063A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004300487A (en) * 2003-03-28 2004-10-28 Tdk Corp Hard magnetic composition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004300487A (en) * 2003-03-28 2004-10-28 Tdk Corp Hard magnetic composition

Similar Documents

Publication Publication Date Title
US4975130A (en) Permanent magnet materials
US4684406A (en) Permanent magnet materials
US6475302B2 (en) Permanent magnet
JP2751109B2 (en) Sintered permanent magnet with good thermal stability
JP2000114017A (en) Permanent magnet and material thereof
JP3715573B2 (en) Magnet material and manufacturing method thereof
JP2000096102A (en) Heat resistant rare earth alloy anisotropy magnet powder
JPH01219143A (en) Sintered permanent magnet material and its production
JP4170468B2 (en) permanent magnet
JP3560387B2 (en) Magnetic material and its manufacturing method
JP2006295139A (en) Rare earth permanent magnet
JP4076178B2 (en) R-T-B rare earth permanent magnet
JPH04322406A (en) Rare earth permanent magnet
JP3645312B2 (en) Magnetic materials and manufacturing methods
JPH04308062A (en) Magnet alloy containing rare earth element and permanent magnet containing rare earth element
JP4534553B2 (en) R-T-B system sintered magnet and manufacturing method thereof
JPH04308063A (en) Magnet alloy containing rare earth element and permanent magnet containing rare earth element
JPH04322405A (en) Rare earth permanent magnet
JP3143157B2 (en) Manufacturing method of rare earth permanent magnet
US20120001711A1 (en) Permanent magnet with low or no dysprosium for high temperature performance
JPH06124812A (en) Nitride magnet powder and its synthesizing method
JP3357381B2 (en) Magnet material, method of manufacturing the same, and bonded magnet
JP2951006B2 (en) Permanent magnet material, manufacturing method thereof, and bonded magnet
JP3199506B2 (en) Rare earth permanent magnet
JPH03148803A (en) Permanent magnet