JP7196666B2 - Sintered body for rare earth magnet and method for producing the same - Google Patents

Sintered body for rare earth magnet and method for producing the same Download PDF

Info

Publication number
JP7196666B2
JP7196666B2 JP2019024190A JP2019024190A JP7196666B2 JP 7196666 B2 JP7196666 B2 JP 7196666B2 JP 2019024190 A JP2019024190 A JP 2019024190A JP 2019024190 A JP2019024190 A JP 2019024190A JP 7196666 B2 JP7196666 B2 JP 7196666B2
Authority
JP
Japan
Prior art keywords
phase
sintered body
rare earth
earth magnet
bcc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019024190A
Other languages
Japanese (ja)
Other versions
JP2020136333A (en
Inventor
大介 古澤
武司 西内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2019024190A priority Critical patent/JP7196666B2/en
Publication of JP2020136333A publication Critical patent/JP2020136333A/en
Application granted granted Critical
Publication of JP7196666B2 publication Critical patent/JP7196666B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Description

本発明は、希土類磁石用焼結体およびその製造方法に関する。 The present invention relates to a sintered body for rare earth magnets and a method for producing the same.

永久磁石は自動車部品や産業機械、家電製品などの各種モータに使用されている。 Permanent magnets are used in various motors such as automobile parts, industrial machinery, and home appliances.

代表的な高性能磁石としてNd-Fe-B系磁石が挙げられる。Nd-Fe-B系磁石は、主として電気自動車(EV、HV、PHVなど)やハイブリッド自動車の駆動モータなどに使用されている。モータの更なる高効率化や小型化のニーズが高まり、より高い磁気物性を有する永久磁石の開発が期待されている。 Nd--Fe--B system magnets can be cited as typical high-performance magnets. Nd--Fe--B magnets are mainly used in drive motors for electric vehicles (EV, HV, PHV, etc.) and hybrid vehicles. As the need for motors with higher efficiency and smaller size increases, the development of permanent magnets with higher magnetic properties is expected.

Nd-Fe-B系磁石の磁気物性を超える永久磁石の主相系合金の候補の一つとして、ThMn12型結晶構造またはその類似構造を有するRT12化合物が注目されている。RT12化合物はNd-Fe-B系磁石の主相を構成する化合物であるR14B(Rは希土類元素の少なくとも一種、Tは少なくともFeを含んだ1種以上の鉄族遷移金属元素)より高い濃度の鉄族遷移金属を含有するため高い磁気物性が期待される。以下、ThMn12型結晶構造またはその類似構造を有するRT12化合物からなる相を1-12相と記述することがある。 An RT 12 compound having a ThMn 12 type crystal structure or a structure similar thereto is attracting attention as one of the candidates for main phase system alloys for permanent magnets that surpasses the magnetic properties of Nd--Fe--B magnets. The RT 12 compound is R 2 T 14 B (R is at least one rare earth element, T is at least one iron group transition metal element containing at least Fe), which is a compound that constitutes the main phase of an Nd—Fe—B magnet. ) Higher magnetic properties are expected due to higher concentrations of iron group transition metals. Hereinafter, a phase composed of an RT 12 compound having a ThMn 12 -type crystal structure or a similar structure may be referred to as a 1-12 phase.

特許文献1には、T元素であるFeの一部を、構造安定化元素であるTiにより部分的に置換して、高い磁化と引き換えに、熱安定性を高めた希土類永久磁石が開示されている。 Patent Document 1 discloses a rare earth permanent magnet in which a portion of Fe, which is a T element, is partially replaced with Ti, which is a structure stabilizing element, to improve thermal stability in exchange for high magnetization. there is

特許文献2には、RFe12系化合物のR元素を、Zr、Hf等の置換元素により部分的に置換することで、遷移金属元素を置換するTi等の置換元素の量を減らして飽和磁化を保ったまま、ThMn12型結晶構造を安定化した希土類永久磁石が開示されている。 In Patent Document 2, by partially substituting the R element of the RFe 12 -based compound with a substituting element such as Zr or Hf, the amount of the substituting element such as Ti substituting the transition metal element is reduced to increase the saturation magnetization. Rare earth permanent magnets are disclosed which are stabilized while preserving the ThMn type 12 crystal structure.

また、特許文献3には、RFe12のR元素の一部としてYまたはGdを選択した、R´-Fe-Co系強磁性合金が開示されており、このR´-Fe-Co系強磁性合金が、超急冷法により生成させたThMn12型結晶構造を有することで、高い磁気特性を示す点が記載されている。 Further, Patent Document 3 discloses an R'--Fe--Co system ferromagnetic alloy in which Y or Gd is selected as part of the R element of RFe 12 , and this R'--Fe--Co system ferromagnetic It is described that the alloy exhibits high magnetic properties due to having a ThMn 12 -type crystal structure produced by an ultraquenching method.

また、特許文献4には、Cuを添加することで非磁性かつ低融点の1-4組成(SmCu相)の相が生成し、焼結と高保磁力化が可能なことが記載されている。 Further, Patent Document 4 describes that by adding Cu, a non-magnetic and low melting point 1-4 composition (SmCu 4 phase) phase is generated, and sintering and high coercive force are possible. .

また、特許文献5には、ThMn12型の主相に対し副相としてSmFe17系相、SmCo系相、Sm系相、およびSmCu系相の少なくともいずれかを含むことで、高保磁力化が可能なことが記載されている。 Further, in Patent Document 5, at least one of Sm 5 Fe 17 -based phase, SmCo 5 -based phase, Sm 2 O 3 -based phase, and Sm 7 Cu 3 -based phase is added as a secondary phase to a ThMn 12 -type main phase. It is described that the coercive force can be increased by including the element.

また、特許文献6には、Cuを添加することで液相が生成し緻密なバルク体が形成可能なことが記載されている。 Further, Patent Document 6 describes that the addition of Cu generates a liquid phase and enables the formation of a dense bulk body.

また、特許文献7には、Yを含むThMn12型の相を主相とする強磁性合金をストリップキャスト法で作製することで、主相組成の不均一性が少なく、主相比率が高い合金が得られることが記載されている。 In addition, in Patent Document 7, by producing a ferromagnetic alloy whose main phase is a ThMn 12 type phase containing Y by a strip casting method, the main phase composition is less uniform and the main phase ratio is high. is obtained.

また、特許文献8には、Yを含むThMn12型の相を主相とする磁石材料で高い飽和磁化や異方性磁界が得られることが記載されている。 Further, Patent Document 8 describes that a magnetic material having a Y-containing ThMn 12 -type phase as a main phase can provide high saturation magnetization and anisotropic magnetic field.

特開昭64-76703号公報JP-A-64-76703 特開平4-322406号公報JP-A-4-322406 特開2015-156436号公報JP 2015-156436 A 特開2001-189206号公報Japanese Patent Application Laid-Open No. 2001-189206 特開2017-112300号公報Japanese Unexamined Patent Application Publication No. 2017-112300 国際公開第2016/162990号WO2016/162990 特開2018-103211号公報JP 2018-103211 A 特開2018-125512号公報JP 2018-125512 A

高性能磁石に用いる焼結体の条件の一つとして、磁気特性に悪影響を及ぼす異相が少ない組織であることが必要である。焼結体中にbcc-Fe相に代表される軟磁性相が存在すると、その軟磁性相が磁化反転の起点となり、容易に磁化反転が進行するため、保磁力、角形性、残留磁束密度といった磁気特性が著しく低下する。そのため、このような軟磁性の異相が極力存在しないような焼結体が求められる。 As one of the conditions for a sintered body to be used for a high-performance magnet, it is necessary to have a structure with few heterogeneous phases that adversely affect magnetic properties. When a soft magnetic phase typified by the bcc-Fe phase exists in the sintered body, the soft magnetic phase becomes a starting point for magnetization reversal, and magnetization reversal easily progresses. Magnetic properties are significantly degraded. Therefore, a sintered body in which such a heterogeneous phase of soft magnetism does not exist as much as possible is required.

特許文献1に記載の希土類永久磁石は、TiによるFeの元素置換により、熱安定性が高められているものの、TiによるFe置換量が多いため、その分磁化が小さくなり、十分な磁気特性を得られない。 The rare earth permanent magnet described in Patent Document 1 has improved thermal stability due to element substitution of Fe with Ti, but since the amount of Fe substituted with Ti is large, the magnetization is correspondingly reduced, and sufficient magnetic properties are obtained. I can't get it.

一方、特許文献2に記載の希土類永久磁石では、Ti等で遷移金属元素を置換することによりThMn12構造の安定化を図っているものの、その効果は必ずしも十分でない。 On the other hand, in the rare earth permanent magnet described in Patent Document 2, the ThMn12 structure is stabilized by substituting a transition metal element with Ti or the like, but the effect is not necessarily sufficient.

特許文献3に記載のR´-Fe-Co系強磁性合金は、Fe元素を構造安定化元素M(Ti等)で置換していないため、高い磁化と大きい磁気異方性と高いキュリー温度を得られているが、非平衡相であるために、焼結等の高温での緻密化プロセスにおいて主相化合物が分解することがある。 The R'--Fe--Co ferromagnetic alloy described in Patent Document 3 does not replace the Fe element with the structure stabilizing element M (such as Ti), so it exhibits high magnetization, large magnetic anisotropy, and a high Curie temperature. However, due to the non-equilibrium phase, the main phase compound may decompose in a high temperature densification process such as sintering.

特許文献4に記載の希土類磁石では、Ti添加量が多いために磁気物性値が高くないことがある。 The rare earth magnet described in Patent Document 4 may not have high magnetic physical properties due to the large amount of Ti added.

特許文献5に記載の希土類磁石では、希土類リッチな副相SmCuを使用した場合、熱処理時に主相とSmCuの反応により、主相よりも希土類リッチな相が生成することが懸念される。 In the rare earth magnet described in Patent Document 5, when the rare earth-rich secondary phase Sm 7 Cu 3 is used, a phase richer in rare earth than the main phase may be generated due to the reaction between the main phase and Sm 7 Cu 3 during heat treatment. Concerned.

特許文献6に記載の希土類磁石では、Fe元素を構造安定化元素Mで置換していないため、高い磁化と大きい磁気異方性と高いキュリー温度を得られ、かつバルク体としての密度が高いが、非平衡相であるために、1000℃以上の焼結等の高温でのプロセスにおいて主相化合物が分解することがある。 In the rare earth magnet described in Patent Document 6, since the Fe element is not replaced with the structure stabilizing element M, high magnetization, large magnetic anisotropy, and a high Curie temperature can be obtained, and the density as a bulk body is high. Since it is a non-equilibrium phase, the main phase compound may decompose in a high temperature process such as sintering at 1000° C. or higher.

特許文献7に記載の強磁性合金や特許文献8に記載の磁石材料の組成は、焼結体の作製工程で不可避的に混入する酸素の影響が考慮されていないため、酸素が希土類元素と優先的に反応し、主相が分解し、bcc-Fe相などの軟磁性相が生成することが懸念される。 Since the composition of the ferromagnetic alloy described in Patent Document 7 and the magnet material described in Patent Document 8 does not take into account the influence of oxygen that is inevitably mixed in the production process of the sintered body, oxygen is preferred as a rare earth element. It is feared that a soft magnetic phase such as a bcc-Fe phase may be generated due to the decomposition of the main phase.

本開示の実施形態は、磁気特性に悪影響を及ぼす異相が少ない希土類磁石用焼結体およびその製造方法を提供する。 Embodiments of the present disclosure provide a sintered body for a rare earth magnet with less heterogeneous phases that adversely affect magnetic properties, and a method for producing the same.

本開示のThMn12型結晶構造を有する相を主相とする希土類磁石用焼結体は、例示的な実施形態において、全体の組成が下記の組成式(1)で表され、R11-xR2(Fe1-yCow-zTiCuαβ(1)、R1はY又はYとGdであり、YはR1全体の50mol%以上であり、R2はSm、La、Ce、NdおよびPrからなる群から選択される少なくとも1種であり、Smを必ず含み、SmはR2全体の50mol%以上であり、x、y、z、w、α、およびβは、それぞれ、0.3≦x≦0.9、0≦y≦0.4、0.38≦z≦0.70、7≦w≦12、0≦α≦0.70、0.02≦β≦0.5、および0≦1-x-2z/3-0.092α―8β/15≦0.05を満足する。 In an exemplary embodiment, the overall composition of the sintered body for a rare earth magnet whose main phase is a phase having a ThMn 12 -type crystal structure of the present disclosure is represented by the following composition formula (1), and R1 1-x R2 x (Fe 1-y Co y ) wz Ti z Cu α O β (1), R1 is Y or Y and Gd, Y is 50 mol % or more of the total of R1, R2 is Sm, La, is at least one selected from the group consisting of Ce, Nd and Pr, must contain Sm, Sm is 50 mol% or more of the total R2, and x, y, z, w, α, and β are each 0.3≤x≤0.9, 0≤y≤0.4, 0.38≤z≤0.70, 7≤w≤12, 0≤α≤0.70, 0.02≤β≤0. 5, and 0≤1-x-2z/3-0.092α-8β/15≤0.05.

ある実施形態は、0≦1-x-2z/3-0.092α―8β/15≦0.03
を満足する。
Some embodiments have 0≦1−x−2z/3−0.092α−8β/15≦0.03
satisfy.

ある実施形態は、0.40≦α≦0.70を満足する。 Some embodiments satisfy 0.40≦α≦0.70.

ある実施形態は、前記焼結体の粉末X線回折パターンにおいて、前記ThMn12型結晶構造を有する相の002反射に起因するピークの最大強度をIThMn12、bcc‐(Fe,Co,Ti)相の011反射に起因するピークの最大強度をIbcc‐(Fe,Co,Ti)としたときに、Ibcc‐(Fe,Co,Ti)/IThMn12≦0.75を満足する。 In one embodiment, in the powder X-ray diffraction pattern of the sintered body, the maximum intensity of the peak due to the 002 reflection of the phase having the ThMn 12 type crystal structure is I ThMn12 , bcc-(Fe, Co, Ti) phase where Ibcc- ( Fe,Co,Ti) is the maximum intensity of the peak due to the 011 reflection of .

ある実施形態は、前記焼結体の粉末X線回折パターンにおいて、前記ThMn12型結晶構造を有する相の002反射に起因するピークの最大強度をIThMn12、ThNi17型結晶構造を有する相の023反射に起因するピークの最大強度をITh2Ni17としたときに、ITh2Ni17/IThMn12≦0.7を満足する。 In one embodiment, in the powder X-ray diffraction pattern of the sintered body, the maximum intensity of the peak due to the 002 reflection of the phase having the ThMn 12 type crystal structure is I ThMn12 , the phase having the Th 2 Ni 17 type crystal structure where I Th2Ni17 is the maximum intensity of the peak due to the 023 reflection of , I Th2Ni17 /I ThMn12 ≦0.7 is satisfied.

本開示の希土類磁石用焼結体の製造方法は、例示的な実施形態において、全体の組成が下記の組成式(1)で表され、R11-xR2(Fe1-yCow-zTiCuα (1)、R1はY又はYとGdであり、YはR1全体の50mol%以上であり、R2はSm、La、Ce、NdおよびPrからなる群から選択される少なくとも1種であり、Smを必ず含み、SmはR2全体の50mol%以上であり、x、y、z、w、α、およびβは、それぞれ、0.3≦x≦0.9、0≦y≦0.4、0.38≦z≦0.70、7≦w≦12、0≦α≦0.70、0.02≦β≦0.5、および0≦1-x-2z/3-0.092α―8β/15≦0.05を満足する、ThMn12型結晶構造を有する相を主相とする希土類磁石用焼結体の製造方法であって、原料の溶湯を冷却して合金を得る工程と、前記合金を粉砕して微粉末を得る工程と、前記微粉末を成形して成形体を得る工程と、前記成形体を900℃以上1250℃以下、圧力1000MPa以下で5分以上50時間以下熱処理して焼結体を得る工程とを含む。 In an exemplary embodiment of the method for producing a sintered body for a rare earth magnet of the present disclosure, the overall composition is represented by the following composition formula (1), R1 1-x R2 x (Fe 1-y Co y ) wzTizCuαO _ _ (1), R1 is Y or Y and Gd, Y is 50 mol% or more of the total of R1, R2 is at least one selected from the group consisting of Sm, La, Ce, Nd and Pr, Sm Sm is 50 mol% or more of the total R2, and x, y, z, w, α, and β are respectively 0.3 ≤ x ≤ 0.9, 0 ≤ y ≤ 0.4, 0 .38≦z≦0.70, 7≦w≦12, 0≦α≦0.70, 0.02≦β≦0.5, and 0≦1−x−2z/3−0.092α−8β/ A method for producing a sintered body for a rare earth magnet, the main phase being a phase having a ThMn type 12 crystal structure, which satisfies 15≦0.05, comprising the steps of: obtaining an alloy by cooling a molten raw material; A step of pulverizing the fine powder to obtain a fine powder, a step of molding the fine powder to obtain a molded body, and a heat treatment of the molded body at 900 ° C. or higher and 1250 ° C. or lower and a pressure of 1000 MPa or lower for 5 minutes or more and 50 hours or less. and obtaining a body.

本発明の実施形態によれば、磁気特性に悪影響を及ぼす異相が少ない希土類磁石用焼結体およびその製造方法を提供することができる。 According to the embodiments of the present invention, it is possible to provide a sintered body for a rare earth magnet with less heterogeneous phases that adversely affect magnetic properties, and a method for producing the same.

試料No.1~5における粉末X線回折測定結果を示す図である。Sample no. 1 is a diagram showing powder X-ray diffraction measurement results in 1 to 5. FIG. 試料No.1~5における、1-x-2z/3-0.092α―8β/15の値に対する、粉末X線回折測定結果から求めたbcc‐(Fe,Co,Ti)相の相対強度を示す図である。Sample no. 1 to 5, the relative intensity of the bcc-(Fe, Co, Ti) phase obtained from the powder X-ray diffraction measurement results for the values of 1-x-2z/3-0.092α-8β/15. be. 試料No.1~5における、1-x-2z/3-0.092α―8β/15の値に対する、粉末X線回折測定結果から求めた2-17相の相対強度を示す図である。Sample no. 1 is a diagram showing the relative intensity of the 2-17 phase obtained from powder X-ray diffraction measurement results with respect to the values of 1-x-2z/3-0.092α-8β/15 in 1 to 5. FIG. 試料No.1~5における試料断面の反射電子像を示す図である。Sample no. 1 is a diagram showing backscattered electron images of cross sections of samples in 1 to 5. FIG. 試料No.6、7および4における粉末X線回折測定結果を示す図である。Sample no. It is a figure which shows the powder X-ray-diffraction measurement result in 6, 7 and 4. 試料No.7における試料断面の反射電子像を示す図である。Sample no. 7 is a diagram showing a backscattered electron image of a sample cross section in 7. FIG.

[希土類磁石用焼結体の組成]
本開示の希土類磁石用焼結体は、全体の組成が下記の組成式(1)によって表される。
R11-xR2(Fe1-yCow-zTiCuαβ (1)
[Composition of sintered body for rare earth magnet]
The overall composition of the sintered body for a rare earth magnet of the present disclosure is represented by the following compositional formula (1).
R1 1-x R2 x (Fe 1-y Co y ) w-z Ti z Cu α O β (1)

ここで、R1はY又はYとGdであり、YはR1全体の50mol%以上であり、R2はSm、La、Ce、NdおよびPrからなる群から選択される少なくとも1種であり、Smを必ず含み、SmはR2全体の50mol%以上である。R1は、Yのみ(不可避的不純物は除く)であることが好ましく、R2は、Smのみ(不可避的不純物は除く)であることが好ましい。また、x、y、z、w、αおよびβはそれぞれ、0.3≦x≦0.9、0≦y≦0.4、0.38≦z≦0.70、7≦w≦12、0≦α≦0.70および0.02≦β≦0.5を満足し、さらに関係式0≦1-x-2z/3-0.092α―8β/15≦0.05を満たす。また、関係式0≦1-x-2z/3-0.092α―8β/15≦0.03を満たすことがより好ましい。また、0.40≦α≦0.70を満たすことがより好ましい。 Here, R1 is Y or Y and Gd, Y is 50 mol% or more of the total of R1, R2 is at least one selected from the group consisting of Sm, La, Ce, Nd and Pr, and Sm Sm must be included, and Sm is 50 mol % or more of the entire R2. R1 is preferably Y only (excluding unavoidable impurities), and R2 is preferably Sm only (excluding unavoidable impurities). x, y, z, w, α and β are respectively 0.3≦x≦0.9, 0≦y≦0.4, 0.38≦z≦0.70, 7≦w≦12, It satisfies 0≤α≤0.70 and 0.02≤β≤0.5, and further satisfies the relational expression 0≤1-x-2z/3-0.092α-8β/15≤0.05. More preferably, the relational expression 0≤1-x-2z/3-0.092α-8β/15≤0.03 is satisfied. Moreover, it is more preferable to satisfy 0.40≦α≦0.70.

本発明者らが鋭意研究した結果、焼結体を上記の式(1)に示されるような組成範囲に設定することにより、磁気特性に悪影響を及ぼすbcc-(Fe,Co,Ti)相や、ThNi17型結晶あるいはその類似構造となる化合物の相(以下、2-17相と記述することがある)の生成を抑制可能であることを見出した。 As a result of intensive research by the present inventors, by setting the composition range of the sintered body as shown in the above formula (1), the bcc-(Fe, Co, Ti) phase, which adversely affects the magnetic properties, and , Th 2 Ni 17 -type crystals or a compound phase having a similar structure (hereinafter sometimes referred to as a 2-17 phase) can be suppressed.

[組成等の限定理由について]
(R1およびR2の種類)
R1はYまたはYとGdであり、YはR1全体の50mol%以上である。R1が別の元素のとき、1-12相以外に安定な相が生成することがある。たとえば、R1がZrの場合、ThMn23型(以下、6-23相と記述する)の相が生成し、bcc-(Fe,Co,Ti)相も多量生成するため所望の焼結体が得られない。なお、Gdは高価なため、R1はYのみである方が好ましい。また、1-12相の磁気物性値と相安定性から、R2はSm、La、Ce、NdおよびPrからなる群から選択される少なくとも1種であり、Smを必ず含み、SmはR2全体の50mol%以上である。磁気物性値の観点から、R2はSmのみであることがより好ましい。
[Reason for limitation of composition, etc.]
(Types of R1 and R2)
R1 is Y or Y and Gd, and Y is 50 mol % or more of the total of R1. When R1 is another element, a stable phase other than the 1-12 phase may be produced. For example, when R1 is Zr, a Th 6 Mn 23 type (hereinafter referred to as a 6-23 phase) phase is generated, and a large amount of the bcc-(Fe, Co, Ti) phase is also generated. is not obtained. Since Gd is expensive, it is preferable that R1 is only Y. In addition, from the magnetic physical property value and phase stability of the 1-12 phase, R2 is at least one selected from the group consisting of Sm, La, Ce, Nd and Pr, always contains Sm, and Sm is the total of R2 50 mol % or more. From the viewpoint of magnetic physical properties, R2 is more preferably Sm only.

(R2の含有量)
R1とR2の総量に対するR2の含有量の原子数比率を示すx(R2置換量x)の範囲は0.3≦x≦0.9である。xが0.3未満であると1-12相の磁気異方性が低下するため好ましくない。また、xが0.9より大きいと1-12相の安定性が低下し、bcc-(Fe,Co,Ti)相や2-17相が生成するおそれがあり、好ましくない。
(Content of R2)
The range of x (R2 substitution amount x), which indicates the atomic number ratio of the content of R2 to the total amount of R1 and R2, is 0.3≦x≦0.9. If x is less than 0.3, the magnetic anisotropy of the 1-12 phase is lowered, which is not preferable. On the other hand, if x is more than 0.9, the stability of the 1-12 phase is lowered, and the bcc-(Fe, Co, Ti) phase and the 2-17 phase may be generated, which is not preferable.

(FeとCoの比率)
FeとCoの合計に対するCoの原子数比率を示すy(Co置換量y)の範囲は0≦y≦0.4である。1-12相のキュリー温度が低下する恐れを避けるためyは0.05以上であることがより好ましい。また、yが0.4より大きいと1-12相の体積磁化および磁気異方性磁界が低下するため好ましくない。
(ratio of Fe and Co)
The range of y (Co substitution amount y), which indicates the atomic number ratio of Co to the sum of Fe and Co, is 0≦y≦0.4. In order to avoid the risk of lowering the Curie temperature of the 1-12 phase, y is more preferably 0.05 or more. Also, if y is larger than 0.4, the volume magnetization and magnetic anisotropic magnetic field of the 1-12 phase are lowered, which is not preferable.

(Tiの含有量)
R1とR2の総量に対するTiの含有量の原子数比率を示すz(Ti含有量z)の範囲は0.38≦z≦0.70である。zが0.38未満であると焼結中に2-17相やbcc-(Fe,Co,Ti)相が安定して生成するため好ましくない。また、zが0.70より大きいと1-12相の磁気物性が低下するため好ましくない。より高い磁気特性、特にJを得るためにはTi量は少ない方が好ましい。具体的には、zの範囲が0.38≦z≦0.60であることがさらに好ましい。なお、Tiの50mol%以下をタングステン(W)、バナジウム(V)、ニオブ(Nb)、タンタル(Ta)、モリブデン(Mo)、ケイ素(Si)といった1-12相の構造を安定化させる元素で置換してもよい。
(Content of Ti)
The range of z (Ti content z), which indicates the atomic number ratio of the Ti content to the total amount of R1 and R2, is 0.38≦z≦0.70. When z is less than 0.38, the 2-17 phase and the bcc-(Fe, Co, Ti) phase are stably generated during sintering, which is not preferable. Moreover, if z is larger than 0.70, the magnetic properties of the 1-12 phase are lowered, which is not preferable. In order to obtain higher magnetic properties, especially Js , the smaller the Ti content, the better. Specifically, it is more preferable that the range of z is 0.38≦z≦0.60. Note that 50 mol% or less of Ti is an element that stabilizes the 1-12 phase structure, such as tungsten (W), vanadium (V), niobium (Nb), tantalum (Ta), molybdenum (Mo), and silicon (Si). may be replaced.

(Cuの含有量)
R1とR2の総量に対するCuの含有量の原子数比率を示すαの範囲は、0≦α≦0.7である。αが0.7より大きいと、副相であるR-Cu相の比率が高くなり、主相の比率が低下し、焼結体全体としての磁化が低下するため好ましくない。また、αの範囲は0.4≦α≦0.7であることがより好ましい。αが0.4より小さいと、熱処理中の液相量が少なくなるため、溶体化処理時の異相低減や、焼結時の緻密化が進行しにくくなる。
(Cu content)
The range of α, which indicates the atomic number ratio of the Cu content to the total amount of R1 and R2, is 0≦α≦0.7. If α is larger than 0.7, the ratio of the R—Cu phase, which is the subphase, increases, the ratio of the main phase decreases, and the magnetization of the sintered body as a whole decreases, which is not preferable. More preferably, the range of α is 0.4≦α≦0.7. If α is less than 0.4, the amount of liquid phase during heat treatment is reduced, so that the reduction of heterogeneous phases during solution treatment and the densification during sintering are difficult to progress.

(Fe、Co、Tiの総量)
R1とR2の総量に対するFe、Co、Tiの総量の原子数比率を示すwの範囲は、7≦w≦12である。wが12より大きいと、bcc-(Fe、Co、Ti)相が顕著に生成するため好ましくない。またwが7より小さいと、2-17相のような1-12相よりも希土類含有量が多く磁気特性に悪影響を及ぼす相が顕著に生成するため好ましくない。
(Total amount of Fe, Co and Ti)
The range of w, which indicates the atomic number ratio of the total amount of Fe, Co, and Ti to the total amount of R1 and R2, is 7≦w≦12. When w is larger than 12, the bcc-(Fe, Co, Ti) phase is produced significantly, which is not preferable. If w is less than 7, a phase such as the 2-17 phase, which has a higher rare earth element content than the 1-12 phase and has an adverse effect on the magnetic properties, is not preferable.

(酸素の含有量)
R1とR2の総量に対する酸素の含有量の原子数比率を示すβは、0.02≦β≦0.5の範囲が適切である。βが0.02より小さいと、焼結前の微粉が発火しやすくなり、ハンドリングが困難になるため好ましくない。また、βが0.5より大きいと、焼結体中の酸化物相の比率が高くなり、1-12相の比率が低下し、磁石全体としての磁化が低下するため好ましくない。
(Oxygen content)
β, which indicates the atomic number ratio of the oxygen content to the total amount of R1 and R2, is suitably in the range of 0.02≦β≦0.5. If β is less than 0.02, the fine powder before sintering tends to ignite, making handling difficult. If β is more than 0.5, the ratio of the oxide phase in the sintered body increases, the ratio of the 1-12 phase decreases, and the magnetization of the magnet as a whole decreases, which is not preferable.

(酸素量と他の元素の量の関係)
x、z、α、βは関係式0≦1-x-2z/3-0.092α―8β/15≦0.05を満たす。焼結体は一般的に微粉を用いるため、通常、原料合金よりも酸素量が高くなる。そのため、原料合金の段階では異相が少ないような合金でも、微粉砕や焼結時に酸素が主相や粒界相(焼結時は液相)中の希土類と反応して酸化物相となり、結果として1-12相が分解してbcc-(Fe、Co、Ti)相が生成する場合がある。筆者らは鋭意研究の結果、R1に含まれているYが特に酸化しやすいこと、および、各相にR1がどのように配分されるかを突き止めた。上記関係式は、zの値から1-12相として消費されるR1の量を2z/3、αの値からR-Cu相として消費されるR1を0.092α、βの値からR酸化物相として消費されるR1を8β/15とそれぞれ記述し、R1の実際の量1-xからz、α、βから計算したR1の量を差し引いたものの上下限を定めた式である。1-x-2z/3-0.092α―8β/15がマイナス側で小さくなるほど、1-12相、R-Cu相およびR酸化物相生成に必要なR1が不足していることを意味し、特に0未満であると、bcc-(Fe、Co、Ti)相が多量生成するため好ましくない。逆にプラス側で大きくなるほどR1が余剰になることを意味し、特に0.05より大きいと2-17相のような1-12相よりも希土類含有量の多い相が多量生成するため好ましくない。また、x、z、α、βが関係式0≦1-x-2z/3-0.092α―8β/15≦0.03を満たすとさらに2-17相のような1-12相よりも希土類含有量の多い相の生成を抑制できるため好ましい。また、bcc-(Fe、Co、Ti)相や2-17相が焼結体中にどの程度存在するかを調べる簡便な方法として、粉末X線回折測定が挙げられる。各相のピークのうち、ThMn12型結晶構造を有する相(1-12相)は002反射、bcc-(Fe、Co、Ti)相は011反射、ThNi17型結晶構造を有する相(2-17相)は023反射に起因するピークが他の相の影響が少なく、なおかつピーク強度が高い。そこで、1-12相の002反射に起因するピークの最大強度をIThMn12、bcc‐(Fe,Co,Ti)相の011反射に起因するピークの最大強度をIbcc‐(Fe,Co,Ti)、2-17相の023反射に起因するピークの最大強度をITh2Ni17としたときに、bcc‐(Fe,Co,Ti)相および2-17相のピークの相対強度はそれぞれ、Ibcc‐(Fe,Co,Ti)/IThMn12およびITh2Ni17/IThMn12と記述できる。焼結体中のbcc‐(Fe,Co,Ti)相および2-17相は極力少ない方が望ましく、bcc‐(Fe,Co,Ti)相の相対強度Ibcc‐(Fe,Co,Ti)/IThMn12が0.75以下であることが望ましい。また、2-17相の相対強度ITh2Ni17/IThMn12が0.7以下であることが望ましい。
(Relationship between the amount of oxygen and the amount of other elements)
x, z, α, and β satisfy the relational expression 0≤1-x-2z/3-0.092α-8β/15≤0.05. Since the sintered body generally uses fine powder, it usually has a higher oxygen content than the raw material alloy. Therefore, even in alloys with few heterogeneous phases at the raw material alloy stage, oxygen reacts with rare earth elements in the main phase and grain boundary phase (liquid phase during sintering) during pulverization and sintering to form oxide phases. As the 1-12 phase decomposes, the bcc-(Fe, Co, Ti) phase may be generated. As a result of intensive research, the authors found out that Y contained in R1 is particularly easily oxidized and how R1 is distributed in each phase. From the value of z, the amount of R1 consumed as the 1-12 phase is 2z/3, from the value of α, the amount of R1 consumed as the R-Cu phase is 0.092α, and from the value of β, the R oxide It is a formula that describes the R1 consumed as a phase as 8β/15, respectively, and defines the upper and lower limits of the actual amount of R1 1−x minus the amount of R1 calculated from z, α, and β. As 1-x-2z/3-0.092α-8β/15 becomes smaller on the minus side, it means that R necessary for generating 1-12 phase, R-Cu phase and R oxide phase is insufficient. In particular, when it is less than 0, a large amount of bcc-(Fe, Co, Ti) phase is generated, which is not preferable. Conversely, the larger the value on the plus side, the more R1 becomes excessive, and especially when it is larger than 0.05, it is not preferable because a large amount of phases such as 2-17 phases having a higher rare earth content than 1-12 phases are generated. . Also, when x, z, α, and β satisfy the relational expression 0 ≤ 1-x-2z/3-0.092α-8β/15 ≤ 0.03, more than 1-12 phases such as 2-17 phases This is preferable because it can suppress the formation of a phase with a high rare earth content. Moreover, powder X-ray diffraction measurement can be mentioned as a simple method for examining the extent to which the bcc-(Fe, Co, Ti) phase and 2-17 phase are present in the sintered body. Among the peaks of each phase, the phase having a ThMn 12 type crystal structure (1-12 phase) has 002 reflection, the bcc-(Fe, Co, Ti) phase has 011 reflection, and the phase having Th 2 Ni 17 type crystal structure ( 2-17 phase), the peak due to 023 reflection is less affected by other phases, and the peak intensity is high. Therefore, the maximum intensity of the peak due to the 002 reflection of the 1-12 phase is I ThMn12 , and the maximum intensity of the peak due to the 011 reflection of the bcc-(Fe, Co, Ti) phase is I bcc-(Fe, Co, Ti ) , the relative intensities of the peaks of the bcc- (Fe, Co, Ti) phase and the 2-17 phase are I bcc- (Fe, Co, Ti) /I ThMn12 and I Th2Ni17 /I ThMn12 . It is desirable that the bcc-(Fe, Co, Ti) phase and the 2-17 phase in the sintered body are as small as possible, and the relative strength of the bcc-(Fe, Co, Ti) phase I bcc-(Fe, Co, Ti) /I ThMn12 is preferably 0.75 or less. Also, the relative intensity I Th2Ni17 /I ThMn12 of the 2-17 phase is preferably 0.7 or less.

[希土類磁石用焼結体の作製方法]
<工程A>合金を作製する工程
希土類磁石用焼結体の原料となる合金の作製方法としては、金型鋳造法、遠心鋳造法、ストリップキャスト法、液体超急冷法などの公知の方法を採用できる。これらの方法は、合金の溶湯を作製した後、この溶湯を冷却して凝固させる。合金溶湯の凝固時に粗大なbcc-(Fe、Co、Ti)相や2-17相の生成を極力抑えることが望ましい。比較的冷却速度の高い、ストリップキャスト法または液体超急冷法など、回転ロール上に溶湯を供給して凝固させ、薄帯又薄片状の合金を作製する方法を採用することにより、粗大なbcc-(Fe、Co、Ti)相や2-17相の生成を抑制することができる。凝固時の冷却速度が低いと、析出する異相の粒サイズが大きくなる。合金中に含まれる異相の粒サイズが大きくなると、焼結工程などの熱処理時に異相を消失しにくくなる。なお、凝固過程で生成した異相の低減などを目的とした合金熱処理をおこなってもよい。合金の組成に応じて変わるが、R-Cu相融点が850~900℃である。そのため、熱処理温度は900℃以上1250℃以下が好ましく、1000℃以上1150℃以下がより好ましい。また、熱処理時間は、熱処理温度によるが、5分以上50時間以下が望ましい。時間が短すぎると、異相を消失させるのに十分な反応が起こらない。時間が長すぎると、希土類元素の蒸発および酸化が生じ、かつ操業上の効率も悪い。さらに、粉砕工程の前に、合金を水素中で熱処理してクラックを導入させてもよい。Cuを含有している場合、合金中のR-Cu相が水素を吸収および放出することができる。本合金によれば、たとえば、250℃から400℃の温度で水素の吸収が生じ、540℃から660℃の間で水素の放出が生じる。そのため、この合金を水素中で400℃以上まで昇温して水素を吸収させた後、真空雰囲気に切り替えて十分に水素を放出させることができる。その場合、真空雰囲気に切り替える温度は700℃以下である。このように本合金に含まれる副相は、少なくとも700℃以下の温度で水素吸収と放出が起こる。なお、700℃を超える温度で水素雰囲気中に本合金をさらすと水素化-不均化反応による主相の分解が起こる可能性がある。水素の吸収と放出を行うことにより、希土類リッチ相(副相)は体積膨張と収縮を起し、主相結晶粒と副相との間にクラックが生じる。これによって、粉砕工程における粉砕効率が高まる。
[Method for producing sintered body for rare earth magnet]
<Step A> A step of producing an alloy As a method for producing an alloy that is a raw material for a sintered body for a rare earth magnet, a known method such as a die casting method, a centrifugal casting method, a strip casting method, or a liquid ultra-quenching method is adopted. can. These methods involve making a molten alloy and then cooling and solidifying the molten alloy. It is desirable to minimize the formation of coarse bcc-(Fe, Co, Ti) phases and 2-17 phases during solidification of the molten alloy. Coarse bcc- It is possible to suppress the generation of (Fe, Co, Ti) phases and 2-17 phases. When the cooling rate during solidification is low, the grain size of the precipitated heterogeneous phase becomes large. When the grain size of the hetero-phase contained in the alloy becomes large, it becomes difficult to eliminate the hetero-phase during heat treatment such as a sintering process. An alloy heat treatment may be performed for the purpose of reducing heterogeneous phases generated during the solidification process. Depending on the composition of the alloy, the R—Cu phase melting point is 850-900°C. Therefore, the heat treatment temperature is preferably 900° C. or higher and 1250° C. or lower, more preferably 1000° C. or higher and 1150° C. or lower. Moreover, although the heat treatment time depends on the heat treatment temperature, it is desirable that the heat treatment time is 5 minutes or more and 50 hours or less. If the time is too short, there will not be enough reaction to eliminate the heterophases. If the time is too long, evaporation and oxidation of the rare earth elements will occur, and the operational efficiency will be poor. Additionally, prior to the grinding step, the alloy may be heat treated in hydrogen to introduce cracks. When containing Cu, the R—Cu phase in the alloy can absorb and release hydrogen. With this alloy, for example, hydrogen absorption occurs at temperatures between 250°C and 400°C, and hydrogen release occurs between 540°C and 660°C. Therefore, after the alloy is heated to 400° C. or higher in hydrogen to absorb hydrogen, the atmosphere can be switched to a vacuum atmosphere to sufficiently release hydrogen. In that case, the temperature for switching to the vacuum atmosphere is 700° C. or lower. Thus, the subphase contained in the present alloy undergoes hydrogen absorption and desorption at a temperature of at least 700° C. or less. If the alloy is exposed to a hydrogen atmosphere at a temperature above 700° C., decomposition of the main phase may occur due to a hydrogenation-disproportionation reaction. By absorbing and releasing hydrogen, the rare earth-rich phase (subphase) expands and contracts in volume, and cracks occur between the main phase grains and the subphase. This increases the pulverization efficiency in the pulverization process.

<工程B>粉砕工程
工程Aで得られた合金を粉砕し、微粉末を得る。粉砕方法としては、ジェットミルやスタンプミル、ボールミルなどの公知の方法を採用できる。粉末の酸化の抑制、および発火や爆発の危険性の低減のために、窒素やアルゴン、ヘリウムといった不活性ガス中で粉砕をおこなう。粉砕後の微粉のハンドリング性の向上のために不活性ガスに少量の空気や酸素を混合してもよい。粉末のハンドリングや成形性を考慮して、粉砕後の微粉末の粒度は、気流分散法によるレーザー回折法で得られたD50(頻度の累積が50%になるときの粒子の体積基準メジアン径)が1μm以上20μm以下となるようにすることが好ましい。D50が1μm未満であると、発火の危険性が高くなったり、成形時に金型を傷めたりするため好ましくない。また、D50が20μmより大きいと焼結工程において緻密化が進行しにくくなるため好ましくない。焼結体中の酸素量は本粉砕工程の影響が大きく、粉砕粒度や粉砕ガス中の酸素濃度が大きく寄与する。微粉末の粒度が細かいほど、また、粉砕ガス中の酸素濃度が高いほど焼結体中の酸素量βは大きい値となる。逆に、微粉末の粒度が粗いほど、また、粉砕ガス中の酸素濃度が低いほどβは小さい値となる。
<Step B> Grinding Step The alloy obtained in Step A is pulverized to obtain a fine powder. As a pulverization method, a known method such as a jet mill, a stamp mill, or a ball mill can be used. Grinding is performed in an inert gas such as nitrogen, argon, or helium to suppress oxidation of the powder and reduce the risk of ignition or explosion. A small amount of air or oxygen may be mixed with the inert gas in order to improve the handleability of the fine powder after pulverization. Considering the handling and moldability of the powder, the particle size of the fine powder after pulverization is D50 (the volume-based median diameter of the particles when the cumulative frequency is 50%) obtained by the laser diffraction method by the air dispersion method. is preferably 1 μm or more and 20 μm or less. If D50 is less than 1 μm, the risk of ignition increases and the mold is damaged during molding, which is not preferable. Further, when D50 is larger than 20 μm, densification is difficult to proceed in the sintering process, which is not preferable. The amount of oxygen in the sintered body is greatly affected by the pulverization process, and the grain size of the pulverization and the oxygen concentration in the pulverization gas greatly contribute. The oxygen content β in the sintered body increases as the particle size of the fine powder becomes finer and as the oxygen concentration in the pulverizing gas increases. Conversely, the larger the particle size of the fine powder and the lower the oxygen concentration in the pulverization gas, the smaller the value of β.

<工程C>成形工程
工程Bで得られた微粉末を成形し、成形体を得る。結晶を配向させるために成形時に磁界を印加しながら成形してもよい。また成形は、金型のキャビティー内に乾燥した微粉末を挿入し成形する乾式成形法、金型のキャビティー内にスラリー(分散媒中に合金粉末が分散している)を注入しスラリーの分散媒を排出しながら成形する湿式成形法を含む公知の方法を採用することができる。
<Step C> Molding Step The fine powder obtained in Step B is molded to obtain a compact. In order to orient the crystals, molding may be performed while applying a magnetic field during molding. In addition, the molding method is a dry molding method in which dry fine powder is inserted into the mold cavity and molded, and slurry (alloy powder is dispersed in the dispersion medium) is injected into the mold cavity and A known method including a wet molding method in which molding is performed while discharging a dispersion medium can be employed.

<工程D>焼結工程
工程Cで得られた成形体を熱処理することで焼結体を得る。焼結方法として、真空や不活性ガス雰囲気で高温に保持して固相焼結や液相焼結を進行させる方法や、成形体に圧力を付与しながら高温に保持する方法。なお、焼結時の雰囲気による酸化を防止するために、焼結は真空雰囲気中やアルゴン、ヘリウムなどの不活性ガス中でおこなうことが好ましい。さらに、高温では特にSmが顕著に蒸発するため、成形体を覆う、密閉する、Smを含む物質とともに密閉するなどの方法で、Smの蒸発を抑制することがより好ましい。焼結処理温度は900℃以上1250℃以下である。焼結処理温度が900℃未満であると液相が十分生成しないため緻密化しにくい。また、焼結処理温度が1250℃超であると1-12相が分解するおそれがある。焼結処理温度は1000℃以上1150℃以下がより好ましい。焼結処理時間は、5分以上50時間以下である。焼結処理時間が5分未満であると緻密化が十分進行しないおそれがある。また、焼結処理時間が50時間超であると、リードタイムが長くなり操業上好ましくない。加圧焼結する際の圧力は1000MPa以下が望ましい。また、焼結工程ののちに、磁気特性の向上などを目的とした熱処理や拡散処理を追加でおこなってもよい。
<Step D> Sintering Step A sintered body is obtained by heat-treating the compact obtained in Step C. As a sintering method, a method in which solid-phase sintering or liquid-phase sintering proceeds by maintaining a high temperature in a vacuum or an inert gas atmosphere, or a method in which a compact is maintained at a high temperature while applying pressure. In order to prevent oxidation due to the atmosphere during sintering, sintering is preferably performed in a vacuum atmosphere or in an inert gas such as argon or helium. Furthermore, since Sm evaporates particularly significantly at high temperatures, it is more preferable to suppress the evaporation of Sm by a method such as covering the compact, sealing it, or sealing it with a substance containing Sm. The sintering temperature is 900° C. or higher and 1250° C. or lower. If the sintering temperature is less than 900° C., the liquid phase will not be sufficiently formed, making it difficult to densify. Also, if the sintering temperature exceeds 1250° C., the 1-12 phase may decompose. The sintering temperature is more preferably 1000° C. or higher and 1150° C. or lower. The sintering treatment time is 5 minutes or more and 50 hours or less. If the sintering treatment time is less than 5 minutes, the densification may not proceed sufficiently. Moreover, if the sintering treatment time exceeds 50 hours, the lead time becomes long, which is not preferable in terms of operation. The pressure during pressure sintering is desirably 1000 MPa or less. Further, after the sintering process, heat treatment or diffusion treatment may be additionally performed for the purpose of improving magnetic properties.

<実験例>
以下、本発明の実施例を具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
<Experimental example>
Examples of the present invention will be specifically described below, but the present invention is not limited to these examples.

まず、原料合金をストリップキャスト法で作製した。純度が99.9%以上のY、Zr、Sm、Fe、Co、Ti、Cuの原料金属を、溶解時の希土類元素の蒸発を加味し、得られる合金組成が最終的に表1に示す組成となるようにねらい値を決定し秤量した。秤量した各金属を混合してシリカ坩堝に投入し、高周波誘導加熱により1500℃まで昇温して原料を溶解した。その後、溶湯を1450℃まで降温させ、タンディッシュで一時的に貯湯した後、周速度1.5m/sで回転している銅製の冷却ロール上に供給して冷却させた。冷却された合金は冷却ロール下部に設置した解砕機で解砕された。 First, a raw material alloy was produced by a strip casting method. Raw material metals of Y, Zr, Sm, Fe, Co, Ti, and Cu with a purity of 99.9% or more are combined with the evaporation of rare earth elements during melting, and the final alloy composition obtained is the composition shown in Table 1. A target value was determined and weighed so that The weighed metals were mixed and charged into a silica crucible, and heated to 1500° C. by high-frequency induction heating to melt the raw materials. Thereafter, the molten metal was cooled to 1450° C., temporarily stored in a tundish, and then fed onto a cooling roll made of copper rotating at a peripheral speed of 1.5 m/s for cooling. The cooled alloy was pulverized by a pulverizer installed below the cooling rolls.

上記工程で得た各組成の合金について、それぞれを500g秤量してモリブデン製の容
器に入れ、容器を管状熱処理炉の内部に挿入した。炉内をArで置換したのち、Arを2L/分流気させた雰囲気で1100℃、1.5時間の熱処理をおこなった。熱処理終了後は熱処理炉を開放して合金を冷却させた。このとき、1100℃から100℃までの平均冷却速度は10℃/分以上であった。
500 g of the alloy having each composition obtained in the above steps was weighed and placed in a molybdenum container, and the container was inserted into a tubular heat treatment furnace. After replacing the atmosphere in the furnace with Ar, heat treatment was performed at 1100° C. for 1.5 hours in an atmosphere in which 2 L/min of Ar was allowed to flow. After the heat treatment was completed, the heat treatment furnace was opened to cool the alloy. At this time, the average cooling rate from 1100°C to 100°C was 10°C/min or more.

上記工程で得た熱処理後合金を、Ar流気雰囲気のグローブボックス内で乳鉢を用いて粉砕した。粉砕粉を1mmメッシュで篩い分け、メッシュを通った粉を回収した。回収した粉砕粉にステアリン酸亜鉛を加え、ロッキングミキサーで15分間混合した。このとき、粉砕粉とステアリン酸亜鉛の重量比が100:0.035になるようにステアリン酸亜鉛を添加した。 The heat-treated alloy obtained in the above step was pulverized using a mortar in a glove box in an Ar atmosphere. The pulverized powder was sieved through a 1 mm mesh, and the powder that passed through the mesh was recovered. Zinc stearate was added to the collected pulverized powder and mixed with a rocking mixer for 15 minutes. At this time, zinc stearate was added so that the weight ratio of ground powder and zinc stearate was 100:0.035.

上記工程で得た粉砕粉を日本ニューマチック工業(株)製の気流式ジェットミルPJM-100を用いて微粉砕して微粉を得た。粉砕ガスには窒素ガスを用い、粉砕圧7.5MPaで粉砕した。このときの微粉末のD50はいずれも5μmであった。 The pulverized powder obtained in the above step was finely pulverized using a pneumatic jet mill PJM-100 manufactured by Nippon Pneumatic Industry Co., Ltd. to obtain a fine powder. Nitrogen gas was used as the pulverizing gas, and pulverization was performed at a pulverizing pressure of 7.5 MPa. D50 of the fine powder at this time was 5 μm.

上記工程で得た微粉末を、Ar流気雰囲気のグローブボックス内で成形した。成形にはハンドプレスを用い、直径16mm、高さ20mmの円柱形の成形体を作製した。成形後、鉄カプセルに成形体を充填した。鉄カプセルの材質はS20Cで、内側の直径が16mm、高さが20mmで、厚さは2mmのものを使用した。 The fine powder obtained in the above step was molded in a glove box in an Ar atmosphere. A hand press was used for molding, and a cylindrical molded body with a diameter of 16 mm and a height of 20 mm was produced. After molding, an iron capsule was filled with the molding. The material of the iron capsule was S20C, and the inner diameter was 16 mm, the height was 20 mm, and the thickness was 2 mm.

成形体が充填された鉄カプセルに、真空中で電子ビーム溶接をおこない、カプセルの容器と蓋を溶接することで封止した。 The iron capsule filled with the compact was subjected to electron beam welding in a vacuum, and the capsule container and lid were welded together to seal the capsule.

封止された試料に熱間等方加圧(HIP)処理をおこなった。圧媒ガスにはアルゴンを用い、ガス圧180MPaで処理した。温度は1100℃で、保持時間を3時間とした。 The sealed samples were subjected to hot isostatic pressing (HIP) treatment. Argon was used as a pressure medium gas, and the treatment was performed at a gas pressure of 180 MPa. The temperature was 1100° C. and the holding time was 3 hours.

上記工程で得られた試料を外周刃切断機で切断し、カプセル中にあるHIP体を取り出した。HIP体の一部を乳鉢で粉砕し、425μmメッシュおよび75μmメッシュを用いて分級した。 The sample obtained in the above step was cut with a peripheral blade cutting machine, and the HIP body in the capsule was taken out. A portion of the HIP body was pulverized in a mortar and classified using 425 μm mesh and 75 μm mesh.

粒径75~425μmの粉砕粉を用いて、ICP(誘導結合プラズマ)発光分光分析法にてY・Zr・Sm・Fe・Co・Ti・Cuの成分分析を、燃焼・赤外線吸収法にて炭素量の分析をおこなった。粒径425μm以上の粉砕粉を用いて、不活性ガス溶融・熱伝導法にて酸素量・窒素量の分析をおこなった。また、粒径75~425μmの粉砕粉を用いて、燃焼・赤外線吸収法にて炭素量の分析をおこなった。分析結果から、各焼結体のx、y、z、w、α、β、および1-x-2z/3-0.092α-8β/15の値を求めた。 Using pulverized powder with a particle size of 75 to 425 μm, the components of Y, Zr, Sm, Fe, Co, Ti, and Cu are analyzed by ICP (inductively coupled plasma) emission spectrometry, and carbon is analyzed by combustion and infrared absorption. Quantitative analysis was performed. Using pulverized powder with a particle size of 425 μm or more, the oxygen content and nitrogen content were analyzed by the inert gas fusion/heat conduction method. Also, using pulverized powder with a particle size of 75 to 425 μm, the carbon content was analyzed by the combustion/infrared absorption method. From the analysis results, the values of x, y, z, w, α, β, and 1-x-2z/3-0.092α-8β/15 of each sintered body were determined.

粒径75μm未満の粉砕粉を用いて粉末X線回折をおこなった。装置はブラッグ-ブレンターノ集中ビーム方式の広角X線回折装置(X-ray diffractiometer、XRD、ブルカー・エイエックス(株)製D8 ADVANCED/TXS)を使用した。X線発生源としてCu製回転対陰極を用い、印加する電圧は45kV、電流は360mAとし、KβフィルタはNiを使用した。走査軸を2θ/θ連動動作で間隔を0.04°、速度を0.6s/stepとし、20°≦2θ≦80°の範囲を室温において走査した。X線の強度プロファイルから、1-12相の002反射に起因するピークの最大強度をIThMn12、bcc‐(Fe,Co,Ti)相の011反射に起因するピーク最大強度をIα‐(Fe,Co,Ti)、2-17相の023反射に起因するピークの最大強度をITh2Ni17とし、bcc-(Fe,Co,Ti)相の相対的なX線強度Ibcc‐(Fe,Co,Ti)/IThMn12と、2-17相の相対的なX線強度ITh2Ni17/IThMn12をそれぞれ求めた。 Powder X-ray diffraction was performed using pulverized powder having a particle size of less than 75 μm. As an apparatus, a Bragg-Brentano concentrated beam type wide-angle X-ray diffractometer (X-ray diffractiometer, XRD, D8 ADVANCED/TXS manufactured by Bruker AX Co., Ltd.) was used. A Cu rotating anticathode was used as the X-ray source, the applied voltage was 45 kV, the current was 360 mA, and the Kβ filter was Ni. The scanning axis was interlocked with 2θ/θ, the interval was 0.04°, the speed was 0.6 s/step, and the range of 20°≦2θ≦80° was scanned at room temperature. From the X-ray intensity profile, the maximum intensity of the peak due to the 002 reflection of the 1-12 phase is I ThMn12 , and the maximum intensity of the peak due to the 011 reflection of the bcc-(Fe, Co, Ti) phase is I α-(Fe , Co, Ti) , the maximum intensity of the peak due to the 023 reflection of the 2-17 phase is I Th2Ni17 , and the relative X-ray intensity of the bcc-(Fe, Co, Ti) phase is I bcc- (Fe, Co, Ti). Ti) 2 /I ThMn12 and the relative X-ray intensity I Th2Ni17 /I ThMn12 of the 2-17 phase were determined respectively.

切断したHIP体を樹脂に埋め、研磨し、HIP体断面を走査型電子顕微鏡(SEM)で観察し、EDXによる局所的な組成分析をおこなった。SEMは日本電子(株)製JCM-6000Plus NeoScope(登録商標)を用い、加速電圧15kVで反射電子像の取得、EDX分析をおこなった。 The cut HIP body was embedded in resin, polished, and the cross section of the HIP body was observed with a scanning electron microscope (SEM), and a local composition analysis was performed by EDX. A JCM-6000Plus NeoScope (registered trademark) manufactured by JEOL Ltd. was used as the SEM, and a backscattered electron image was obtained at an accelerating voltage of 15 kV and EDX analysis was performed.

作製したHIP体の各組成を表1に、x、y、z、w、α、β、1-x-2z/3-0.092α-8β/15の値、Ibcc‐(Fe,Co,Ti)/IThMn12、およびITh2Ni17/IThMn12の値を表2に示す。 Table 1 shows the compositions of the prepared HIP bodies, values of x, y, z, w, α, β, 1-x-2z/3-0.092α-8β/15, I bcc-(Fe, Co, Table 2 shows the values of Ti) /I ThMn12 and I Th2Ni17 /I ThMn12 .

Figure 0007196666000001
Figure 0007196666000001

Figure 0007196666000002
Figure 0007196666000002

No.1~5はY、Sm含有量を変えた実験例である。いずれの実験例もx、y、z、w、α、βの値は全て好ましい範囲内にある。No.1~5の試料の粉末XRDパターンを図1に示す。また、No.1~5の試料の粉末XRDパターンから求めた、Ibcc‐(Fe,Co,Ti)/IThMn12およびITh2Ni17/IThMn12の値と1-x-2z/3-0.092α-8β/15の値の関係を図2および図3に示す。1-x-2z/3-0.092α-8β/15の値が0未満であるNo.1および2の試料には、多量のbcc-(Fe,Co,Ti)相が存在し、Ibcc‐(Fe,Co,Ti)/IThMn12の値が高い結果となった。1-x-2z/3-0.092α-8β/15の値が0以上0.05以下の範囲にあるNo.3および4の試料は、bcc-(Fe,Co,Ti)相および2-17相の生成が抑制されたため、Ibcc‐(Fe,Co,Ti)/IThMn12およびITh2Ni17/IThMn12の値は低い結果となった。特に、1-x-2z/3-0.092α-8β/15の値が0以上0.03以下の範囲にあるNo.3の試料はIbcc‐(Fe,Co,Ti)/IThMn12およびITh2Ni17/IThMn12の値がいずれも非常に低い結果となった。1-x-2z/3-0.092α-8β/15の値が0.05より大きいNo.5の試料には、多量の2-17相が存在し、ITh2Ni17/IThMn12の値が高い結果となった。No.1~5の試料断面の反射電子像を図4に示す。No.1の試料では多量のbcc‐(Fe,Co,Ti)相が観察された。また、No.5の試料では多量の2-17相が観察された。No.3、4の試料ではbcc‐(Fe,Co,Ti)相や2-17相の生成が抑制されており、粉末XRDの結果とよく対応した結果となった。 No. 1 to 5 are experimental examples in which the contents of Y and Sm were changed. All the values of x, y, z, w, α, and β are within preferable ranges in all experimental examples. No. The powder XRD patterns of samples 1-5 are shown in FIG. Also, No. Values of I bcc-(Fe,Co,Ti) /I ThMn12 and I Th2Ni17 /I ThMn12 and 1-x-2z/3-0.092α-8β/15 determined from powder XRD patterns of samples 1-5 are shown in FIGS. 2 and 3. FIG. No. 1-x-2z/3-0.092α-8β/15 having a value of less than 0. A large amount of bcc-(Fe,Co,Ti) phase was present in samples 1 and 2, resulting in high values of Ibcc- (Fe,Co,Ti) / IThMn12 . No. 1-x-2z/3-0.092α-8β/15 in the range of 0 or more and 0.05 or less. For samples 3 and 4, the values of I bcc-(Fe, Co, Ti) /I ThMn12 and I Th2Ni17 /I ThMn12 were suppressed due to suppression of bcc-(Fe, Co, Ti) and 2-17 phases. gave a low result. In particular, No. 1 having a value of 1-x-2z/3-0.092α-8β/15 in the range of 0 or more and 0.03 or less. Sample No. 3 resulted in very low values for both I bcc - (Fe, Co, Ti) /I ThMn12 and I Th2Ni17 /I ThMn12 . No. 1-x-2z/3-0.092α-8β/15 value greater than 0.05. Sample No. 5 contained a large amount of 2-17 phase, resulting in a high value of I Th2Ni17 /I ThMn12 . No. Backscattered electron images of cross sections of samples 1 to 5 are shown in FIG. No. A large amount of bcc-(Fe, Co, Ti) phase was observed in sample 1. Also, No. A large amount of 2-17 phase was observed in sample 5. No. In samples 3 and 4, the formation of the bcc-(Fe, Co, Ti) phase and the 2-17 phase was suppressed, and the results corresponded well with the powder XRD results.

No.6、7およびNo.4の試料の粉末XRDパターンを図5に示す。No.6の試料は、Cuを添加せず、No.4の試料と同等の1-x-2z/3-0.092α-8β/15の値となる組成をねらった試料である。Cuの有無に関わらず、1-x-2z/3-0.092α-8β/15の値が好ましい範囲内にあれば、bcc-(Fe,Co,Ti)相および2-17相の生成を抑制することができ、Ibcc‐(Fe,Co,Ti)/IThMn12およびITh2Ni17/IThMn12の値は低い結果となった。また、No.7の試料は、No.4の試料のYをZrに置換した組成をねらった試料である。No.7の試料には多量のbcc-(Fe,Co,Ti)相が存在し、Ibcc‐(Fe,Co,Ti)/IThMn12が非常に高い結果となった。No.7の試料断面の反射電子像を図6に示す。No.7の試料では6-23相が存在し、EDXの点分析結果から、この6-23相中はZrが約13原子数%、Tiが約12原子数%含有しており、全体組成に比べてZrおよびTiが非常に濃化していた。 No. 6, 7 and no. The powder XRD pattern of sample No. 4 is shown in FIG. No. No. 6 sample does not add Cu. This is a sample aiming at a composition with a value of 1-x-2z/3-0.092α-8β/15, which is equivalent to the sample No. 4. With or without Cu, if the value of 1-x-2z/3-0.092α-8β/15 is within the preferred range, the formation of the bcc-(Fe, Co, Ti) phase and the 2-17 phase is can be suppressed, resulting in low values of I bcc - (Fe, Co, Ti) /I ThMn12 and I Th2Ni17 /I ThMn12 . Also, No. 7 sample is No. This is a sample aiming at a composition in which Y of the sample of No. 4 is replaced with Zr. No. A large amount of bcc-(Fe,Co,Ti) phase was present in sample No. 7, resulting in very high Ibcc- (Fe,Co,Ti) / IThMn12 . No. FIG. 6 shows a backscattered electron image of the sample cross section of No. 7. No. The 6-23 phase exists in sample 7, and from the EDX point analysis results, this 6-23 phase contains about 13 atomic % of Zr and about 12 atomic % of Ti. Zr and Ti were very concentrated.

本開示の希土類磁石用焼結体は、希土類磁石に用いることが可能である。 The sintered body for rare earth magnets of the present disclosure can be used for rare earth magnets.

Claims (6)

全体の組成が下記の組成式(1)で表され、
R11-xR2(Fe1-yCow-zTiCuαβ (1)
R1はY又はYとGdであり、YはR1全体の50mol%以上であり、
R2はSm、La、Ce、NdおよびPrからなる群から選択される少なくとも1種であり、Smを必ず含み、SmはR2全体の50mol%以上であり、
x、y、z、w、α、およびβは、それぞれ、
0.3≦x≦0.9、
0≦y≦0.4、
0.38≦z≦0.70、
7≦w≦12、
0≦α≦0.70、
0.02≦β≦0.5、および
0≦1-x-2z/3-0.092α―8β/15≦0.05
を満足する、ThMn12型結晶構造を有する相を主相とする希土類磁石用焼結体。
The overall composition is represented by the following compositional formula (1),
R1 1-x R2 x (Fe 1-y Co y ) wz Ti z Cu α O β (1)
R1 is Y or Y and Gd, Y is 50 mol% or more of the total of R1,
R2 is at least one selected from the group consisting of Sm, La, Ce, Nd and Pr, always contains Sm, and Sm is 50 mol% or more of the total of R2,
x, y, z, w, α, and β are each:
0.3≤x≤0.9,
0≤y≤0.4,
0.38≦z≦0.70,
7≦w≦12,
0≦α≦0.70,
0.02≤β≤0.5, and 0≤1-x-2z/3-0.092α-8β/15≤0.05
A sintered body for a rare earth magnet having a phase having a ThMn type 12 crystal structure as a main phase, satisfying the above.
0≦1-x-2z/3-0.092α―8β/15≦0.03
を満足する、請求項1に記載の希土類磁石用焼結体。
0≤1-x-2z/3-0.092α-8β/15≤0.03
The sintered body for a rare earth magnet according to claim 1, which satisfies
0.40≦α≦0.70
を満足する、請求項1または2に記載の希土類磁石用焼結体。
0.40≤α≤0.70
3. The sintered body for a rare earth magnet according to claim 1, which satisfies
前記焼結体の粉末X線回折パターンにおいて、前記ThMn12型結晶構造を有する相の002反射に起因するピークの最大強度をIThMn12、bcc‐(Fe,Co,Ti)相の011反射に起因するピークの最大強度をIbcc‐(Fe,Co,Ti)としたときに、
bcc‐(Fe,Co,Ti)/IThMn12≦0.75
を満足する、請求項1から3のいずれかに記載の希土類磁石用焼結体。
In the powder X-ray diffraction pattern of the sintered body, the maximum intensity of the peak due to the 002 reflection of the phase having the ThMn 12 type crystal structure is I ThMn12 , due to the 011 reflection of the bcc-(Fe, Co, Ti) phase. When the maximum intensity of the peak to be Ibcc-(Fe, Co, Ti) is
Ibcc- (Fe,Co,Ti) /IThMn12≤0.75
4. The sintered body for a rare earth magnet according to any one of claims 1 to 3, which satisfies
前記焼結体の粉末X線回折パターンにおいて、前記ThMn12型結晶構造を有する相の002反射に起因するピークの最大強度をIThMn12、ThNi17型結晶構造を有する相の023反射に起因するピークの最大強度をITh2Ni17としたときに、
Th2Ni17/IThMn12≦0.7
を満足する、請求項1から4のいずれかに記載の希土類磁石用焼結体。
In the powder X-ray diffraction pattern of the sintered body, the maximum intensity of the peak due to the 002 reflection of the phase having the ThMn 12 type crystal structure is I ThMn12 , and the maximum intensity of the peak due to the 023 reflection of the phase having the Th 2 Ni 17 type crystal structure When I Th2Ni17 is the maximum intensity of the peak that
I Th2Ni17 /I ThMn12 ≦0.7
5. The sintered body for a rare earth magnet according to any one of claims 1 to 4, which satisfies
全体の組成が下記の組成式(1)で表され、
R11-xR2(Fe1-yCow-zTiCuαβ (1)
R1はY又はYとGdであり、YはR1全体の50mol%以上であり、
R2はSm、La、Ce、NdおよびPrからなる群から選択される少なくとも1種であり、Smを必ず含み、SmはR2全体の50mol%以上であり、
x、y、z、w、α、およびβは、それぞれ、
0.3≦x≦0.9、
0≦y≦0.4、
0.38≦z≦0.70、
7≦w≦12、
0≦α≦0.70、
0.02≦β≦0.5、および
0≦1-x-2z/3-0.092α―8β/15≦0.05
を満足する、ThMn12型結晶構造を有する相を主相とする希土類磁石用焼結体の製造方法であって、
原料の溶湯を冷却して合金を得る工程と、
前記合金を粉砕して微粉末を得る工程と、
前記微粉末を成形して成形体を得る工程と、
前記成形体を900℃以上1250℃以下、圧力1000MPa以下で5分以上50時間以下熱処理して焼結体を得る工程と、を含む希土類磁石用焼結体の製造方法。
The overall composition is represented by the following compositional formula (1),
R1 1-x R2 x (Fe 1-y Co y ) wz Ti z Cu α O β (1)
R1 is Y or Y and Gd, Y is 50 mol% or more of the total of R1,
R2 is at least one selected from the group consisting of Sm, La, Ce, Nd and Pr, always contains Sm, and Sm is 50 mol% or more of the total of R2,
x, y, z, w, α, and β are each:
0.3≤x≤0.9,
0≤y≤0.4,
0.38≦z≦0.70,
7≦w≦12,
0≦α≦0.70,
0.02≤β≤0.5, and 0≤1-x-2z/3-0.092α-8β/15≤0.05
A method for producing a sintered body for a rare earth magnet having a phase having a ThMn type 12 crystal structure as a main phase, satisfying
a step of cooling the raw material molten metal to obtain an alloy;
pulverizing the alloy to obtain a fine powder;
a step of molding the fine powder to obtain a compact;
A method for producing a sintered body for a rare earth magnet, comprising the step of heat-treating the molded body at 900° C. or higher and 1250° C. or lower and a pressure of 1000 MPa or lower for 5 minutes or longer and 50 hours or shorter to obtain a sintered body.
JP2019024190A 2019-02-14 2019-02-14 Sintered body for rare earth magnet and method for producing the same Active JP7196666B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019024190A JP7196666B2 (en) 2019-02-14 2019-02-14 Sintered body for rare earth magnet and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019024190A JP7196666B2 (en) 2019-02-14 2019-02-14 Sintered body for rare earth magnet and method for producing the same

Publications (2)

Publication Number Publication Date
JP2020136333A JP2020136333A (en) 2020-08-31
JP7196666B2 true JP7196666B2 (en) 2022-12-27

Family

ID=72279032

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019024190A Active JP7196666B2 (en) 2019-02-14 2019-02-14 Sintered body for rare earth magnet and method for producing the same

Country Status (1)

Country Link
JP (1) JP7196666B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4092693A1 (en) * 2021-05-17 2022-11-23 Shin-Etsu Chemical Co., Ltd. Anisotropic rare earth sintered magnet and method for producing the same

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000114017A (en) 1998-09-30 2000-04-21 Toshiba Corp Permanent magnet and material thereof
JP2001189206A (en) 1999-12-28 2001-07-10 Toshiba Corp Permanent magnet
JP4322406B2 (en) 2000-07-03 2009-09-02 富士フイルム株式会社 Lithographic printing plate packaging box and lithographic printing plate packaging structure
JP2013191849A (en) 2006-09-15 2013-09-26 Inter Metallics Kk Ndfeb sintered magnet
JP2015156436A (en) 2014-02-20 2015-08-27 日立金属株式会社 Ferromagnetic alloy and manufacturing method thereof
JP2016162990A (en) 2015-03-05 2016-09-05 株式会社日立ハイテクノロジーズ Plasma processing device
JP2017112300A (en) 2015-12-18 2017-06-22 トヨタ自動車株式会社 Rare earth magnet
JP2018103211A (en) 2016-12-26 2018-07-05 日立金属株式会社 Method for producing rare earth-transition metal based ferromagnetic alloy, and rare earth-transition metal based ferromagnetic alloy
JP2018125512A (en) 2016-08-24 2018-08-09 株式会社東芝 Magnet material, permanent magnet, rotary electric machine, and vehicle
JP6476703B2 (en) 2014-09-30 2019-03-06 日亜化学工業株式会社 Ceramic package, light emitting device, and manufacturing method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6476703A (en) * 1987-09-17 1989-03-22 Shinetsu Chemical Co Rare earth element permanent magnet
JPH04322406A (en) * 1991-04-22 1992-11-12 Shin Etsu Chem Co Ltd Rare earth permanent magnet
WO2016162990A1 (en) * 2015-04-08 2016-10-13 株式会社日立製作所 Rare earth permanent magnet and method for producing same

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000114017A (en) 1998-09-30 2000-04-21 Toshiba Corp Permanent magnet and material thereof
JP2001189206A (en) 1999-12-28 2001-07-10 Toshiba Corp Permanent magnet
JP4322406B2 (en) 2000-07-03 2009-09-02 富士フイルム株式会社 Lithographic printing plate packaging box and lithographic printing plate packaging structure
JP2013191849A (en) 2006-09-15 2013-09-26 Inter Metallics Kk Ndfeb sintered magnet
JP2015156436A (en) 2014-02-20 2015-08-27 日立金属株式会社 Ferromagnetic alloy and manufacturing method thereof
JP6476703B2 (en) 2014-09-30 2019-03-06 日亜化学工業株式会社 Ceramic package, light emitting device, and manufacturing method thereof
JP2016162990A (en) 2015-03-05 2016-09-05 株式会社日立ハイテクノロジーズ Plasma processing device
JP2017112300A (en) 2015-12-18 2017-06-22 トヨタ自動車株式会社 Rare earth magnet
JP2018125512A (en) 2016-08-24 2018-08-09 株式会社東芝 Magnet material, permanent magnet, rotary electric machine, and vehicle
JP2018103211A (en) 2016-12-26 2018-07-05 日立金属株式会社 Method for producing rare earth-transition metal based ferromagnetic alloy, and rare earth-transition metal based ferromagnetic alloy

Also Published As

Publication number Publication date
JP2020136333A (en) 2020-08-31

Similar Documents

Publication Publication Date Title
JP5477282B2 (en) R-T-B system sintered magnet and manufacturing method thereof
JP6406255B2 (en) R-T-B system sintered magnet and method for manufacturing R-T-B system sintered magnet
JP6288076B2 (en) R-T-B sintered magnet
US10672546B2 (en) R-T-B based permanent magnet
JP6561117B2 (en) Rare earth permanent magnet and manufacturing method thereof
JP5348124B2 (en) Method for producing R-Fe-B rare earth sintered magnet and rare earth sintered magnet produced by the method
JP6094612B2 (en) Method for producing RTB-based sintered magnet
JP2018103211A (en) Method for producing rare earth-transition metal based ferromagnetic alloy, and rare earth-transition metal based ferromagnetic alloy
JP2011100881A (en) Method for manufacturing nanocomposite magnet
JP2018028123A (en) Method for producing r-t-b sintered magnet
JP7315888B2 (en) RTB permanent magnet and manufacturing method thereof
JP7196666B2 (en) Sintered body for rare earth magnet and method for producing the same
JP7196667B2 (en) Manufacturing method of sintered body for rare earth magnet
JP7287215B2 (en) Manufacturing method of sintered body for rare earth magnet
JP7158807B2 (en) Manufacturing method of sintered magnet and sintered magnet
JP7349173B2 (en) Metastable single crystal rare earth magnet fine powder and its manufacturing method
JP7360307B2 (en) Rare earth iron ring magnet and its manufacturing method
CN115699232A (en) Method for manufacturing anisotropic rare earth bulk material magnet and anisotropic rare earth bulk material magnet manufactured thereby
CN114255949A (en) Magnetic material and method for producing the same
JP2006093501A (en) Rare earth sintered magnet and manufacturing method thereof
JP7238504B2 (en) Bulk body for rare earth magnet
WO2017191790A1 (en) Rare-earth permanent magnet, and method for manufacturing same
WO2022249908A1 (en) Method for producing rare earth-iron ring magnet and method for producing same
JP6949414B2 (en) Magnet powder and method for manufacturing magnet powder
JP7088069B2 (en) Manufacturing method of magnetic powder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220117

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221108

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221128

R150 Certificate of patent or registration of utility model

Ref document number: 7196666

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350