JPH04322406A - Rare earth permanent magnet - Google Patents

Rare earth permanent magnet

Info

Publication number
JPH04322406A
JPH04322406A JP3118082A JP11808291A JPH04322406A JP H04322406 A JPH04322406 A JP H04322406A JP 3118082 A JP3118082 A JP 3118082A JP 11808291 A JP11808291 A JP 11808291A JP H04322406 A JPH04322406 A JP H04322406A
Authority
JP
Japan
Prior art keywords
rare earth
atom
elements
permanent magnet
substitution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3118082A
Other languages
Japanese (ja)
Inventor
Takeshi Ohashi
健 大橋
Sukehito Yoneda
米田 祐仁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP3118082A priority Critical patent/JPH04322406A/en
Publication of JPH04322406A publication Critical patent/JPH04322406A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5

Abstract

PURPOSE:To obtain a magnet having high magnetic characteristic by stabilizing- ThMn12 structure through simultaneous substitution of Fe and R sites of RFe12 compounds with third elements M1, M2. CONSTITUTION:A rare earth permanent magnet has a structure of alloy expressed by (R1-XM1X) [(Fe1-YCOY)1-Z M2Z]W (where, R is a kind or two kinds or more of rare earth elements mainly composed of Y, Th and Sm; M1 is a kind or two kinds or more of the elements selected from Zr, Hf, Bi, Sn, In, Pb; M2 is a kind or two kinds or more of the elements selected from Ti, V, Cr, Mn, Mo, W, Nb, Ta, Si, Al; 0.01<=X<=0.4, 0.1<=Y<=0.5, 0.01<=Z<=0.3, 10<=W<=13). The main phase thereof has the Body-centered tetragonal crystal ThMn12 structure and R atom is substituted with M1 atom, while Fe or Co atom with M2 atom.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、ThMn12構造をも
つ新規でかつ高い磁気特性を有する希土類永久磁石に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a new rare earth permanent magnet having a ThMn12 structure and having high magnetic properties.

【0002】0002

【従来の技術】体心正方晶ThMn12型の希土類−遷
移金属化合物において、高Fe量の3元化合物が本発明
者らによって以前に発明された(特許出願番号昭61−
84723、61−84724、61−84725、6
2−82398、62−82399、62−10821
8、62−108219、62−211194、62−
224764参照)。しかしThMn12型のRFe1
2化合物は存在せず、第3元素の導入により初めて高F
e領域の化合物が安定化したものである。典型的な化学
量論比としてはSmTiFe11、SmV2Fe10,
SmCr2Fe10,SmMo2Fe10,SmWFe
11,SmSi2Fe10,SmReFe11などが知
られている。もちろんSmに限定されるものではなく、
殆どすべての希土類元素(R)について同じ化学量論比
を有する化合物が存在する。このような高Fe領域のT
hMn12構造を有する化合物を、R( MFe)12
 と表わすとき、これらの化合物はほとんどのものが 
300℃以上のキュリー温度(Tc)を有し、しかも高
Fe量であるため高い飽和磁束密度(Ms)を有してい
る。また、中でもSm系化合物は著しく高い異方性磁場
を有しており、永久磁石材料として最適であり、実際に
液体超急冷磁石では10KOe以上の高い保磁力が得ら
れている。このような高Fe領域での3元化合物として
は、他にNd2Fe14Bが知られているのみである。
BACKGROUND OF THE INVENTION Among body-centered tetragonal ThMn12 type rare earth-transition metal compounds, a ternary compound with a high Fe content was previously invented by the present inventors (Patent Application No. 1983-
84723, 61-84724, 61-84725, 6
2-82398, 62-82399, 62-10821
8, 62-108219, 62-211194, 62-
224764). However, ThMn12-type RFe1
2 compounds do not exist, and high F is achieved only by introducing a 3rd element.
The compound in the e region is stabilized. Typical stoichiometric ratios include SmTiFe11, SmV2Fe10,
SmCr2Fe10, SmMo2Fe10, SmWFe
No. 11, SmSi2Fe10, SmReFe11, etc. are known. Of course, it is not limited to Sm,
Compounds exist that have the same stoichiometry for almost all rare earth elements (R). T in such a high Fe region
A compound with hMn12 structure is called R(MFe)12
When expressed as , most of these compounds are
It has a Curie temperature (Tc) of 300° C. or higher, and also has a high saturation magnetic flux density (Ms) due to the high content of Fe. Among them, Sm-based compounds have a significantly high anisotropic magnetic field and are optimal as permanent magnet materials, and in fact, high coercive forces of 10 KOe or more have been obtained in liquid super-quenched magnets. Nd2Fe14B is the only other known ternary compound in such a high Fe region.

【0003】R( MFe)12 化合物は前述のごと
くたいへん高い磁気特性を有しているが、第3元素(M
)は非磁性元素でFeを置換するため、例えばNd2F
e14BとSmTiFe11化合物を比較すると、Fe
原子の原子百分比はほぼ同等であるのに飽和磁化の大き
さは後者の方がかなり低い。このためR( MFe)1
2 系で第3元素Mの比率をできるだけ低下させ、でき
れば零に近づけて飽和磁化を高める努力が続けられてい
る。しかし、RTiFe11化合物等におけるM元素の
比率より更に下げることには成功していない。
[0003] The R(MFe)12 compound has very high magnetic properties as mentioned above, but it
) replaces Fe with a non-magnetic element, such as Nd2F
Comparing e14B and SmTiFe11 compounds, Fe
Although the atomic percentages of the atoms are almost the same, the magnitude of saturation magnetization is considerably lower in the latter. Therefore, R(MFe)1
Efforts are being continued to increase the saturation magnetization by lowering the ratio of the third element M in the 2-system as much as possible, preferably approaching zero. However, no success has been achieved in lowering the ratio of M element further than in RTiFe11 compounds and the like.

【0004】0004

【発明が解決しようとする課題】以上の観点から本発明
では、RFe12系化合物の第3元素による置換量を減
少して、大きな飽和磁化を保ったままThMn12構造
を安定化して磁気特性の向上を図ろうとするものである
[Problems to be Solved by the Invention] From the above points of view, the present invention aims to improve magnetic properties by reducing the amount of substitution with the third element in RFe12-based compounds and stabilizing the ThMn12 structure while maintaining large saturation magnetization. This is what we are trying to achieve.

【0005】[0005]

【課題を解決するための手段】本発明者らはR( MF
e)12 化合物におけるM元素の役割について研究を
重ねた結果、第3元素M1でRを置換し、M2でFeを
置換すれば、  第3元素の総量を減少させてTh2M
n12 構造を安定化し得ることを見出し、諸条件を充
分検討して本発明を完成させたもので、合金組成が式 
(R1−X M1X)[(Fe1−YCoY)1−ZM
2Z]W (但し、RはY,Th およびSmを主体と
した希土類元素の1種もしくは2種以上、M1はZr,
Hf,Bi,Sn,In,Pb から選らばれた1種ま
たは2種以上の元素、M2はTi,V,Cr,Mn,M
o,W,Nb,Ta,Si,Al から選らばれた1種
または2種以上の元素、0.01≦X ≦0.4、 0
.1≦Y ≦0.5、0.01≦Z≦0.3、10≦W
 ≦13)からなり、その主相が体心正方晶ThMn1
2構造でかつM1原子がR原子を置換し、M2原子がF
eあるいはCo原子を置換していることを特徴とする希
土類永久磁石を要旨とするものである。。
[Means for solving the problem] The present inventors have developed R(MF
e) 12 As a result of repeated research on the role of the M element in compounds, we found that if we replace R with the third element M1 and replace Fe with M2, we can reduce the total amount of the third element and achieve Th2M.
It was discovered that the n12 structure could be stabilized, and the present invention was completed after thorough consideration of various conditions, and the alloy composition is based on the formula
(R1-X M1X) [(Fe1-YCoY)1-ZM
2Z]W (However, R is one or more rare earth elements mainly consisting of Y, Th and Sm, M1 is Zr,
One or more elements selected from Hf, Bi, Sn, In, Pb, M2 is Ti, V, Cr, Mn, M
One or more elements selected from o, W, Nb, Ta, Si, Al, 0.01≦X≦0.4, 0
.. 1≦Y≦0.5, 0.01≦Z≦0.3, 10≦W
≦13), the main phase of which is body-centered tetragonal ThMn1
2 structure, and the M1 atom replaces the R atom, and the M2 atom replaces the F atom.
The gist thereof is a rare earth permanent magnet characterized by substitution of e or Co atoms. .

【0006】以下、本発明を詳細に説明する。M元素は
その格子がFeより少し大きい場合には、Feを置換し
て格子を押し広げ、ThMn12構造を安定化すると考
えられる。 M元素が広い固溶限をもっているバナジュウムV元素の
場合には、V量の減少とともに格子が縮小することがわ
かっている。つまり、M元素無しでは格子が小さくなり
、Fe原子が本来入るべき空間が小さくなり過ぎる。し
かしまた、M原子がFe原子よりかなり大きい場合は、
格子を大幅に押し広げなければならないため、ThMn
12構造を安定化できない。このような理由でR( M
Fe)12 化合物を安定化する元素が限定され、しか
も置換量も狭い幅の中に制限されるものと考えられる。
The present invention will be explained in detail below. When the lattice of the M element is slightly larger than that of Fe, it is thought that the M element replaces Fe, expands the lattice, and stabilizes the ThMn12 structure. It is known that when the M element is vanadium V, which has a wide solid solubility limit, the lattice shrinks as the V amount decreases. In other words, without the M element, the lattice becomes small, and the space in which Fe atoms should originally enter becomes too small. But also, if the M atom is much larger than the Fe atom,
Since the lattice must be expanded significantly, ThMn
12 structure cannot be stabilized. For this reason, R( M
It is thought that the elements that stabilize the Fe)12 compound are limited and the amount of substitution is also limited within a narrow range.

【0007】以上の考察から、Feサイトを大きめの原
子で置換して格子を押し広げるか、もしくはRサイトを
小さめの原子で置換して隙間を作り出すことにより、T
hMn12構造を安定化出来るものと考えられる。Rサ
イトの置換元素M1として、一般的な希土類元素よりも
原子半径が小さく、Feサイトを置換するには大き過ぎ
るZr,Hf,Bi,Sn,In,Pb から選らばれ
た1種または2種以上の元素が適当である。Feサイト
の置換元素M2については、Feよりやや大きめのTi
,V,Cr Mn,Mo,W,Nb,Ta,Si,Al
 から選らばれた1種または2種以上の元素が好ましい
。このFeサイトの大きめの原子による置換とRサイト
のちいさめの原子による置換との両者の効果が同時に働
くことにより夫々の置換量を減らしても安定化させ得る
ことが判った。
From the above considerations, by replacing the Fe site with a larger atom to expand the lattice, or replacing the R site with a smaller atom to create a gap, T
It is thought that the hMn12 structure can be stabilized. As the R-site substitution element M1, one or more selected from Zr, Hf, Bi, Sn, In, and Pb, which have an atomic radius smaller than that of general rare earth elements and are too large to replace the Fe site. The elements are suitable. Regarding the substitution element M2 at the Fe site, Ti, which is slightly larger than Fe,
, V, Cr Mn, Mo, W, Nb, Ta, Si, Al
One or more elements selected from are preferred. It has been found that the effects of both the substitution with a larger atom at the Fe site and the substitution with a smaller atom at the R site work simultaneously, resulting in stabilization even if the amount of each substitution is reduced.

【0008】Rサイト置換元素M1の量X は、0.0
1以上、0.4以下が好ましく、Feサイト置換元素M
2の量Z は0.01以上0.3 以下が好ましい。M
1元素が0.01未満でかつM2元素が0.01未満で
はThMn12構造を安定化させることが出来ず、R2
Fe17 相とFeの相に分離してしまう。また、M1
量が0.4 よりも多いとRFe12系磁性合金の磁気
異方性が主にR元素に依存していることから、磁石材料
として満足出来る磁気特性が得られなくなってしまう。 さらにM2元素も0.3 を越えると主に飽和磁化をF
e原子の量に依存していることから、磁気特性が悪くな
ってしまう。
The amount X of the R-site substitution element M1 is 0.0
1 or more and 0.4 or less, preferably Fe site substitution element M
The amount Z of 2 is preferably 0.01 or more and 0.3 or less. M
If one element is less than 0.01 and the M2 element is less than 0.01, the ThMn12 structure cannot be stabilized, and R2
It separates into Fe17 phase and Fe phase. Also, M1
If the amount is more than 0.4, the magnetic anisotropy of the RFe12 magnetic alloy mainly depends on the R element, making it impossible to obtain satisfactory magnetic properties as a magnet material. Furthermore, when the M2 element also exceeds 0.3, the saturation magnetization mainly changes to F.
Since it depends on the amount of e atoms, the magnetic properties deteriorate.

【0009】    ≦Z ≦0.3、10≦W ≦1
3Fe原子はCo原子で置換することが可能で、Co置
換によりキュリー温度が向上し、磁気特性の温度安定性
が改善される。また、Co置換により飽和磁化も少し上
昇するが、逆に結晶磁気異方性は減少するのでCo置換
量Y は0.5 以下がよい。遷移金属の量W は10
未満ではR2Fe17 が安定化され、13 を越える
とFeが主相となりThMn12構造が安定化されない
ため、この範囲内であることが必要である。
[0009] ≦Z ≦0.3, 10≦W ≦1
3Fe atoms can be replaced with Co atoms, and Co substitution improves the Curie temperature and improves the temperature stability of magnetic properties. Furthermore, although the saturation magnetization increases slightly due to Co substitution, the magnetocrystalline anisotropy decreases, so the Co substitution amount Y is preferably 0.5 or less. The amount of transition metal W is 10
If it is less than 13, R2Fe17 will be stabilized, and if it exceeds 13, Fe will become the main phase and the ThMn12 structure will not be stabilized, so it is necessary that it be within this range.

【0010】ここで、RはY、Th、Sm を主体とす
る希土類元素からなる群から選択される1種または2種
以上の元素に適用される。
[0010] Here, R is applied to one or more elements selected from the group consisting of rare earth elements mainly consisting of Y, Th, and Sm.

【0011】本発明の化合物の磁石化は種々の手段によ
って可能である。典型的な手段としては、焼結磁石また
はボンド磁石化が挙げられる。得られた合金はジェット
ミル等で微粉砕して磁石合金粉末を作製する。この微粉
砕には液体超急冷法、メカニカルアロイング法やガスア
トマイズ法等を使用してもよい。焼結磁石については磁
石合金粉末を磁場中で配向させながら成形し、これを1
,000〜 1,300℃の温度範囲で焼結し、その後
500 〜900 ℃で時効処理を行う。ボンド磁石に
ついては磁石合金粉末を有機バインダーと混合し、磁場
中で配向させた後、有機バインダーを硬化させてボンド
磁石とすれば良い。
Magnetization of the compounds of the invention is possible by various means. Typical means include sintered magnets or bonded magnetization. The obtained alloy is finely pulverized using a jet mill or the like to produce a magnet alloy powder. For this fine pulverization, a liquid super-quenching method, a mechanical alloying method, a gas atomization method, or the like may be used. For sintered magnets, magnet alloy powder is molded while being oriented in a magnetic field, and this is
Sintering is performed at a temperature range of 1,000 to 1,300°C, followed by aging treatment at a temperature of 500 to 900°C. For a bonded magnet, a magnet alloy powder may be mixed with an organic binder, oriented in a magnetic field, and then the organic binder may be hardened to form a bonded magnet.

【0012】0012

【実施例】以下、本発明の実施態様を実施例、比較例を
挙げて具体的に説明するが、本発明はこれらに限定され
るものではない。 (実施例1)純度99%のSmメタル、純度99.9%
のFe、Coおよび添加金属元素M1,M2 を各々表
1(合金番号1〜3、6〜10)のように秤量し、不活
性ガス中で高周波溶解を行い、溶湯を銅鋳型で冷却した
。該インゴットを粗粉砕後、N2ガスによるジェットミ
ルで3〜5μm径に微粉砕を行なった。該微粉を15K
Oe の静磁場中で配向させた状態で、1ton/cm
2 の圧力でプレス成形を行なった後、該成形体を不活
性ガス中1,050 〜1,250 ℃の温度で1〜2
時間焼結を行い、引続き 500〜 900℃の温度範
囲で1時間以上熱処理を行なった後急冷した。該焼結体
の磁気特性 iHcを自記磁束計で測定した結果を表1
に示した。比較例としてM1またM2を添加しない合金
を合金No. 4、5として作製し、表1に併記した。   表1に示したように、M1,M2 の両M元素を添
加したものは、どちらか一つを添加したものよりも添加
量を減らすことが出来るため、非磁性元素による希釈が
少なくて済、磁気特性が向上している。
[Examples] Hereinafter, embodiments of the present invention will be explained in detail with reference to Examples and Comparative Examples, but the present invention is not limited thereto. (Example 1) 99% purity Sm metal, 99.9% purity
Fe, Co, and additional metal elements M1, M2 were weighed as shown in Table 1 (alloy numbers 1-3, 6-10), high-frequency melting was performed in an inert gas, and the molten metal was cooled in a copper mold. After coarsely pulverizing the ingot, it was finely pulverized to a diameter of 3 to 5 μm using a jet mill using N2 gas. The fine powder was heated to 15K.
1 ton/cm when oriented in a static magnetic field of Oe
After press forming at a pressure of 1 to 2 degrees Celsius, the molded body was molded at a temperature of 1 to 2 degrees Celsius in an inert gas at a temperature of 1 to 1,250 degrees Celsius.
Sintering was performed for a period of time, followed by heat treatment at a temperature range of 500 to 900° C. for 1 hour or more, followed by rapid cooling. Table 1 shows the results of measuring the magnetic properties iHc of the sintered body using a self-recording magnetometer.
It was shown to. As a comparative example, an alloy without M1 or M2 added was alloy No. 4 and 5, and are also listed in Table 1. As shown in Table 1, when both M elements, M1 and M2, are added, the amount of addition can be reduced compared to when one of them is added, so less dilution with non-magnetic elements is required. Improved magnetic properties.

【0013】[0013]

【表 1】[Table 1]

【0014】[0014]

【発明の効果】本発明によれば、従来遷移金属サイトに
Ti等で相当量置換しなければ安定化出来なかったTh
Mn12構造を持つR(Fe,Co)12 系磁性体が
希土類サイトを少量のZr,Hf 等で置換することに
より、遷移金属を置換しているTi等の量をかなり減ら
しても安定化できるようになった。また、遷移金属サイ
トと希土類サイトとの両方を置換した相乗効果により、
夫々の置換量を減らして安定化出来るようになった。従
って、従来1−12系磁性体の持つ問題点であった非磁
性金属の導入による飽和磁束密度およびキュリー点の低
下を防止し、それを用いて高特性の磁石を作製出来るよ
うになった。またこの1−12系磁石はFeを主成分と
するため、高価なCoを多く使用していたSmCo系磁
石に比べて、資源や供給安定性およびコストの面で有利
であり、産業上その利用価値は極めて高い。
[Effects of the Invention] According to the present invention, Th
By substituting rare earth sites with a small amount of Zr, Hf, etc., the R(Fe, Co)12-based magnetic material with an Mn12 structure can be stabilized even if the amount of Ti, etc. that replaces the transition metal is considerably reduced. Became. In addition, due to the synergistic effect of replacing both transition metal sites and rare earth sites,
It has become possible to stabilize by reducing the amount of each substitution. Therefore, it is possible to prevent a decrease in the saturation magnetic flux density and Curie point due to the introduction of non-magnetic metals, which was a problem with conventional 1-12 magnetic materials, and it has become possible to manufacture high-performance magnets using the same. In addition, since this 1-12 series magnet has Fe as its main component, it is advantageous in terms of resources, supply stability, and cost compared to SmCo series magnets that use a large amount of expensive Co. The value is extremely high.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】合金組成が式 (R1−X M1X)[(
Fe1−YCoY)1−ZM2Z]W (但し、RはY
,Th およびSmを主体とした希土類元素の1種もし
くは2種以上、M1はZr,Hf,Bi,Sn,In,
Pb から選らばれた1種または2種以上の元素、M2
はTi,V,Cr,Mn,Mo,W,Nb,Ta,Si
,Al から選らばれた1種または2種以上の元素、0
.01≦X ≦0.4、 0.1≦Y ≦0.5、0.
01≦Z ≦0.3、10≦W ≦13)からなり、そ
の主相が体心正方晶ThMn12構造でかつM1原子が
R原子を置換し、M2原子がFeあるいはCo原子を置
換していることを特徴とする希土類永久磁石。
Claim 1: The alloy composition is of the formula (R1-X M1X) [(
Fe1-YCoY)1-ZM2Z]W (However, R is Y
, Th and one or more rare earth elements mainly composed of Sm, M1 is Zr, Hf, Bi, Sn, In,
One or more elements selected from Pb, M2
are Ti, V, Cr, Mn, Mo, W, Nb, Ta, Si
, one or more elements selected from Al, 0
.. 01≦X≦0.4, 0.1≦Y≦0.5, 0.
01≦Z≦0.3, 10≦W≦13), and its main phase has a body-centered tetragonal ThMn12 structure, with M1 atoms replacing R atoms and M2 atoms replacing Fe or Co atoms. A rare earth permanent magnet characterized by:
JP3118082A 1991-04-22 1991-04-22 Rare earth permanent magnet Pending JPH04322406A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3118082A JPH04322406A (en) 1991-04-22 1991-04-22 Rare earth permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3118082A JPH04322406A (en) 1991-04-22 1991-04-22 Rare earth permanent magnet

Publications (1)

Publication Number Publication Date
JPH04322406A true JPH04322406A (en) 1992-11-12

Family

ID=14727552

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3118082A Pending JPH04322406A (en) 1991-04-22 1991-04-22 Rare earth permanent magnet

Country Status (1)

Country Link
JP (1) JPH04322406A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10250085B2 (en) 2016-08-24 2019-04-02 Kabushiki Kaisha Toshiba Magnet material, permanent magnet, rotary electrical machine, and vehicle
US10490325B2 (en) 2016-08-24 2019-11-26 Kabushiki Kaisha Toshiba Magnetic material, permanent magnet, rotary electrical machine, and vehicle
JP2020136333A (en) * 2019-02-14 2020-08-31 日立金属株式会社 Sintered body for rare earth magnet and method for manufacturing the same
CN111655891A (en) * 2018-01-30 2020-09-11 Tdk株式会社 Permanent magnet
US10923255B2 (en) 2017-09-19 2021-02-16 Kabushiki Kaisha Toshiba Magnetic material, permanent magnet, rotary electrical machine, and vehicle
JPWO2021193333A1 (en) * 2020-03-26 2021-09-30
JPWO2021193334A1 (en) * 2020-03-26 2021-09-30

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10250085B2 (en) 2016-08-24 2019-04-02 Kabushiki Kaisha Toshiba Magnet material, permanent magnet, rotary electrical machine, and vehicle
US10490325B2 (en) 2016-08-24 2019-11-26 Kabushiki Kaisha Toshiba Magnetic material, permanent magnet, rotary electrical machine, and vehicle
US10923255B2 (en) 2017-09-19 2021-02-16 Kabushiki Kaisha Toshiba Magnetic material, permanent magnet, rotary electrical machine, and vehicle
CN111655891A (en) * 2018-01-30 2020-09-11 Tdk株式会社 Permanent magnet
CN111655891B (en) * 2018-01-30 2022-04-05 Tdk株式会社 Permanent magnet
JP2020136333A (en) * 2019-02-14 2020-08-31 日立金属株式会社 Sintered body for rare earth magnet and method for manufacturing the same
JPWO2021193333A1 (en) * 2020-03-26 2021-09-30
WO2021193333A1 (en) * 2020-03-26 2021-09-30 信越化学工業株式会社 Anisotropic rare-earth sintered magnet and method for producing same
JPWO2021193334A1 (en) * 2020-03-26 2021-09-30
WO2021193334A1 (en) * 2020-03-26 2021-09-30 信越化学工業株式会社 Anisotropic rare earth sintered magnet and method for producing same
EP4130300A4 (en) * 2020-03-26 2024-04-03 Shinetsu Chemical Co Anisotropic rare earth sintered magnet and method for producing same
EP4130301A4 (en) * 2020-03-26 2024-04-03 Shinetsu Chemical Co Anisotropic rare-earth sintered magnet and method for producing same

Similar Documents

Publication Publication Date Title
US4971637A (en) Rare earth permanent magnet
Menth et al. New high-performance permanent magnets based on rare earth-transition metal compounds
US5800728A (en) Permanent magnetic material made of iron-rare earth metal alloy
JPS6110209A (en) Permanent magnet
JPH0316761B2 (en)
JPH04322406A (en) Rare earth permanent magnet
Burzo et al. Magnetic properties of Nd2Fe14− x− yCoxAlyB alloys
JPH11251125A (en) Rare-earth-iron-boron sintered magnet and its manufacture
US5230749A (en) Permanent magnets
JPH04322405A (en) Rare earth permanent magnet
US5055129A (en) Rare earth-iron-boron sintered magnets
JPS61221353A (en) Material for permanent magnet
JPH0561345B2 (en)
JP3645312B2 (en) Magnetic materials and manufacturing methods
US4981513A (en) Mixed particulate composition for preparing rare earth-iron-boron sintered magnets
US4567576A (en) Method for producing a magnetic bias field
JPH052735B2 (en)
JPS63241142A (en) Ferromagnetic alloy
JPH04308062A (en) Magnet alloy containing rare earth element and permanent magnet containing rare earth element
JPS62281403A (en) Permanent magnet
JP3199506B2 (en) Rare earth permanent magnet
JPH04280403A (en) Rare-earth magnet alloy and rare-earth permanent magnet
US5015306A (en) Method for preparing rare earth-iron-boron sintered magnets
JP3086334B2 (en) Anisotropic rare earth alloy powder for permanent magnet
US5015304A (en) Rare earth-iron-boron sintered magnets