JP2020136333A - Sintered body for rare earth magnet and method for manufacturing the same - Google Patents

Sintered body for rare earth magnet and method for manufacturing the same Download PDF

Info

Publication number
JP2020136333A
JP2020136333A JP2019024190A JP2019024190A JP2020136333A JP 2020136333 A JP2020136333 A JP 2020136333A JP 2019024190 A JP2019024190 A JP 2019024190A JP 2019024190 A JP2019024190 A JP 2019024190A JP 2020136333 A JP2020136333 A JP 2020136333A
Authority
JP
Japan
Prior art keywords
phase
sintered body
rare earth
bcc
thmn12
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019024190A
Other languages
Japanese (ja)
Other versions
JP7196666B2 (en
Inventor
大介 古澤
Daisuke Furusawa
大介 古澤
西内 武司
Takeshi Nishiuchi
武司 西内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2019024190A priority Critical patent/JP7196666B2/en
Publication of JP2020136333A publication Critical patent/JP2020136333A/en
Application granted granted Critical
Publication of JP7196666B2 publication Critical patent/JP7196666B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

To provide a sintered body for a rare earth magnet, which is less in the quantity of foreign phases having an adverse effect on a magnetic property, and a method for manufacturing the sintered body.SOLUTION: In an exemplary embodiment, a sintered body for a rare earth magnet disclosed herein has a whole composition given by the following compositional formula: R1R2(FeCo)TiCuO, where R1 is Y or Y and Gd, Y is 50 mol% or more to a whole quantity of R1, R2 is at least one kind selected from a group consisting of Sm, La, Ce, Nd and Pr, but it necessarily includes Sm, Sm is 50 mol% or more to a whole quantity of R2, and x, y, z, w, α and β satisfy 0.3≤x≤0.9, 0≤y≤0.4, 0.38≤z≤0.70, 7≤w≤12, 0≤α≤0.70, 0.02≤β≤0.5 and 0≤1-x-2z/3-0.092α-8β/15≤0.05. In the sintered body, a phase having a ThMntype crystalline structure makes a main phase.SELECTED DRAWING: Figure 2

Description

本発明は、希土類磁石用焼結体およびその製造方法に関する。 The present invention relates to a sintered body for rare earth magnets and a method for producing the same.

永久磁石は自動車部品や産業機械、家電製品などの各種モータに使用されている。 Permanent magnets are used in various motors such as automobile parts, industrial machines, and home appliances.

代表的な高性能磁石としてNd−Fe−B系磁石が挙げられる。Nd−Fe−B系磁石は、主として電気自動車(EV、HV、PHVなど)やハイブリッド自動車の駆動モータなどに使用されている。モータの更なる高効率化や小型化のニーズが高まり、より高い磁気物性を有する永久磁石の開発が期待されている。 A typical high-performance magnet is an Nd-Fe-B magnet. Nd-Fe-B magnets are mainly used in drive motors of electric vehicles (EV, HV, PHV, etc.) and hybrid vehicles. Needs for further high efficiency and miniaturization of motors are increasing, and the development of permanent magnets having higher magnetic properties is expected.

Nd−Fe−B系磁石の磁気物性を超える永久磁石の主相系合金の候補の一つとして、ThMn12型結晶構造またはその類似構造を有するRT12化合物が注目されている。RT12化合物はNd−Fe−B系磁石の主相を構成する化合物であるR14B(Rは希土類元素の少なくとも一種、Tは少なくともFeを含んだ1種以上の鉄族遷移金属元素)より高い濃度の鉄族遷移金属を含有するため高い磁気物性が期待される。以下、ThMn12型結晶構造またはその類似構造を有するRT12化合物からなる相を1−12相と記述することがある。 One of the Nd-Fe-B system in the main phase alloy of the permanent magnets than the magnetic properties of the magnet candidate, RT 12 compounds having ThMn 12 type crystal structure or a similar structure has been noted. The RT 12 compound is a compound that constitutes the main phase of an Nd-Fe-B magnet. R 2 T 14 B (R is at least one kind of rare earth element, T is one or more iron group transition metal elements containing at least Fe. ) High magnetic properties are expected because it contains a higher concentration of iron group transition metals. Hereinafter sometimes described as 1-12 phase phase consisting RT 12 compounds having ThMn 12 type crystal structure or a similar structure.

特許文献1には、T元素であるFeの一部を、構造安定化元素であるTiにより部分的に置換して、高い磁化と引き換えに、熱安定性を高めた希土類永久磁石が開示されている。 Patent Document 1 discloses a rare earth permanent magnet in which a part of Fe, which is a T element, is partially replaced by Ti, which is a structural stabilizing element, to improve thermal stability in exchange for high magnetization. There is.

特許文献2には、RFe12系化合物のR元素を、Zr、Hf等の置換元素により部分的に置換することで、遷移金属元素を置換するTi等の置換元素の量を減らして飽和磁化を保ったまま、ThMn12型結晶構造を安定化した希土類永久磁石が開示されている。 Patent Document 2 states that by partially substituting the R element of an RFe 12- based compound with a substitution element such as Zr or Hf, the amount of the substitution element such as Ti that replaces the transition metal element is reduced to achieve saturation magnetization. A rare earth permanent magnet in which the ThMn 12- type crystal structure is stabilized while maintaining the structure is disclosed.

また、特許文献3には、RFe12のR元素の一部としてYまたはGdを選択した、R´−Fe−Co系強磁性合金が開示されており、このR´−Fe−Co系強磁性合金が、超急冷法により生成させたThMn12型結晶構造を有することで、高い磁気特性を示す点が記載されている。 Further, Patent Document 3 discloses an R'-Fe-Co-based ferromagnetic alloy in which Y or Gd is selected as a part of the R element of RFe 12 , and the R'-Fe-Co-based ferromagnetic alloy is disclosed. It is described that the alloy has a ThMn 12- type crystal structure produced by an ultra-quenching method and thus exhibits high magnetic properties.

また、特許文献4には、Cuを添加することで非磁性かつ低融点の1−4組成(SmCu相)の相が生成し、焼結と高保磁力化が可能なことが記載されている。 Further, Patent Document 4 describes that the addition of Cu produces a phase having a non-magnetic and low melting point of 1-4 composition (SmCu 4- phase), which enables sintering and high coercive force. ..

また、特許文献5には、ThMn12型の主相に対し副相としてSmFe17系相、SmCo系相、Sm系相、およびSmCu系相の少なくともいずれかを含むことで、高保磁力化が可能なことが記載されている。 Further, in Patent Document 5, at least one of Sm 5 Fe 17 system phase, SmCo 5 system phase, Sm 2 O 3 system phase, and Sm 7 Cu 3 system phase is used as a subphase with respect to the main phase of ThMn 12 type. It is described that high coercive force can be increased by including it.

また、特許文献6には、Cuを添加することで液相が生成し緻密なバルク体が形成可能なことが記載されている。 Further, Patent Document 6 describes that by adding Cu, a liquid phase is formed and a dense bulk body can be formed.

また、特許文献7には、Yを含むThMn12型の相を主相とする強磁性合金をストリップキャスト法で作製することで、主相組成の不均一性が少なく、主相比率が高い合金が得られることが記載されている。 Further, in Patent Document 7, by producing a ferromagnetic alloy having a ThMn 12 type phase containing Y as a main phase by a strip casting method, an alloy having less non-uniformity of the main phase composition and a high main phase ratio Is stated to be obtained.

また、特許文献8には、Yを含むThMn12型の相を主相とする磁石材料で高い飽和磁化や異方性磁界が得られることが記載されている。 Further, Patent Document 8 describes that a high saturation magnetization and an anisotropic magnetic field can be obtained with a magnet material having a ThMn 12 type phase containing Y as a main phase.

特開昭64−76703号公報Japanese Unexamined Patent Publication No. 64-76703 特開平4−322406号公報Japanese Unexamined Patent Publication No. 4-322406 特開2015−156436号公報Japanese Unexamined Patent Publication No. 2015-156436 特開2001−189206号公報Japanese Unexamined Patent Publication No. 2001-189206 特開2017−112300号公報JP-A-2017-112300 国際公開第2016/162990号International Publication No. 2016/162990 特開2018−103211号公報Japanese Unexamined Patent Publication No. 2018-10321 特開2018−125512号公報JP-A-2018-125512

高性能磁石に用いる焼結体の条件の一つとして、磁気特性に悪影響を及ぼす異相が少ない組織であることが必要である。焼結体中にbcc−Fe相に代表される軟磁性相が存在すると、その軟磁性相が磁化反転の起点となり、容易に磁化反転が進行するため、保磁力、角形性、残留磁束密度といった磁気特性が著しく低下する。そのため、このような軟磁性の異相が極力存在しないような焼結体が求められる。 As one of the conditions for the sintered body used for high-performance magnets, it is necessary to have a structure having few different phases that adversely affect the magnetic properties. If a soft magnetic phase typified by the bcc-Fe phase is present in the sintered body, the soft magnetic phase becomes the starting point of the magnetization reversal and the magnetization reversal easily proceeds, so that coercive force, squareness, residual magnetic flux density, etc. The magnetic properties are significantly reduced. Therefore, there is a need for a sintered body in which such a soft magnetic heterogeneous phase does not exist as much as possible.

特許文献1に記載の希土類永久磁石は、TiによるFeの元素置換により、熱安定性が高められているものの、TiによるFe置換量が多いため、その分磁化が小さくなり、十分な磁気特性を得られない。 The rare earth permanent magnet described in Patent Document 1 has improved thermal stability due to element substitution of Fe by Ti, but since the amount of Fe substitution by Ti is large, the magnetization is reduced by that amount, and sufficient magnetic properties are provided. I can't get it.

一方、特許文献2に記載の希土類永久磁石では、Ti等で遷移金属元素を置換することによりThMn12構造の安定化を図っているものの、その効果は必ずしも十分でない。 On the other hand, in the rare earth permanent magnet described in Patent Document 2, although the ThMn 12 structure is stabilized by substituting the transition metal element with Ti or the like, the effect is not always sufficient.

特許文献3に記載のR´−Fe−Co系強磁性合金は、Fe元素を構造安定化元素M(Ti等)で置換していないため、高い磁化と大きい磁気異方性と高いキュリー温度を得られているが、非平衡相であるために、焼結等の高温での緻密化プロセスにおいて主相化合物が分解することがある。 Since the R'-Fe-Co-based ferromagnetic alloy described in Patent Document 3 does not replace the Fe element with the structure stabilizing element M (Ti, etc.), it has high magnetization, large magnetic anisotropy, and high Curie temperature. Although it has been obtained, since it is a non-equilibrium phase, the main phase compound may decompose in a densification process at high temperature such as sintering.

特許文献4に記載の希土類磁石では、Ti添加量が多いために磁気物性値が高くないことがある。 In the rare earth magnet described in Patent Document 4, the magnetic property value may not be high because the amount of Ti added is large.

特許文献5に記載の希土類磁石では、希土類リッチな副相SmCuを使用した場合、熱処理時に主相とSmCuの反応により、主相よりも希土類リッチな相が生成することが懸念される。 In the rare earth magnet described in Patent Document 5, when the rare earth rich subphase Sm 7 Cu 3 is used, the reaction between the main phase and Sm 7 Cu 3 during the heat treatment may generate a rare earth rich phase than the main phase. I am concerned.

特許文献6に記載の希土類磁石では、Fe元素を構造安定化元素Mで置換していないため、高い磁化と大きい磁気異方性と高いキュリー温度を得られ、かつバルク体としての密度が高いが、非平衡相であるために、1000℃以上の焼結等の高温でのプロセスにおいて主相化合物が分解することがある。 In the rare earth magnet described in Patent Document 6, since the Fe element is not replaced with the structure stabilizing element M, high magnetization, large magnetic anisotropy and high Curie temperature can be obtained, and the density as a bulk compound is high. Since it is a non-equilibrium phase, the main phase compound may decompose in a process at a high temperature such as sintering at 1000 ° C. or higher.

特許文献7に記載の強磁性合金や特許文献8に記載の磁石材料の組成は、焼結体の作製工程で不可避的に混入する酸素の影響が考慮されていないため、酸素が希土類元素と優先的に反応し、主相が分解し、bcc−Fe相などの軟磁性相が生成することが懸念される。 In the composition of the ferromagnetic alloy described in Patent Document 7 and the magnet material described in Patent Document 8, oxygen is prioritized over rare earth elements because the influence of oxygen inevitably mixed in the sintered body manufacturing process is not taken into consideration. There is a concern that the main phase will be decomposed and a soft magnetic phase such as a bcc-Fe phase will be generated.

本開示の実施形態は、磁気特性に悪影響を及ぼす異相が少ない希土類磁石用焼結体およびその製造方法を提供する。 The embodiments of the present disclosure provide a sintered body for a rare earth magnet having few different phases that adversely affect the magnetic properties, and a method for producing the same.

本開示のThMn12型結晶構造を有する相を主相とする希土類磁石用焼結体は、例示的な実施形態において、全体の組成が下記の組成式(1)で表され、R11−xR2(Fe1−yCow−zTiCuαβ(1)、R1はY又はYとGdであり、YはR1全体の50mol%以上であり、R2はSm、La、Ce、NdおよびPrからなる群から選択される少なくとも1種であり、Smを必ず含み、SmはR2全体の50mol%以上であり、x、y、z、w、α、およびβは、それぞれ、0.3≦x≦0.9、0≦y≦0.4、0.38≦z≦0.70、7≦w≦12、0≦α≦0.70、0.02≦β≦0.5、および0≦1−x−2z/3−0.092α―8β/15≦0.05を満足する。 In an exemplary embodiment, the overall composition of the sintered body for rare earth magnets having a phase having a ThMn 12- type crystal structure of the present disclosure as a main phase is represented by the following composition formula (1), and R1 1-x. R2 x (Fe 1-y Co y) w-z Ti z Cu α O β (1), R1 is Y or Y and Gd, Y is at least 50 mol% of the total R1, R2 is Sm, La, It is at least one selected from the group consisting of Ce, Nd and Pr, always contains Sm, Sm is 50 mol% or more of the total R2, and x, y, z, w, α, and β are, respectively. 0.3 ≦ x ≦ 0.9, 0 ≦ y ≦ 0.4, 0.38 ≦ z ≦ 0.70, 7 ≦ w ≦ 12, 0 ≦ α ≦ 0.70, 0.02 ≦ β ≦ 0. 5 and 0 ≦ 1-x-2z / 3-0.092α-8β / 15 ≦ 0.05 are satisfied.

ある実施形態は、0≦1−x−2z/3−0.092α―8β/15≦0.03
を満足する。
In one embodiment, 0≤1-x-2z / 3-0.092α-8β / 15≤0.03
To be satisfied.

ある実施形態は、0.40≦α≦0.70を満足する。 One embodiment satisfies 0.40 ≦ α ≦ 0.70.

ある実施形態は、前記焼結体の粉末X線回折パターンにおいて、前記ThMn12型結晶構造を有する相の002反射に起因するピークの最大強度をIThMn12、bcc‐(Fe,Co,Ti)相の011反射に起因するピークの最大強度をIbcc‐(Fe,Co,Ti)としたときに、Ibcc‐(Fe,Co,Ti)/IThMn12≦0.75を満足する。 In one embodiment, in the powder X-ray diffraction pattern of the sintered body, the maximum intensity of the peak due to the 002 reflection of the phase having the ThMn 12 type crystal structure is the I ThMn12 , bcc- (Fe, Co, Ti) phase. When the maximum intensity of the peak caused by the 011 reflection is I bcc- (Fe, Co, Ti) , I bcc- (Fe, Co, Ti) / I ThMn12 ≤ 0.75 is satisfied.

ある実施形態は、前記焼結体の粉末X線回折パターンにおいて、前記ThMn12型結晶構造を有する相の002反射に起因するピークの最大強度をIThMn12、ThNi17型結晶構造を有する相の023反射に起因するピークの最大強度をITh2Ni17としたときに、ITh2Ni17/IThMn12≦0.7を満足する。 Certain embodiments, the powder X-ray diffraction pattern of the sintered body, a phase having the maximum intensity I ThMn12, Th 2 Ni 17 type crystal structure peaks due to 002 reflecting the phase having the ThMn 12 type crystal structure When the maximum intensity of the peak caused by the 023 reflection of No. 023 is I Th2Ni17 , I Th2Ni17 / I ThMn12 ≦ 0.7 is satisfied.

本開示の希土類磁石用焼結体の製造方法は、例示的な実施形態において、全体の組成が下記の組成式(1)で表され、R11−xR2(Fe1−yCow−zTiCuα (1)、R1はY又はYとGdであり、YはR1全体の50mol%以上であり、R2はSm、La、Ce、NdおよびPrからなる群から選択される少なくとも1種であり、Smを必ず含み、SmはR2全体の50mol%以上であり、x、y、z、w、α、およびβは、それぞれ、0.3≦x≦0.9、0≦y≦0.4、0.38≦z≦0.70、7≦w≦12、0≦α≦0.70、0.02≦β≦0.5、および0≦1−x−2z/3−0.092α―8β/15≦0.05を満足する、ThMn12型結晶構造を有する相を主相とする希土類磁石用焼結体の製造方法であって、原料の溶湯を冷却して合金を得る工程と、前記合金を粉砕して微粉末を得る工程と、前記微粉末を成形して成形体を得る工程と、前記成形体を900℃以上1250℃以下、圧力1000MPa以下で5分以上50時間以下熱処理して焼結体を得る工程とを含む。 Method for producing a rare earth magnet sintered body of the present disclosure, in an exemplary embodiment, the entire composition is represented by the following composition formula (1), R1 1-x R2 x (Fe 1-y Co y) w-z Ti z Cu α O (1), R1 is Y or Y and Gd, Y is 50 mol% or more of the whole R1, and R2 is at least one selected from the group consisting of Sm, La, Ce, Nd and Pr, and Sm. Sm is 50 mol% or more of the whole R2, and x, y, z, w, α, and β are 0.3 ≦ x ≦ 0.9, 0 ≦ y ≦ 0.4, 0, respectively. .38 ≦ z ≦ 0.70, 7 ≦ w ≦ 12, 0 ≦ α ≦ 0.70, 0.02 ≦ β ≦ 0.5, and 0 ≦ 1-x-2z / 3-0.092α-8β / A method for producing a sintered body for rare earth magnets, which comprises a phase having a ThMn 12- type crystal structure as a main phase, satisfying 15 ≦ 0.05, wherein the molten metal of the raw material is cooled to obtain an alloy, and the alloy. A step of crushing the fine powder to obtain a fine powder, a step of molding the fine powder to obtain a molded product, and a heat treatment of the molded product at 900 ° C. or higher and 1250 ° C. or lower and a pressure of 1000 MPa or lower for 5 minutes or longer and 50 hours or shorter to bake. Includes the step of obtaining a coalescence.

本発明の実施形態によれば、磁気特性に悪影響を及ぼす異相が少ない希土類磁石用焼結体およびその製造方法を提供することができる。 According to the embodiment of the present invention, it is possible to provide a sintered body for a rare earth magnet having few different phases that adversely affect the magnetic characteristics and a method for producing the same.

試料No.1〜5における粉末X線回折測定結果を示す図である。Sample No. It is a figure which shows the powder X-ray diffraction measurement result in 1-5. 試料No.1〜5における、1−x−2z/3−0.092α―8β/15の値に対する、粉末X線回折測定結果から求めたbcc‐(Fe,Co,Ti)相の相対強度を示す図である。Sample No. It is a figure which shows the relative intensity of the bcc- (Fe, Co, Ti) phase obtained from the powder X-ray diffraction measurement result with respect to the value of 1-x-2z / 3-0.092α-8β / 15 in 1-5. is there. 試料No.1〜5における、1−x−2z/3−0.092α―8β/15の値に対する、粉末X線回折測定結果から求めた2−17相の相対強度を示す図である。Sample No. It is a figure which shows the relative intensity of the 2-17 phase obtained from the powder X-ray diffraction measurement result with respect to the value of 1-x-2z / 3-0.092α-8β / 15 in 1-5. 試料No.1〜5における試料断面の反射電子像を示す図である。Sample No. It is a figure which shows the reflected electron image of the sample cross section in 1-5. 試料No.6、7および4における粉末X線回折測定結果を示す図である。Sample No. It is a figure which shows the powder X-ray diffraction measurement result in 6, 7 and 4. 試料No.7における試料断面の反射電子像を示す図である。Sample No. It is a figure which shows the reflected electron image of the sample cross section in 7.

[希土類磁石用焼結体の組成]
本開示の希土類磁石用焼結体は、全体の組成が下記の組成式(1)によって表される。
R11−xR2(Fe1−yCow-zTiCuαβ (1)
[Composition of sintered body for rare earth magnets]
The overall composition of the sintered body for rare earth magnets of the present disclosure is represented by the following composition formula (1).
R1 1-x R2 x (Fe 1-y Co y) w-z Ti z Cu α O β (1)

ここで、R1はY又はYとGdであり、YはR1全体の50mol%以上であり、R2はSm、La、Ce、NdおよびPrからなる群から選択される少なくとも1種であり、Smを必ず含み、SmはR2全体の50mol%以上である。R1は、Yのみ(不可避的不純物は除く)であることが好ましく、R2は、Smのみ(不可避的不純物は除く)であることが好ましい。また、x、y、z、w、αおよびβはそれぞれ、0.3≦x≦0.9、0≦y≦0.4、0.38≦z≦0.70、7≦w≦12、0≦α≦0.70および0.02≦β≦0.5を満足し、さらに関係式0≦1−x−2z/3−0.092α―8β/15≦0.05を満たす。また、関係式0≦1−x−2z/3−0.092α―8β/15≦0.03を満たすことがより好ましい。また、0.40≦α≦0.70を満たすことがより好ましい。 Here, R1 is Y or Y and Gd, Y is 50 mol% or more of the whole R1, R2 is at least one selected from the group consisting of Sm, La, Ce, Nd and Pr, and Sm is Always included, Sm is 50 mol% or more of the whole R2. R1 is preferably Y only (excluding unavoidable impurities), and R2 is preferably Sm only (excluding unavoidable impurities). Further, x, y, z, w, α and β are 0.3 ≦ x ≦ 0.9, 0 ≦ y ≦ 0.4, 0.38 ≦ z ≦ 0.70, 7 ≦ w ≦ 12, respectively. Satisfy 0 ≦ α ≦ 0.70 and 0.02 ≦ β ≦ 0.5, and further satisfy the relational expression 0 ≦ 1-x-2z / 3-0.092α-8β / 15 ≦ 0.05. Further, it is more preferable to satisfy the relational expression 0 ≦ 1-x-2z / 3-0.092α-8β / 15 ≦ 0.03. Further, it is more preferable to satisfy 0.40 ≦ α ≦ 0.70.

本発明者らが鋭意研究した結果、焼結体を上記の式(1)に示されるような組成範囲に設定することにより、磁気特性に悪影響を及ぼすbcc−(Fe,Co,Ti)相や、ThNi17型結晶あるいはその類似構造となる化合物の相(以下、2−17相と記述することがある)の生成を抑制可能であることを見出した。 As a result of diligent research by the present inventors, the bcc- (Fe, Co, Ti) phase, which adversely affects the magnetic properties, can be obtained by setting the sintered body in the composition range as shown in the above formula (1). , Th 2 Ni 17 type crystal or a compound having a similar structure thereof (hereinafter, may be referred to as 2-17 phase) can be suppressed.

[組成等の限定理由について]
(R1およびR2の種類)
R1はYまたはYとGdであり、YはR1全体の50mol%以上である。R1が別の元素のとき、1−12相以外に安定な相が生成することがある。たとえば、R1がZrの場合、ThMn23型(以下、6−23相と記述する)の相が生成し、bcc−(Fe,Co,Ti)相も多量生成するため所望の焼結体が得られない。なお、Gdは高価なため、R1はYのみである方が好ましい。また、1−12相の磁気物性値と相安定性から、R2はSm、La、Ce、NdおよびPrからなる群から選択される少なくとも1種であり、Smを必ず含み、SmはR2全体の50mol%以上である。磁気物性値の観点から、R2はSmのみであることがより好ましい。
[Reason for limitation of composition, etc.]
(Types of R1 and R2)
R1 is Y or Y and Gd, and Y is 50 mol% or more of the whole R1. When R1 is another element, a stable phase other than the 1-12 phase may be formed. For example, when R1 is Zr, a Th 6 Mn 23 type (hereinafter referred to as 6-23 phase) phase is generated, and a large amount of bcc- (Fe, Co, Ti) phase is also generated, so that a desired sintered body is produced. Cannot be obtained. Since Gd is expensive, it is preferable that R1 is only Y. Further, R2 is at least one selected from the group consisting of Sm, La, Ce, Nd and Pr from the magnetic property values and phase stability of the 1-12 phase, and always contains Sm, and Sm is the entire R2. It is 50 mol% or more. From the viewpoint of the magnetic property value, it is more preferable that R2 is only Sm.

(R2の含有量)
R1とR2の総量に対するR2の含有量の原子数比率を示すx(R2置換量x)の範囲は0.3≦x≦0.9である。xが0.3未満であると1−12相の磁気異方性が低下するため好ましくない。また、xが0.9より大きいと1−12相の安定性が低下し、bcc−(Fe,Co,Ti)相や2−17相が生成するおそれがあり、好ましくない。
(R2 content)
The range of x (R2 substitution amount x) indicating the ratio of the atomic number of the content of R2 to the total amount of R1 and R2 is 0.3 ≦ x ≦ 0.9. If x is less than 0.3, the magnetic anisotropy of the 1-12 phase decreases, which is not preferable. On the other hand, if x is larger than 0.9, the stability of the 1-12 phase is lowered, and a bcc- (Fe, Co, Ti) phase or a 2-17 phase may be formed, which is not preferable.

(FeとCoの比率)
FeとCoの合計に対するCoの原子数比率を示すy(Co置換量y)の範囲は0≦y≦0.4である。1−12相のキュリー温度が低下する恐れを避けるためyは0.05以上であることがより好ましい。また、yが0.4より大きいと1−12相の体積磁化および磁気異方性磁界が低下するため好ましくない。
(Ratio of Fe and Co)
The range of y (Co substitution amount y) indicating the ratio of the number of atoms of Co to the total of Fe and Co is 0 ≦ y ≦ 0.4. It is more preferable that y is 0.05 or more in order to avoid a possibility that the Curie temperature of the 1-12 phase is lowered. Further, if y is larger than 0.4, the volume magnetization and magnetic anisotropy magnetic field of the 1-12 phase decrease, which is not preferable.

(Tiの含有量)
R1とR2の総量に対するTiの含有量の原子数比率を示すz(Ti含有量z)の範囲は0.38≦z≦0.70である。zが0.38未満であると焼結中に2−17相やbcc−(Fe,Co,Ti)相が安定して生成するため好ましくない。また、zが0.70より大きいと1−12相の磁気物性が低下するため好ましくない。より高い磁気特性、特にJを得るためにはTi量は少ない方が好ましい。具体的には、zの範囲が0.38≦z≦0.60であることがさらに好ましい。なお、Tiの50mol%以下をタングステン(W)、バナジウム(V)、ニオブ(Nb)、タンタル(Ta)、モリブデン(Mo)、ケイ素(Si)といった1−12相の構造を安定化させる元素で置換してもよい。
(Ti content)
The range of z (Ti content z) indicating the atomic number ratio of the Ti content to the total amount of R1 and R2 is 0.38 ≦ z ≦ 0.70. If z is less than 0.38, the 2-17 phase and the bcc- (Fe, Co, Ti) phase are stably formed during sintering, which is not preferable. Further, if z is larger than 0.70, the magnetic properties of the 1-12 phase are lowered, which is not preferable. In order to obtain higher magnetic properties, particularly J s , it is preferable that the amount of Ti is small. Specifically, it is more preferable that the range of z is 0.38 ≦ z ≦ 0.60. In addition, 50 mol% or less of Ti is an element that stabilizes the structure of 1-12 phase such as tungsten (W), vanadium (V), niobium (Nb), tantalum (Ta), molybdenum (Mo), and silicon (Si). It may be replaced.

(Cuの含有量)
R1とR2の総量に対するCuの含有量の原子数比率を示すαの範囲は、0≦α≦0.7である。αが0.7より大きいと、副相であるR−Cu相の比率が高くなり、主相の比率が低下し、焼結体全体としての磁化が低下するため好ましくない。また、αの範囲は0.4≦α≦0.7であることがより好ましい。αが0.4より小さいと、熱処理中の液相量が少なくなるため、溶体化処理時の異相低減や、焼結時の緻密化が進行しにくくなる。
(Cu content)
The range of α indicating the ratio of the number of atoms of the Cu content to the total amount of R1 and R2 is 0 ≦ α ≦ 0.7. When α is larger than 0.7, the ratio of the R—Cu phase as the sub-phase becomes high, the ratio of the main phase decreases, and the magnetization of the sintered body as a whole decreases, which is not preferable. Further, the range of α is more preferably 0.4 ≦ α ≦ 0.7. When α is smaller than 0.4, the amount of the liquid phase during the heat treatment is small, so that it becomes difficult to reduce the different phases during the solution treatment and to proceed with the densification during sintering.

(Fe、Co、Tiの総量)
R1とR2の総量に対するFe、Co、Tiの総量の原子数比率を示すwの範囲は、7≦w≦12である。wが12より大きいと、bcc-(Fe、Co、Ti)相が顕著に生成するため好ましくない。またwが7より小さいと、2−17相のような1−12相よりも希土類含有量が多く磁気特性に悪影響を及ぼす相が顕著に生成するため好ましくない。
(Total amount of Fe, Co, Ti)
The range of w indicating the atomic number ratio of the total amount of Fe, Co, and Ti to the total amount of R1 and R2 is 7 ≦ w ≦ 12. When w is larger than 12, the bcc- (Fe, Co, Ti) phase is remarkably generated, which is not preferable. Further, when w is smaller than 7, it is not preferable because a phase having a higher rare earth content than the 1-12 phase such as the 2-17 phase and adversely affecting the magnetic characteristics is remarkably generated.

(酸素の含有量)
R1とR2の総量に対する酸素の含有量の原子数比率を示すβは、0.02≦β≦0.5の範囲が適切である。βが0.02より小さいと、焼結前の微粉が発火しやすくなり、ハンドリングが困難になるため好ましくない。また、βが0.5より大きいと、焼結体中の酸化物相の比率が高くなり、1−12相の比率が低下し、磁石全体としての磁化が低下するため好ましくない。
(Oxygen content)
The range of 0.02 ≦ β ≦ 0.5 is appropriate for β, which indicates the atomic number ratio of the oxygen content to the total amount of R1 and R2. If β is less than 0.02, the fine powder before sintering tends to ignite, which makes handling difficult, which is not preferable. Further, when β is larger than 0.5, the ratio of the oxide phase in the sintered body becomes high, the ratio of the 1-12 phase decreases, and the magnetization of the magnet as a whole decreases, which is not preferable.

(酸素量と他の元素の量の関係)
x、z、α、βは関係式0≦1−x−2z/3−0.092α―8β/15≦0.05を満たす。焼結体は一般的に微粉を用いるため、通常、原料合金よりも酸素量が高くなる。そのため、原料合金の段階では異相が少ないような合金でも、微粉砕や焼結時に酸素が主相や粒界相(焼結時は液相)中の希土類と反応して酸化物相となり、結果として1−12相が分解してbcc-(Fe、Co、Ti)相が生成する場合がある。筆者らは鋭意研究の結果、R1に含まれているYが特に酸化しやすいこと、および、各相にR1がどのように配分されるかを突き止めた。上記関係式は、zの値から1−12相として消費されるR1の量を2z/3、αの値からR−Cu相として消費されるR1を0.092α、βの値からR酸化物相として消費されるR1を8β/15とそれぞれ記述し、R1の実際の量1−xからz、α、βから計算したR1の量を差し引いたものの上下限を定めた式である。1−x−2z/3−0.092α―8β/15がマイナス側で小さくなるほど、1−12相、R−Cu相およびR酸化物相生成に必要なR1が不足していることを意味し、特に0未満であると、bcc-(Fe、Co、Ti)相が多量生成するため好ましくない。逆にプラス側で大きくなるほどR1が余剰になることを意味し、特に0.05より大きいと2−17相のような1−12相よりも希土類含有量の多い相が多量生成するため好ましくない。また、x、z、α、βが関係式0≦1−x−2z/3−0.092α―8β/15≦0.03を満たすとさらに2−17相のような1−12相よりも希土類含有量の多い相の生成を抑制できるため好ましい。また、bcc−(Fe、Co、Ti)相や2−17相が焼結体中にどの程度存在するかを調べる簡便な方法として、粉末X線回折測定が挙げられる。各相のピークのうち、ThMn12型結晶構造を有する相(1−12相)は002反射、bcc−(Fe、Co、Ti)相は011反射、ThNi17型結晶構造を有する相(2−17相)は023反射に起因するピークが他の相の影響が少なく、なおかつピーク強度が高い。そこで、1−12相の002反射に起因するピークの最大強度をIThMn12、bcc‐(Fe,Co,Ti)相の011反射に起因するピークの最大強度をIbcc‐(Fe,Co,Ti)、2−17相の023反射に起因するピークの最大強度をITh2Ni17としたときに、bcc‐(Fe,Co,Ti)相および2−17相のピークの相対強度はそれぞれ、Ibcc‐(Fe,Co,Ti)/IThMn12およびITh2Ni17/IThMn12と記述できる。焼結体中のbcc‐(Fe,Co,Ti)相および2−17相は極力少ない方が望ましく、bcc‐(Fe,Co,Ti)相の相対強度Ibcc‐(Fe,Co,Ti)/IThMn12が0.75以下であることが望ましい。また、2−17相の相対強度ITh2Ni17/IThMn12が0.7以下であることが望ましい。
(Relationship between the amount of oxygen and the amount of other elements)
x, z, α, β satisfy the relational expression 0 ≦ 1-x-2z / 3-0.092α-8β / 15 ≦ 0.05. Since the sintered body generally uses fine powder, the amount of oxygen is usually higher than that of the raw material alloy. Therefore, even if the alloy has few different phases at the stage of the raw material alloy, oxygen reacts with rare earths in the main phase and grain boundary phase (liquid phase at the time of sintering) at the time of fine grinding or sintering, and becomes an oxide phase. As a result, the 1-12 phase may be decomposed to form the bcc- (Fe, Co, Ti) phase. As a result of diligent research, the authors have found that Y contained in R1 is particularly susceptible to oxidation and how R1 is distributed to each phase. In the above relational expression, the amount of R1 consumed as the 1-12 phase from the value of z is 2z / 3, the amount of R1 consumed as the R—Cu phase from the value of α is 0.092α, and the value of β is the R oxide. R1 consumed as a phase is described as 8β / 15, respectively, and the upper and lower limits of the actual amount 1-x of R1 minus the calculated amount of R1 are defined. The smaller 1-x-2z / 3-0.092α-8β / 15 on the negative side, the more R1 required for the formation of the 1-12 phase, the R-Cu phase and the R oxide phase is insufficient. Especially, if it is less than 0, a large amount of bcc- (Fe, Co, Ti) phase is generated, which is not preferable. On the contrary, the larger the value on the plus side, the more R1 becomes surplus. Especially, if it is larger than 0.05, a large amount of rare earth content phase such as 2-17 phase is generated, which is not preferable. .. Further, when x, z, α, and β satisfy the relational expression 0 ≦ 1-x-2z / 3-0.092α-8β / 15 ≦ 0.03, it is more than that of the 1-12 phase such as the 2-17 phase. It is preferable because it can suppress the formation of a phase having a high rare earth content. Further, as a simple method for examining the amount of the bcc- (Fe, Co, Ti) phase and the 2-17 phase present in the sintered body, powder X-ray diffraction measurement can be mentioned. Among the peaks of each phase, the phase having a ThMn 12 type crystal structure (1-12 phase) has 002 reflection, the bcc- (Fe, Co, Ti) phase has 011 reflection, and the phase having a Th 2 Ni 17 type crystal structure (Th 2 Ni 17 type crystal structure). In the 2-17 phase), the peak caused by the 023 reflection is less affected by the other phases, and the peak intensity is high. Therefore, the maximum intensity of the peak caused by the 002 reflection of the 1-12 phase is I ThMn12 , and the maximum intensity of the peak caused by the 011 reflection of the bcc- (Fe, Co, Ti) phase is I bcc- (Fe, Co, Ti). ) , When the maximum intensity of the peak caused by the 023 reflection of the 2-17 phase is I Th2Ni17 , the relative intensities of the peaks of the bcc- (Fe, Co, Ti) phase and the 2-17 phase are I bcc-, respectively . It can be described as (Fe, Co, Ti) / I ThMn12 and I Th2Ni17 / I ThMn12 . It is desirable that the bcc- (Fe, Co, Ti) and 2-17 phases in the sintered body are as small as possible, and the relative strength of the bcc- (Fe, Co, Ti) phase is I bcc- (Fe, Co, Ti). It is desirable that / I ThMn12 is 0.75 or less. Further, it is desirable that the relative strength I Th2Ni17 / I ThMn12 of the 2-17 phase is 0.7 or less.

[希土類磁石用焼結体の作製方法]
<工程A>合金を作製する工程
希土類磁石用焼結体の原料となる合金の作製方法としては、金型鋳造法、遠心鋳造法、ストリップキャスト法、液体超急冷法などの公知の方法を採用できる。これらの方法は、合金の溶湯を作製した後、この溶湯を冷却して凝固させる。合金溶湯の凝固時に粗大なbcc−(Fe、Co、Ti)相や2−17相の生成を極力抑えることが望ましい。比較的冷却速度の高い、ストリップキャスト法または液体超急冷法など、回転ロール上に溶湯を供給して凝固させ、薄帯又薄片状の合金を作製する方法を採用することにより、粗大なbcc−(Fe、Co、Ti)相や2−17相の生成を抑制することができる。凝固時の冷却速度が低いと、析出する異相の粒サイズが大きくなる。合金中に含まれる異相の粒サイズが大きくなると、焼結工程などの熱処理時に異相を消失しにくくなる。なお、凝固過程で生成した異相の低減などを目的とした合金熱処理をおこなってもよい。合金の組成に応じて変わるが、R−Cu相融点が850〜900℃である。そのため、熱処理温度は900℃以上1250℃以下が好ましく、1000℃以上1150℃以下がより好ましい。また、熱処理時間は、熱処理温度によるが、5分以上50時間以下が望ましい。時間が短すぎると、異相を消失させるのに十分な反応が起こらない。時間が長すぎると、希土類元素の蒸発および酸化が生じ、かつ操業上の効率も悪い。さらに、粉砕工程の前に、合金を水素中で熱処理してクラックを導入させてもよい。Cuを含有している場合、合金中のR−Cu相が水素を吸収および放出することができる。本合金によれば、たとえば、250℃から400℃の温度で水素の吸収が生じ、540℃から660℃の間で水素の放出が生じる。そのため、この合金を水素中で400℃以上まで昇温して水素を吸収させた後、真空雰囲気に切り替えて十分に水素を放出させることができる。その場合、真空雰囲気に切り替える温度は700℃以下である。このように本合金に含まれる副相は、少なくとも700℃以下の温度で水素吸収と放出が起こる。なお、700℃を超える温度で水素雰囲気中に本合金をさらすと水素化−不均化反応による主相の分解が起こる可能性がある。水素の吸収と放出を行うことにより、希土類リッチ相(副相)は体積膨張と収縮を起し、主相結晶粒と副相との間にクラックが生じる。これによって、粉砕工程における粉砕効率が高まる。
[Method of producing sintered body for rare earth magnets]
<Step A> Step of producing an alloy As a method for producing an alloy as a raw material for a sintered body for a rare earth magnet, a known method such as a mold casting method, a centrifugal casting method, a strip casting method, or a liquid ultra-quenching method is adopted. it can. In these methods, a molten alloy is prepared, and then the molten metal is cooled and solidified. It is desirable to suppress the formation of coarse bcc- (Fe, Co, Ti) phase and 2-17 phase as much as possible during solidification of the molten alloy. Coarse bcc- by adopting a method such as a strip casting method or a liquid ultra-quenching method, which has a relatively high cooling rate, to supply molten metal onto a rotating roll and solidify it to form a thin band or flaky alloy. The formation of (Fe, Co, Ti) phase and 2-17 phase can be suppressed. If the cooling rate during solidification is low, the size of the precipitated heterogeneous grains becomes large. When the grain size of the different phase contained in the alloy becomes large, it becomes difficult for the different phase to disappear during heat treatment such as a sintering step. The alloy heat treatment may be performed for the purpose of reducing the heterogeneous phase generated in the solidification process. The R—Cu phase melting point is 850 to 900 ° C., depending on the composition of the alloy. Therefore, the heat treatment temperature is preferably 900 ° C. or higher and 1250 ° C. or lower, and more preferably 1000 ° C. or higher and 1150 ° C. or lower. The heat treatment time depends on the heat treatment temperature, but is preferably 5 minutes or more and 50 hours or less. If the time is too short, there will not be enough reaction to eliminate the heterogeneity. If the time is too long, the rare earth elements will evaporate and oxidize, and the operational efficiency will be poor. Further, the alloy may be heat treated in hydrogen to introduce cracks prior to the grinding step. When Cu is contained, the R—Cu phase in the alloy can absorb and release hydrogen. According to this alloy, for example, hydrogen absorption occurs at a temperature of 250 ° C. to 400 ° C., and hydrogen release occurs between 540 ° C. and 660 ° C. Therefore, after the alloy is heated to 400 ° C. or higher in hydrogen to absorb hydrogen, the atmosphere can be switched to a vacuum atmosphere to sufficiently release hydrogen. In that case, the temperature for switching to the vacuum atmosphere is 700 ° C. or lower. As described above, the subphase contained in the present alloy absorbs and releases hydrogen at a temperature of at least 700 ° C. or lower. If the alloy is exposed to a hydrogen atmosphere at a temperature exceeding 700 ° C., decomposition of the main phase may occur due to a hydrogenation-disproportionation reaction. By absorbing and releasing hydrogen, the rare earth rich phase (secondary phase) undergoes volume expansion and contraction, and cracks occur between the main phase crystal grains and the subphase. This increases the crushing efficiency in the crushing process.

<工程B>粉砕工程
工程Aで得られた合金を粉砕し、微粉末を得る。粉砕方法としては、ジェットミルやスタンプミル、ボールミルなどの公知の方法を採用できる。粉末の酸化の抑制、および発火や爆発の危険性の低減のために、窒素やアルゴン、ヘリウムといった不活性ガス中で粉砕をおこなう。粉砕後の微粉のハンドリング性の向上のために不活性ガスに少量の空気や酸素を混合してもよい。粉末のハンドリングや成形性を考慮して、粉砕後の微粉末の粒度は、気流分散法によるレーザー回折法で得られたD50(頻度の累積が50%になるときの粒子の体積基準メジアン径)が1μm以上20μm以下となるようにすることが好ましい。D50が1μm未満であると、発火の危険性が高くなったり、成形時に金型を傷めたりするため好ましくない。また、D50が20μmより大きいと焼結工程において緻密化が進行しにくくなるため好ましくない。焼結体中の酸素量は本粉砕工程の影響が大きく、粉砕粒度や粉砕ガス中の酸素濃度が大きく寄与する。微粉末の粒度が細かいほど、また、粉砕ガス中の酸素濃度が高いほど焼結体中の酸素量βは大きい値となる。逆に、微粉末の粒度が粗いほど、また、粉砕ガス中の酸素濃度が低いほどβは小さい値となる。
<Step B> Crushing step The alloy obtained in step A is crushed to obtain a fine powder. As a crushing method, a known method such as a jet mill, a stamp mill, or a ball mill can be adopted. Grinding is carried out in an inert gas such as nitrogen, argon or helium in order to suppress the oxidation of the powder and reduce the risk of ignition and explosion. A small amount of air or oxygen may be mixed with the inert gas in order to improve the handleability of the fine powder after pulverization. Considering the handling and moldability of the powder, the particle size of the fine powder after pulverization is D50 obtained by the laser diffraction method by the air flow dispersion method (volume-based median diameter of particles when the cumulative frequency reaches 50%). Is preferably 1 μm or more and 20 μm or less. If D50 is less than 1 μm, the risk of ignition increases and the mold is damaged during molding, which is not preferable. Further, if D50 is larger than 20 μm, densification is less likely to proceed in the sintering step, which is not preferable. The amount of oxygen in the sintered body is greatly affected by this pulverization step, and the pulverized particle size and the oxygen concentration in the pulverized gas greatly contribute. The finer the particle size of the fine powder and the higher the oxygen concentration in the pulverized gas, the larger the oxygen amount β in the sintered body. On the contrary, the coarser the particle size of the fine powder and the lower the oxygen concentration in the pulverized gas, the smaller the β value.

<工程C>成形工程
工程Bで得られた微粉末を成形し、成形体を得る。結晶を配向させるために成形時に磁界を印加しながら成形してもよい。また成形は、金型のキャビティー内に乾燥した微粉末を挿入し成形する乾式成形法、金型のキャビティー内にスラリー(分散媒中に合金粉末が分散している)を注入しスラリーの分散媒を排出しながら成形する湿式成形法を含む公知の方法を採用することができる。
<Step C> Molding step The fine powder obtained in step B is molded to obtain a molded product. You may mold while applying a magnetic field at the time of molding to orient the crystal. Molding is a dry molding method in which dry fine powder is inserted into the cavity of the mold and molded, and a slurry (alloy powder is dispersed in the dispersion medium) is injected into the cavity of the mold to form the slurry. A known method including a wet molding method in which molding is performed while discharging the dispersion medium can be adopted.

<工程D>焼結工程
工程Cで得られた成形体を熱処理することで焼結体を得る。焼結方法として、真空や不活性ガス雰囲気で高温に保持して固相焼結や液相焼結を進行させる方法や、成形体に圧力を付与しながら高温に保持する方法。なお、焼結時の雰囲気による酸化を防止するために、焼結は真空雰囲気中やアルゴン、ヘリウムなどの不活性ガス中でおこなうことが好ましい。さらに、高温では特にSmが顕著に蒸発するため、成形体を覆う、密閉する、Smを含む物質とともに密閉するなどの方法で、Smの蒸発を抑制することがより好ましい。焼結処理温度は900℃以上1250℃以下である。焼結処理温度が900℃未満であると液相が十分生成しないため緻密化しにくい。また、焼結処理温度が1250℃超であると1−12相が分解するおそれがある。焼結処理温度は1000℃以上1150℃以下がより好ましい。焼結処理時間は、5分以上50時間以下である。焼結処理時間が5分未満であると緻密化が十分進行しないおそれがある。また、焼結処理時間が50時間超であると、リードタイムが長くなり操業上好ましくない。加圧焼結する際の圧力は1000MPa以下が望ましい。また、焼結工程ののちに、磁気特性の向上などを目的とした熱処理や拡散処理を追加でおこなってもよい。
<Step D> Sintering step A sintered body is obtained by heat-treating the molded product obtained in step C. As a sintering method, a method of holding at a high temperature in a vacuum or an inert gas atmosphere to proceed with solid phase sintering or liquid phase sintering, or a method of holding at a high temperature while applying pressure to a molded product. In order to prevent oxidation due to the atmosphere during sintering, it is preferable to perform sintering in a vacuum atmosphere or in an inert gas such as argon or helium. Further, since Sm evaporates remarkably at a high temperature, it is more preferable to suppress the evaporation of Sm by a method such as covering the molded product, sealing it, or sealing it together with a substance containing Sm. The sintering treatment temperature is 900 ° C. or higher and 1250 ° C. or lower. If the sintering treatment temperature is less than 900 ° C., a liquid phase is not sufficiently formed and it is difficult to densify. Further, if the sintering treatment temperature exceeds 1250 ° C., the 1-12 phase may be decomposed. The sintering treatment temperature is more preferably 1000 ° C. or higher and 1150 ° C. or lower. The sintering treatment time is 5 minutes or more and 50 hours or less. If the sintering process time is less than 5 minutes, densification may not proceed sufficiently. Further, if the sintering treatment time exceeds 50 hours, the lead time becomes long, which is not preferable in terms of operation. The pressure for pressure sintering is preferably 1000 MPa or less. Further, after the sintering step, heat treatment or diffusion treatment for the purpose of improving magnetic properties may be additionally performed.

<実験例>
以下、本発明の実施例を具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
<Experimental example>
Hereinafter, examples of the present invention will be specifically described, but the present invention is not limited to these examples.

まず、原料合金をストリップキャスト法で作製した。純度が99.9%以上のY、Zr、Sm、Fe、Co、Ti、Cuの原料金属を、溶解時の希土類元素の蒸発を加味し、得られる合金組成が最終的に表1に示す組成となるようにねらい値を決定し秤量した。秤量した各金属を混合してシリカ坩堝に投入し、高周波誘導加熱により1500℃まで昇温して原料を溶解した。その後、溶湯を1450℃まで降温させ、タンディッシュで一時的に貯湯した後、周速度1.5m/sで回転している銅製の冷却ロール上に供給して冷却させた。冷却された合金は冷却ロール下部に設置した解砕機で解砕された。 First, a raw material alloy was produced by a strip casting method. The raw material metals of Y, Zr, Sm, Fe, Co, Ti, and Cu having a purity of 99.9% or more are added to the evaporation of rare earth elements at the time of dissolution, and the final alloy composition obtained is the composition shown in Table 1. The target value was determined and weighed so as to be. The weighed metals were mixed and put into a silica crucible, and the temperature was raised to 1500 ° C. by high frequency induction heating to dissolve the raw materials. Then, the molten metal was cooled to 1450 ° C., temporarily stored in a tundish, and then supplied onto a copper cooling roll rotating at a peripheral speed of 1.5 m / s for cooling. The cooled alloy was crushed by a crusher installed under the cooling roll.

上記工程で得た各組成の合金について、それぞれを500g秤量してモリブデン製の容
器に入れ、容器を管状熱処理炉の内部に挿入した。炉内をArで置換したのち、Arを2L/分流気させた雰囲気で1100℃、1.5時間の熱処理をおこなった。熱処理終了後は熱処理炉を開放して合金を冷却させた。このとき、1100℃から100℃までの平均冷却速度は10℃/分以上であった。
Each of the alloys having each composition obtained in the above step was weighed by 500 g and placed in a molybdenum container, and the container was inserted into a tubular heat treatment furnace. After replacing the inside of the furnace with Ar, heat treatment was performed at 1100 ° C. for 1.5 hours in an atmosphere in which Ar was perfuated at 2 L / min. After the heat treatment was completed, the heat treatment furnace was opened to cool the alloy. At this time, the average cooling rate from 1100 ° C. to 100 ° C. was 10 ° C./min or more.

上記工程で得た熱処理後合金を、Ar流気雰囲気のグローブボックス内で乳鉢を用いて粉砕した。粉砕粉を1mmメッシュで篩い分け、メッシュを通った粉を回収した。回収した粉砕粉にステアリン酸亜鉛を加え、ロッキングミキサーで15分間混合した。このとき、粉砕粉とステアリン酸亜鉛の重量比が100:0.035になるようにステアリン酸亜鉛を添加した。 The heat-treated alloy obtained in the above step was pulverized using a mortar in a glove box having an Ar flow atmosphere. The crushed powder was sieved with a 1 mm mesh, and the powder passed through the mesh was collected. Zinc stearate was added to the recovered pulverized powder, and the mixture was mixed with a locking mixer for 15 minutes. At this time, zinc stearate was added so that the weight ratio of the pulverized powder and zinc stearate was 100: 0.035.

上記工程で得た粉砕粉を日本ニューマチック工業(株)製の気流式ジェットミルPJM−100を用いて微粉砕して微粉を得た。粉砕ガスには窒素ガスを用い、粉砕圧7.5MPaで粉砕した。このときの微粉末のD50はいずれも5μmであった。 The pulverized powder obtained in the above step was pulverized using an airflow jet mill PJM-100 manufactured by Nippon Pneumatic Industries Co., Ltd. to obtain fine powder. Nitrogen gas was used as the pulverizing gas, and pulverization was performed at a pulverization pressure of 7.5 MPa. The D50 of the fine powder at this time was 5 μm in each case.

上記工程で得た微粉末を、Ar流気雰囲気のグローブボックス内で成形した。成形にはハンドプレスを用い、直径16mm、高さ20mmの円柱形の成形体を作製した。成形後、鉄カプセルに成形体を充填した。鉄カプセルの材質はS20Cで、内側の直径が16mm、高さが20mmで、厚さは2mmのものを使用した。 The fine powder obtained in the above step was molded in a glove box having an Ar flow atmosphere. A hand press was used for molding, and a cylindrical molded body having a diameter of 16 mm and a height of 20 mm was produced. After molding, the iron capsule was filled with the molded product. The material of the iron capsule was S20C, the inner diameter was 16 mm, the height was 20 mm, and the thickness was 2 mm.

成形体が充填された鉄カプセルに、真空中で電子ビーム溶接をおこない、カプセルの容器と蓋を溶接することで封止した。 The iron capsule filled with the molded body was subjected to electron beam welding in vacuum, and the capsule container and lid were welded to seal the capsule.

封止された試料に熱間等方加圧(HIP)処理をおこなった。圧媒ガスにはアルゴンを用い、ガス圧180MPaで処理した。温度は1100℃で、保持時間を3時間とした。 The sealed sample was subjected to hot isotropic pressurization (HIP) treatment. Argon was used as the pressure medium gas, and the treatment was performed at a gas pressure of 180 MPa. The temperature was 1100 ° C. and the holding time was 3 hours.

上記工程で得られた試料を外周刃切断機で切断し、カプセル中にあるHIP体を取り出した。HIP体の一部を乳鉢で粉砕し、425μmメッシュおよび75μmメッシュを用いて分級した。 The sample obtained in the above step was cut with an outer peripheral blade cutting machine, and the HIP body contained in the capsule was taken out. A part of the HIP body was crushed in a mortar and classified using a 425 μm mesh and a 75 μm mesh.

粒径75〜425μmの粉砕粉を用いて、ICP(誘導結合プラズマ)発光分光分析法にてY・Zr・Sm・Fe・Co・Ti・Cuの成分分析を、燃焼・赤外線吸収法にて炭素量の分析をおこなった。粒径425μm以上の粉砕粉を用いて、不活性ガス溶融・熱伝導法にて酸素量・窒素量の分析をおこなった。また、粒径75〜425μmの粉砕粉を用いて、燃焼・赤外線吸収法にて炭素量の分析をおこなった。分析結果から、各焼結体のx、y、z、w、α、β、および1−x−2z/3−0.092α−8β/15の値を求めた。 Using crushed powder with a particle size of 75 to 425 μm, component analysis of Y, Zr, Sm, Fe, Co, Ti, and Cu by ICP (inductively coupled plasma) emission spectroscopy and carbon by combustion and infrared absorption methods Quantitative analysis was performed. The amount of oxygen and the amount of nitrogen were analyzed by the Inert gas melting / heat conduction method using pulverized powder having a particle size of 425 μm or more. Further, the carbon content was analyzed by a combustion / infrared absorption method using pulverized powder having a particle size of 75 to 425 μm. From the analysis results, the values of x, y, z, w, α, β, and 1-x-2z / 3-0.092α-8β / 15 of each sintered body were obtained.

粒径75μm未満の粉砕粉を用いて粉末X線回折をおこなった。装置はブラッグ−ブレンターノ集中ビーム方式の広角X線回折装置(X−ray diffractiometer、XRD、ブルカー・エイエックス(株)製D8 ADVANCED/TXS)を使用した。X線発生源としてCu製回転対陰極を用い、印加する電圧は45kV、電流は360mAとし、KβフィルタはNiを使用した。走査軸を2θ/θ連動動作で間隔を0.04°、速度を0.6s/stepとし、20°≦2θ≦80°の範囲を室温において走査した。X線の強度プロファイルから、1−12相の002反射に起因するピークの最大強度をIThMn12、bcc‐(Fe,Co,Ti)相の011反射に起因するピーク最大強度をIα‐(Fe,Co,Ti)、2−17相の023反射に起因するピークの最大強度をITh2Ni17とし、bcc−(Fe,Co,Ti)相の相対的なX線強度Ibcc‐(Fe,Co,Ti)/IThMn12と、2−17相の相対的なX線強度ITh2Ni17/IThMn12をそれぞれ求めた。 Powder X-ray diffraction was performed using pulverized powder having a particle size of less than 75 μm. A Bragg-Brentano focused beam type wide-angle X-ray diffractometer (X-ray diffuser, XRD, D8 ADVANCED / TXS manufactured by Bruker AX Co., Ltd.) was used as the apparatus. A Cu rotating anti-cathode was used as the X-ray generation source, the applied voltage was 45 kV, the current was 360 mA, and Ni was used as the Kβ filter. The scanning axis was 2θ / θ interlocking operation, the interval was 0.04 °, the speed was 0.6s / step, and the range of 20 ° ≤ 2θ ≤ 80 ° was scanned at room temperature. From the X-ray intensity profile, the maximum intensity of the peak due to the 002 reflection of the 1-12 phase is I ThMn12 , and the maximum intensity of the peak due to the 011 reflection of the bcc- (Fe, Co, Ti) phase is I α- (Fe). , Co, Ti) , the maximum intensity of the peak caused by the 023 reflection of the 2-17 phase is I Th2Ni17, and the relative X-ray intensity I bcc- (Fe, Co, Ti) of the bcc- (Fe, Co, Ti) phase . Ti) / I ThMn12 and the relative X-ray intensities I Th2Ni17 / I ThMn12 of the 2-17 phase were determined, respectively.

切断したHIP体を樹脂に埋め、研磨し、HIP体断面を走査型電子顕微鏡(SEM)で観察し、EDXによる局所的な組成分析をおこなった。SEMは日本電子(株)製JCM−6000Plus NeoScope(登録商標)を用い、加速電圧15kVで反射電子像の取得、EDX分析をおこなった。 The cut HIP body was embedded in a resin, polished, the cross section of the HIP body was observed with a scanning electron microscope (SEM), and a local composition analysis was performed by EDX. As the SEM, JCM-6000 Plus NeoScope (registered trademark) manufactured by JEOL Ltd. was used, and a reflected electron image was acquired and EDX analysis was performed at an accelerating voltage of 15 kV.

作製したHIP体の各組成を表1に、x、y、z、w、α、β、1−x−2z/3−0.092α−8β/15の値、Ibcc‐(Fe,Co,Ti)/IThMn12、およびITh2Ni17/IThMn12の値を表2に示す。 Table 1 shows the compositions of the prepared HIPs, with values of x, y, z, w, α, β, 1-x-2z / 3-0.092α-8β / 15, and I bcc- (Fe, Co, The values of Ti) / I ThMn12 and I Th2Ni17 / I ThMn12 are shown in Table 2.

No.1〜5はY、Sm含有量を変えた実験例である。いずれの実験例もx、y、z、w、α、βの値は全て好ましい範囲内にある。No.1〜5の試料の粉末XRDパターンを図1に示す。また、No.1〜5の試料の粉末XRDパターンから求めた、Ibcc‐(Fe,Co,Ti)/IThMn12およびITh2Ni17/IThMn12の値と1−x−2z/3−0.092α−8β/15の値の関係を図2および図3に示す。1−x−2z/3−0.092α−8β/15の値が0未満であるNo.1および2の試料には、多量のbcc−(Fe,Co,Ti)相が存在し、Ibcc‐(Fe,Co,Ti)/IThMn12の値が高い結果となった。1−x−2z/3−0.092α−8β/15の値が0以上0.05以下の範囲にあるNo.3および4の試料は、bcc−(Fe,Co,Ti)相および2−17相の生成が抑制されたため、Ibcc‐(Fe,Co,Ti)/IThMn12およびITh2Ni17/IThMn12の値は低い結果となった。特に、1−x−2z/3−0.092α−8β/15の値が0以上0.03以下の範囲にあるNo.3の試料はIbcc‐(Fe,Co,Ti)/IThMn12およびITh2Ni17/IThMn12の値がいずれも非常に低い結果となった。1−x−2z/3−0.092α−8β/15の値が0.05より大きいNo.5の試料には、多量の2−17相が存在し、ITh2Ni17/IThMn12の値が高い結果となった。No.1〜5の試料断面の反射電子像を図4に示す。No.1の試料では多量のbcc‐(Fe,Co,Ti)相が観察された。また、No.5の試料では多量の2−17相が観察された。No.3、4の試料ではbcc‐(Fe,Co,Ti)相や2−17相の生成が抑制されており、粉末XRDの結果とよく対応した結果となった。 No. 1 to 5 are experimental examples in which the Y and Sm contents are changed. In all the experimental examples, the values of x, y, z, w, α, and β are all within the preferable range. No. The powder XRD pattern of the samples 1 to 5 is shown in FIG. In addition, No. Values of I bcc- (Fe, Co, Ti) / I ThMn12 and I Th2Ni17 / I ThMn12 and 1-x-2z / 3-0.092α-8β / 15 obtained from the powder XRD patterns of the samples 1 to 5 The relationship between the values of is shown in FIGS. 2 and 3. No. 1 in which the value of 1-x-2z / 3-0.092α-8β / 15 is less than 0. A large amount of bcc- (Fe, Co, Ti) phase was present in the samples 1 and 2, and the value of I bcc- (Fe, Co, Ti) / I ThMn12 was high. No. 1 in which the value of 1-x-2z / 3-0.092α-8β / 15 is in the range of 0 or more and 0.05 or less. The values of I bcc- (Fe, Co, Ti) / I ThMn12 and I Th2Ni17 / I ThMn12 were suppressed in the samples 3 and 4 because the formation of the bcc- (Fe, Co, Ti) phase and the 2-17 phase was suppressed. Was a low result. In particular, No. 1 in which the value of 1-x-2z / 3-0.092α-8β / 15 is in the range of 0 or more and 0.03 or less. Sample 3 had very low values of I bcc- (Fe, Co, Ti) / I ThMn12 and I Th2Ni17 / I ThMn12 . No. 1-x-2z / 3-0.092α-8β / 15 with a value greater than 0.05. In the sample No. 5, a large amount of 2-17 phases were present, and the value of I Th2Ni17 / I ThMn12 was high. No. The reflected electron images of the sample cross sections 1 to 5 are shown in FIG. No. A large amount of bcc- (Fe, Co, Ti) phase was observed in sample 1. In addition, No. A large amount of 2-17 phases were observed in sample 5. No. In the samples 3 and 4, the formation of the bcc- (Fe, Co, Ti) phase and the 2-17 phase was suppressed, which was in good agreement with the result of powder XRD.

No.6、7およびNo.4の試料の粉末XRDパターンを図5に示す。No.6の試料は、Cuを添加せず、No.4の試料と同等の1−x−2z/3−0.092α−8β/15の値となる組成をねらった試料である。Cuの有無に関わらず、1−x−2z/3−0.092α−8β/15の値が好ましい範囲内にあれば、bcc−(Fe,Co,Ti)相および2−17相の生成を抑制することができ、Ibcc‐(Fe,Co,Ti)/IThMn12およびITh2Ni17/IThMn12の値は低い結果となった。また、No.7の試料は、No.4の試料のYをZrに置換した組成をねらった試料である。No.7の試料には多量のbcc−(Fe,Co,Ti)相が存在し、Ibcc‐(Fe,Co,Ti)/IThMn12が非常に高い結果となった。No.7の試料断面の反射電子像を図6に示す。No.7の試料では6−23相が存在し、EDXの点分析結果から、この6−23相中はZrが約13原子数%、Tiが約12原子数%含有しており、全体組成に比べてZrおよびTiが非常に濃化していた。 No. 6, 7 and No. The powder XRD pattern of the sample of No. 4 is shown in FIG. No. In the sample No. 6, Cu was not added, and No. It is a sample aiming at a composition having a value of 1-x-2z / 3-0.092α-8β / 15 equivalent to that of sample 4. If the value of 1-x-2z / 3-0.092α-8β / 15 is within the preferable range regardless of the presence or absence of Cu, the bcc- (Fe, Co, Ti) phase and the 2-17 phase are generated. It was possible to suppress, and the values of I bcc- (Fe, Co, Ti) / I ThMn12 and I Th2Ni17 / I ThMn12 were low. In addition, No. The sample of No. 7 is No. This is a sample aimed at a composition in which Y of sample 4 is replaced with Zr. No. A large amount of bcc- (Fe, Co, Ti) phase was present in the sample No. 7 , and I bcc- (Fe, Co, Ti) / I ThMn12 was very high. No. The reflected electron image of the sample cross section of No. 7 is shown in FIG. No. In the sample No. 7, there are 6-23 phases, and from the results of EDX point analysis, Zr is contained in about 13% by 13 atoms and Ti is contained in about 12% in this 6-23 phase, which is compared with the overall composition. Zr and Ti were very concentrated.

本開示の希土類磁石用焼結体は、希土類磁石に用いることが可能である。 The sintered body for rare earth magnets of the present disclosure can be used for rare earth magnets.

Claims (6)

全体の組成が下記の組成式(1)で表され、
R11−xR2(Fe1−yCow−zTiCuαβ (1)
R1はY又はYとGdであり、YはR1全体の50mol%以上であり、
R2はSm、La、Ce、NdおよびPrからなる群から選択される少なくとも1種であり、Smを必ず含み、SmはR2全体の50mol%以上であり、
x、y、z、w、α、およびβは、それぞれ、
0.3≦x≦0.9、
0≦y≦0.4、
0.38≦z≦0.70、
7≦w≦12、
0≦α≦0.70、
0.02≦β≦0.5、および
0≦1−x−2z/3−0.092α―8β/15≦0.05
を満足する、ThMn12型結晶構造を有する相を主相とする希土類磁石用焼結体。
The overall composition is represented by the following composition formula (1).
R1 1-x R2 x (Fe 1-y Co y) w-z Ti z Cu α O β (1)
R1 is Y or Y and Gd, and Y is 50 mol% or more of the total R1.
R2 is at least one selected from the group consisting of Sm, La, Ce, Nd and Pr, always contains Sm, and Sm is 50 mol% or more of the total R2.
x, y, z, w, α, and β are, respectively.
0.3 ≤ x ≤ 0.9,
0 ≦ y ≦ 0.4,
0.38 ≤ z ≤ 0.70,
7 ≦ w ≦ 12,
0 ≤ α ≤ 0.70,
0.02 ≤ β ≤ 0.5, and 0 ≤ 1-x-2z / 3-0.092α-8β / 15 ≤ 0.05
A sintered body for rare earth magnets having a phase having a ThMn 12- type crystal structure as a main phase.
0≦1−x−2z/3−0.092α―8β/15≦0.03
を満足する、請求項1に記載の希土類磁石用焼結体。
0 ≦ 1-x-2z / 3-0.092α-8β / 15 ≦ 0.03
The sintered body for rare earth magnets according to claim 1, which satisfies the above requirements.
0.40≦α≦0.70
を満足する、請求項1または2に記載の希土類磁石用焼結体。
0.40 ≤ α ≤ 0.70
The sintered body for rare earth magnets according to claim 1 or 2, which satisfies the above requirements.
前記焼結体の粉末X線回折パターンにおいて、前記ThMn12型結晶構造を有する相の002反射に起因するピークの最大強度をIThMn12、bcc‐(Fe,Co,Ti)相の011反射に起因するピークの最大強度をIbcc‐(Fe,Co,Ti)としたときに、
bcc‐(Fe,Co,Ti)/IThMn12≦0.75
を満足する、請求項1から3のいずれかに記載の希土類磁石用焼結体。
In the powder X-ray diffraction pattern of the sintered body, the maximum intensity of the peak due to the 002 reflection of the phase having the ThMn 12 type crystal structure is caused by the 011 reflection of the IThMn12 , bcc- (Fe, Co, Ti) phase. When the maximum intensity of the peak is I bcc- (Fe, Co, Ti) ,
I bcc- (Fe, Co, Ti) / I ThMn12 ≤ 0.75
The sintered body for rare earth magnets according to any one of claims 1 to 3, which satisfies the above.
前記焼結体の粉末X線回折パターンにおいて、前記ThMn12型結晶構造を有する相の002反射に起因するピークの最大強度をIThMn12、ThNi17型結晶構造を有する相の023反射に起因するピークの最大強度をITh2Ni17としたときに、
Th2Ni17/IThMn12≦0.7
を満足する、請求項1から4のいずれかに記載の希土類磁石用焼結体。
In the powder X-ray diffraction pattern of the sintered body, due to the maximum intensity of the peak attributable to the 002 reflection of the phases with the ThMn 12 type crystal structure 023 reflecting the phase with I ThMn12, Th 2 Ni 17 type crystal structure When the maximum intensity of the peak to be crystallized is I Th2Ni17 ,
I Th2Ni17 / I ThMn12 ≤ 0.7
The sintered body for rare earth magnets according to any one of claims 1 to 4, which satisfies the above requirements.
全体の組成が下記の組成式(1)で表され、
R11−xR2(Fe1−yCow−zTiCuαβ (1)
R1はY又はYとGdであり、YはR1全体の50mol%以上であり、
R2はSm、La、Ce、NdおよびPrからなる群から選択される少なくとも1種であり、Smを必ず含み、SmはR2全体の50mol%以上であり、
x、y、z、w、α、およびβは、それぞれ、
0.3≦x≦0.9、
0≦y≦0.4、
0.38≦z≦0.70、
7≦w≦12、
0≦α≦0.70、
0.02≦β≦0.5、および
0≦1−x−2z/3−0.092α―8β/15≦0.05
を満足する、ThMn12型結晶構造を有する相を主相とする希土類磁石用焼結体の製造方法であって、
原料の溶湯を冷却して合金を得る工程と、
前記合金を粉砕して微粉末を得る工程と、
前記微粉末を成形して成形体を得る工程と、
前記成形体を900℃以上1250℃以下、圧力1000MPa以下で5分以上50時間以下熱処理して焼結体を得る工程と、を含む希土類磁石用焼結体の製造方法。
The overall composition is represented by the following composition formula (1).
R1 1-x R2 x (Fe 1-y Co y) w-z Ti z Cu α O β (1)
R1 is Y or Y and Gd, and Y is 50 mol% or more of the total R1.
R2 is at least one selected from the group consisting of Sm, La, Ce, Nd and Pr, always contains Sm, and Sm is 50 mol% or more of the total R2.
x, y, z, w, α, and β are, respectively.
0.3 ≤ x ≤ 0.9,
0 ≦ y ≦ 0.4,
0.38 ≤ z ≤ 0.70,
7 ≦ w ≦ 12,
0 ≤ α ≤ 0.70,
0.02 ≤ β ≤ 0.5, and 0 ≤ 1-x-2z / 3-0.092α-8β / 15 ≤ 0.05
A method for producing a sintered body for a rare earth magnet, which comprises a phase having a ThMn 12- type crystal structure as a main phase, which satisfies the above.
The process of cooling the molten metal of the raw material to obtain an alloy,
The process of crushing the alloy to obtain fine powder and
The process of molding the fine powder to obtain a molded product,
A method for producing a sintered body for a rare earth magnet, which comprises a step of heat-treating the molded body at 900 ° C. or higher and 1250 ° C. or lower and a pressure of 1000 MPa or lower for 5 minutes or more and 50 hours or less to obtain a sintered body.
JP2019024190A 2019-02-14 2019-02-14 Sintered body for rare earth magnet and method for producing the same Active JP7196666B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019024190A JP7196666B2 (en) 2019-02-14 2019-02-14 Sintered body for rare earth magnet and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019024190A JP7196666B2 (en) 2019-02-14 2019-02-14 Sintered body for rare earth magnet and method for producing the same

Publications (2)

Publication Number Publication Date
JP2020136333A true JP2020136333A (en) 2020-08-31
JP7196666B2 JP7196666B2 (en) 2022-12-27

Family

ID=72279032

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019024190A Active JP7196666B2 (en) 2019-02-14 2019-02-14 Sintered body for rare earth magnet and method for producing the same

Country Status (1)

Country Link
JP (1) JP7196666B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220367092A1 (en) * 2021-05-17 2022-11-17 Shin-Etsu Chemical Co., Ltd. Anisotropic rare earth sintered magnet and method for producing the same

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6476703A (en) * 1987-09-17 1989-03-22 Shinetsu Chemical Co Rare earth element permanent magnet
JPH04322406A (en) * 1991-04-22 1992-11-12 Shin Etsu Chem Co Ltd Rare earth permanent magnet
JP2000114017A (en) * 1998-09-30 2000-04-21 Toshiba Corp Permanent magnet and material thereof
JP2001189206A (en) * 1999-12-28 2001-07-10 Toshiba Corp Permanent magnet
JP2013191849A (en) * 2006-09-15 2013-09-26 Inter Metallics Kk Ndfeb sintered magnet
JP2015156436A (en) * 2014-02-20 2015-08-27 日立金属株式会社 Ferromagnetic alloy and manufacturing method thereof
JP2017112300A (en) * 2015-12-18 2017-06-22 トヨタ自動車株式会社 Rare earth magnet
JPWO2016162990A1 (en) * 2015-04-08 2017-08-17 株式会社日立製作所 Rare earth permanent magnet and manufacturing method thereof
JP2018103211A (en) * 2016-12-26 2018-07-05 日立金属株式会社 Method for producing rare earth-transition metal based ferromagnetic alloy, and rare earth-transition metal based ferromagnetic alloy
JP2018125512A (en) * 2016-08-24 2018-08-09 株式会社東芝 Magnet material, permanent magnet, rotary electric machine, and vehicle

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4322406B2 (en) 2000-07-03 2009-09-02 富士フイルム株式会社 Lithographic printing plate packaging box and lithographic printing plate packaging structure
JP6476703B2 (en) 2014-09-30 2019-03-06 日亜化学工業株式会社 Ceramic package, light emitting device, and manufacturing method thereof
JP6388554B2 (en) 2015-03-05 2018-09-12 株式会社日立ハイテクノロジーズ Plasma processing equipment

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6476703A (en) * 1987-09-17 1989-03-22 Shinetsu Chemical Co Rare earth element permanent magnet
JPH04322406A (en) * 1991-04-22 1992-11-12 Shin Etsu Chem Co Ltd Rare earth permanent magnet
JP2000114017A (en) * 1998-09-30 2000-04-21 Toshiba Corp Permanent magnet and material thereof
JP2001189206A (en) * 1999-12-28 2001-07-10 Toshiba Corp Permanent magnet
JP2013191849A (en) * 2006-09-15 2013-09-26 Inter Metallics Kk Ndfeb sintered magnet
JP2015156436A (en) * 2014-02-20 2015-08-27 日立金属株式会社 Ferromagnetic alloy and manufacturing method thereof
JPWO2016162990A1 (en) * 2015-04-08 2017-08-17 株式会社日立製作所 Rare earth permanent magnet and manufacturing method thereof
JP2017112300A (en) * 2015-12-18 2017-06-22 トヨタ自動車株式会社 Rare earth magnet
JP2018125512A (en) * 2016-08-24 2018-08-09 株式会社東芝 Magnet material, permanent magnet, rotary electric machine, and vehicle
JP2018103211A (en) * 2016-12-26 2018-07-05 日立金属株式会社 Method for producing rare earth-transition metal based ferromagnetic alloy, and rare earth-transition metal based ferromagnetic alloy

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220367092A1 (en) * 2021-05-17 2022-11-17 Shin-Etsu Chemical Co., Ltd. Anisotropic rare earth sintered magnet and method for producing the same

Also Published As

Publication number Publication date
JP7196666B2 (en) 2022-12-27

Similar Documents

Publication Publication Date Title
JP5477282B2 (en) R-T-B system sintered magnet and manufacturing method thereof
JP6406255B2 (en) R-T-B system sintered magnet and method for manufacturing R-T-B system sintered magnet
US10672546B2 (en) R-T-B based permanent magnet
WO2014157451A1 (en) R-t-b-based sintered magnet
JP5348124B2 (en) Method for producing R-Fe-B rare earth sintered magnet and rare earth sintered magnet produced by the method
JP6094612B2 (en) Method for producing RTB-based sintered magnet
JP7364158B2 (en) Rare earth iron nitrogen magnetic powder, compound for bonded magnets, method for producing bonded magnets and rare earth iron nitrogen magnetic powder
JP7315888B2 (en) RTB permanent magnet and manufacturing method thereof
JP2018028123A (en) Method for producing r-t-b sintered magnet
WO2022004081A1 (en) Rare earth-iron-nitrogen-based magnetic powder, compound for bond magnet, bond magnet, and method for producing rare earth-iron-nitrogen-based magnetic powder
JP7196666B2 (en) Sintered body for rare earth magnet and method for producing the same
JP7196667B2 (en) Manufacturing method of sintered body for rare earth magnet
JP7287215B2 (en) Manufacturing method of sintered body for rare earth magnet
JP2018029108A (en) Method of manufacturing r-t-b based sintered magnet
KR102589893B1 (en) Method for preparing sintered magnet and sintered magnet
JPH064885B2 (en) Production method of alloy powder for rare earth / boron / iron-based permanent magnet
JP7349173B2 (en) Metastable single crystal rare earth magnet fine powder and its manufacturing method
JP7360307B2 (en) Rare earth iron ring magnet and its manufacturing method
CN115699232A (en) Method for manufacturing anisotropic rare earth bulk material magnet and anisotropic rare earth bulk material magnet manufactured thereby
CN114255949A (en) Magnetic material and method for producing the same
JP2021150621A (en) R-t-b series rare earth sintered magnet and manufacturing method thereof
WO2022249908A1 (en) Method for producing rare earth-iron ring magnet and method for producing same
WO2017191790A1 (en) Rare-earth permanent magnet, and method for manufacturing same
JP6949414B2 (en) Magnet powder and method for manufacturing magnet powder
JP7238504B2 (en) Bulk body for rare earth magnet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220117

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221108

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221128

R150 Certificate of patent or registration of utility model

Ref document number: 7196666

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350