JP6094612B2 - Method for producing RTB-based sintered magnet - Google Patents

Method for producing RTB-based sintered magnet Download PDF

Info

Publication number
JP6094612B2
JP6094612B2 JP2015038694A JP2015038694A JP6094612B2 JP 6094612 B2 JP6094612 B2 JP 6094612B2 JP 2015038694 A JP2015038694 A JP 2015038694A JP 2015038694 A JP2015038694 A JP 2015038694A JP 6094612 B2 JP6094612 B2 JP 6094612B2
Authority
JP
Japan
Prior art keywords
sintered magnet
rtb
powder
compound
based sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015038694A
Other languages
Japanese (ja)
Other versions
JP2015179841A (en
Inventor
智機 深川
智機 深川
信一郎 坂下
信一郎 坂下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2015038694A priority Critical patent/JP6094612B2/en
Publication of JP2015179841A publication Critical patent/JP2015179841A/en
Application granted granted Critical
Publication of JP6094612B2 publication Critical patent/JP6094612B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明はR−T−B系焼結磁石の製造方法に関する。   The present invention relates to a method for producing an RTB-based sintered magnet.

R−T−B系焼結磁石(Rは希土類元素のうち少なくとも一種でありNdを必ず含む、Tは遷移金属元素のうち少なくとも一種でありFeを必ず含む)は永久磁石の中で最も高性能な磁石として知られており、ハードディスクドライブのボイスコイルモータ(VCM)、電気自動車用(EV、HV、PHVなど)モータ、産業機器用モータなどの各種モータや家電製品などに使用されている。   R-T-B sintered magnets (R is at least one of rare earth elements and always contains Nd, T is at least one kind of transition metal elements and always contains Fe), and has the highest performance among permanent magnets It is known as a magnet, and is used in various motors such as voice coil motors (VCM) for hard disk drives, motors for electric vehicles (EV, HV, PHV, etc.), motors for industrial equipment, and home appliances.

R−T−B系焼結磁石は主としてR14B化合物からなる主相とこの主相の粒界部分に位置する粒界相とから構成されている。主相であるR14B化合物は高い磁化を持つ強磁性材料でありR−T−B系焼結磁石の特性の根幹をなしている。 The RTB-based sintered magnet is mainly composed of a main phase composed of an R 2 T 14 B compound and a grain boundary phase located at the grain boundary portion of the main phase. The R 2 T 14 B compound as the main phase is a ferromagnetic material having high magnetization and forms the basis of the characteristics of the R—T—B system sintered magnet.

R−T−B系焼結磁石は高温で保磁力HcJ(以下、単に「HcJ」という)が低下するため不可逆熱減磁が起こる。そのため、特に電気自動車用モータに使用される場合、高温下でも高いHcJを有することが要求されている。 The RTB -based sintered magnet has irreversible thermal demagnetization because the coercive force H cJ (hereinafter simply referred to as “H cJ ”) decreases at high temperatures. Therefore, especially when used for a motor for an electric vehicle, it is required to have a high HcJ even under a high temperature.

R−T−B系焼結磁石において、主相であるR14B化合物中のRに含まれる軽希土類元素RL(主としてNdおよび/またはPr)の一部を重希土類元素RH(主としてDyおよび/またはTb)で置換するとHcJが向上することが知られており、重希土類元素RHの置換量の増加に伴いHcJは向上する。 In the R-T-B based sintered magnet, a part of the light rare earth element RL (mainly Nd and / or Pr) contained in R in the main phase R 2 T 14 B compound is converted to heavy rare earth element RH (mainly Dy and / or Tb) substituting H cJ are known to be improved by, H cJ with increasing substitution of heavy rare-earth element RH is improved.

しかし、R14B化合物中の軽希土類元素RLを重希土類元素RHで置換するとR−T−B系焼結磁石のHcJが向上する一方、残留磁束密度B(以下、単に「B」という)が低下する。また、重希土類元素、特にDyなどは資源存在量が少ないうえ産出地が限定されているなどの理由から供給が安定しておらず、価格が大きく変動するなどの問題を有している。そのため、近年、ユーザーから重希土類元素RHをできるだけ使用することなくBを低下させずにHcJを向上させることが求められている。 However, when the light rare earth element RL in the R 2 T 14 B compound is replaced with the heavy rare earth element RH, the H cJ of the RTB -based sintered magnet is improved, while the residual magnetic flux density B r (hereinafter simply referred to as “B r ") decreases. In addition, heavy rare earth elements, especially Dy, have a problem that their supply is not stable and the price fluctuates greatly because of their low resource abundance and limited production area. Therefore, in recent years, it without lowering the B r without using as much as possible the heavy rare-earth element RH from the user to improve the H cJ are required.

特許文献1には従来一般に用いられてきたR−T−B系合金に比べB量が相対的に少ない特定の範囲に限定するとともにAl、Ga、Cuのうちから選ばれる1種以上の金属元素Mを含有させることによりR17相を生成させ、該R17相を原料として生成させた遷移金属リッチ相(R13M)の体積率を充分に確保することにより、Dyの含有量を抑制しつつ保磁力の高いR−T−B系希土類焼結磁石が得られることが記載されている。 In Patent Document 1, at least one metal element selected from Al, Ga, and Cu is limited to a specific range in which the amount of B is relatively smaller than that of an RTB-based alloy that has been generally used in the past. By containing M, the R 2 T 17 phase is generated, and the volume ratio of the transition metal rich phase (R 6 T 13 M) generated using the R 2 T 17 phase as a raw material is sufficiently ensured, so that Dy It is described that an RTB-based rare earth sintered magnet with a high coercive force can be obtained while suppressing the content of.

また、R−T−B系焼結磁石のHcJ向上手段として、R−T−B系焼結磁石に重希土類元素RHを含む金属、合金、化合物などを特定手段によりR−T−B系焼結磁石表面に供給し、熱処理で重希土類元素RHを磁石内部に拡散させ、R14B化合物の外殻部の軽希土類元素RLを重希土類元素RHで置換することにより、Bの低下を抑制しつつHcJを向上させる方法が種々提案されている。 Further, as a means for improving the HcJ of the RTB -based sintered magnet, a metal, an alloy, a compound or the like containing the heavy rare earth element RH is added to the RTB-based sintered magnet by a specific means. is supplied to the surface of the sintered magnet, the heavy rare-earth element RH is diffused inside the magnet by a heat treatment, by replacing the light rare-earth element RL in the outer shell of the R 2 T 14 B compound in the heavy rare-earth element RH, the B r Various methods for improving HcJ while suppressing the reduction have been proposed.

例えば、特許文献2はR−Fe−B系希土類焼結磁石体と重希土類元素RH(Dy、HoおよびTbからなる群から選択された少なくとも1種)を含有するバルク体を処理室内に配置し、それらを700℃以上1000℃以下に加熱することにより、バルク体から重希土類元素RHをR−Fe−B系希土類焼結磁石体の表面に供給しつつ重希土類元素RHをR−Fe−B系希土類焼結磁石体の内部に拡散させる方法を開示している。   For example, in Patent Document 2, a bulk body containing an R—Fe—B rare earth sintered magnet body and a heavy rare earth element RH (at least one selected from the group consisting of Dy, Ho, and Tb) is disposed in a processing chamber. Then, by heating them to 700 ° C. or more and 1000 ° C. or less, the heavy rare earth element RH is supplied to the surface of the R—Fe—B rare earth sintered magnet body from the bulk body while the heavy rare earth element RH is supplied to R—Fe—B. Discloses a method of diffusing into a rare earth sintered magnet body.

さらに、特許文献3にはDyを4〜10質量%含有するR−T−B系合金と1080℃以上の融点を有する高融点化合物(Al、Ga、Mg、Nb、Si、Ti、Zrからなる群から選ばれるいずれか1つの酸化物、ホウ化物、炭化物、窒化物、又はケイ化物)とを混合し、成形、焼結することにより、Dy濃度を高くすることなく、高い保磁力が得られ、しかもDyを添加したことによる磁化(B)などの磁気特性の低下を抑制できることが記載されている。 Furthermore, Patent Document 3 includes an RTB-based alloy containing 4 to 10% by mass of Dy and a high melting point compound (Al, Ga, Mg, Nb, Si, Ti, Zr having a melting point of 1080 ° C. or higher. High coercive force can be obtained without increasing the Dy concentration by mixing, molding and sintering any one oxide selected from the group, boride, carbide, nitride, or silicide). In addition, it is described that a decrease in magnetic properties such as magnetization (B r ) due to the addition of Dy can be suppressed.

国際公開第2013/008756号International Publication No. 2013/008756 国際公開第2007/102391号International Publication No. 2007/102391 国際公開第2010/073533号International Publication No. 2010/073533

一般に、R−T−B系焼結磁石を製造する際、B原料として、B含有量が必ずしも安定しないフェロボロン合金が用いられている。また、Bは製造工程上、含有量の変動が生じ易く、さらに、高精度に分析することが困難な元素であるため、厳密に管理することが極めて困難である。また、B量が少なくなるほど磁気特性に与える影響が大きくなり、B量の僅かな変動で磁気特性、特にHcJが大きく変動(急激に低下)してしまうことを本発明者らは見いだした。 In general, when an RTB-based sintered magnet is manufactured, a ferroboron alloy whose B content is not necessarily stable is used as a B raw material. In addition, since B is an element that is likely to vary in content during the manufacturing process and is difficult to analyze with high accuracy, it is extremely difficult to strictly manage it. Further, the present inventors have found that the smaller the amount of B, the greater the influence on the magnetic characteristics, and the slight fluctuation in the amount of B causes the magnetic characteristics, particularly HcJ, to fluctuate (decrease rapidly).

特許文献1に記載の発明においては、B量が相対的に少ない特定の範囲に限定されているため、前記の通り、使用原料や製造過程に起因するB量の僅かな変動によりHcJが大きく変動(急激に低下)するという問題がある。また、特許文献1においては、従来と異なる新たな組成のR−T−B系合金を製造する必要があるため、合金の溶解および鋳造条件、粉砕条件、焼結条件、熱処理条件などの最適条件を全て一から見つけ出す必要があり、また、それらの各条件が現状の製造条件と異なる場合は、新たなR−T−B系合金を製造するたびに各設備の諸条件を変更する必要があるなど、製造に際して工数およびコストの増加を招くという問題がある。 In the invention described in Patent Document 1, since the amount of B is limited to a specific range that is relatively small, as described above, H cJ is increased due to slight fluctuations in the amount of B caused by the raw materials used and the manufacturing process. There is a problem that it fluctuates (decreases rapidly). Further, in Patent Document 1, since it is necessary to manufacture an RTB-based alloy having a new composition different from the conventional one, optimum conditions such as melting and casting conditions of the alloy, pulverizing conditions, sintering conditions, heat treatment conditions, etc. It is necessary to find all of these from scratch, and when each of these conditions is different from the current production conditions, it is necessary to change the conditions of each equipment each time a new R-T-B alloy is produced. There is a problem that man-hours and costs are increased during the production.

さらに、特許文献1によれば従来に比べHcJの高いR−T−B系焼結磁石が得られるものの、電気自動車用モータやハイブリッド自動車用モータなどに使用する場合に要求される高いHcJを満足するためにはDyの使用は不可欠である。従って、Dyの使用量を削減するためには特許文献2に開示されるようなR−T−B系焼結磁石の表面から重希土類元素を供給し、内部に拡散させる方法などを適用せざるを得ない。 Further, according to Patent Document 1, although an RTB -based sintered magnet having a higher H cJ than that of the conventional one can be obtained, a high H cJ required for use in an electric vehicle motor, a hybrid vehicle motor, or the like. The use of Dy is indispensable to satisfy the above. Therefore, in order to reduce the amount of Dy used, a method of supplying heavy rare earth elements from the surface of an RTB-based sintered magnet as disclosed in Patent Document 2 and diffusing it inside must be applied. I do not get.

しかし、特許文献1のR−T−B系希土類焼結磁石に特許文献2に開示されるような方法を適用すると角形比H/HcJ(以下、単に「H/HcJ」という。HはJ[磁化の大きさ]−H[磁界の強さ]曲線の第2象限において、JがJ[残留磁化=B]の値に対して一定の割合の値になる位置のHの値。R−T−B系焼結磁石においては一定の割合の値として0.9×J[0.9×B]が用いられることが多い。)が大幅に低下するという問題があった。 However, when the method disclosed in Patent Document 2 is applied to the R-T-B rare earth sintered magnet of Patent Document 1, the squareness ratio H k / H cJ (hereinafter simply referred to as “H k / H cJ ”). H k is a position at which J becomes a constant value with respect to the value of J r [residual magnetization = B r ] in the second quadrant of the J [magnetization magnitude] -H [magnetic field strength] curve. The value of H. In R-T-B based sintered magnets, 0.9 × J r [0.9 × B r ] is often used as a constant ratio value). was there.

また、特許文献3によればDy濃度を高くすることなく高い保磁力が得られるものの、そもそもR−T−B系合金に含有されるDy量が非常に多く(R−T−B系合金中に4〜10質量%)、重希土類元素RHをできるだけ使用することなくBを低下させずにHcJを向上させるというユーザーの要求を満足することができない。 Further, according to Patent Document 3, although a high coercive force can be obtained without increasing the Dy concentration, the amount of Dy contained in the RTB-based alloy is extremely large in the first place (in the RTB-based alloy). 4 to 10 wt%), it can not satisfy the user's request of improving H cJ without lowering the no B r using only possible heavy rare-earth element RH.

さらに、特許文献3では高融点化合物としてAl、Ga、Mg、Nb、Si、Ti、Zrからなる群から選ばれるいずれか1つの酸化物、ホウ化物、炭化物、窒化物、又はケイ化物が用いられているが、それらの化合物に含まれる酸素、ホウ素、炭素、窒素、ケイ素などは焼結後においても磁石中に残存し、得られる磁石の磁気特性を劣化させる可能性がある。   Furthermore, in Patent Document 3, any one oxide, boride, carbide, nitride, or silicide selected from the group consisting of Al, Ga, Mg, Nb, Si, Ti, and Zr is used as the high melting point compound. However, oxygen, boron, carbon, nitrogen, silicon, and the like contained in these compounds remain in the magnet even after sintering, and may deteriorate the magnetic properties of the obtained magnet.

本発明は、重希土類元素RHをできるだけ使用することなく、Bの低下を抑制しつつ高いHcJおよび高いH/HcJを有するR−T−B系焼結磁石を安定かつ安価で提供することを目的とする。 The present invention, without using as much as possible the heavy rare-earth element RH, providing a stable and inexpensive R-T-B based sintered magnet having a high H cJ and high H k / H cJ while suppressing a decrease in B r The purpose is to do.

本発明の態様1に係るR−T−B系焼結磁石の製造方法は、
R:27〜35質量%(Rは希土類元素のうち少なくとも一種でありNdを必ず含む)、
B:0.9〜1.0質量%、
Ga:0.15〜0.6質量%、
残部T(Tは遷移金属元素のうち少なくとも一種でありFeを必ず含む)
および不可避的不純物を含有する合金粉末を準備する工程と、
Tiの水素化物の粉末を準備する工程と、
合金粉末とTiの水素化物の粉末とを混合後の混合粉末100質量%に含有されるTiが0.3質量%以下となるように混合し混合粉末を準備する工程と、
混合粉末を成形し成形体を準備する工程と、
成形体を焼結しR−T−B系焼結磁石素材を準備する工程と、
R−T−B系焼結磁石素材に熱処理を施す工程と、
を含む。
The manufacturing method of the RTB system sintered magnet which concerns on aspect 1 of this invention is the following.
R: 27 to 35% by mass (R is at least one of rare earth elements and must contain Nd),
B: 0.9 to 1.0% by mass,
Ga: 0.15-0.6 mass%,
Remainder T (T is at least one of transition metal elements and must contain Fe)
And preparing an alloy powder containing inevitable impurities;
Preparing a powder of Ti hydride;
Mixing the alloy powder and Ti hydride powder so that Ti contained in 100% by mass of the mixed powder after mixing is 0.3% by mass or less to prepare a mixed powder;
Forming a mixed powder to prepare a molded body; and
A step of sintering the compact and preparing an R-T-B system sintered magnet material;
A step of heat-treating the RTB-based sintered magnet material;
including.

本発明の態様2に係るR−T−B系焼結磁石の製造方法は、態様1において、
R−T−B系焼結磁石素材に熱処理を施す工程に代えて、
Dyおよび/またはTbを含む金属、合金または化合物からなるRH拡散源を準備する工程と、
RH拡散源のDyおよび/またはTbをR−T−B系焼結磁石素材に供給、拡散させるRH供給拡散処理を施す工程と、
RH供給拡散処理工程後のR−T−B系焼結磁石素材に熱処理を施す工程と、
を含むことを特徴とする。
The manufacturing method of the RTB system sintered magnet which concerns on aspect 2 of this invention is the aspect 1,
In place of the step of heat-treating the RTB-based sintered magnet material,
Providing an RH diffusion source comprising a metal, alloy or compound containing Dy and / or Tb;
Supplying RH diffusion source Dy and / or Tb to the RTB-based sintered magnet material, and performing an RH supply diffusion treatment;
A step of heat-treating the RTB-based sintered magnet material after the RH supply diffusion treatment step;
It is characterized by including.

本発明の態様3に係るR−T−B系焼結磁石の製造方法は、態様1または2において、B:0.91〜1.0質量%であることを特徴とする。   In the aspect 1 or 2, the manufacturing method of the RTB system sintered magnet which concerns on aspect 3 of this invention is B: 0.91-1.0 mass%, It is characterized by the above-mentioned.

本発明の態様4に係るR−T−B系焼結磁石の製造方法は、態様1から3のいずれかにおいて、
R−T−B系焼結磁石が、
14B化合物(Rは希土類元素の少なくとも一種でありNdを必ず含む、Tは遷移金属元素のうち少なくとも一種でありFeを必ず含む)と、
13M化合物(Rは希土類元素のうち少なくとも一種でありNdを必ず含む、Tは遷移金属元素のうち少なくとも一種でありFeを必ず含む、MはGa、Al、CuおよびSiのうち少なくとも一種でありGaを必ず含む)と、
Tiの硼化物と、
が共存する組織を有する。
In any one of the aspects 1 to 3, the manufacturing method of the RTB-based sintered magnet according to the aspect 4 of the present invention includes:
R-T-B system sintered magnet
An R 2 T 14 B compound (R is at least one rare earth element and always contains Nd, T is at least one transition metal element and always contains Fe),
R 6 T 13 M compound (R is at least one rare earth element and always contains Nd, T is at least one transition metal element and always contains Fe, M is at least one of Ga, Al, Cu and Si) Is a type and must contain Ga)
Ti boride,
Have a coexisting organization.

本発明の態様5に係るR−T−B系焼結磁石の製造方法は、態様4において、
R−T−B系焼結磁石の任意の断面におけるR13M化合物の面積比率が1%以上である。
The manufacturing method of the RTB system sintered magnet which concerns on aspect 5 of this invention is the aspect 4,
The area ratio of the R 6 T 13 M compound in an arbitrary cross section of the RTB-based sintered magnet is 1% or more.

本発明の態様6に係るR−T−B系焼結磁石の製造方法は、態様5において、
R−T−B系焼結磁石の任意の断面におけるR13M化合物の面積比率が2%以上である。
The manufacturing method of the RTB system sintered magnet which concerns on aspect 6 of this invention is the aspect 5,
The area ratio of the R 6 T 13 M compound in an arbitrary cross section of the RTB-based sintered magnet is 2% or more.

本発明によれば、重希土類元素RHをできるだけ使用することなく、Bの低下を抑制しつつ高いHcJおよび高いH/HcJを有するR−T−B系焼結磁石を安定かつ安価で提供することができる。 According to the present invention, without using as much as possible the heavy rare-earth element RH, stable and inexpensive R-T-B based sintered magnet having a high H cJ and high H k / H cJ while suppressing a decrease in B r Can be offered at.

実施例3のR−T−B系焼結磁石のTi量とHcJとの関係を示すグラフである。6 is a graph showing the relationship between the Ti content of the RTB -based sintered magnet of Example 3 and HcJ . 実施例3のR−T−B系焼結磁石のTi量とBとの関係を示すグラフである。It is a graph showing the relationship between the Ti content and the B r of the R-T-B based sintered magnet of Example 3. 実施例3のR−T−B系焼結磁石のTi量とHとの関係を示すグラフである。It is a graph showing the relationship between the Ti content and H k R-T-B based sintered magnet of Example 3. 実施例3のR−T−B系焼結磁石のTi量とH/HcJとの関係を示すグラフである。It is a graph showing the relationship between the Ti content and the H k / H cJ of the R-T-B-based sintered magnet of Example 3. 実施例4のR−T−B系焼結磁石のTi量とHcJとの関係を示すグラフである。It is a graph which shows the relationship between Ti amount of the RTB system sintered magnet of Example 4, and HcJ . 実施例5のR−T−B系焼結磁石のFE−TEMの組織観察結果を示す写真である。6 is a photograph showing a FE-TEM structure observation result of an RTB-based sintered magnet of Example 5. FIG. 図6の部位aの電子線回折の結晶構造を特徴づける回折図形を示す写真である。It is a photograph which shows the diffraction pattern characterizing the crystal structure of the electron beam diffraction of the site | part a of FIG. 図6の部位bの電子線回折の結晶構造を特徴づける回折図形を示す写真である。It is a photograph which shows the diffraction pattern characterizing the crystal structure of the electron beam diffraction of the site | part b of FIG. 図6の部位cの電子線回折の結晶構造を特徴づける回折図形を示す写真である。It is a photograph which shows the diffraction pattern characterizing the crystal structure of the electron beam diffraction of the site | part c of FIG. TiBのX線回折結果を示すグラフである。Is a graph showing the X-ray diffraction pattern of TiB 2. NdFe13Ga合金のX線回折結果を示すグラフである。It is a graph showing the X-ray diffraction pattern of Nd 6 Fe 13 Ga alloy.

本発明は従来のR−T−B系焼結磁石とほぼ同様の組成(R、B、GaおよびFeなどを含み特許文献1の焼結磁石に比べB量が高い[0.9〜1.0質量%]組成)の合金粉末にTiの水素化物の粉末(以下、「Ti水素化物粉末」という)を所定量添加することを特徴とする。これによって、重希土類元素RHをできるだけ使用することなく、Bの低下を抑制しつつ高いHcJおよび高いH/HcJを有するR−T−B系焼結磁石を提供することができる。 The present invention has almost the same composition as a conventional RTB-based sintered magnet (including R, B, Ga, Fe and the like, and has a higher B content than the sintered magnet of Patent Document 1 [0.9 to 1. A predetermined amount of Ti hydride powder (hereinafter referred to as “Ti hydride powder”) is added to the alloy powder of 0 mass%] composition). Thereby, it is possible to provide a R-T-B based sintered magnet having no, while suppressing a decrease in B r high H cJ and high H k / H cJ be used as much as possible the heavy rare-earth element RH.

本発明によるR−T−B系焼結磁石がBの低下を抑制しつつ高いHcJおよび高いH/HcJを有する理由は定かではないが、Ti水素化物粉末の添加によって、焼結および/または熱処理において、R13M化合物(代表的にはNdFe13Ga化合物)と、Tiの硼化物(代表的にはTiB化合物)が生成されることが起因していると考えられる。 Although the reason is not clear with the R-T-B based sintered magnet is high while suppressing the decrease in B r H cJ and high H k / H cJ according to the invention, the addition of Ti hydride powder, sintering And / or heat treatment is caused by the generation of R 6 T 13 M compound (typically Nd 6 Fe 13 Ga compound) and Ti boride (typically TiB 2 compound). Conceivable.

本発明によれば、従来のR−T−B系焼結磁石とほぼ同様の組成の合金粉末を用いるため、B量の僅かな変動によりHcJが大きく変動(急激に低下)することがない。また、新たな合金、新たな工程などが必要とならず、基本的に既存の製造条件をそのまま適用することができる。従って、特許文献1の焼結磁石と同等以上の高いHcJを有する焼結磁石を特許文献1よりも安定かつ安価で提供することが可能となる。 According to the present invention, since alloy powder having a composition almost the same as that of a conventional RTB -based sintered magnet is used, HcJ does not fluctuate greatly (abruptly decreases) due to slight fluctuations in the amount of B. . Further, no new alloy or new process is required, and the existing manufacturing conditions can be basically applied as they are. Therefore, it becomes possible to provide a sintered magnet having a high HcJ equivalent to or higher than that of the sintered magnet of Patent Document 1 more stably and inexpensively than Patent Document 1.

また、本発明によるR−T−B系焼結磁石は、RH供給拡散処理によるH/HcJの低下を抑制することができる。この理由も定かではないが、前記と同様に、Ti水素化物粉末の添加によって、焼結および/または熱処理において、R13M化合物と、Tiの硼化物が生成されることに起因していると考えられる。 In addition, the RTB -based sintered magnet according to the present invention can suppress a decrease in H k / H cJ due to the RH supply diffusion treatment. Although the reason for this is not clear, as described above, the addition of Ti hydride powder results in the formation of R 6 T 13 M compound and Ti boride during sintering and / or heat treatment. It is thought that there is.

一方、前記特許文献3においては、高融点化合物(Al、Ga、Mg、Nb、Si、Ti、Zrからなる群から選ばれるいずれか1つの酸化物、ホウ化物、炭化物、窒化物、又はケイ化物)に含まれる酸素、ホウ素、炭素、窒素、ケイ素などが焼結後においても磁石中に残存し、得られる磁石の磁気特性を劣化させる可能性があるが、本発明にて使用するTi水素化物粉末は、焼結工程においてTiとH(水素)とに分解し水素は磁石から焼結炉内に放出され、最終的に焼結炉外へ排出される。従って、磁気特性を劣化させる可能性がほとんどない。 On the other hand, in Patent Document 3, a high melting point compound (any one oxide, boride, carbide, nitride, or silicide selected from the group consisting of Al, Ga, Mg, Nb, Si, Ti, and Zr) is used. ), Oxygen, boron, carbon, nitrogen, silicon, etc. contained in the magnet may remain in the magnet even after sintering, and may deteriorate the magnetic properties of the obtained magnet. The powder is decomposed into Ti and H 2 (hydrogen) in the sintering process, and hydrogen is released from the magnet into the sintering furnace and finally discharged out of the sintering furnace. Therefore, there is almost no possibility of deteriorating the magnetic characteristics.

このように、本発明によれば、重希土類元素RHをできるだけ使用することなく、特許文献1の焼結磁石と同等以上の高いHcJを有し、かつBの低下を抑制しつつ高いH/HcJを有するR−T−B系焼結磁石を安定かつ安価で提供することができる。 Thus, according to the present invention, without using as much as possible the heavy rare-earth element RH has a sintered magnet and equal or higher H cJ of Patent Document 1, and high while suppressing the decrease in B r H An RTB -based sintered magnet having k 2 / H cJ can be provided stably and inexpensively.

以下、本発明について説明する。以下の説明において、前記特許文献2などのようにRH拡散源の重希土類元素RHをR−T−B系焼結磁石素材の表面に供給し、RHをR−T−B系焼結磁石素材の内部に拡散させることを「RH供給拡散処理」という。また、RH供給拡散処理を実施した後、RHの供給を行わずにRHをR−T−B系焼結磁石素材の内部に拡散させることを「RH拡散処理」という。さらに、焼結後のR−T−B系焼結磁石素材に施す熱処理並びにRH供給拡散処理後またはRH拡散処理後に施す熱処理を単に「熱処理」という。また、熱処理前のR−T−B系焼結磁石を「R−T−B系焼結磁石素材」といい、熱処理後のR−T−B系焼結磁石を「R−T−B系焼結磁石」という。   The present invention will be described below. In the following description, as described in Patent Document 2, the heavy rare earth element RH of the RH diffusion source is supplied to the surface of the R-T-B system sintered magnet material, and RH is supplied to the R-T-B system sintered magnet material. The process of diffusing inside is called “RH supply diffusion process”. In addition, the diffusion of RH into the RTB-based sintered magnet material without performing the supply of RH after the RH supply diffusion process is referred to as “RH diffusion process”. Furthermore, the heat treatment applied to the sintered RTB-based sintered magnet material and the heat treatment applied after the RH supply diffusion treatment or the RH diffusion treatment are simply referred to as “heat treatment”. Further, the RTB-based sintered magnet before the heat treatment is referred to as “RT-B-based sintered magnet material”, and the RTB-based sintered magnet after the heat treatment is referred to as the “RT-B-based sintered magnet”. It is called a “sintered magnet”.

[1]R−T−B系焼結磁石の製造方法
(1)合金粉末を準備する工程
合金粉末を準備する工程において、合金粉末の組成は以下の通りである。
R:27〜35質量%、
B:0.9〜1.0質量%、
Ga:0.15〜0.6質量%、
残部Tおよび不可避的不純物を含有する。
前記組成において、各元素の含有量が前記範囲の下限未満あるいは上限を超えるとBの低下を抑制しつつ高いHcJおよび高いH/HcJを有するR−T−B系焼結磁石を得ることができなくなる場合がある。Bは0.91〜1.0質量%がより好ましい。Gaは0.2〜0.6質量%が好ましく、0.3〜0.6質量%がより好ましく、0.4〜0.6質量%がさらに好ましく、0.4〜0.5質量%が最も好ましい。
[1] Manufacturing method of RTB-based sintered magnet (1) Step of preparing alloy powder In the step of preparing alloy powder, the composition of the alloy powder is as follows.
R: 27-35% by mass,
B: 0.9 to 1.0% by mass,
Ga: 0.15-0.6 mass%,
The balance T and inevitable impurities are contained.
In the composition, the R-T-B based sintered magnet content with high H cJ and high H k / H cJ while suppressing lowering of the lower limit less than or exceeds the upper limit B r of the range of each element You may not be able to get it. B is more preferably 0.91 to 1.0% by mass. Ga is preferably 0.2 to 0.6 mass%, more preferably 0.3 to 0.6 mass%, further preferably 0.4 to 0.6 mass%, and 0.4 to 0.5 mass%. Most preferred.

Rは希土類元素のうち少なくとも一種でありNdを必ず含む。Nd以外の希土類元素としてはPrがあげられる。さらに少量のDy、Tb、GdおよびHoのうち少なくとも一種を含有してもよい。Dy、Tb、GdおよびHoのうち少なくとも一種の含有量はR−T−B系焼結磁石全体の1.0質量%以下であることが好ましい。Bの一部はCで置換することができる。Tは遷移金属元素のうち少なくとも一種でありFeを必ず含む。Fe以外の遷移金属元素としてはCoがあげられる。さらに少量のV、Cr、Mn、Ni、Zr、Nb、Mo、Hf、Ta、Wなどを含有してもよい。   R is at least one kind of rare earth elements and necessarily contains Nd. Examples of rare earth elements other than Nd include Pr. Further, at least one of a small amount of Dy, Tb, Gd and Ho may be contained. The content of at least one of Dy, Tb, Gd, and Ho is preferably 1.0% by mass or less of the entire RTB-based sintered magnet. A part of B can be replaced by C. T is at least one of transition metal elements and must contain Fe. Examples of transition metal elements other than Fe include Co. Further, a small amount of V, Cr, Mn, Ni, Zr, Nb, Mo, Hf, Ta, W, or the like may be contained.

上記以外の元素としてCu、Alを含有してもよい。Cu、Alは磁気特性向上などを目的として積極的に添加してもよいし、使用原料や合金粉末の製造過程において不可避的に導入されるものを活用してもよい(不純物としてCu、Alを含有する原料を使用してもよい)。Cu、Alともにその含有量(積極的に添加する量と不可避的不純物として混入する量の合計)はそれぞれ0.5質量%以下であることが好ましい。   Cu and Al may be contained as an element other than the above. Cu and Al may be positively added for the purpose of improving magnetic properties, etc., or materials inevitably introduced in the manufacturing process of raw materials and alloy powders may be utilized (Cu and Al are used as impurities). You may use the raw material to contain). The contents of Cu and Al (the total amount added positively and the amount mixed as an inevitable impurity) are each preferably 0.5% by mass or less.

合金粉末を準備する工程は、前記組成となるように各元素の原料を秤量し、公知の製造方法により粉末となす。例えば、ストリップキャスティング法により合金を作製し、得られた合金を水素粉砕法により粗粉砕粉末となす。あるいは該粗粉砕粉末をジェットミルなどにより微粉砕し微粉砕粉末となす。合金粉末は粗粉砕粉末、微粉砕粉末のいずれであってもよい。   In the step of preparing the alloy powder, the raw materials of each element are weighed so as to have the above-described composition, and the powder is formed by a known manufacturing method. For example, an alloy is produced by a strip casting method, and the obtained alloy is made into a coarsely pulverized powder by a hydrogen pulverization method. Alternatively, the coarsely pulverized powder is finely pulverized by a jet mill or the like to obtain a finely pulverized powder. The alloy powder may be either a coarsely pulverized powder or a finely pulverized powder.

(2)Tiの水素化物の粉末を準備する工程
Ti水素化物粉末は市販のものを利用することができる。市販のTi水素化物粉末の粒径は、例えば気流分散式レーザー回折法による測定で得られる体積中心値であるD50で50μm程度である。Ti水素化物粉末は金属(Tiメタル)の状態に比べ非常に安定な物質であり、しかも、ジェットミルなどで粉砕することが可能であるため、市販のTi水素化物粉末をジェットミルなどにより微粉砕し微粉砕粉末(D50で5μm以下)となしても比較的安全に取り扱うことができるという利点を有する。
(2) Step of preparing a powder of Ti hydride A commercially available Ti hydride powder can be used. The particle size of the commercially available Ti hydride powder is about 50 μm at D50, which is a volume center value obtained by measurement by, for example, an air flow dispersion type laser diffraction method. Ti hydride powder is a very stable substance compared to the state of metal (Ti metal), and it can be pulverized with a jet mill or the like, so commercially available Ti hydride powder is finely pulverized with a jet mill or the like. However, even if it becomes finely pulverized powder (D50 or less at D50), it has an advantage that it can be handled relatively safely.

また、先述の通り、前記特許文献3においては、高融点化合物(Al、Ga、Mg、Nb、Si、Ti、Zrからなる群から選ばれるいずれか1つの酸化物、ホウ化物、炭化物、窒化物、又はケイ化物)に含まれる酸素、ホウ素、炭素、窒素、ケイ素などが焼結後においても磁石中に残存し、得られる磁石の磁気特性を劣化させる可能性があるが、本発明にて使用するTi水素化物粉末は、焼結工程においてTiとH(水素)とに分解し水素は磁石から焼結炉内に放出され、最終的に焼結炉外へ排出される。従って、磁気特性を劣化させる可能性がほとんどないという利点を有する。また、これによってR−T−B系焼結磁石の酸素含有量、炭素含有量、窒素含有量の増加を抑制することができ、例えば、酸素含有量2000ppm以下、炭素含有量1500ppm以下、窒素含有量1000ppm以下のR−T−B系焼結磁石を製造することができ、より一層磁気特性を向上させることができる。 Further, as described above, in Patent Document 3, a high melting point compound (any one oxide selected from the group consisting of Al, Ga, Mg, Nb, Si, Ti, Zr, boride, carbide, nitride) Oxygen, boron, carbon, nitrogen, silicon, etc. contained in the silicide) may remain in the magnet even after sintering, and may deteriorate the magnetic properties of the resulting magnet. The Ti hydride powder to be decomposed into Ti and H 2 (hydrogen) in the sintering process, and hydrogen is released from the magnet into the sintering furnace and finally discharged out of the sintering furnace. Therefore, there is an advantage that there is almost no possibility of deteriorating the magnetic characteristics. Further, this can suppress an increase in oxygen content, carbon content, and nitrogen content of the R-T-B system sintered magnet, for example, an oxygen content of 2000 ppm or less, a carbon content of 1500 ppm or less, and a nitrogen content. An RTB-based sintered magnet having an amount of 1000 ppm or less can be produced, and the magnetic properties can be further improved.

(3)混合粉末を準備する工程
前記によって準備した合金粉末とTi水素化物粉末は、混合後の混合粉末100質量%に含有されるTiが0.3質量%以下となるように混合し、混合粉末となす。混合後の混合粉末100質量%に含有されるTiが0.3質量%を超えるとBの低下を抑制しつつ高いHcJおよび高いH/HcJを有するR−T−B系焼結磁石を得ることができなくなる。Tiの混合量は0.05〜0.3質量%が好ましく、0.12〜0.3質量%がより好ましく、0.18〜0.3質量%がさらに好ましく、0.22〜0.3質量%が最も好ましい。混合は粗粉砕粉末からなる合金粉末と(未粉砕の)Ti水素化物粉末とを混合した後ジェットミルなどにより微粉砕することが好ましい。混合後に微粉砕することによってより均一に混合することができるとともに合金粉末およびTi水素化物粉末の微粉砕粉末からなる混合粉末を、従来と同様の工程で新たな工程を追加することなく準備することができる。もちろん合金粉末とTi水素化物粉末を別々に微粉砕した後公知の混合手段によって混合して混合粉末を準備してもよい。この場合、混合は乾式、湿式のいずれであってもよい。
(3) Step of preparing mixed powder The alloy powder and Ti hydride powder prepared as described above are mixed and mixed so that Ti contained in 100% by mass of the mixed powder after mixing is 0.3% by mass or less. Powder and eggplant. The R-T-B based sintered to Ti contained in the mixed powder 100 mass% after mixing has a high H cJ and high H k / H cJ while suppressing a decrease in B r exceeds 0.3 mass% A magnet cannot be obtained. The mixing amount of Ti is preferably 0.05 to 0.3% by mass, more preferably 0.12 to 0.3% by mass, further preferably 0.18 to 0.3% by mass, and 0.22 to 0.3%. Mass% is most preferred. The mixing is preferably performed by mixing an alloy powder made of coarsely pulverized powder and (unground) Ti hydride powder, and then finely pulverizing with a jet mill or the like. Prepare a mixed powder consisting of finely pulverized powder of alloy powder and Ti hydride powder by adding fine powder after mixing and without adding new processes in the same process as before. Can do. Of course, the alloy powder and Ti hydride powder may be separately pulverized and then mixed by a known mixing means to prepare a mixed powder. In this case, the mixing may be either dry or wet.

(4)成形体を準備する工程
前記混合粉末を成形し成形体となす。成形は公知の成形手段で行う。例えば、金型のキャビティー内に乾燥した合金粉末を供給し磁界中で成形する乾式成形法、あるいは金型のキャビティー内に合金粉末を含むスラリーを注入しスラリーの分散媒を排出しながら合金粉末を磁界中で成形する湿式成形法などを適用することができる。
(4) Step of preparing a formed body The mixed powder is formed into a formed body. Molding is performed by known molding means. For example, a dry molding method in which a dry alloy powder is supplied into a mold cavity and molded in a magnetic field, or a slurry containing the alloy powder is injected into a mold cavity and a slurry dispersion medium is discharged while the alloy is discharged. A wet molding method for molding powder in a magnetic field can be applied.

(5)R−T−B系焼結磁石素材を準備する工程
前記成形体を焼結しR−T−B系焼結磁石素材(焼結体)となす。焼結は公知の焼結手段で行う。例えば、焼結温度1000℃以上1180℃以下、焼結時間1時間から10時間程度、真空雰囲気中あるいは不活性ガス(ヘリウムやアルゴンなど)中で焼結する方法などを適用することができる。
(5) Step of preparing an RTB-based sintered magnet material The sintered compact is sintered to form an RTB-based sintered magnet material (sintered body). Sintering is performed by a known sintering means. For example, a sintering temperature of 1000 ° C. to 1180 ° C., a sintering time of about 1 to 10 hours, a method of sintering in a vacuum atmosphere or an inert gas (such as helium or argon) can be applied.

(6)R−T−B系焼結磁石素材に熱処理を施す工程
前記R−T−B系焼結磁石素材に熱処理を施しR−T−B系焼結磁石となす。熱処理の温度、時間、雰囲気などは公知の条件を適用することができる。例えば、比較的低い温度(400℃以上600℃以下)のみでの熱処理(一段熱処理)、あるいは比較的高い温度(700℃以上焼結温度以下(例えば1050℃以下))で熱処理を行った後比較的低い温度(400℃以上600℃以下)で熱処理する(二段熱処理)などの条件を採用することができる。好ましい条件としては、730℃以上1020℃以下で5分から500分程度の熱処理を施し、冷却後(室温または440℃以上550℃以下まで冷却後)、さらに440℃以上550℃以下で5分から500分程度熱処理することが挙げられる。熱処理雰囲気は、真空雰囲気あるいは不活性ガス(ヘリウムやアルゴンなど)で行うことが好ましい。
(6) The process which heat-processes to a RTB system sintered magnet raw material The said RTB system sintered magnet raw material is heat-processed, and it is set as an RTB system sintered magnet. Known conditions can be applied to the heat treatment temperature, time, atmosphere, and the like. For example, a heat treatment (one-step heat treatment) only at a relatively low temperature (400 ° C. or more and 600 ° C. or less) or a heat treatment at a relatively high temperature (700 ° C. or more and a sintering temperature or less (eg, 1050 ° C. or less)) Conditions such as heat treatment (two-stage heat treatment) at a low temperature (400 ° C. or more and 600 ° C. or less) can be employed. As preferable conditions, heat treatment is performed at 730 ° C. or more and 1020 ° C. or less for about 5 minutes to 500 minutes, and after cooling (room temperature or after cooling to 440 ° C. or more and 550 ° C. or less), further at 440 ° C. or more and 550 ° C. or less for 5 minutes to 500 minutes. Heat treatment to some extent is mentioned. The heat treatment atmosphere is preferably a vacuum atmosphere or an inert gas (such as helium or argon).

R−T−B系焼結磁石のHcJをさらに向上させるためにRH供給拡散処理を施す場合は、前記R−T−B系焼結磁石素材に熱処理を施す工程に代えて以下の工程を実施する。 When the RH supply diffusion treatment is performed to further improve the HcJ of the R-T-B system sintered magnet, the following process is performed instead of the process of heat-treating the R-T-B system sintered magnet material. carry out.

(7)RH拡散源を準備する工程
Dyおよび/またはTbを含む金属、合金または化合物からなるRH拡散源を準備する工程は、前記特許文献2などの公知のRH供給拡散処理に開示される工程を適用することができる。
(7) Step of Preparing RH Diffusion Source The step of preparing an RH diffusion source made of a metal, alloy or compound containing Dy and / or Tb is disclosed in a known RH supply diffusion process such as Patent Document 2 Can be applied.

(8)RH供給拡散処理を施す工程
RH拡散源のDyおよび/またはTbをR−T−B系焼結磁石素材に供給、拡散させるRH供給拡散処理を施す工程は、前記特許文献2などの公知のRH供給拡散処理に開示される工程を適用することができる。なお、RH供給拡散処理は、特許文献2のように、RH拡散源から重希土類元素RHをR−T−B系焼結磁石素材の表面に供給しつつ内部に拡散させる方法でもよいし、RHを含む金属、合金、化合物などを成膜(乾式法または湿式法)や塗布により予めR−T−B系焼結磁石素材の表面に存在させた後、熱処理によってR−T−B系焼結磁石素材内部に拡散させる方法でもよい。
(8) Step of performing RH supply diffusion treatment The step of performing RH supply diffusion treatment of supplying and diffusing Dy and / or Tb of the RH diffusion source to the R-T-B system sintered magnet material is described in Patent Document 2 above. A process disclosed in a known RH supply diffusion process can be applied. The RH supply / diffusion treatment may be a method in which heavy rare earth element RH is supplied from the RH diffusion source to the surface of the R-T-B system sintered magnet material and diffused inside as in Patent Document 2, or RH A metal, alloy, compound, etc., containing the R-T-B system is preliminarily present on the surface of the R-T-B system sintered magnet material by film formation (dry process or wet process) or coating, and then heat-treated. A method of diffusing inside the magnet material may also be used.

前記RH供給拡散処理によってR−T−B系焼結磁石素材内部に供給されたDyおよび/またはTbをさらに内部へ拡散させる目的でRH拡散処理を行ってもよい。RH拡散処理はRH供給拡散処理を実施した後、新たにRH拡散源からDyおよび/またはTbの供給を行わずに加熱を行う。例えば、RH供給拡散処理を実施した後、引き続きRH拡散処理を行う場合は、新たにRH供給源からDyおよび/またはTbが供給されない条件下で、好ましくは700℃以上1000℃以下、より好ましくは800℃以上950℃以下で実施する。あるいは、RH供給拡散処理を実施した後、R−T−B系焼結磁石素材のみを回収した場合は、当該R−T−B系焼結磁石素材に対して大気圧以下の真空または不活性ガス雰囲気中で、好ましくは700℃以上1000℃以下、より好ましくは800℃以上950℃以下で実施する。処理時間は例えば10分から24時間程度、より好ましくは1時間から6時間程度である。RH拡散処理によりR−T−B系焼結磁石素材内部においてDyおよび/またはTbの拡散が生じ、表層付近に供給されたDyおよび/またはTbがさらに奥深くに拡散し、磁石全体としてHcJを高めることができる。 RH diffusion treatment may be performed for the purpose of further diffusing Dy and / or Tb supplied to the inside of the RTB-based sintered magnet material by the RH supply diffusion treatment. In the RH diffusion process, after the RH supply diffusion process is performed, heating is performed without newly supplying Dy and / or Tb from the RH diffusion source. For example, when the RH diffusion process is performed after the RH supply diffusion process is performed, preferably 700 ° C. or more and 1000 ° C. or less, more preferably, under the condition that Dy and / or Tb is not newly supplied from the RH supply source. It implements at 800 degreeC or more and 950 degrees C or less. Alternatively, when only the R-T-B system sintered magnet material is recovered after the RH supply diffusion treatment, the vacuum or inertness below atmospheric pressure with respect to the R-T-B system sintered magnet material In a gas atmosphere, it is preferably performed at 700 ° C. or higher and 1000 ° C. or lower, more preferably 800 ° C. or higher and 950 ° C. or lower. The treatment time is, for example, about 10 minutes to 24 hours, more preferably about 1 hour to 6 hours. The diffusion of Dy and / or Tb occurs inside the RTB-based sintered magnet material by the RH diffusion treatment, and Dy and / or Tb supplied near the surface layer is further diffused deeply, and H cJ is reduced as a whole magnet. Can be increased.

(9)R−T−B系焼結磁石素材に熱処理を施す工程
RH供給拡散処理工程後(RH供給拡散処理工程後にRH拡散工程を行ってもよい)のR−T−B系焼結磁石素材に熱処理を施しR−T−B系焼結磁石となす。この熱処理は上記(6)の熱処理と同様である。
(9) Process for heat-treating R-T-B system sintered magnet material R-T-B system sintered magnet after RH supply diffusion process (the RH diffusion process may be performed after RH supply diffusion process) The material is heat treated to form an R-T-B sintered magnet. This heat treatment is the same as the heat treatment (6).

[2]R−T−B系焼結磁石
前記の通り、Ti水素化物粉末の添加によって、焼結および/または熱処理(熱処理を施す工程に代えてRH供給拡散処理および熱処理を施す場合も含む)において、R13M化合物(代表的にはNdFe13Ga化合物)と、Tiの硼化物(代表的にはTiB化合物)が生成される。すなわち、本発明のR−T−B系焼結磁石の製造方法によって得られるR−T−B系焼結磁石は、R14B化合物と、R13M化合物と、Tiの硼化物と、が共存する組織を有する。
[2] R-T-B system sintered magnet As described above, by adding Ti hydride powder, sintering and / or heat treatment (including RH supply diffusion treatment and heat treatment instead of heat treatment step) , An R 6 T 13 M compound (typically an Nd 6 Fe 13 Ga compound) and a boride of Ti (typically a TiB 2 compound) are produced. That is, the RTB-based sintered magnet obtained by the method for manufacturing an RTB-based sintered magnet of the present invention includes an R 2 T 14 B compound, an R 6 T 13 M compound, and a Ti boron. Have a coexisting organization.

14B化合物において、Rは希土類元素のうち少なくとも一種でありNdを必ず含む。Nd以外の希土類元素としてはPrがあげられる。さらに少量のDy、Tb、GdおよびHoのうち少なくとも一種を含有してもよい。Tは遷移金属元素のうち少なくとも一種でありFeを必ず含む。Fe以外の遷移金属元素としてはCoがあげられる。Bの一部はCで置換することができる。 In the R 2 T 14 B compound, R is at least one of rare earth elements and necessarily contains Nd. Examples of rare earth elements other than Nd include Pr. Further, at least one of a small amount of Dy, Tb, Gd and Ho may be contained. T is at least one of transition metal elements and must contain Fe. Examples of transition metal elements other than Fe include Co. A part of B can be replaced by C.

13M化合物において、Rは希土類元素のうち少なくとも一種でありNdを必ず含む。Nd以外の希土類元素としてはPrがあげられる。さらに少量のDy、Tb、GdおよびHoのうち少なくとも一種を含有してもよい。Tは遷移金属元素のうち少なくとも一種でありFeを必ず含む。Fe以外の遷移金属元素としてはCoがあげられる。Mは主としてGaである。R13M化合物は代表的にはNdFe13Ga化合物である。R13M化合物はLaCo11Ga型結晶構造を有する。R13M化合物はその状態によってはR13−α1+α化合物(αは典型的には2以下)になっている場合がある。なお、MとしてGaのみを用いた場合においてもR−T−B系焼結磁石中にAl、CuおよびSiが含有される場合R13−α(Ga1−x−y−zCuAlSi1+αになっている場合がある。 In the R 6 T 13 M compound, R is at least one of rare earth elements and necessarily contains Nd. Examples of rare earth elements other than Nd include Pr. Further, at least one of a small amount of Dy, Tb, Gd and Ho may be contained. T is at least one of transition metal elements and must contain Fe. Examples of transition metal elements other than Fe include Co. M is mainly Ga. The R 6 T 13 M compound is typically an Nd 6 Fe 13 Ga compound. The R 6 T 13 M compound has a La 6 Co 11 Ga 3 type crystal structure. The R 6 T 13 M compound may be an R 6 T 13-α M 1 + α compound (α is typically 2 or less) depending on the state. In addition, even when only Ga is used as M, in the case where Al, Cu, and Si are contained in the RTB-based sintered magnet, R 6 T 13-α (Ga 1−x−yz Cu x Al y Si z ) 1 + α .

本発明のR−T−B系焼結磁石の製造方法によって得られるR−T−B系焼結磁石には、その任意の断面においてR13M化合物が面積比率で1%以上含まれている。さらに、より高いHcJを有する場合はR13M化合物が面積比率で2%以上含まれている。なお、R13M化合物の面積比率は、後述する実施例に示す通り、R−T−B系焼結磁石の任意の断面のFE−SEM(電界放射型走査電子顕微鏡)による反射電子像(BSE像)の画像を市販の画像解析ソフトにより解析することにより求めることができる。なお、本明細書において「任意の断面」とは、例えば、中心部を含む断面のように本発明に係るR−T−B系焼結磁石の典型的な特徴が示されるという合理的期待の基に選択される任意の断面を意味し、本発明の特徴が示されないように恣意的に選択した断面を含むものではない。 The RTB-based sintered magnet obtained by the method for manufacturing an RTB-based sintered magnet of the present invention includes an R 6 T 13 M compound in an area ratio of 1% or more in an arbitrary cross section. ing. Furthermore, when it has higher H cJ , the R 6 T 13 M compound is contained in an area ratio of 2% or more. The area ratio of R 6 T 13 M compound, as shown in Examples described later, the reflection electron image by an arbitrary cross section of FE-SEM of the R-T-B-based sintered magnet (field emission scanning electron microscope) The (BSE image) image can be obtained by analyzing with a commercially available image analysis software. In the present specification, “arbitrary cross section” means, for example, a reasonable expectation that typical characteristics of the RTB-based sintered magnet according to the present invention are shown as a cross section including the central portion. It means any cross section selected on the basis, and does not include a cross section arbitrarily selected such that the features of the present invention are not shown.

Tiの硼化物は代表的にはTiB化合物である。TiB化合物とともにTiB化合物が存在する場合もある。なお、前記特許文献3の実施例には、高融点化合物がTiCであるとき、TiCが焼結中にR−T−B系希土類永久磁石の材料中のBと反応してTiBが生成し粒界に存在することが記載されている。しかしながら、TiCから分離したC(炭素)は焼結後においても磁石中に残存し、得られる磁石の磁気特性を劣化させる可能性がある。また、特許文献3の実施例においてはGa含有量が0.08質量%であるため、前記R13M化合物がほとんど生成されていないと考えられる。従って、特許文献3においては、本発明のような、R14B化合物と、R13M化合物と、Tiの硼化物と、が共存する組織を有するR−T−B系焼結磁石は得られていないと考えられる。 Ti borides are typically TiB 2 compounds. A TiB compound may be present together with the TiB 2 compound. In the example of Patent Document 3, when the high melting point compound is TiC, TiC reacts with B in the material of the RTB-based rare earth permanent magnet during the sintering to produce TiB 2. It is described that it exists at the grain boundary. However, C (carbon) separated from TiC remains in the magnet even after sintering, and may deteriorate the magnetic properties of the obtained magnet. Further, in Examples of Patent Document 3 for Ga content is 0.08 mass%, considered the R 6 T 13 M compound is hardly generated. Therefore, in Patent Document 3, an R-T-B system sintering having a structure in which an R 2 T 14 B compound, an R 6 T 13 M compound, and a boride of Ti coexist as in the present invention. It seems that no magnet was obtained.

本発明を実施例によりさらに詳細に説明するが、本発明はそれらに限定されるものではない。   The present invention will be described in more detail with reference to examples, but the present invention is not limited thereto.

実施例1
表1のA、Bに示す合金組成となるように各元素の原料を秤量し、ストリップキャスティング法により合金を作製した。得られた各合金を水素粉砕法により粗粉砕し粗粉砕粉末を得た。得られた合金Aの粗粉砕粉末に混合後の混合粉末の組成が表2の試料No.2〜6に示す組成となるようにTiHを混合し混合粉末(粗粉砕粉末の混合粉末)を準備した。なお、試料No.1は合金Aの粗粉砕粉末、試料No.7は合金Bの粗粉砕粉末であり、いずれもTiHは混合されていない。前記試料No.2〜6の混合粉末および試料No.1、7の粗粉砕粉末をそれぞれジェットミルにより微粉砕し、粒径D50(気流分散式レーザー回折法による測定で得られる体積中心値、以下同様)が4.2μmの試料No.2〜6の混合粉末(微粉砕粉末の混合粉末)および試料No.1、7の微粉砕粉末を準備した。
Example 1
The raw materials of each element were weighed so as to have the alloy compositions shown in A and B of Table 1, and an alloy was produced by a strip casting method. Each obtained alloy was coarsely pulverized by a hydrogen pulverization method to obtain a coarsely pulverized powder. The composition of the mixed powder after mixing with the coarsely pulverized powder of the alloy A was the sample No. Mixing the mixed powder with TiH 2 so as to have the composition shown in 2-6 was prepared (mixed powder of coarsely pulverized powder). Sample No. 1 is a coarsely pulverized powder of alloy A; 7 is a coarsely pulverized powder of Alloy B, and none of them is mixed with TiH 2 . Sample No. 2-6 mixed powder and sample no. The coarsely pulverized powders Nos. 1 and 7 were each finely pulverized by a jet mill, and sample No. 1 having a particle diameter D50 (volume center value obtained by measurement by airflow dispersion type laser diffraction method, the same applies hereinafter) of 4.2 μm was obtained. 2-6 mixed powder (mixed powder of finely pulverized powder) and sample no. 1 and 7 finely pulverized powders were prepared.

Figure 0006094612
Figure 0006094612

Figure 0006094612
Figure 0006094612

試料No.2〜6の混合粉末および試料No.1、7の微粉砕粉末を直角磁界成形装置(横磁界成形装置)にて磁界強度0.8MA/m、圧力49MPa(0.5ton/cm)で厚み12mm×幅26mm×長さ55mm(幅方向が磁界印加方向)の成形体をそれぞれ2個成形した後、得られた成形体を1030℃で4時間焼結し、試料No.2〜6の混合粉末および試料No.1、7の微粉砕粉末に基づくR−T−B系焼結磁石素材(以下、「試料No.**のR−T−B系焼結磁石素材」という、以下同様)をそれぞれ2個準備した。 Sample No. 2-6 mixed powder and sample no. The finely pulverized powders 1 and 7 were measured with a perpendicular magnetic field molding device (transverse magnetic field molding device) at a magnetic field strength of 0.8 MA / m, a pressure of 49 MPa (0.5 ton / cm 2 ), a thickness of 12 mm × width 26 mm × length 55 mm (width). After molding two molded bodies each having a magnetic field application direction), the obtained molded bodies were sintered at 1030 ° C. for 4 hours. 2-6 mixed powder and sample no. Two RTB-based sintered magnet materials (hereinafter referred to as “RTB-based sintered magnet material of sample No. **”) based on the finely pulverized powders 1 and 7 were prepared. did.

試料No.1〜7のR−T−B系焼結磁石の磁気特性を測定するため、試料No.1〜7のR−T−B系焼結磁石素材のそれぞれ2個のうち1個に、真空雰囲気下、880℃の温度で3時間の熱処理を施し、冷却後、さらに500℃で2時間、真空雰囲気下で熱処理を行った。得られた試料No.1〜7のR−T−B系焼結磁石素材に基づくR−T−B系焼結磁石(以下、「試料No.**のR−T−B系焼結磁石」という、以下同様)をそれぞれ切断および研削し厚み7.0mm×幅7.0mm×長さ7.0mmに加工した。加工後の試料No.1〜7のR−T−B系焼結磁石の磁気特性をB−Hトレーサによって測定した。測定結果を表3に示す。なお、H/HcJにおいて、HはJ(磁化の大きさ)−H(磁界の強さ)曲線の第2象限において、Jが0.9×J(Jは残留磁化、J=B)の値になる位置のHの値(以下同様)である。 Sample No. In order to measure the magnetic properties of the R-T-B system sintered magnets Nos. 1 to 7, sample Nos. 1 to 7 of each of the R-T-B system sintered magnet materials is subjected to a heat treatment for 3 hours at a temperature of 880 ° C. in a vacuum atmosphere, and after cooling, further at 500 ° C. for 2 hours, Heat treatment was performed in a vacuum atmosphere. The obtained sample No. RTB-based sintered magnets based on 1-7 RTB-based sintered magnet materials (hereinafter referred to as “Sample No. ** RTB-based sintered magnets”). Were cut and ground, and processed into a thickness of 7.0 mm × width of 7.0 mm × length of 7.0 mm. Sample No. after processing The magnetic properties of 1 to 7 RTB-based sintered magnets were measured with a BH tracer. Table 3 shows the measurement results. In H k / H cJ , H k is the second quadrant of the J (magnetization magnitude) -H (magnetic field strength) curve, and J is 0.9 × J r (J r is the residual magnetization, J The value of H at the position where r = B r ) (hereinafter the same).

Figure 0006094612
Figure 0006094612

表3の通り、合金粉末にTiHを混合、成形、焼結および熱処理したR−T−B系焼結磁石(試料No.2〜6、本発明例)はTiH粉末を混合しないもの(試料No.1、比較例)に比べ、HcJが大きく向上することが分かる。また、混合粉末100質量%に含有されるTi量が0.22〜0.27の範囲で特にHcJが向上していることが分かる。さらに、TiHの添加によりBは若干低下するもののHcJの向上効果に対するBの低下はそれほど大きくない。すなわち、Bの低下を抑制しつつHcJが向上している。さらに、H/HcJはいずれの試料も0.98という高い値を有している。なお、試料No.7は特許文献1の再現例であり、他の試料に比べB量が低い(0.88質量%)。表3の通り、RH供給拡散処理前の試料No.7のR−T−B系焼結磁石のHcJおよびBは本発明とほぼ同じであるが前記の通り、特許文献1によるR−T−B系焼結磁石においては、使用原料や製造過程に起因するB量の僅かな変動によりHcJが大きく変動(急激に低下)するという問題がある。 As shown in Table 3, RTB-based sintered magnets (sample Nos. 2 to 6, examples of the present invention) obtained by mixing, forming, sintering, and heat-treating TiH 2 to alloy powders do not mix TiH 2 powder ( It can be seen that HcJ is greatly improved as compared with Sample No. 1, Comparative Example). It can also be seen that HcJ is particularly improved when the amount of Ti contained in 100% by mass of the mixed powder is in the range of 0.22 to 0.27 . Furthermore, B r is not very large decrease in B r for enhancing the effect of H cJ although slightly lowered by the addition of TiH 2. That, H cJ is improved while suppressing a decrease in B r. Furthermore, H k / H cJ has a high value of 0.98 for all samples. Sample No. 7 is a reproduction example of Patent Document 1, and the amount of B is lower than other samples (0.88% by mass). As shown in Table 3, the sample No. before the RH supply diffusion treatment. 7 of the R-T-B based sintered magnet H cJ and B r is approximately is the same the as the present invention, in the R-T-B based sintered magnet according to Patent Document 1, using raw materials and manufacturing There is a problem that HcJ largely fluctuates (abruptly decreases) due to a slight fluctuation of the B amount caused by the process.

次に、試料No.1〜7のR−T−B系焼結磁石素材の2個のうち1個をそれぞれ切断および研削し厚み7.4mm×幅7.4mm×長さ7.4mmに加工した。加工後の試料No.1〜7のR−T−B系焼結磁石素材のそれぞれについて、Mo板上に、板状のDyメタルからなるRH拡散源、保持部材、R−T−B系焼結磁石素材、保持部材、板状のDyメタルからなるRH拡散源の順で積層することにより、7種類の積層体を準備した。なお、保持部材にはMo製の平織り金網を用いた。前記7種類の積層体を熱処理炉内へ装入し、圧力0.1Paの真空雰囲気下、880℃の温度で5.5時間RH供給拡散処理を行った。その後炉内を冷却し、試料No.1〜7のR−T−B系焼結磁石素材のみを取り出した。RH供給拡散処理後の試料No.1〜7のR−T−B系焼結磁石素材を、真空雰囲気下、880℃の温度で5時間RH拡散処理を行い、冷却後、500℃で2時間、真空雰囲気下で熱処理を行い、No.1〜7のR−T−B系焼結磁石を得た。得られた試料No.1〜7のR−T−B系焼結磁石の全面を0.2mmずつ研削し厚み7.0mm×幅7.0mm×長さ7.0mmに加工した。加工後の試料No.1〜7のR−T−B系焼結磁石の磁気特性をパルスB−Hトレーサによって測定した。測定結果を表4に示す。   Next, sample No. One of two R-T-B sintered magnet materials 1 to 7 was cut and ground, and processed into a thickness of 7.4 mm, a width of 7.4 mm, and a length of 7.4 mm. Sample No. after processing For each of the 1-7 RTB-based sintered magnet materials, on the Mo plate, an RH diffusion source made of plate-like Dy metal, a holding member, an RTB-based sintered magnet material, and a holding member Seven types of laminates were prepared by laminating in order of RH diffusion sources made of plate-like Dy metal. The holding member was a plain weave wire mesh made of Mo. The seven types of laminates were charged into a heat treatment furnace and subjected to RH supply diffusion treatment at a temperature of 880 ° C. for 5.5 hours in a vacuum atmosphere at a pressure of 0.1 Pa. Thereafter, the inside of the furnace was cooled, and sample No. Only 1 to 7 RTB-based sintered magnet materials were taken out. Sample No. after RH supply diffusion treatment 1 to 7 RTB-based sintered magnet materials are subjected to RH diffusion treatment at a temperature of 880 ° C. for 5 hours in a vacuum atmosphere, and after cooling, heat treatment is performed at 500 ° C. for 2 hours in a vacuum atmosphere, No. 1 to 7 RTB-based sintered magnets were obtained. The obtained sample No. The entire surface of the 1-7 RTB-based sintered magnets was ground by 0.2 mm and processed to a thickness of 7.0 mm, a width of 7.0 mm, and a length of 7.0 mm. Sample No. after processing The magnetic characteristics of 1 to 7 RTB-based sintered magnets were measured by a pulse BH tracer. Table 4 shows the measurement results.

Figure 0006094612
Figure 0006094612

表4の通り、合金粉末にTiHを混合、成形および焼結したR−T−B系焼結磁石素材にRH供給拡散処理、RH拡散処理および熱処理を施したR−T−B系焼結磁石(試料No.2〜6、本発明例)は、TiH粉末を混合しないもの(試料No.1、比較例)に比べ、高いHcJを有していることが分かる。また、RH供給拡散処理後においてもBおよびH/HcJの低下は僅かであり、高いBおよび高いH/HcJを有していることが分かる。一方、特許文献1の再現例である試料No.7のR−T−B系焼結磁石はRH供給拡散前に比べH/HcJが大幅に低下している。 As shown in Table 4, RTB-based sintering was performed by subjecting an RTB-based sintered magnet material obtained by mixing, molding, and sintering TiH 2 to an alloy powder to RH supply diffusion treatment, RH diffusion treatment, and heat treatment. It can be seen that the magnets (samples Nos. 2 to 6, examples of the present invention) have higher H cJ than those not mixed with the TiH 2 powder (sample No. 1, comparative example). Further, decrease in B r and H k / H cJ even after RH supply diffusion process is small, it can be seen that a high B r and high H k / H cJ. On the other hand, Sample No. In the R-T-B system sintered magnet of No. 7, H k / H cJ is significantly reduced as compared to before RH supply diffusion.

実施例2
表5のCに示す合金組成となるように各元素の原料を秤量し、ストリップキャスティング法により合金を作製した。得られた合金を水素粉砕法により粗粉砕し粗粉砕粉末を得た。得られた合金Cの粗粉砕粉末に混合後の混合粉末の組成が表6に示す組成となるようにTiHを混合し、試料No.8〜11の混合粉末(粗粉砕粉末の混合粉末)を準備した。前記試料No.8〜11の混合粉末をそれぞれジェットミルにより微粉砕し、粒径D50が4.2μmの試料No.8〜11の混合粉末(微粉砕粉末の混合粉末)を準備した。
Example 2
The raw materials of each element were weighed so that the alloy composition shown in C of Table 5 was obtained, and an alloy was produced by a strip casting method. The obtained alloy was coarsely pulverized by a hydrogen pulverization method to obtain a coarsely pulverized powder. TiH 2 was mixed with the coarsely pulverized powder of the obtained alloy C so that the composition of the mixed powder after mixing had the composition shown in Table 6. 8-11 mixed powder (mixed powder of coarsely pulverized powder) was prepared. Sample No. Each of the mixed powders 8 to 11 was finely pulverized by a jet mill, and sample No. 8 having a particle diameter D50 of 4.2 μm was obtained. 8-11 mixed powder (mixed powder of finely pulverized powder) was prepared.

Figure 0006094612
Figure 0006094612

Figure 0006094612
Figure 0006094612

試料No.8〜11の混合粉末を実施例1と同様な方法により成形、焼結し、試料No.8〜11の混合粉末に基づくR−T−B系焼結磁石素材をそれぞれ2個準備した。試料No.8〜11のR−T−B系焼結磁石の磁気特性を測定するため、試料No.8〜11のR−T−B系焼結磁石素材のそれぞれ2個のうち1個に実施例1と同様の熱処理および加工を行った。得られた試料No.8〜11のR−T−B系焼結磁石の磁気特性をB−Hトレーサによって測定した。測定結果を表7に示す。   Sample No. The mixed powders 8 to 11 were molded and sintered by the same method as in Example 1, and Sample No. Two RTB-based sintered magnet materials based on 8-11 mixed powders were prepared. Sample No. In order to measure the magnetic properties of the R-T-B type sintered magnets 8-11, sample Nos. The same heat treatment and processing as in Example 1 were performed on one of two of the 8 to 11 RTB-based sintered magnet materials. The obtained sample No. The magnetic properties of 8-11 RTB-based sintered magnets were measured with a BH tracer. Table 7 shows the measurement results.

Figure 0006094612
Figure 0006094612

本実施例は実施例1の合金Aの組成とB量(0.95を0.93に)、Ga量(0.4を0.2に)およびCo量(0.5を2.0に)を異ならせた例である。表7の通り、合金Aに基づくR−T−B系焼結磁石の磁気特性に比べて若干劣るものの、優れた磁気特性が得られている。   In this example, the composition and B content (0.95 to 0.93), Ga content (0.4 to 0.2) and Co content (0.5 to 2.0) of the alloy A of Example 1 ) Is a different example. As shown in Table 7, excellent magnetic properties are obtained, though slightly inferior to the magnetic properties of the RTB-based sintered magnet based on the alloy A.

次に、試料No.8〜11のR−T−B系焼結磁石素材の2個のうち1個を実施例1と同様の形状に加工した後、実施例1と同様の方法によりRH供給拡散処理、RH拡散処理および熱処理を行った。得られた試料No.8〜11のR−T−B系焼結磁石を実施例1と同様に加工した後、パルスB−Hトレーサによって磁気特性を測定した。測定結果を表8に示す。   Next, sample No. After processing one of two R-T-B type sintered magnet materials 8 to 11 into the same shape as in Example 1, the RH supply diffusion process and the RH diffusion process are performed in the same manner as in Example 1. And heat treatment was performed. The obtained sample No. 8 to 11 RTB-based sintered magnets were processed in the same manner as in Example 1, and then magnetic characteristics were measured with a pulsed B-H tracer. Table 8 shows the measurement results.

Figure 0006094612
Figure 0006094612

表8の通り、合金粉末にTiHを混合、成形および焼結したR−T−B系焼結磁石素材にRH供給拡散処理を施したR−T−B系焼結磁石は、Bの低下を抑制しつつ高いHcJおよび高いH/HcJを有していることが分かる。 As Table 8, mixed TiH 2 in alloy powder, the R-T-B-based sintered magnet subjected to RH supply diffusion process to R-T-B based sintered magnet material molded and sintered, the B r it can be seen to have a high H cJ and high H k / H cJ while suppressing lowering.

実施例3
表9のD〜Fに示す合金組成となるように各元素の原料を秤量し、ストリップキャスティング法により合金を作製した。得られた各合金を水素粉砕法により粗粉砕し粗粉砕粉末を得た。得られた合金D〜Fの粗粉砕粉末に混合後の混合粉末の組成が表10に示す組成となるようにTiHを混合し、試料No.13〜15、17〜20、22〜25の混合粉末(粗粉砕粉末の混合粉末)を準備した。なお、試料No.12は合金Dの粗粉砕粉末、試料No.16は合金Eの粗粉砕粉末、試料No.21は合金Fの粗粉砕粉末であり、いずれもTiHは混合されていない。前記各混合粉末および粗粉砕粉末をそれぞれジェットミルにより微粉砕し、粒径D50が4.2μmの試料No.13〜15、17〜20、22〜25の混合粉末(微粉砕粉末の混合粉末)および試料No.12、16および21の微粉砕粉末を準備した。
Example 3
The raw materials of each element were weighed so as to have the alloy compositions shown in D to F of Table 9, and an alloy was produced by a strip casting method. Each obtained alloy was coarsely pulverized by a hydrogen pulverization method to obtain a coarsely pulverized powder. TiH 2 was mixed with the coarsely pulverized powders of the obtained alloys D to F so that the composition of the mixed powder after mixing was the composition shown in Table 10. A mixed powder (mixed powder of coarsely pulverized powder) of 13 to 15, 17 to 20, and 22 to 25 was prepared. Sample No. 12 is a coarsely pulverized powder of Alloy D; 16 is a coarsely pulverized powder of Alloy E, Sample No. 21 is a coarsely pulverized powder of the alloy F, and none of them is mixed with TiH 2 . Each of the mixed powder and coarsely pulverized powder was finely pulverized by a jet mill, and sample No. 4 having a particle diameter D50 of 4.2 μm was obtained. 13-15, 17-20, 22-25 mixed powder (mixed powder of finely pulverized powder) and sample no. 12, 16 and 21 finely divided powders were prepared.

Figure 0006094612
Figure 0006094612

Figure 0006094612
Figure 0006094612

試料No.13〜15、17〜20、22〜25の混合粉末および試料No.12、16および21の微粉砕粉末を実施例1と同様な方法により成形、焼結し、試料No.13〜15、17〜20、22〜25の混合粉末および試料No.12、16および21の微粉砕粉末に基づくR−T−B系焼結磁石素材を準備した。   Sample No. 13-15, 17-20, 22-25 mixed powder and sample No. The finely pulverized powders Nos. 12, 16 and 21 were molded and sintered in the same manner as in Example 1. 13-15, 17-20, 22-25 mixed powder and sample No. An RTB-based sintered magnet material based on 12, 16, and 21 finely pulverized powders was prepared.

試料No.12〜25のR−T−B系焼結磁石の磁気特性を測定するため、試料No.12〜25のR−T−B系焼結磁石素材に実施例1と同様の熱処理および加工を行った。得られた試料No.12〜25のR−T−B系焼結磁石の磁気特性をB−Hトレーサによって測定した。測定結果を図1〜図4並びに表11に示す。図1は横軸がTi量、縦軸がHcJの測定結果を示し、図2は横軸がTi量、縦軸がBの測定結果を示し、図3は横軸がTi量、縦軸がHの測定結果を示し、図4は横軸がTi量、縦軸がH/HcJの測定結果を示す。図1〜図4において丸形のプロットが試料No.12〜15、三角形のプロットが試料No.16〜20、菱形のプロットが試料No.21〜25を示す。 Sample No. In order to measure the magnetic properties of 12 to 25 RTB-based sintered magnets, The same heat treatment and processing as in Example 1 were performed on 12 to 25 RTB-based sintered magnet materials. The obtained sample No. The magnetic properties of 12-25 RTB-based sintered magnets were measured with a BH tracer. The measurement results are shown in FIGS. Figure 1 is the horizontal axis the amount of Ti, the vertical axis indicates the measurement result of H cJ, 2 weight abscissa Ti, the vertical axis indicates the measurement results of B r, 3 horizontal axis Ti amount, vertical axis shows the measurement result of H k, 4 weight abscissa Ti, the vertical axis shows the measurement results of the H k / H cJ. In FIG. 1 to FIG. 12-15, the triangle plot shows sample no. 16-20, the rhombus plot is Sample No. 21 to 25 are shown.

Figure 0006094612
Figure 0006094612

本実施例は合金のB量を変化させた例である。図1に示す通り、合金粉末にTiHを混合、成形、焼結および熱処理したR−T−B系焼結磁石(試料No.13〜15、17〜20、22〜25、本発明例)は、いずれのB量においてもTiH粉末を混合しないもの(試料No.12、16および21、比較例)に比べ、HcJが大きく向上することが分かる。また、混合粉末100質量%に含有されるTi量が0.18〜0.25の範囲で特にHcJが向上していることが分かる。 In this example, the B content of the alloy is changed. As shown in FIG. 1, an RTB-based sintered magnet obtained by mixing, forming, sintering and heat-treating TiH 2 to an alloy powder (Sample Nos. 13 to 15, 17 to 20, 22 to 25, examples of the present invention). It can be seen that HcJ is greatly improved in any B amount as compared with those in which TiH 2 powder is not mixed (sample Nos. 12, 16, and 21, comparative example). It can also be seen that HcJ is particularly improved when the amount of Ti contained in 100% by mass of the mixed powder is in the range of 0.18 to 0.25 .

また、図2に示す通り、本発明によるR−T−B系焼結磁石はBが低下するもののHcJの向上効果に対するBの低下はそれほど大きくない。すなわち、Bの低下を抑制しつつHcJが向上している。さらに、図3に示す通りHも高く、図4に示す通りH/Hcjはいずれの試料も0.95を超える高い値を有している。 Further, as shown in FIG. 2, R-T-B based sintered magnet according to the present invention is not so large reduction in B r for enhancing the effect of H cJ although B r drops. That, H cJ is improved while suppressing a decrease in B r. Furthermore, higher as H k shown in FIG. 3, as H k / H cj shown in FIG. 4 has a high value exceeding 0.95 none of the samples.

実施例4
実施例3の合金Eの粗粉砕粉末に、混合後の混合粉末100質量%に含有されるTiが0〜0.3(TiHは0〜0.31、TiOは0〜0.18)となるようにTiH、TiO、TiB、TiCおよびTiNの各粉末を混合し、実施例1と同様の方法で微粉砕、成形、焼結および熱処理を行いR−T−B系焼結磁石を得た。得られたR−T−B系焼結磁石のHcJをB−Hトレーサによって測定した。測定結果を図5並びに表12に示す。図5は横軸がTi量、縦軸がHcJの測定結果を示し、丸形のプロットがTiH、三角形のプロットがTiO、菱形のプロットがTiB、四角のプロットがTiC、×印のプロットがTiNを混合した場合を示す。
Example 4
Ti contained in 100% by mass of the mixed powder after mixing in the coarsely pulverized powder of the alloy E of Example 3 is 0 to 0.3 (TiH 2 is 0 to 0.31, TiO 2 is 0 to 0.18). Each powder of TiH 2 , TiO 2 , TiB 2 , TiC and TiN is mixed so as to become R-T-B system sintering by pulverization, molding, sintering and heat treatment in the same manner as in Example 1. A magnet was obtained. H cJ of the obtained RTB -based sintered magnet was measured with a BH tracer. The measurement results are shown in FIG. FIG. 5 shows the measurement results of Ti amount on the horizontal axis and HcJ on the vertical axis, the round plot is TiH 2 , the triangle plot is TiO 2 , the diamond plot is TiB 2 , the square plot is TiC, and x This plot shows the case where TiN is mixed.

Figure 0006094612
Figure 0006094612

図5に示す通り、TiHを混合した場合にHcJが大きく向上していることが分かる。前記の通り、TiO、TiB、TiCおよびTiNに含まれる酸素、ホウ素、炭素、窒素などは焼結後においても磁石中に残存し、得られる磁石の磁気特性を劣化させている可能性がある。本発明にて使用するTiHは、焼結工程においてTiとH(水素)とに分解し水素は磁石から焼結炉内に放出され、最終的に焼結炉外へ排出される。従って、磁気特性を劣化させる可能性がほとんどない。 As shown in FIG. 5, it can be seen that HcJ is greatly improved when TiH 2 is mixed. As described above, oxygen, boron, carbon, nitrogen, and the like contained in TiO 2 , TiB 2 , TiC, and TiN may remain in the magnet even after sintering, which may deteriorate the magnetic properties of the obtained magnet. is there. TiH 2 used in the present invention is decomposed into Ti and H 2 (hydrogen) in the sintering process, and hydrogen is released from the magnet into the sintering furnace and finally discharged out of the sintering furnace. Therefore, there is almost no possibility of deteriorating the magnetic characteristics.

実施例5
実施例3の試料No.18のR−T−B系焼結磁石についてFE−TEM(電界放射型透過電子顕微鏡、HF−2100、株式会社日立ハイテクノロジーズ製)による組織観察を行った。その結果(DF−STEM像)を図6に示す。また、図6に示す部位a、b、cについてEDS(エネルギー分散型X線分光法)による組成分析を行った。その結果を表13に示す。なお、部位aおよびbについてはBの分析は行っていない。また、部位a、b、cについて電子線回折の結晶構造を特徴づける回折図形を撮影した。その結果を図7〜9に示す。図7が部位a、図8が部位b、図9が部位cの回折図形である。
Example 5
Sample No. of Example 3 The 18 R-T-B system sintered magnets were subjected to structure observation by FE-TEM (field emission transmission electron microscope, HF-2100, manufactured by Hitachi High-Technologies Corporation). The result (DF-STEM image) is shown in FIG. Moreover, the composition analysis by EDS (energy dispersive X-ray spectroscopy) was performed about site | part a, b, and c shown in FIG. The results are shown in Table 13. In addition, about the site | part a and b, the analysis of B is not performed. Moreover, the diffraction pattern characterizing the crystal structure of electron diffraction was image | photographed about part a, b, and c. The results are shown in FIGS. 7 is a diffraction pattern of a part a, FIG. 8 is a part b, and FIG. 9 is a diffraction pattern of the part c.

さらに、化合物を同定するためR13M化合物とTiの硼化物の標準試料について前記と同様にEDSにより組成分析を行った。その結果を表14に示す。Tiの硼化物の標準試料としては市販のTiBを用いた。まず念のため市販のTiBをX線回折装置によりX線回折しTiB化合物に間違いないことを確認した。X線回折の結果を図10に示す。R13M化合物の標準試料としては、RとしてNdを、TとしてFeを、MとしてGaを用い、NdFe13Ga化合物の質量%の理論値であるNd:52.1、Fe:43.7、Ga:4.2となるようにNd、Fe、Gaを秤量、溶解して合金を作製した。得られた合金の分析結果を表15に示す。この合金のX線回折を測定しLaCo11Ga型結晶構造のNdFe13Ga化合物に間違いないことを確認した。X線回折の結果を図11に示す。 Further, in order to identify the compound, a composition analysis was performed by EDS in the same manner as described above for a standard sample of an R 6 T 13 M compound and a boride of Ti. The results are shown in Table 14. As a standard sample of Ti boride, commercially available TiB 2 was used. First, as a precaution, commercially available TiB 2 was X-ray diffracted by an X-ray diffractometer, and it was confirmed that there was no doubt a TiB 2 compound. The result of X-ray diffraction is shown in FIG. As a standard sample of the R 6 T 13 M compound, Nd is used as R, Fe is used as T, and Ga is used as M. Nd: 52.1, which is a theoretical value of mass% of the Nd 6 Fe 13 Ga compound, Fe: Nd, Fe, and Ga were weighed and dissolved so as to be 43.7 and Ga: 4.2 to prepare an alloy. Table 15 shows the analysis results of the obtained alloy. It was confirmed that no doubt Nd 6 Fe 13 Ga compound of measuring the X-ray diffraction of the alloy La 6 Co 11 Ga 3 type crystal structure. The result of X-ray diffraction is shown in FIG.

Figure 0006094612
Figure 0006094612

Figure 0006094612
Figure 0006094612

Figure 0006094612
Figure 0006094612

表13の部位aのEDSによる組成分析結果ならびに図7示す部位aの電子線回折の結晶構造を特徴づける回折図形の結果にから、部位aはNdFe14B化合物であることを確認した。 From the result of the composition analysis by EDS of the site a in Table 13 and the result of the diffraction pattern characterizing the crystal structure of electron beam diffraction of the site a shown in FIG. 7, it was confirmed that the site a was an Nd 2 Fe 14 B compound.

また、表13〜表15の組成分析結果ならびに図8に示す部位bの電子線回折の結晶構造を特徴づける回折図形の結果から、部位bはNdFe13Ga化合物であると同定した。すなわち、部位bのEDSによる組成分析結果と標準試料の組成分析結果とでNd量が若干異なるものの、構成元素がR(NdとPr)とFeとGaを主体としていること、図8に示す部位bの電子線回折の結晶構造を特徴づける回折図形の結果がNdFe13Ga化合物の結晶構造と同様であることから、部位bがNdFe13Ga化合物であると同定した。 From the results of the diffractogram characterizing the crystalline structure of the electron diffraction sites b shown in composition analysis results and 8 of Tables 13 15, part b was identified as Nd 6 Fe 13 Ga compound. That is, although the Nd amount is slightly different between the composition analysis result by EDS of the part b and the composition analysis result of the standard sample, the constituent elements are mainly R (Nd and Pr), Fe, and Ga, and the part shown in FIG. Since the result of the diffraction pattern characterizing the crystal structure of electron diffraction of b is the same as the crystal structure of the Nd 6 Fe 13 Ga compound, the site b was identified as the Nd 6 Fe 13 Ga compound.

さらに、表13〜表15の組成分析結果ならびに図9に示す部位cの電子線回折の結晶構造を特徴づける回折図形の結果から、部位cはTiB化合物であると同定した。すなわち、部位cのEDSによる組成分析結果と標準試料の組成分析結果とが類似しており、構成元素がTiとBとからなること、図9に示す部位cの電子線回折の結晶構造を特徴づける回折図形の結果がTiB化合物の結晶構造と同様であることから、部位cがTiB化合物であると同定した。 Furthermore, from the results of composition analysis in Tables 13 to 15 and the results of diffraction patterns characterizing the crystal structure of electron beam diffraction at site c shown in FIG. 9, site c was identified as a TiB 2 compound. That is, the composition analysis result by EDS of the part c is similar to the composition analysis result of the standard sample, the constituent elements are composed of Ti and B, and the electron diffraction diffraction crystal structure of the part c shown in FIG. Since the result of the attached diffraction pattern is the same as the crystal structure of the TiB 2 compound, the site c was identified as the TiB 2 compound.

以上の通り、Ti水素化物粉末の添加によって、焼結および/または熱処理において、R13M化合物(代表的にはNdFe13Ga化合物)と、Tiの硼化物(代表的にはTiB化合物)が生成される。すなわち、本発明のR−T−B系焼結磁石の製造方法によって得られるR−T−B系焼結磁石は、R14B化合物と、R13M化合物と、Tiの硼化物と、が共存する組織を有していることが明らかである。 As described above, by the addition of Ti hydride powder, in the sintering and / or heat treatment, R 6 T 13 M compound (typically Nd 6 Fe 13 Ga compound) and Ti boride (typically TiB) 2 compounds) are produced. That is, the RTB-based sintered magnet obtained by the method for manufacturing an RTB-based sintered magnet of the present invention includes an R 2 T 14 B compound, an R 6 T 13 M compound, and a Ti boron. It is clear that it has an organization in which the chemical compound coexists.

実施例6
実施例1の試料No.1〜7のR−T−B系焼結磁石(RH供給拡散処理、RH拡散処理が施されていないR−T−B系焼結磁石)の任意の断面について、鏡面加工を施した後、その鏡面の一部をクロスセクションポリッシャ(SM−09010、日本電子株式会社製)によってイオンビーム加工を施した。次に、その加工面をFE−SEM(電界放射型走査電子顕微鏡、JSM−7001F、日本電子株式会社製)によって観察(加速電圧5kV、ワーキングディスタンス4mm、TTLモード、倍率2000倍)した。そして、FE−SEMによる反射電子像(BSE像)を画像解析ソフト(Scandium、OLYMPUS SOFT IMAGING SOLUTIONS GMBH製)により解析し、R13M化合物(代表的にはNdFe13Ga化合物)の面積比率を求めた。FE−SEMによるBSE像はその領域を構成する元素の平均原子番号が大きいほど明るく表示され、元素の原子番号が小さいほど暗く表示される。例えば、粒界相(希土類リッチ相)は明るく表示され、主相(R14B相)や酸化物などは暗く表示される。R13M化合物はその中間くらいの明るさで表示される。画像解析ソフトによる解析は、画像処理によりBSE像の明るさを横軸、頻度(面積)を縦軸としたグラフを作成し、EDS(エネルギー分散型X線分光法)によりR13M化合物を探索し、前記グラフ内の特定の明るさと対応させ、R13M化合物の面積比率を求めた。この解析を断面上の異なる5視野(各視野の広さは45μm×60μm)のBSE像についてそれぞれ行い、その平均値をR13M化合物の面積比率とした。その結果を表16に示す。
Example 6
Sample No. 1 of Example 1 For any cross section of 1 to 7 R-T-B system sintered magnets (RH supply diffusion treatment, R-T-B system sintered magnets that have not been subjected to RH diffusion treatment), after mirror finishing, A part of the mirror surface was subjected to ion beam processing by a cross section polisher (SM-09010, manufactured by JEOL Ltd.). Next, the processed surface was observed by FE-SEM (field emission scanning electron microscope, JSM-7001F, manufactured by JEOL Ltd.) (acceleration voltage 5 kV, working distance 4 mm, TTL mode, magnification 2000 times). Then, the reflected electron image (BSE image) by FE-SEM is analyzed by image analysis software (Scandium, manufactured by OLYMPUS SOFT IMAGEING SOLUTIONS GMBH), and the R 6 T 13 M compound (typically Nd 6 Fe 13 Ga compound) is analyzed. The area ratio was determined. The BSE image by FE-SEM is displayed brighter as the average atomic number of the elements constituting the region is larger, and darker as the atomic number of the element is smaller. For example, the grain boundary phase (rare earth rich phase) is displayed brightly, and the main phase (R 2 T 14 B phase), oxide, etc. are displayed darkly. The R 6 T 13 M compound is displayed at about the mid-brightness. Analysis by image analysis software creates a graph with the brightness of the BSE image as the horizontal axis and the frequency (area) as the vertical axis by image processing, and R 6 T 13 M compound by EDS (energy dispersive X-ray spectroscopy). exploring, specific to brightness and response in the graph, to determine the area ratio of R 6 T 13 M compound. This analysis was performed for BSE images of five different fields of view on the cross section (the width of each field is 45 μm × 60 μm), and the average value was defined as the area ratio of the R 6 T 13 M compound. The results are shown in Table 16.

Figure 0006094612
Figure 0006094612

合金粉末にTiHを混合、成形、焼結および熱処理したR−T−B系焼結磁石(試料No.2〜6、本発明例)は、前記の通り、R14B化合物と、R13M化合物と、Tiの硼化物とが共存する組織を有し、表16の通り、R13M化合物が面積比率で1%以上存在しており、特により高いHcJを有する場合はR13M化合物が面積比率で2%以上存在している。一方、TiH粉末を混合しないもの(試料No.1、比較例)および特許文献1の再現例である試料No.7(比較例)は、R13M化合物は面積比率で1%以上存在しているものの、Tiの硼化物は生成されていない。本発明によるR−T−B系焼結磁石がBの低下を抑制しつつ高いHcJおよび高いH/HcJ有するのは、R14B化合物と、R13M化合物と、Tiの硼化物とが共存する組織並びにR13M化合物の存在量に起因するものと考えられる。 As described above, the R-T-B system sintered magnet (sample Nos. 2 to 6, examples of the present invention) obtained by mixing, forming, sintering and heat-treating TiH 2 to the alloy powder, and R 2 T 14 B compound, It has a structure in which an R 6 T 13 M compound and a boride of Ti coexist, and as shown in Table 16, the R 6 T 13 M compound is present in an area ratio of 1% or more, and a particularly high H cJ is obtained. When it has, R 6 T 13 M compound is present in an area ratio of 2% or more. On the other hand, a sample in which TiH 2 powder is not mixed (sample No. 1, comparative example) and sample No. 1 which is a reproduction example of Patent Document 1. In No. 7 (Comparative Example), an R 6 T 13 M compound is present in an area ratio of 1% or more, but no boride of Ti is formed. The R-T-B based sintered magnet according to the present invention has a high H cJ and high H k / H cJ while suppressing a decrease in B r is the R 2 T 14 B compound, and R 6 T 13 M compound This is considered to be due to the structure in which Ti boride coexists and the abundance of the R 6 T 13 M compound.

実施例7
実施例2の試料No.8〜11のR−T−B系焼結磁石(RH供給拡散処理、RH拡散処理が施されていないR−T−B系焼結磁石)について、実施例6と同様の方法によりR13M化合物の面積比率を求めた。その結果を表17に示す。
Example 7
Sample No. 2 of Example 2 8 to 11 R-T-B system sintered magnets (RH supply diffusion treatment, R-T-B system sintered magnet not subjected to RH diffusion treatment) were subjected to R 6 T in the same manner as in Example 6. The area ratio of 13 M compound was determined. The results are shown in Table 17.

Figure 0006094612
Figure 0006094612

合金粉末にTiHを混合、成形、焼結および熱処理したR−T−B系焼結磁石(試料No.8〜11、本発明例)は、前記の通り、R14B化合物と、R13M化合物と、Tiの硼化物とが共存する組織を有し、表17の通り、R13M化合物が面積比率で1%以上存在している。 An R-T-B system sintered magnet (sample Nos. 8 to 11 and examples of the present invention) obtained by mixing, forming, sintering, and heat-treating TiH 2 in an alloy powder, as described above, R 2 T 14 B compound, It has a structure in which an R 6 T 13 M compound and a boride of Ti coexist, and as shown in Table 17, the R 6 T 13 M compound is present in an area ratio of 1% or more.

実施例8
表18のG、Hに示す合金組成となるように各元素の原料を秤量し、ストリップキャスティング法により合金を作製した。得られた各合金を水素粉砕法により粗粉砕し粗粉砕粉末を得た。得られた合金Gの粗粉砕粉末に混合後の混合粉末の組成が表19の試料No.48〜52に示す組成となるようにTiHを混合し混合粉末(粗粉砕粉末の混合粉末)を準備した。なお、試料No.47は合金Gの粗粉砕粉末、試料No.53は合金Hの粗粉砕粉末であり、いずれもTiHは混合されていない。前記試料No.48〜52の混合粉末および試料No.47、53の粗粉砕粉末をそれぞれジェットミルにより微粉砕し、粒径D50(気流分散式レーザー回折法による測定で得られる体積中心値、以下同様)が4.2μmの試料No.48〜52の混合粉末(微粉砕粉末の混合粉末)および試料No.47、53の微粉砕粉末を準備した。
Example 8
The raw materials of each element were weighed so as to have the alloy compositions shown in G and H of Table 18, and an alloy was produced by strip casting. Each obtained alloy was coarsely pulverized by a hydrogen pulverization method to obtain a coarsely pulverized powder. The composition of the mixed powder after mixing with the coarsely pulverized powder of the alloy G was the sample No. Mixing the mixed powder with TiH 2 so as to have the composition shown in 48 to 52 were prepared (mixed powder of coarsely pulverized powder). Sample No. 47 is a coarsely pulverized powder of Alloy G, sample No. 53 is a coarsely pulverized powder of alloy H, and none of them is mixed with TiH 2 . Sample No. 48-52 mixed powder and sample No. The coarsely pulverized powders 47 and 53 were each finely pulverized by a jet mill, and sample No. 4 having a particle size D50 (volume center value obtained by measurement by airflow dispersion type laser diffraction method, the same applies hereinafter) of 4.2 μm was obtained. 48-52 mixed powder (mixed powder of finely pulverized powder) and sample No. 47 and 53 finely pulverized powders were prepared.

Figure 0006094612
Figure 0006094612

Figure 0006094612
Figure 0006094612

試料No.48〜52の混合粉末および試料No.47、53の粗粉砕粉末を実施例1と同様な方法により成形、焼結し、試料No.48〜52の混合粉末および試料No.47、53の粗粉砕粉末に基づくR−T−B系焼結磁石素材を準備した。試料No.47〜53のR−T−B系焼結磁石の磁気特性を測定するため、試料No.47〜53のR−T−B系焼結磁石素材に実施例1と同様の熱処理および加工を行った。得られた試料No.47〜53のR−T−B系焼結磁石の磁気特性をB−Hトレーサによって測定した。測定結果を表20に示す。また、実施例6と同様の方法によりR13M化合物の面積比率を求めた。その結果を表20に示す。 Sample No. 48-52 mixed powder and sample No. The coarsely pulverized powders Nos. 47 and 53 were molded and sintered by the same method as in Example 1, and sample No. 48-52 mixed powder and sample No. RTB-based sintered magnet materials based on 47 and 53 coarsely pulverized powders were prepared. Sample No. In order to measure the magnetic properties of the 47 to 53 RTB-based sintered magnets, The same heat treatment and processing as in Example 1 were performed on 47 to 53 RTB-based sintered magnet materials. The obtained sample No. The magnetic properties of 47 to 53 RTB-based sintered magnets were measured with a BH tracer. Table 20 shows the measurement results. In addition, the area ratio of the R 6 T 13 M compound was determined by the same method as in Example 6. The results are shown in Table 20.

Figure 0006094612
Figure 0006094612

本実施例は実施例1の合金Aの組成を変化させたものであり、特にGa量を0.4質量%から0.5質量%に増加させた例である。表20の通り、合金粉末にTiHを混合、成形、焼結および熱処理したR−T−B系焼結磁石(試料No.48〜52、本発明例)は、TiH粉末を混合しないもの(試料No.47、比較例)に比べ、高いHcJを有していることが分かる。一方、特許文献1の再現例である試料No.53のR−T−B系焼結磁石はHcJおよびBは本発明例と同程度であるがH/HcJが大きく低下している。 In this example, the composition of the alloy A of Example 1 was changed, and in particular, the Ga amount was increased from 0.4% by mass to 0.5% by mass. As shown in Table 20, RTB-based sintered magnets (sample Nos. 48 to 52, examples of the present invention) obtained by mixing, forming, sintering, and heat-treating TiH 2 to alloy powders do not mix TiH 2 powder. It turns out that it has high HcJ compared with (sample No. 47, comparative example). On the other hand, Sample No. 53 R-T-B based sintered magnet is H cJ and B r is an invention example comparable although degraded greatly H k / H cJ.

また、本実施例によるR−T−B系焼結磁石は、Ti量が0.22〜0.27の範囲で、Bの低下を抑制しつつ1500kA/m以上の高いHcJを有している。例えば、Ti量が同じ0.22の本実施例の試料No.50と実施例1の試料No.3とを比較すると、HcJが50kA/m程度向上しているのにBはほとんど低下していない。 Also, R-T-B based sintered magnet according to the present embodiment, Ti amount is in the range of 0.22 to 0.27, has a 1500 kA / m or more high H cJ while suppressing a decrease in B r ing. For example, the sample No. of this example having the same Ti amount of 0.22. 50 and Sample No. 1 of Example 1. Comparing 3 and, B r is hardly reduced to H cJ is improved by about 50 kA / m.

さらに、合金粉末にTiHを混合、成形、焼結および熱処理したR−T−B系焼結磁石(試料No.48〜52、本発明例)は、前記の通り、R14B化合物と、R13M化合物と、Tiの硼化物とが共存する組織を有し、表32の通り、R13M化合物が面積比率で2%以上存在している。 Furthermore, the R—T—B system sintered magnet (sample Nos. 48 to 52, examples of the present invention) obtained by mixing, forming, sintering, and heat-treating TiH 2 to the alloy powder is an R 2 T 14 B compound as described above. And an R 6 T 13 M compound and a boride of Ti coexist, and as shown in Table 32, the R 6 T 13 M compound is present in an area ratio of 2% or more.

実施例9
表21のI、Jに示す合金組成となるように各元素の原料を秤量し、ストリップキャスティング法により合金を作製した。得られた各合金を水素粉砕法により粗粉砕し粗粉砕粉末を得た。得られた合金Iの粗粉砕粉末に混合後の混合粉末の組成が表22の試料No.55〜59に示す組成となるようにTiHを混合し混合粉末(粗粉砕粉末の混合粉末)を準備した。なお、試料No.54は合金Iの粗粉砕粉末、試料No.60は合金Jの粗粉砕粉末であり、いずれもTiHは混合されていない。前記試料No.55〜59の混合粉末および試料No.54、60の粗粉砕粉末をそれぞれジェットミルにより微粉砕し、粒径D50(気流分散式レーザー回折法による測定で得られる体積中心値、以下同様)が4.2μmの試料No.55〜59の混合粉末(微粉砕粉末の混合粉末)および試料No.54、60の微粉砕粉末を準備した。
Example 9
Raw materials of each element were weighed so as to have alloy compositions shown in I and J of Table 21, and an alloy was produced by a strip casting method. Each obtained alloy was coarsely pulverized by a hydrogen pulverization method to obtain a coarsely pulverized powder. The composition of the mixed powder after mixing with the coarsely pulverized powder of Alloy I obtained was the sample No. TiH 2 was mixed so as to have the composition shown in 55 to 59 to prepare a mixed powder (mixed powder of coarsely pulverized powder). Sample No. 54 is a coarsely pulverized powder of Alloy I, Sample No. 60 is a coarsely pulverized powder of Alloy J, and none of them is mixed with TiH 2 . Sample No. 55-59 mixed powder and sample No. The coarsely pulverized powders Nos. 54 and 60 were each finely pulverized by a jet mill, and sample Nos. Having a particle diameter D50 (volume center value obtained by measurement by an air flow dispersion type laser diffraction method, the same shall apply hereinafter) of 4.2 μm. 55-59 mixed powder (mixed powder of finely pulverized powder) and sample no. 54 and 60 finely pulverized powders were prepared.

Figure 0006094612
Figure 0006094612

Figure 0006094612
Figure 0006094612

試料No.55〜59の混合粉末および試料No.54、60の粗粉砕粉末を実施例1と同様な方法により成形、焼結し、試料No.55〜59の混合粉末および試料No.54、60の粗粉砕粉末に基づくR−T−B系焼結磁石素材を準備した。試料No.54〜60のR−T−B系焼結磁石の磁気特性を測定するため、試料No.54〜60のR−T−B系焼結磁石素材に実施例1と同様の熱処理および加工を行った。得られた試料No.54〜60のR−T−B系焼結磁石の磁気特性をB−Hトレーサによって測定した。測定結果を表23に示す。また、実施例6と同様の方法によりR13M化合物の面積比率を求めた。その結果を表23に示す。 Sample No. 55-59 mixed powder and sample No. The coarsely pulverized powders Nos. 54 and 60 were molded and sintered by the same method as in Example 1, and sample No. 55-59 mixed powder and sample No. RTB-based sintered magnet materials based on 54, 60 coarsely pulverized powders were prepared. Sample No. In order to measure the magnetic properties of the 54 to 60 RTB-based sintered magnets, The same heat treatment and processing as in Example 1 were performed on 54 to 60 RTB-based sintered magnet materials. The obtained sample No. The magnetic properties of 54 to 60 RTB-based sintered magnets were measured with a BH tracer. The measurement results are shown in Table 23. In addition, the area ratio of the R 6 T 13 M compound was determined by the same method as in Example 6. The results are shown in Table 23.

Figure 0006094612
Figure 0006094612

本実施例は実施例8の合金GのAl量を0.1質量%から0.3質量%に増加させた例である。表23の通り、合金粉末にTiHを混合、成形、焼結および熱処理したR−T−B系焼結磁石(試料No.55〜59、本発明例)は、TiH粉末を混合しないもの(試料No.54、比較例)に比べ、高いHcJを有していることが分かる。一方、特許文献1の再現例である試料No.60のR−T−B系焼結磁石はHcJおよびBは本発明例と同程度であるがH/HcJが大きく低下している。 In this example, the Al content of the alloy G of Example 8 was increased from 0.1% by mass to 0.3% by mass. As shown in Table 23, RTB-based sintered magnets (sample Nos. 55-59, examples of the present invention) obtained by mixing, forming, sintering, and heat-treating TiH 2 to alloy powders do not mix TiH 2 powder. It turns out that it has high HcJ compared with (sample No. 54, comparative example). On the other hand, Sample No. 60 R-T-B based sintered magnet is H cJ and B r are the same level as the present invention example is reduced greatly H k / H cJ.

また、本実施例によるR−T−B系焼結磁石は、Ti量が0.19質量%で約1500kA/m、Ti量が0.22〜0.27質量%の範囲で1500kA/m以上の高いHcJを有している。さらに、本実施例によるR−T−B系焼結磁石は、前記の通り、R14B化合物と、R13M化合物と、Tiの硼化物とが共存する組織を有し、表23の通り、R13M化合物が面積比率で1.9%以上、特により高いHcJを有する試料No.56〜59ではR13M化合物が面積比率で2%以上存在している。 In addition, the RTB-based sintered magnet according to this example has a Ti content of about 1500 kA / m when the amount of Ti is 0.19% by mass, and 1500 kA / m or more when the amount of Ti is 0.22 to 0.27% by mass. Of high HcJ . Furthermore, the RTB-based sintered magnet according to the present example has a structure in which the R 2 T 14 B compound, the R 6 T 13 M compound, and the boride of Ti coexist as described above. As shown in Table 23, the sample No. 6 in which the R 6 T 13 M compound has an H cJ of 1.9% or more and particularly higher H cJ by area ratio. In 56 to 59, the R 6 T 13 M compound is present in an area ratio of 2% or more.

本発明により得られたR−T−B系焼結磁石は、ハードディスクドライブのボイスコイルモータ(VCM)や、電気自動車用モータ、ハイブリッド自動車用モータなどの各種モータ、家電製品などに好適に利用することができる。   The RTB-based sintered magnet obtained by the present invention is suitably used for various motors such as voice coil motors (VCM) for hard disk drives, motors for electric vehicles, motors for hybrid vehicles, and home appliances. be able to.

Claims (3)

14 B化合物(Rは希土類元素の少なくとも一種でありNdを必ず含む、Tは遷移金属元素のうち少なくとも一種でありFeを必ず含む)と、
13 M化合物(Rは希土類元素のうち少なくとも一種でありNdを必ず含む、Tは遷移金属元素のうち少なくとも一種でありFeを必ず含む、MはGa、Al、CuおよびSiのうち少なくとも一種でありGaを必ず含む)と、
Tiの硼化物と、
が共存する組織を有し、
任意の断面におけるR6T13M化合物の面積比率が2%以上であるR−T−B系焼結磁石の製造方法であって、
R:27〜35質量%(Rは希土類元素のうち少なくとも一種でありNdを必ず含む)、
B:0.9〜1.0質量%、
Ga:0.15〜0.6質量%、
残部T(Tは遷移金属元素のうち少なくとも一種でありFeを必ず含む)および不可避的不純物を含有する合金粉末を準備する工程と、
Tiの水素化物の粉末を準備する工程と、
合金粉末とTiの水素化物の粉末とを混合後の混合粉末100質量%に含有されるTiが0.3質量%以下となるように混合し混合粉末を準備する工程と、
混合粉末を成形し成形体を準備する工程と、
成形体を焼結しR−T−B系焼結磁石素材を準備する工程と、
R−T−B系焼結磁石素材に熱処理を施す工程と、
を含むことを特徴とするR−T−B系焼結磁石の製造方法。
An R 2 T 14 B compound (R is at least one rare earth element and always contains Nd, T is at least one transition metal element and always contains Fe),
R 6 T 13 M compound (R is at least one rare earth element and always contains Nd, T is at least one transition metal element and always contains Fe, M is at least one of Ga, Al, Cu and Si) Is a type and must contain Ga)
Ti boride,
Have a coexisting organization,
An R-T-B system sintered magnet manufacturing method in which the area ratio of the R6T13M compound in an arbitrary cross section is 2% or more,
R: 27 to 35% by mass (R is at least one of rare earth elements and must contain Nd),
B: 0.9 to 1.0% by mass,
Ga: 0.15-0.6 mass%,
Preparing an alloy powder containing the balance T (T is at least one of transition metal elements and necessarily contains Fe) and inevitable impurities;
Preparing a powder of Ti hydride;
Mixing the alloy powder and Ti hydride powder so that Ti contained in 100% by mass of the mixed powder after mixing is 0.3% by mass or less to prepare a mixed powder;
Forming a mixed powder to prepare a molded body; and
A step of sintering the compact and preparing an R-T-B system sintered magnet material;
A step of heat-treating the RTB-based sintered magnet material;
The manufacturing method of the RTB type | system | group sintered magnet characterized by including.
R−T−B系焼結磁石素材に熱処理を施す工程に代えて、
Dyおよび/またはTbを含む金属、合金または化合物からなるRH拡散源を準備する工程と、
RH拡散源のDyおよび/またはTbをR−T−B系焼結磁石素材に供給、拡散させるRH供給拡散処理を施す工程と、
RH供給拡散処理工程後のR−T−B系焼結磁石素材に熱処理を施す工程と、
を含むことを特徴とする請求項1に記載のR−T−B系焼結磁石の製造方法。
In place of the step of heat-treating the RTB-based sintered magnet material,
Providing an RH diffusion source comprising a metal, alloy or compound containing Dy and / or Tb;
Supplying RH diffusion source Dy and / or Tb to the RTB-based sintered magnet material, and performing an RH supply diffusion treatment;
A step of heat-treating the RTB-based sintered magnet material after the RH supply diffusion treatment step;
The manufacturing method of the RTB type | system | group sintered magnet of Claim 1 characterized by the above-mentioned.
B:0.91〜1.0質量%であることを特徴とする請求項1または2に記載のR−T−B系焼結磁石の製造方法。   B: It is 0.91-1.0 mass%, The manufacturing method of the RTB type | system | group sintered magnet of Claim 1 or 2 characterized by the above-mentioned.
JP2015038694A 2014-02-28 2015-02-27 Method for producing RTB-based sintered magnet Active JP6094612B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015038694A JP6094612B2 (en) 2014-02-28 2015-02-27 Method for producing RTB-based sintered magnet

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014037838 2014-02-28
JP2014037838 2014-02-28
JP2015038694A JP6094612B2 (en) 2014-02-28 2015-02-27 Method for producing RTB-based sintered magnet

Publications (2)

Publication Number Publication Date
JP2015179841A JP2015179841A (en) 2015-10-08
JP6094612B2 true JP6094612B2 (en) 2017-03-15

Family

ID=54263669

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015038694A Active JP6094612B2 (en) 2014-02-28 2015-02-27 Method for producing RTB-based sintered magnet

Country Status (1)

Country Link
JP (1) JP6094612B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106128673B (en) 2016-06-22 2018-03-30 烟台首钢磁性材料股份有限公司 A kind of Sintered NdFeB magnet and preparation method thereof
JP6614084B2 (en) * 2016-09-26 2019-12-04 信越化学工業株式会社 Method for producing R-Fe-B sintered magnet
JP2018056188A (en) * 2016-09-26 2018-04-05 信越化学工業株式会社 Rare earth-iron-boron based sintered magnet
JP6926861B2 (en) * 2017-09-08 2021-08-25 Tdk株式会社 RTB system permanent magnet
JP7387992B2 (en) * 2019-03-20 2023-11-29 Tdk株式会社 RTB series permanent magnet
JP7243609B2 (en) * 2019-12-13 2023-03-22 信越化学工業株式会社 rare earth sintered magnet
JP6947344B1 (en) * 2019-12-26 2021-10-13 日立金属株式会社 Manufacturing method of RTB-based sintered magnet and RTB-based sintered magnet
JP7179799B2 (en) * 2020-04-23 2022-11-29 信越化学工業株式会社 R-Fe-B system sintered magnet
JP2023163209A (en) 2022-04-28 2023-11-10 信越化学工業株式会社 Rare earth sintered magnet and method for manufacturing rare earth sintered magnet

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2600374B2 (en) * 1989-05-12 1997-04-16 三菱マテリアル株式会社 Method for producing rare earth-B-Fe sintered magnet excellent in corrosion resistance and magnetic properties
KR101336744B1 (en) * 2006-03-03 2013-12-04 히다찌긴조꾸가부시끼가이사 R­Fe­B RARE EARTH SINTERED MAGNET AND METHOD FOR PRODUCING SAME
CN101256859B (en) * 2007-04-16 2011-01-26 有研稀土新材料股份有限公司 Rare-earth alloy casting slice and method of producing the same

Also Published As

Publication number Publication date
JP2015179841A (en) 2015-10-08

Similar Documents

Publication Publication Date Title
JP6094612B2 (en) Method for producing RTB-based sintered magnet
WO2015129861A1 (en) R-t-b sintered magnet and manufacturing method therefor
JP6380652B2 (en) Method for producing RTB-based sintered magnet
JP6361813B2 (en) Method for producing RTB-based sintered magnet
JP6288076B2 (en) R-T-B sintered magnet
JP5304907B2 (en) R-Fe-B fine crystal high density magnet
JP6488976B2 (en) R-T-B sintered magnet
JP6414653B1 (en) Method for producing RTB-based sintered magnet
JP6493138B2 (en) R-T-B sintered magnet
WO2014157448A1 (en) R-t-b-based sintered magnet
JPWO2018143230A1 (en) Method for producing RTB-based sintered magnet
JP2018093202A (en) R-t-b based permanent magnet
JP6798546B2 (en) Manufacturing method of RTB-based sintered magnet
JP2019102708A (en) R-t-b based permanent magnet
JP2015119130A (en) Rare earth magnet
JP6142793B2 (en) Rare earth magnets
JP2015122395A (en) Method for manufacturing r-t-b-based sintered magnet
JP2019208012A (en) R-t-b based permanent magnet and method of producing the same
JP2018028123A (en) Method for producing r-t-b sintered magnet
JP2018174314A (en) R-T-B based sintered magnet
JP2015135935A (en) Rare earth based magnet
JP6508447B1 (en) Method of manufacturing RTB based sintered magnet
JP6511844B2 (en) RTB based sintered magnet
JP2018029108A (en) Method of manufacturing r-t-b based sintered magnet
JP6623998B2 (en) Method for producing RTB based sintered magnet

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20160216

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160721

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20160721

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20160808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170130

R150 Certificate of patent or registration of utility model

Ref document number: 6094612

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350