JP2015122395A - Method for manufacturing r-t-b-based sintered magnet - Google Patents

Method for manufacturing r-t-b-based sintered magnet Download PDF

Info

Publication number
JP2015122395A
JP2015122395A JP2013264930A JP2013264930A JP2015122395A JP 2015122395 A JP2015122395 A JP 2015122395A JP 2013264930 A JP2013264930 A JP 2013264930A JP 2013264930 A JP2013264930 A JP 2013264930A JP 2015122395 A JP2015122395 A JP 2015122395A
Authority
JP
Japan
Prior art keywords
sintered magnet
alloy powder
based sintered
rtb
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013264930A
Other languages
Japanese (ja)
Inventor
英幸 森本
Hideyuki Morimoto
英幸 森本
智機 深川
Tomoki Fukagawa
智機 深川
信一郎 坂下
Shinichiro Sakashita
信一郎 坂下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2013264930A priority Critical patent/JP2015122395A/en
Publication of JP2015122395A publication Critical patent/JP2015122395A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing an R-T-B-based sintered magnet which has high Hand high H/Hwhile suppressing the reduction in Band even under a high-temperature condition, has a superior H.SOLUTION: A method for manufacturing an R-T-B-based sintered magnet comprises the steps of: preparing main alloy powder including R, B, Ga, the balance T, and inevitable impurities; preparing secondary alloy powder including Pr and Ti; preparing mixed alloy powder by mixing the main alloy powder and the secondary alloy powder so that the content of Ti in the mixed alloy powder is equal to or less than 0.3 mass% to 100 mass% of the mixed alloy powder after the mixing; preparing a mold by molding the mixed alloy powder; preparing an R-T-B-based sintered magnet material by sintering the mold; preparing an RH distribution source; performing a process for RH supply and diffusion by supplying Dy or Tb of RH distribution source to the R-T-B-based sintered magnet material, and diffusing it therein; and performing a thermal treatment on the R-T-B-based sintered magnet after the step of performing the process for RH supply and diffusion.

Description

本発明はR−T−B系焼結磁石の製造方法に関する。   The present invention relates to a method for producing an RTB-based sintered magnet.

R−T−B系焼結磁石(Rは希土類元素のうち少なくとも一種でありNdを必ず含む、Tは遷移金属元素のうち少なくとも一種でありFeを必ず含む)は永久磁石の中で最も高性能な磁石として知られており、ハードディスクドライブのボイスコイルモータ(VCM)、電気自動車用モータ、ハイブリッド自動車用モータなどの各種モータや家電製品などに使用されている。   R-T-B sintered magnets (R is at least one of rare earth elements and always contains Nd, T is at least one kind of transition metal elements and always contains Fe), and has the highest performance among permanent magnets It is known as a magnet, and is used in various motors such as voice coil motors (VCM) for hard disk drives, motors for electric vehicles, motors for hybrid vehicles, and home appliances.

R−T−B系焼結磁石は主としてR14B型結晶構造を有する化合物からなる主相(以下、「R14B相」という)とこの主相の粒界部分に位置する粒界相とから構成されている。主相であるR14B相は強磁性相であり主としてR−T−B系焼結磁石の磁化作用に寄与している。 The R-T-B based sintered magnet is mainly located in a main phase (hereinafter referred to as “R 2 T 14 B phase”) composed of a compound having an R 2 T 14 B type crystal structure and a grain boundary portion of this main phase. It consists of a grain boundary phase. The main phase R 2 T 14 B phase is a ferromagnetic phase and mainly contributes to the magnetizing action of the R-T-B system sintered magnet.

R−T−B系焼結磁石は高温で保磁力HcJ(以下、単に「HcJ」という)が低下するため不可逆熱減磁が起こる。そのため、特に電気自動車用モータやハイブリッド自動車用モータに使用される場合、高温下でも高いHcJを有することが要求されている。 The RTB -based sintered magnet has irreversible thermal demagnetization because the coercive force H cJ (hereinafter simply referred to as “H cJ ”) decreases at high temperatures. Therefore, especially when used for a motor for an electric vehicle or a motor for a hybrid vehicle, it is required to have a high HcJ even at a high temperature.

R−T−B系焼結磁石において、主相であるR14B相中のRに含まれる軽希土類元素RL(主としてNdおよび/またはPr)の一部を重希土類元素RH(主としてDyおよび/またはTb)で置換すると保磁力HcJ(以下、単に「HcJ」という)が向上することが知られており、重希土類元素RHの置換量の増加に伴いHcJは向上する。 In the R-T-B based sintered magnet, a part of the light rare earth element RL (mainly Nd and / or Pr) contained in R in the main phase R 2 T 14 B phase is converted to heavy rare earth element RH (mainly Dy And / or Tb) is known to improve the coercive force H cJ (hereinafter, simply referred to as “H cJ ”), and the H cJ increases as the substitution amount of the heavy rare earth element RH increases.

しかし、R14B相中の軽希土類元素RLを重希土類元素RHで置換するとHcJが向上する一方、残留磁束密度B(以下、単に「B」という)が低下する。また、重希土類元素、特にDyなどは産出地が限定されているなどの理由から供給が安定しておらず、価格が変動するなどの問題を有している。そのため、重希土類元素RHをできるだけ使用することなくBを低下させずにHcJを向上させることが求められている。 However, when the light rare earth element RL in the R 2 T 14 B phase is replaced with the heavy rare earth element RH, H cJ is improved, while the residual magnetic flux density B r (hereinafter simply referred to as “B r ”) is reduced. In addition, heavy rare earth elements, particularly Dy, have a problem that their supply is not stable and the price fluctuates because the production area is limited. Therefore, to improve the H cJ are sought without reducing the B r without using as much as possible the heavy rare-earth element RH.

特許文献1には通常のR−T−B系合金よりもB量を低くするとともにAl、Ga、Cuのうちから選ばれる1種以上の金属元素Mを含有させることによりR17相を生成させ、該R17相を原料として生成させた遷移金属リッチ相(R13M)の体積率を充分に確保することにより、Dyの含有量を抑制しつつ保磁力の高いR−T−B系希土類焼結磁石が得られることが記載されている。 In Patent Document 1, the amount of B is made lower than that of a normal R-T-B alloy, and at least one metal element M selected from Al, Ga, and Cu is contained, thereby providing an R 2 T 17 phase. By generating a sufficient volume fraction of the transition metal rich phase (R 6 T 13 M) generated using the R 2 T 17 phase as a raw material, R having a high coercive force while suppressing the content of Dy It is described that a -T-B rare earth sintered magnet can be obtained.

また、R−T−B系焼結磁石のHcJ向上手段として、焼結磁石に重希土類元素RHを含む金属、合金、化合物などを特定手段により磁石表面に供給し、熱処理で重希土類元素RHを磁石内部に拡散させ、R14B相外殻部の軽希土類元素RLを重希土類元素RHで置換することにより、Bの低下を抑制しつつHcJを向上させる方法が種々提案されている。 Further, as a means for improving the HcJ of an R-T-B system sintered magnet, a metal, an alloy, a compound, or the like containing a heavy rare earth element RH is supplied to the sintered magnet by a specific means, and the heavy rare earth element RH is subjected to heat treatment. It was diffused inside the magnet, by replacing the light rare-earth elements RL of R 2 T 14 B Aisotokara unit at earth element RH, a method of improving the H cJ while suppressing a decrease in B r is proposed ing.

例えば、特許文献2はR−Fe−B系希土類焼結磁石体と重希土類元素RH(Dy、HoおよびTbからなる群から選択された少なくとも1種)を含有するバルク体を処理室内に配置し、それらを700℃以上1000℃以下に加熱することにより、バルク体から重希土類元素RHをR−Fe−B系希土類焼結磁石体の表面に供給しつつ重希土類元素RHをR−Fe−B系希土類焼結磁石体の内部に拡散させる方法を開示している。   For example, in Patent Document 2, a bulk body containing an R—Fe—B rare earth sintered magnet body and a heavy rare earth element RH (at least one selected from the group consisting of Dy, Ho, and Tb) is disposed in a processing chamber. Then, by heating them to 700 ° C. or more and 1000 ° C. or less, the heavy rare earth element RH is supplied to the surface of the R—Fe—B rare earth sintered magnet body from the bulk body while the heavy rare earth element RH is supplied to R—Fe—B. Discloses a method of diffusing into a rare earth sintered magnet body.

また、特許文献3は複数個のR−T−B系焼結磁石体と重希土類元素RHを含有する複数個のRH拡散源とを相対的に移動可能かつ近接または接触可能に処理室内に装入し、R−T−B系焼結磁石体とRH拡散源とを処理室内にて連続的にまたは断続的に移動させながら加熱することにより、RH拡散源から重希土類元素RHをR−T−B系焼結磁石体の表面に供給しつつ内部に拡散させる方法を開示している。   Patent Document 3 discloses that a plurality of R-T-B sintered magnet bodies and a plurality of RH diffusion sources containing heavy rare earth elements RH are relatively movable and can be brought close to or in contact with each other. And heating the RTB-based sintered magnet body and the RH diffusion source while continuously or intermittently moving them in the processing chamber, thereby converting the heavy rare earth element RH from the RH diffusion source to RT. -Discloses a method of diffusing the B-based sintered magnet body while supplying it to the surface.

国際公開第2013/008756号International Publication No. 2013/008756 国際公開第2007/102391号International Publication No. 2007/102391 国際公開第2011/007758号International Publication No. 2011/007758

特許文献1によれば従来に比べHcJの高いR−T−B系焼結磁石が得られるものの、電気自動車用モータやハイブリッド自動車用モータなどに使用する場合に要求される高温下でも高いHcJを満足するためにはDyの使用は不可欠である。従って、Dyの使用量を削減するためには特許文献2や3に開示されるようなR−T−B系焼結磁石に重希土類元素を供給し、内部に拡散させる方法を適用せざるを得ない。 According to Patent Document 1, although an RTB -based sintered magnet having a higher H cJ than that of the prior art can be obtained, the high H is required even at high temperatures required for use in motors for electric vehicles and motors for hybrid vehicles. In order to satisfy cJ , the use of Dy is indispensable. Therefore, in order to reduce the amount of Dy used, a method of supplying heavy rare earth elements to an RTB-based sintered magnet as disclosed in Patent Documents 2 and 3 and diffusing it inside must be applied. I don't get it.

しかし、特許文献1のR−T−B系希土類焼結磁石に特許文献2や3に開示されるような方法を適用すると角型比H/HcJ(以下、単に「H/HcJ」という。HはJ[磁化の大きさ]−H[磁界の強さ]曲線の第2象限において、JがJ[残留磁化]の値に対して一定の割合の値になる位置のHの値。R−T−B系焼結磁石においては一定の割合の値として0.9Jが用いられることが多い。)が大幅に低下するという問題があった。 However, when the method disclosed in Patent Documents 2 and 3 is applied to the R-T-B rare earth sintered magnet of Patent Document 1, the squareness ratio H k / H cJ (hereinafter simply referred to as “H k / H cJ). H k is the position at which J becomes a constant value relative to the value of J r [residual magnetization] in the second quadrant of the J [magnetization magnitude] -H [magnetic field strength] curve. in H value .R-T-B based sintered magnet of 0.9 J r is often used as a value a certain percentage.) is lowered significantly.

本発明はBの低下を抑制しつつ高いHcJおよび高いH/HcJを有し、かつ高温下においても優れたHcJを有するR−T−B系焼結磁石の製造方法の提供を目的とする。 Provided by the present invention has a high H cJ and high H k / H cJ while suppressing a decrease in B r, and method for producing the R-T-B-based sintered magnet having excellent H cJ even at high temperatures With the goal.

請求項1に記載の本発明のR−T−B系焼結磁石の製造方法は、
R30.0〜31.7質量%(Rは希土類元素のうち少なくとも一種でありNdを必ず含む)、
B0.90〜0.96質量%、
Ga0.15〜0.4質量%、
残部T(Tは遷移金属元素のうち少なくとも一種でありFeを必ず含む)および不可避的不純物を含有する主合金粉末を準備する工程と、
PrおよびTiを含有する副合金粉末を準備する工程と、
主合金粉末と副合金粉末とを、混合後の混合合金粉末100質量%に含有されるTiが0.3質量%以下となるように混合し、混合合金粉末を準備する工程と、
混合合金粉末を成形し、成形体を準備する工程と、
成形体を焼結し、R−T−B系焼結磁石素材を準備する工程と、
DyまたはTbを含む金属、合金または化合物からなるRH拡散源を準備する工程と、
RH拡散源のDyまたはTbをR−T−B系焼結磁石素材に供給、拡散させるRH供給拡散処理を施す工程と、
RH供給拡散処理工程後のR−T−B系焼結磁石に熱処理を施す工程と、
を含むことを特徴とする。
The manufacturing method of the RTB system sintered magnet of the present invention according to claim 1 comprises:
R30.0 to 31.7% by mass (R is at least one of rare earth elements and must contain Nd),
B0.90-0.96 mass%,
Ga 0.15-0.4 mass%,
Preparing a main alloy powder containing the balance T (T is at least one of transition metal elements and necessarily contains Fe) and inevitable impurities;
Preparing a sub-alloy powder containing Pr and Ti;
Mixing the main alloy powder and the sub-alloy powder so that Ti contained in 100% by mass of the mixed alloy powder after mixing is 0.3% by mass or less, and preparing a mixed alloy powder;
Forming a mixed alloy powder and preparing a formed body; and
Sintering the compact and preparing an R-T-B sintered magnet material;
Providing an RH diffusion source comprising a metal, alloy or compound containing Dy or Tb;
Supplying RH diffusion source Dy or Tb to the R-T-B system sintered magnet material, and performing an RH supply diffusion treatment;
A step of heat-treating the RTB-based sintered magnet after the RH supply diffusion treatment step;
It is characterized by including.

請求項2に記載の本発明のR−T−B系焼結磁石の製造方法は、請求項1において、副合金粉末がPr53〜66質量%およびTi5〜21質量%を含有することを特徴とする。   The method for producing an RTB-based sintered magnet according to a second aspect of the present invention is characterized in that, in the first aspect, the secondary alloy powder contains Pr 53 to 66 mass% and Ti 5 to 21 mass%. To do.

請求項3に記載の本発明のR−T−B系焼結磁石の製造方法は、請求項1または2において、副合金粉末にFeおよびAlを含有することを特徴とする。   According to a third aspect of the present invention, there is provided a method for producing an RTB-based sintered magnet according to the first or second aspect of the present invention, wherein the secondary alloy powder contains Fe and Al.

本発明によれば、Bの低下を抑制しつつ高いHcJおよび高いH/HcJを有し、かつ高温下においても優れたHcJを有するR−T−B系焼結磁石を提供することができる。 According to the present invention, while suppressing the decrease in B r has a high H cJ and high H k / H cJ, and provides R-T-B based sintered magnet having excellent H cJ even at high temperatures can do.

また、本発明によれば、比較的高価なGaの含有量を低減することができるため、R−T−B系焼結磁石を安価にして提供することが可能となる。   In addition, according to the present invention, since the content of relatively expensive Ga can be reduced, it is possible to provide an RTB-based sintered magnet at a low cost.

実施例1のR−T−B系焼結磁石素材のTi量とHcJとの関係を示すグラフである。6 is a graph showing the relationship between the Ti amount of the RTB -based sintered magnet material of Example 1 and HcJ . 実施例1のR−T−B系焼結磁石素材のTi量とBとの関係を示すグラフである。It is a graph showing the relationship between the Ti content and the B r of the R-T-B based sintered magnet material of Example 1. 実施例1のR−T−B系焼結磁石素材のTi量とHk/HcJとの関係を示すグラフである。It is a graph which shows the relationship between Ti amount of the RTB type | system | group sintered magnet raw material of Example 1, and Hk / HcJ . 実施例1のR−T−B系焼結磁石のTi量とHcJとの関係を示すグラフである。4 is a graph showing the relationship between the Ti amount of the RTB -based sintered magnet of Example 1 and HcJ . 実施例1のR−T−B系焼結磁石のTi量とBとの関係を示すグラフである。It is a graph showing the relationship between the Ti content and the B r of the R-T-B based sintered magnet of Example 1. 実施例1のR−T−B系焼結磁石のTi量とHk/HcJとの関係を示すグラフである。4 is a graph showing the relationship between the amount of Ti of the RTB -based sintered magnet of Example 1 and Hk / H cJ . 実施例1のR−T−B系焼結磁石のFE−SEMの組織観察結果を示す写真である。4 is a photograph showing a result of FE-SEM structure observation of the RTB-based sintered magnet of Example 1. FIG. 実施例1のR−T−B系焼結磁石のFE−SEMの組織観察結果を示す写真である。4 is a photograph showing a result of FE-SEM structure observation of the RTB-based sintered magnet of Example 1. FIG. 実施例1のR−T−B系焼結磁石のFE−SEMの組織観察結果を示す写真である。4 is a photograph showing a result of FE-SEM structure observation of the RTB-based sintered magnet of Example 1. FIG. 実施例1のR−T−B系焼結磁石のFE−SEMの組織観察結果を示す写真である。4 is a photograph showing a result of FE-SEM structure observation of the RTB-based sintered magnet of Example 1. FIG. 実施例1のR−T−B系焼結磁石のEPMAによるPrの濃度分布を示す写真である。4 is a photograph showing the concentration distribution of Pr by EPMA of the RTB-based sintered magnet of Example 1. FIG. 実施例1のR−T−B系焼結磁石のFE−SEMの組織観察結果を示す写真である。4 is a photograph showing a result of FE-SEM structure observation of the RTB-based sintered magnet of Example 1. FIG. 実施例2のR−T−B系焼結磁石素材のTi量とHcJとの関係を示すグラフである。It is a graph which shows the relationship between Ti amount of the RTB type | system | group sintered magnet raw material of Example 2, and HcJ . 実施例2のR−T−B系焼結磁石素材のTi量とBとの関係を示すグラフである。6 is a graph showing the relationship between the amount of Ti of an RTB-based sintered magnet material of Example 2 and Br . 実施例2のR−T−B系焼結磁石素材のTi量とHk/HcJとの関係を示すグラフである。It is a graph which shows the relationship between Ti amount of the RTB type | system | group sintered magnet raw material of Example 2, and Hk / HcJ . 実施例2のR−T−B系焼結磁石のTi量とHcJとの関係を示すグラフである。It is a graph which shows the relationship between Ti amount of the RTB system sintered magnet of Example 2, and HcJ . 実施例2のR−T−B系焼結磁石のTi量とBとの関係を示すグラフである。It is a graph showing the relationship between the Ti content and the B r of the R-T-B based sintered magnet of Example 2. 実施例2のR−T−B系焼結磁石のTi量とHk/HcJとの関係を示すグラフである。It is a graph which shows the relationship between Ti amount of the RTB type | system | group sintered magnet of Example 2, and Hk / HcJ .

以下の説明において、前記特許文献2や3などのようにRH拡散源のRHをR−T−B系焼結磁石素材の表面に供給し、RHをR−T−B系焼結磁石素材の内部に拡散させることを「RH供給拡散処理」という。また、RH供給拡散処理を実施した後、RHの供給を行わずにRHをR−T−B系焼結磁石素材の内部に拡散させることを「RH拡散処理」という。さらに、RH供給拡散処理後またはRH拡散処理後に、R−T−B系焼結磁石の磁石特性向上を目的として行う熱処理を単に「熱処理」という。   In the following description, RH of the RH diffusion source is supplied to the surface of the R-T-B system sintered magnet material as in Patent Documents 2 and 3, and RH is supplied to the R-T-B system sintered magnet material. The diffusion inside is referred to as “RH supply diffusion processing”. In addition, the diffusion of RH into the RTB-based sintered magnet material without performing the supply of RH after the RH supply diffusion process is referred to as “RH diffusion process”. Furthermore, the heat treatment performed for the purpose of improving the magnet characteristics of the RTB-based sintered magnet after the RH supply diffusion treatment or after the RH diffusion treatment is simply referred to as “heat treatment”.

また、以下の説明において、RH供給拡散処理前のR−T−B系焼結磁石を「R−T−B系焼結磁石素材」といい、RH供給拡散処理後のR−T−B系焼結磁石を「R−T−B系焼結磁石」という。また、R−T−B系焼結磁石中に存在する粒界において、二つの主相の間に存在する粒界を「二粒子粒界」といい、三つ以上の主相の間に存在する粒界を「粒界三重点」という。   In the following description, the RTB system sintered magnet before the RH supply diffusion process is referred to as “RTB system sintered magnet material”, and the RTB system after the RH supply diffusion process. The sintered magnet is referred to as an “RTB-based sintered magnet”. In addition, a grain boundary that exists between two main phases in a grain boundary existing in an R-T-B system sintered magnet is called a “two-grain grain boundary” and exists between three or more main phases. Grain boundaries that occur are called “grain boundary triple points”.

本発明のR−T−B系焼結磁石の製造方法の主たる特徴は、前記特許文献1のようにB量が低くない従来のR−T−B系焼結磁石(R、B、GaおよびFeなどを含み特許文献1の磁石に比べB量が高い)とほぼ同様の成分、組成からなる主合金粉末に、PrおよびTiを含有する副合金粉末を混合し、成形、焼結したR−T−B系焼結磁石素材に、RH供給拡散処理および熱処理を施すことにある。これによって、Bの低下を抑制しつつ高いHcJおよび高いH/HcJを有し、かつ高温下においても優れたHcJを有するR−T−B系焼結磁石が得られる。このような効果が得られるメカニズムについては未だ不明な点もあるが、現在までに得られている知見を元に本発明者らが考えるメカニズムについて以下に説明する。以下のメカニズムについての説明は本発明の技術的範囲を制限することを目的とするものではないことに留意されたい。 The main feature of the manufacturing method of the RTB-based sintered magnet of the present invention is that the conventional RTB-based sintered magnet (R, B, Ga and A main alloy powder having substantially the same components and composition as that of the magnet of Patent Document 1 including Fe and the like is mixed, and sub-alloy powder containing Pr and Ti is mixed, molded, and sintered. The purpose is to subject the TB sintered magnet material to RH supply diffusion treatment and heat treatment. This has a high H cJ and high H k / H cJ while suppressing a decrease in B r, and the R-T-B-based sintered magnet having excellent H cJ even at high temperatures is obtained. Although there are still unclear points about the mechanism that can obtain such an effect, the mechanism that the present inventors consider based on the knowledge obtained up to now will be described below. It should be noted that the following description of the mechanism is not intended to limit the technical scope of the present invention.

R−T−B系焼結磁石は主相であるR14B相の存在比率を高めることによりBを向上させることができる。R14B相の存在比率を高めるためにはR量、T量、B量をR14B相の化学量論比に近づければよいが、R14B相を形成するためのB量が化学量論比を下回ると粒界に軟磁性のR17相が析出しHcJが急激に低下する。しかし、磁石組成にGaが含有されているとR17相の代わりにR−T−Ga相が生成されHcJの低下を防止することができると考えられる。特許文献1はこの技術思想に基づく発明であり、B量を低くすることにより積極的にR17相を生成させ、そのR17相を原料として遷移金属リッチ相(R13M=R−T−Ga相)を生成させている。しかし、本発明者らが検討の結果、R−T−Ga相も若干の磁性を有しておりR−T−B系焼結磁石における粒界、特にHcJを担う二粒子粒界にR−T−Ga相が多く存在するとHcJ向上の妨げになると考えられる。 R-T-B based sintered magnet can be improved B r by increasing the existence ratio of R 2 T 14 B phase as the main phase. R 2 T 14 R amount in order to increase the existence ratio of B-phase, T amounts, although the B amount should brought close to the stoichiometric ratio of R 2 T 14 B phase, to form an R 2 T 14 B phase When the amount of B is less than the stoichiometric ratio, a soft magnetic R 2 T 17 phase precipitates at the grain boundary, and H cJ decreases rapidly. However, it is considered that when Ga is contained in the magnet composition, an R—T—Ga phase is generated instead of the R 2 T 17 phase, and a decrease in H cJ can be prevented. Patent Document 1 is an invention based on this technical idea. By reducing the amount of B, an R 2 T 17 phase is positively generated, and the transition metal rich phase (R 6 T 13) is produced using the R 2 T 17 phase as a raw material. M = R-T-Ga phase). However, as a result of the study by the present inventors, the R—T—Ga phase also has a slight magnetism, and the R—T—B-based sintered magnet has a grain boundary, particularly R at the grain boundary that bears H cJ. It is considered that the presence of a large amount of -T-Ga phase hinders the improvement of HcJ .

また、先述の通り、特許文献1のR−T−B系希土類焼結磁石に特許文献2や3などに開示されるようなRH供給拡散処理を適用するとH/HcJが大幅に低下する。これは二粒子粒界および粒界三重点に含有されるB量が低いことに起因していると考えられる。つまり、RH供給拡散処理によってRHが焼結磁石素材内部に拡散する際にBが何等かの役割を担っており、R−T−B系焼結磁石素材のB量が低いとRH供給拡散処理時に有害な相(例えばR17相)が生成され、その結果、H/HcJが大幅に低下するのではないかと考えられる。 Further, as described above, when the RH supply diffusion treatment as disclosed in Patent Documents 2 and 3 is applied to the R-T-B rare earth sintered magnet of Patent Document 1, H k / H cJ is significantly reduced. . This is considered to be due to the low amount of B contained in the two-grain grain boundary and the grain boundary triple point. That is, when RH is diffused into the sintered magnet material by the RH supply diffusion treatment, B plays some role. If the amount of B in the RTB-based sintered magnet material is low, the RH supply diffusion treatment is performed. It is thought that sometimes harmful phases (for example, R 2 T 17 phase) are generated, and as a result, H k / H cJ may be significantly reduced.

本発明の製造方法によって得られるR−T−B系焼結磁石素材は、従来のR−T−B系焼結磁石素材(R、B、GaおよびFeなどを含み特許文献1の磁石に比べB量が高い)とほぼ同様の成分、組成からなる主合金粉末に、PrおよびTiを含有する副合金粉末を混合し、成形、焼結されたものであり、主合金粉末のB量は特許文献1に比べ比較的高い(0.90〜0.96質量%)。従って、R17相の生成量が少なくなり、それに伴いR−T−Ga相の生成量も少なくなる。その結果、比較的高価なGaの含有量を低減することができるため、R−T−B系焼結磁石を安価にして提供することが可能となる。 The RTB-based sintered magnet material obtained by the manufacturing method of the present invention includes a conventional RTB-based sintered magnet material (including R, B, Ga, Fe, etc., compared to the magnet of Patent Document 1). A secondary alloy powder containing Pr and Ti is mixed with a main alloy powder having substantially the same components and composition as the B content is high), and molded and sintered. The B amount of the main alloy powder is patented. It is relatively high compared to Document 1 (0.90 to 0.96% by mass). Therefore, the production amount of the R 2 T 17 phase is reduced, and accordingly, the production amount of the R—T—Ga phase is also reduced. As a result, since the content of relatively expensive Ga can be reduced, it becomes possible to provide an RTB-based sintered magnet at a low cost.

また、R−T−B系焼結磁石素材内部においては、副合金粉末に含有されるTiがBと結合し主として粒界三重点にTiBが生成される。TiBは非磁性であるためR−T−Ga相のようにHcJ向上の妨げになることが少ない。その結果、R−T−B系永久磁石素材(RH供給拡散処理前)においても特許文献1のR−T−B系希土類焼結磁石と同程度の高いHcJを発現することができる。 Further, in the RTB-based sintered magnet material, Ti contained in the suballoy powder is combined with B to produce TiB 2 mainly at the grain boundary triple point. Since TiB 2 is non-magnetic, it is unlikely to hinder HcJ improvement like the RT-Ga phase. As a result, even in the R-T-B system permanent magnet material (before the RH supply diffusion treatment), HcJ as high as the R-T-B system rare earth sintered magnet of Patent Document 1 can be expressed.

また、R−T−B系焼結磁石素材の熱処理後の組織を観察すると、従来のR−T−B系焼結磁石素材に比べ二粒子粒界の厚みが太くなっている(主相間距離が長くなっている)。これは粒界3重点に生成されるTiBと、主として二粒子粒界に生成される少量のR−T−Ga相の存在によるものと考えられる。この二粒子粒界の厚みが太くなっていることも高いHcJの発現に寄与しているものと考えられる。 Moreover, when the structure | tissue after heat processing of the R-T-B type | system | group sintered magnet raw material is observed, the thickness of a two-particle grain boundary is thick compared with the conventional R-T-B type | system | group sintered magnet material (distance between main phases). Is getting longer). This is considered to be due to the presence of TiB 2 generated at the triple point of the grain boundary and a small amount of R—T—Ga phase generated mainly at the two grain boundary. The increase in the thickness of the two grain boundaries is also thought to contribute to the high expression of HcJ .

また、R−T−B系焼結磁石素材内部においては、副合金粉末に含有されるPrが主相外殻部に濃縮する。これによってHcJが向上する。また、副合金粉末に含有されるPrによって二粒子粒界および粒界三重点に含有されるPr量が高くなるとともに二粒子粒界の厚みが太くなる。このように、副合金粉末にPrが含有されていることも、高いHcJの発現に寄与しているものと考えられる。 In addition, in the RTB-based sintered magnet material, Pr contained in the secondary alloy powder is concentrated in the main phase outer shell. This improves HcJ . Further, the Pr contained in the secondary alloy powder increases the amount of Pr contained in the two-grain grain boundary and the grain boundary triple point and increases the thickness of the two-grain grain boundary. Thus, it is considered that the fact that Pr is contained in the secondary alloy powder also contributes to the high expression of HcJ .

さらに、本発明の製造方法によって得られるR−T−B系焼結磁石素材にはTiBが生成されているため、特許文献1のR−T−B系希土類焼結磁石と同様に二粒子粒界および粒界三重点に含有されるB量は低くなっていると考えられるが、RH供給拡散処理によってRHが焼結磁石素材内部に拡散する際にはTiBに蓄えられたBが何らかの役目を果たし有害な相(例えばR17相)の生成を抑制していると考えられる。その結果、得られるR−T−B系焼結磁石においてRH供給拡散処理によるH/HcJの低下を抑制することができ、Bの低下を抑制しつつ高いHcJおよび高いH/HcJを有し、かつ高温下でも優れたHcJが得られると考えられる。 Furthermore, since TiB 2 is generated in the RTB-based sintered magnet material obtained by the manufacturing method of the present invention, two particles are formed in the same manner as the RTB-based rare earth sintered magnet of Patent Document 1. The amount of B contained in the grain boundary and the grain boundary triple point is considered to be low, but when RH diffuses into the sintered magnet material by the RH supply diffusion treatment, the B stored in TiB 2 is somehow It is considered that the production of harmful phases (for example, R 2 T 17 phase) is suppressed. As a result, it is possible to suppress a decrease in H k / H cJ by RH supply diffusion process in the R-T-B based sintered magnet obtained, higher while suppressing the decrease in B r H cJ and high H k / has a H cJ, and excellent H cJ at high temperatures be obtained.

本発明のR−T−B系焼結磁石の製造方法について以下に説明する。   The manufacturing method of the RTB system sintered magnet of this invention is demonstrated below.

[主合金粉末を準備する工程]
主合金粉末を準備する工程において、主合金粉末の成分、組成は以下の通りである。
R30.0〜31.7質量%(Rは希土類元素のうち少なくとも一種でありNdを必ず含む)、
B0.90〜0.96質量%、
Ga0.15〜0.4質量%、
残部T(Tは遷移金属元素のうち少なくとも一種でありFeを必ず含む)および不可避的不純物を含有する。
前記成分組成において、各元素の含有量が前記範囲の下限未満あるいは上限を超えるとBの低下を抑制しつつ高いHcJおよび高いH/HcJを有し、かつ高温下においても優れたHcJを有するR−T−B系焼結磁石を得ることができなくなる。
[Process for preparing main alloy powder]
In the step of preparing the main alloy powder, the components and composition of the main alloy powder are as follows.
R30.0 to 31.7% by mass (R is at least one of rare earth elements and must contain Nd),
B0.90-0.96 mass%,
Ga 0.15-0.4 mass%,
The remainder T (T is at least one of transition metal elements and must contain Fe) and unavoidable impurities.
In the component composition, the content of each element has a high H cJ and high H k / H cJ while suppressing lowering of the lower limit less than or exceeds the upper limit B r of the range, and excellent in high temperature An RTB -based sintered magnet having HcJ cannot be obtained.

主合金粉末には前記成分のほか磁石特性向上などを目的として公知の添加元素、例えば、Co、Al、Cu、V、Cr、Mn、Nb、Ta、Mo、W、Ca、Sn、Zr、Hfの少なくとも1種を含有してもよい。また、主合金粉末には、例えば、ジジム合金(Nd−Pr)、電解鉄、フェロボロンなどの原料に含有されるLa、Ce、Cr、Mn、Siなどの不可避的不純物を含有してもよい。   In addition to the above components, the main alloy powder includes known additive elements for the purpose of improving magnet characteristics, such as Co, Al, Cu, V, Cr, Mn, Nb, Ta, Mo, W, Ca, Sn, Zr, and Hf. You may contain at least 1 sort (s) of these. The main alloy powder may contain inevitable impurities such as La, Ce, Cr, Mn, and Si contained in raw materials such as didymium alloy (Nd—Pr), electrolytic iron, and ferroboron.

主合金粉末を準備する工程は、前記成分、組成となるように各元素の原料を秤量し、公知の製造方法により粉末となす。例えば、ストリップキャスティング法により合金を作製し、得られた合金を水素粉砕法により粗粉砕粉末となす。あるいは該粗粉砕粉をジェットミル粉砕法により微粉砕し微粉砕粉末となす。主合金粉末は粗粉砕粉末、微粉砕粉末のいずれであってもよい。   In the step of preparing the main alloy powder, the raw materials of each element are weighed so as to have the above components and compositions, and are made into powder by a known production method. For example, an alloy is produced by a strip casting method, and the obtained alloy is made into a coarsely pulverized powder by a hydrogen pulverization method. Alternatively, the coarsely pulverized powder is finely pulverized by a jet mill pulverization method to obtain a finely pulverized powder. The main alloy powder may be either a coarsely pulverized powder or a finely pulverized powder.

[副合金粉末を準備する工程]
副合金粉末はPrおよびTiを含有する。好ましくはPr53〜66質量%およびTi5〜21質量%を含有する。さらに好ましくはその残部としてFeおよびAlを含有する。PrおよびTiの含有量が前記範囲の下限未満あるいは上限を超えるとBの低下を抑制しつつ高いHcJおよび高いH/HcJを有し、かつ高温下においても優れたHcJを有するR−T−B系焼結磁石を得ることができなくなる。FeおよびAlを含有することにより、副合金の溶解、粉砕などを容易に行うことができる。なお、副合金粉末は単一の合金(例えばPrTiAlFe合金)の粉末のみではなく、例えば、複数の合金を混合した粉末(例えばPrTiFe合金とPrTiAlFe合金との混合粉末など)あるいは単一または複数の合金に金属粉末や化合物粉末を混合した粉末(例えばPrTiAlFe合金とTi化合物の粉末との混合粉末など)などであってもよい。
[Step of preparing secondary alloy powder]
The secondary alloy powder contains Pr and Ti. Preferably, it contains Pr 53 to 66% by mass and Ti 5 to 21% by mass. More preferably, the balance contains Fe and Al. Have Pr and Ti content is lower than or higher H cJ and high H k / H cJ while suppressing lowering of exceeds the upper limit B r of the range, and has excellent H cJ even at high temperatures An RTB-based sintered magnet cannot be obtained. By containing Fe and Al, the secondary alloy can be easily melted and pulverized. The secondary alloy powder is not limited to a single alloy powder (for example, PrTiAlFe alloy), but, for example, a mixed powder of a plurality of alloys (for example, a mixed powder of a PrTiFe alloy and a PrTiAlFe alloy) or a single or a plurality of alloys. Alternatively, a powder obtained by mixing a metal powder or a compound powder (for example, a mixed powder of a PrTiAlFe alloy and a Ti compound powder) may be used.

副合金粉末を準備する工程は、前記成分、組成となるように各元素の原料を秤量し、公知の製造方法により粉末となす。例えば、超急冷法によりリボン状の合金を作製し、得られたリボン状の合金を公知の粉砕手段で粉砕し粉末となす。   In the step of preparing the suballoy powder, the raw materials of each element are weighed so as to have the above components and compositions, and are made into powder by a known production method. For example, a ribbon-like alloy is produced by a rapid quenching method, and the obtained ribbon-like alloy is pulverized by a known pulverizing means to form a powder.

[混合合金粉末を準備する工程]
前記によって準備した主合金粉末と副合金粉末は、混合後の混合合金粉末100質量%に含有されるTiが0.3質量%以下となるように混合し、混合合金粉末となす。混合後の混合合金粉末100質量%に含有されるTiが0.3質量%を超えるとBの低下を抑制しつつ高いHcJおよび高いH/HcJを有し、高温下においても優れたHcJを有するR−T−B系焼結磁石を得ることができなくなる。混合は公知の混合手段で行う。また、混合は乾式、湿式のいずれであってもよい。なお、主合金粉末が粗粉砕粉末の場合は、副合金粉末と混合し混合合金粉末となし、その混合合金粉末を微粉砕した後成形を行う。主合金粉末が微粉砕粉末の場合は、副合金粉末と混合し混合合金粉末となした後成形を行う。
[Process for preparing mixed alloy powder]
The main alloy powder and the sub-alloy powder prepared as described above are mixed so that Ti contained in 100% by mass of the mixed alloy powder after mixing is 0.3% by mass or less to obtain a mixed alloy powder. When Ti is contained in the mixed alloy powder 100 mass% after mixing it exceeds 0.3 wt% has a high H cJ and high H k / H cJ while suppressing a decrease in B r, excellent even at high temperatures In addition, it becomes impossible to obtain an RTB -based sintered magnet having HcJ . Mixing is performed by a known mixing means. Mixing may be either dry or wet. When the main alloy powder is coarsely pulverized powder, it is mixed with the secondary alloy powder to form a mixed alloy powder, and the mixed alloy powder is finely pulverized and then molded. When the main alloy powder is a finely pulverized powder, it is mixed with the sub-alloy powder to form a mixed alloy powder and then molded.

[成形体を準備する工程]
前記混合合金粉末を成形し、成形体となす。成形は公知の成形手段で行う。
[Process for preparing molded body]
The mixed alloy powder is formed into a formed body. Molding is performed by known molding means.

[R−T−B系焼結磁石素材を準備する工程]
前記成形体を焼結し、R−T−B系焼結磁石素材(焼結体)となす。焼結は公知の焼結手段で行う。
[Step of preparing an RTB-based sintered magnet material]
The molded body is sintered to obtain an RTB-based sintered magnet material (sintered body). Sintering is performed by a known sintering means.

[RH拡散源を準備する工程]
DyまたはTbを含む金属、合金または化合物からなるRH拡散源を準備する工程は、前記特許文献2や3などの公知のRH供給拡散処理に開示される工程を適用することができる。
[Step of preparing RH diffusion source]
For the step of preparing an RH diffusion source made of a metal, an alloy or a compound containing Dy or Tb, the steps disclosed in the well-known RH supply diffusion process such as Patent Documents 2 and 3 can be applied.

[RH供給拡散処理を施す工程]
RH拡散源のDyまたはTbをR−T−B系焼結磁石素材に供給、拡散させるRH供給拡散処理を施す工程は、前記特許文献2や3などの公知のRH供給拡散処理に開示される工程を適用することができる。なお、RH供給拡散処理は、特許文献2や3のように、RH拡散源から重希土類元素RHをR−T−B系焼結磁石素材の表面に供給しつつ内部に拡散させる方法でもよいし、RHを含む金属、合金、化合物などを成膜や塗布により予めR−T−B系焼結磁石素材の表面に存在させた後、熱処理によってR−T−B系焼結磁石素材内部に拡散させる方法でもよい。
[Step of performing RH supply diffusion treatment]
The process of supplying and diffusing Dy or Tb of the RH diffusion source to the R-T-B system sintered magnet material is disclosed in known RH supply diffusion processes such as Patent Documents 2 and 3 above. A process can be applied. The RH supply diffusion treatment may be a method of diffusing the heavy rare earth element RH from the RH diffusion source to the surface of the R-T-B system sintered magnet material as in Patent Documents 2 and 3. , RH-containing metals, alloys, compounds, etc. are pre-existed on the surface of the RTB-based sintered magnet material by film formation or application, and then diffused into the RTB-based sintered magnet material by heat treatment It is also possible to make it.

前記RH供給拡散処理によってR−T−B系焼結磁石内部に供給されたDyまたはTbをさらに内部へ拡散させる目的で、以下に説明するRH拡散処理を行ってもよい。RH拡散処理はRH供給拡散処理を実施した後、RH拡散源からDyまたはTbの供給を行わずに加熱を行う。例えば、RH供給拡散処理を実施した後、引き続きRH拡散処理を行う場合は、RH供給源からDyまたはTbが供給されない雰囲気圧力とし、好ましくは700℃以上1000℃以下、より好ましくは800℃以上950℃以下で実施する。あるいは、RH供給拡散処理を実施した後、R−T−B系焼結磁石のみを回収した場合は、当該R−T−B系焼結磁石に対して大気圧以下の真空または不活性ガス雰囲気中で、好ましくは700℃以上1000℃以下、より好ましくは800℃以上950℃以下で実施する。処理時間は例えば10分から24時間程度、より好ましくは1時間から6時間程度である。RH拡散処理によりR−T−B系焼結磁石内においてDyまたはTbの拡散が生じ、表層付近に供給されたDyまたはTbがさらに奥深くに拡散し、磁石全体としてHcJを高めることができる。 For the purpose of further diffusing Dy or Tb supplied to the inside of the RTB-based sintered magnet by the RH supply diffusion process, an RH diffusion process described below may be performed. In the RH diffusion process, after the RH supply diffusion process is performed, heating is performed without supplying Dy or Tb from the RH diffusion source. For example, when the RH diffusion process is performed after the RH supply diffusion process, the atmospheric pressure is set such that Dy or Tb is not supplied from the RH supply source, preferably 700 ° C. or more and 1000 ° C. or less, more preferably 800 ° C. or more and 950. Carry out at ℃ or below. Alternatively, after performing the RH supply diffusion treatment, when only the RTB-based sintered magnet is recovered, a vacuum or an inert gas atmosphere below the atmospheric pressure with respect to the RTB-based sintered magnet Among them, it is preferably performed at 700 ° C. or higher and 1000 ° C. or lower, more preferably 800 ° C. or higher and 950 ° C. or lower. The treatment time is, for example, about 10 minutes to 24 hours, more preferably about 1 hour to 6 hours. Due to the RH diffusion treatment, Dy or Tb is diffused in the RTB-based sintered magnet, and Dy or Tb supplied in the vicinity of the surface layer is further diffused deeply, so that HcJ can be increased as a whole magnet.

[熱処理を施す工程]
RH供給拡散処理工程後(RH供給拡散処理工程後にRH拡散工程を行ってもよい)のR−T−B系焼結磁石に熱処理を施す工程において、熱処理の温度、時間、雰囲気などは公知の条件を適用することができる。例えば、真空中やArガス中において480〜540℃で1〜10時間程度熱処理を行う。この熱処理によって二粒子粒界の厚みが太くなり、高いHcJを有するR−T−B系焼結磁石を得ることができる。
[Process for heat treatment]
In the step of heat-treating the R-T-B system sintered magnet after the RH supply diffusion treatment step (the RH diffusion step may be carried out after the RH supply diffusion treatment step), the heat treatment temperature, time, atmosphere, etc. are known. Conditions can be applied. For example, heat treatment is performed at 480 to 540 ° C. for about 1 to 10 hours in vacuum or Ar gas. By this heat treatment, the thickness of the two-grain grain boundary is increased, and an RTB -based sintered magnet having high HcJ can be obtained.

本発明を実施例によりさらに詳細に説明するが、本発明はそれらに限定されるものではない。   The present invention will be described in more detail with reference to examples, but the present invention is not limited thereto.

実施例1
表1のA〜Dに示す合金成分、組成となるように各元素の原料を秤量し、ストリップキャスティング法により合金を作製した。得られた各合金を水素粉砕法により粗粉砕粉末となした後、ジェットミル粉砕法により微粉砕し、粒径D50(気流分散法によるレーザー回折法で得られた体積中心値、以下同様)が4.2μmの主合金粉末A〜Dを準備した。
Example 1
The raw materials of each element were weighed so as to have the alloy components and compositions shown in A to D of Table 1, and an alloy was produced by a strip casting method. Each of the obtained alloys was made into a coarsely pulverized powder by a hydrogen pulverization method and then finely pulverized by a jet mill pulverization method to obtain a particle diameter D50 (volume center value obtained by a laser diffraction method by an airflow dispersion method, the same applies hereinafter). 4.2 μm main alloy powders A to D were prepared.

表2のa、b、cに示す合金成分、組成となるように各元素の原料を秤量し、超急冷法によりリボン状の合金を作製した。得られたリボン状の各合金を乳鉢で粉砕した後篩にかけて38μmアンダーの副合金粉末a、b、cを準備した。   The raw materials of each element were weighed so as to have the alloy components and compositions shown in Table 2, a, b and c, and a ribbon-like alloy was produced by a super rapid cooling method. The obtained ribbon-like alloys were pulverized in a mortar and then sieved to prepare sub-alloy powders a, b, and c of 38 μm under.

準備した主合金粉末A〜Cと副合金粉末a〜cを、表3に示す成分、組成となるように混合し、試料No.1〜11の混合合金粉末を準備した。なお、表3の主合金粉末における記号A〜Dは使用した合金を示し、括弧内は混合比率(質量%)を示す。同様に、副合金粉末における記号a〜cは使用した合金を示し、括弧内は混合比率(質量%)を示す。   The prepared main alloy powders A to C and suballoy powders a to c were mixed so as to have the components and compositions shown in Table 3. 1 to 11 mixed alloy powders were prepared. In addition, the symbols A to D in the main alloy powder of Table 3 indicate the alloys used, and the parentheses indicate the mixing ratio (% by mass). Similarly, symbols a to c in the secondary alloy powder indicate the alloy used, and the parentheses indicate the mixing ratio (mass%).

試料No.1〜11の混合合金粉末を直角磁界成形装置(横磁界成形装置)にて49MPa(0.5ton/cm)の圧力でそれぞれ2個成形した後、得られた成形体を各成分、組成に応じて1000〜1040℃で4時間焼結し、試料No.1〜11の混合合金粉末に基づくR−T−B系焼結磁石素材(以下、「試料No.**のR−T−B系焼結磁石素材」という)をそれぞれ2個準備した。 Sample No. After forming two of the mixed alloy powders 1 to 11 at a pressure of 49 MPa (0.5 ton / cm 2 ) with a perpendicular magnetic field molding device (transverse magnetic field molding device), the resulting molded body was made into each component and composition. Depending on the case, the sample was sintered at 1000 to 1040 ° C. for 4 hours. Two R-T-B system sintered magnet materials (hereinafter referred to as “R-T-B system sintered magnet materials of sample No. **”) based on the mixed alloy powders 1 to 11 were prepared.

試料No.1〜11のR−T−B系焼結磁石素材の磁石特性を測定するため、それぞれ2個のうち1個に、真空雰囲気下、880℃の温度で3時間の熱処理を施し、冷却後、R−T−B系焼結磁石素材の成分、組成に応じて480〜540℃で2時間、真空雰囲気下で熱処理を行った。得られた試料No.1〜11のR−T−B系焼結磁石素材の磁石特性をB−Hトレーサによって測定した。測定結果を図1〜図3に示す。図1は横軸がTi量、縦軸がHcJの測定結果を示し、図2は横軸がTi量、縦軸がBの測定結果を示し、図3は横軸がTi量、縦軸がHk/HcJの測定結果を示す。なお、Hk/HcJにおいて、HはJ(磁化の大きさ)−H(磁界の強さ)曲線の第2象限において、Jが0.9J(Jは残留磁化)の値になる位置のHの値(以下同様)である。図1〜図3において三角形のプロットが試料No.1〜3、菱形のプロットが試料No.4〜7、丸形のプロットが試料No.8〜10、四角形のプロットが試料No.11を示す。 Sample No. In order to measure the magnet characteristics of 1 to 11 R-T-B system sintered magnet material, one of each two was subjected to heat treatment at a temperature of 880 ° C. for 3 hours in a vacuum atmosphere, and after cooling, Heat treatment was performed in a vacuum atmosphere at 480 to 540 ° C. for 2 hours depending on the components and composition of the R-T-B system sintered magnet material. The obtained sample No. Magnet characteristics of 1 to 11 RTB-based sintered magnet materials were measured with a BH tracer. The measurement results are shown in FIGS. Figure 1 is the horizontal axis the amount of Ti, the vertical axis indicates the measurement result of H cJ, 2 weight abscissa Ti, the vertical axis indicates the measurement results of B r, 3 horizontal axis Ti amount, vertical An axis | shaft shows the measurement result of Hk / H cJ . Note that in Hk / H cJ, the H k is J second quadrant (magnetization magnitude) -H (field strength) curve, J is 0.9 J r (J r residual magnetization) becomes a value The value of the position H (the same applies hereinafter). In FIG. 1 to FIG. 1 to 3 and rhombus plots are sample Nos. 4 to 7 and the round plot is Sample No. 8-10, the square plot is sample No. 11 is shown.

図1に示す通り、主合金粉末に、PrおよびTiを含有する副合金粉末を混合、成形、焼結および熱処理したR−T−B系焼結磁石素材(本発明例)は、副合金粉末を添加しないもの(比較例)に比べ、HcJが大きく向上することが分かる。これは前記の通り、副合金粉末に含有されるTiがBと結合し主として粒界三重点に非磁性のTiBが生成されるためR−T−Ga相のようにHcJ向上の妨げになることが少なく、また、粒界3重点に生成されるTiBと、主として二粒子粒界に生成される少量のR−T−Ga相の存在、並びに副合金粉末に含有されるPrの存在によって二粒子粒界および粒界三重点に含有されるPr量が高くなり、それらによって二粒子粒界の厚みが太くなっているためであると考えられる。 As shown in FIG. 1, the RTB-based sintered magnet material (example of the present invention) obtained by mixing, forming, sintering, and heat-treating the suballoy powder containing Pr and Ti with the main alloy powder is the suballoy powder. It can be seen that HcJ is greatly improved as compared with the case where no is added (comparative example). This is because, as described above, Ti contained in the suballoy powder is combined with B and nonmagnetic TiB 2 is formed mainly at the grain boundary triple point, which hinders the improvement of HcJ as in the R-T-Ga phase. In addition, TiB 2 produced at the grain boundary triple point, a small amount of R—T—Ga phase produced mainly at the two-grain grain boundary, and Pr contained in the secondary alloy powder. This is presumably because the amount of Pr contained in the two-grain grain boundary and the grain boundary triple point increases due to the thickness of the two-grain grain boundary.

また、図2に示す通り、本発明によるR−T−B系焼結磁石素材はBが低下するもののHcJの向上効果に対するBの低下はそれほど大きくない。すなわち、Bの低下を抑制しつつHcJが向上している。さらに、図3に示す通り、H/Hcjはいずれの試料も0.95を超える高い値を有している。 Further, as shown in FIG. 2, R-T-B based sintered magnet material according to the present invention is not so large reduction in B r for enhancing the effect of H cJ although B r drops. That, H cJ is improved while suppressing a decrease in B r. Further, as shown in FIG. 3, H k / H cj has a high value exceeding 0.95 in any sample.

なお、試料No.11は特許文献1の再現例であり、他の試料に比べB量が低い(0.88質量%)。試料No.11では、ストリップキャスティング法による合金溶製時あるいは焼結時に、B量が低いことに起因しR17相が生成され、そのR17相を原料として遷移金属リッチ相(R13M=R−T−Ga相)が多量に生成されているものと考えられる。図1に示す通り、試料No.11のHcJは本発明に比べ低い。これは多量に生成したR−T−Ga相がHcJ向上の妨げになっているからであると考えられる。 Sample No. 11 is a reproduction example of Patent Document 1, and the amount of B is lower than other samples (0.88% by mass). Sample No. 11, an R 2 T 17 phase is generated due to a low B amount during alloy melting or sintering by the strip casting method, and the transition metal rich phase (R 6 T) is produced using the R 2 T 17 phase as a raw material. 13 M = R-T-Ga phase) is considered to be produced in large quantities. As shown in FIG. The HcJ of 11 is lower than that of the present invention. This is presumably because a large amount of the RT-Ga phase hinders the improvement of HcJ .

次に、RH拡散源として板状のDyメタルと、試料No.1〜11のR−T−B系焼結磁石素材の2個のうち1個を準備し、それぞれのR−T−B系焼結磁石素材について、Mo板上に、RH拡散源、保持部材、R−T−B系焼結磁石素材、保持部材、RH拡散源の順で積層することにより、11種類の積層体を準備した。なお、保持部材にはMo製の平織り金網を用いた。前記11種類の積層体を熱処理炉内へ装入し、圧力0.1Paの真空雰囲気下、880℃の温度で5.5時間RH供給拡散処理を行った。その後炉内を冷却し、試料No.1〜11のR−T−B系焼結磁石素材にRH供給拡散処理を施したR−T−B系焼結磁石(以下、「試料No.**のR−T−B系焼結磁石」という)のみを取り出した。RH供給拡散処理後の試料No.1〜11のR−T−B系焼結磁石を、真空雰囲気下、880℃の温度で5時間RH拡散処理を行い、冷却後、R−T−B系焼結磁石の成分、組成に応じて480〜540℃で2時間、真空雰囲気下で熱処理を行った。   Next, plate-like Dy metal as the RH diffusion source, and sample No. 1 to 11 of R-T-B system sintered magnet materials are prepared, and for each R-T-B system sintered magnet material, an RH diffusion source and a holding member are formed on the Mo plate. 11 types of laminates were prepared by laminating in the order of R-T-B system sintered magnet material, holding member, and RH diffusion source. The holding member was a plain weave wire mesh made of Mo. The 11 types of laminates were charged into a heat treatment furnace and subjected to RH supply diffusion treatment at a temperature of 880 ° C. for 5.5 hours in a vacuum atmosphere at a pressure of 0.1 Pa. Thereafter, the inside of the furnace was cooled, and sample No. 1 to 11 R-T-B-based sintered magnets obtained by subjecting R-T-B-based sintered magnet materials to RH supply diffusion treatment (hereinafter referred to as "Sample No. ** R-T-B based sintered magnets"). "). Sample No. after RH supply diffusion treatment 1 to 11 R-T-B system sintered magnets were subjected to RH diffusion treatment at a temperature of 880 ° C. for 5 hours in a vacuum atmosphere, and after cooling, depending on the components and composition of the R-T-B system sintered magnets Then, heat treatment was performed in a vacuum atmosphere at 480 to 540 ° C. for 2 hours.

得られた試料No.1〜11のR−T−B系焼結磁石の両面を0.1mmずつ研削し、さらに、それぞれのR−T−B系焼結磁石の中央部から厚み3.0mm×幅7mm×長さ7mmの試験片を切り出した。前記試験片の磁石特性をパルスB−Hトレーサによって測定した。測定結果を図4〜図6に示す。図4は横軸がTi量、縦軸がHcJの測定結果を示し、図5は横軸がTi量、縦軸がBの測定結果を示し、図6は横軸がTi量、縦軸がHk/HcJの測定結果を示す。図4〜図6において三角形のプロットが試料No.1〜3、菱形のプロットが試料No.4〜7、丸形のプロットが試料No.8〜10、四角形のプロットが試料No.11を示す。 The obtained sample No. 1 to 11 each of the R-T-B system sintered magnets are ground on both sides by 0.1 mm, and further from the center of each R-T-B system sintered magnet, the thickness is 3.0 mm × width 7 mm × length. A 7 mm test piece was cut out. The magnet properties of the specimen were measured with a pulse BH tracer. The measurement results are shown in FIGS. Figure 4 is the horizontal axis the amount of Ti, the vertical axis indicates the measurement result of H cJ, 5 the horizontal axis the amount of Ti, the vertical axis represents the measured results of the B r, 6 horizontal axis Ti amount, vertical An axis | shaft shows the measurement result of Hk / H cJ . In FIG. 4 to FIG. 1 to 3 and rhombus plots are sample Nos. 4 to 7 and the round plot is Sample No. 8-10, the square plot is sample No. 11 is shown.

図4に示す通り、主合金粉末に、PrおよびTiを含有する副合金粉末を混合、成形、焼結および熱処理したR−T−B系焼結磁石素材にRH供給拡散処理を施したR−T−B系焼結磁石(本発明例)は、副合金粉末を混合しないもの(比較例)に比べ、高いHcJを有していることが分かる。また、図5および図6に示す通り、RH供給拡散処理後においてもBおよびHk/HcJの低下が抑制されており、高いBおよび高いHk/HcJを有していることが分かる。これは前記の通り、RH供給拡散処理によってRHが焼結磁石素材内部に拡散する際に、TiBに蓄えられたBが何らかの役目を果たし有害な相(例えばR17相)の生成を抑制しているためであると考えられる。 As shown in FIG. 4, R—T—B-based sintered magnet material obtained by mixing, forming, sintering, and heat-treating sub-alloy powder containing Pr and Ti to main alloy powder is subjected to RH supply diffusion treatment. It can be seen that the TB sintered magnet (example of the present invention) has a high HcJ as compared with the one not mixed with the secondary alloy powder (comparative example). Further, as shown in FIGS. 5 and 6, are also suppressed decrease in B r and Hk / H cJ after RH supply diffusion process, it is found to have a high B r and a high Hk / H cJ . As described above, when RH diffuses into the sintered magnet material by the RH supply diffusion process, B stored in TiB 2 plays a role and generates a harmful phase (for example, R 2 T 17 phase). This is thought to be due to suppression.

一方、副合金粉末を添加しないもの(比較例)はHk/HcJが低下しており、特に、特許文献1の再現例である試料No.11はRH供給拡散前に比べHk/HcJが大幅に低下している。これは二粒子粒界および粒界三重点に含有されるB量が低いことに起因していると考えられ、RH供給拡散処理時に有害な相(例えばR17相)が生成されたためであると考えられる。 On the other hand, Hk / H cJ is lowered in the case where the suballoy powder is not added (comparative example), and in particular, Sample No. No. 11 has a significantly reduced Hk / H cJ as compared to before RH supply diffusion. This is considered to be due to the low amount of B contained in the two-grain grain boundaries and the grain boundary triple points, because a harmful phase (for example, R 2 T 17 phase) was generated during the RH supply diffusion treatment. It is believed that there is.

また、図4〜図6に示す通り、本発明によるR−T−B系焼結磁石において、Ga含有量が少ない方(Ga0.2質量%、図4〜図6における丸形のプロット)が高い磁石特性が得られている。すなわち、比較的高価なGaの含有量を低減することができるため、R−T−B系焼結磁石を安価にして提供することが可能となる。これは前記の通り、主合金粉末のB量が比較的高い(0.93質量%)ためにR17相の生成量が少なくなり、それに伴いHcJ向上の妨げになるR−T−Ga相の生成量も少なくなる。その結果、Ga含有量が低くても高い磁石特性が得られるものと考えられる。 Moreover, as shown in FIGS. 4-6, in the RTB type | system | group sintered magnet by this invention, the direction with smaller Ga content (Ga0.2 mass%, the round plot in FIGS. 4-6) is. High magnet characteristics are obtained. That is, since the content of relatively expensive Ga can be reduced, it is possible to provide an RTB-based sintered magnet at a low cost. As described above, this is because the amount of B in the main alloy powder is relatively high (0.93% by mass), so that the amount of R 2 T 17 phase generated is reduced, and accordingly, the improvement of H cJ is hindered. The amount of Ga phase generated is also reduced. As a result, it is considered that high magnet characteristics can be obtained even when the Ga content is low.

前記試料No.8〜11のR−T−B系焼結磁石について、140℃における磁石特性をB−Hトレーサによって測定した。測定結果を表4に示す。   Sample No. About the 8-11 RTB system sintered magnet, the magnet characteristic in 140 degreeC was measured with the BH tracer. Table 4 shows the measurement results.

表4に示す通り、本発明によるR−T−B系焼結磁石(試料No.9、10)は、副合金粉末を添加しないもの(試料No.8)並びに特許文献1の再現例(試料No.11)に比べ、高温下においても優れたHcJを有していることが分かる。 As shown in Table 4, the RTB-based sintered magnets (sample Nos. 9 and 10) according to the present invention are those to which no secondary alloy powder is added (sample No. 8), as well as reproduction examples of the patent document 1 (samples). It can be seen that it has excellent HcJ even at high temperatures compared to No. 11).

前記試料No.1〜4および6〜11のR−T−B系焼結磁石の組織観察を、FE−SEM(電界放射型走査電子顕微鏡)を用いて反射電子像(BSE像)により行った。その結果を図7〜10に示す。図7は前記試料No.1〜3(特徴的成分、組成がB0.90質量%、Ga0.4質量%、Ti0、0.14、0.20質量%)、図8は前記試料No.4、6、7(特徴的成分、組成がB0.93質量%、Ga0.4質量%、Ti0、0.11、0.22質量%)、図9は前記試料No.8〜10(特徴的成分、組成がB0.93質量%、Ga0.2質量%、Ti0、0.13、0.22質量%)、図10が前記試料No.11(特徴的成分、組成がB0.88質量%、Ga0.4質量%、Ti0質量%)である。各図の図中において矢印にて示す結晶はTiBである。なお矢印にて示す結晶はEDS(エネルギー分散型X線分光法)により組成分析を行った結果、TiとBのみが共存していたためTiBと推定した。 Sample No. Observation of the structures of the 1 to 4 and 6 to 11 RTB-based sintered magnets was performed using a reflected electron image (BSE image) using an FE-SEM (field emission scanning electron microscope). The results are shown in FIGS. FIG. 1 to 3 (characteristic components, composition: B0.90 mass%, Ga 0.4 mass%, Ti0, 0.14, 0.20 mass%), FIG. 4, 6, 7 (characteristic components, composition is B0.93% by mass, Ga0.4% by mass, Ti0, 0.11, 0.22% by mass), FIG. 8-10 (characteristic component, composition is B0.93% by mass, Ga0.2% by mass, Ti0, 0.13, 0.22% by mass), FIG. 11 (characteristic component, composition is B 0.88 mass%, Ga 0.4 mass%, Ti 0 mass%). The crystal indicated by the arrow in each figure is TiB 2 . The crystal indicated by the arrow was subjected to composition analysis by EDS (energy dispersive X-ray spectroscopy). As a result, only Ti and B coexisted, and thus it was estimated to be TiB 2 .

図7〜図9から明らかなように、本発明による主合金粉末にPrおよびTiを含有する副合金粉末を混合、成形、焼結および熱処理したR−T−B系焼結磁石素材にRH供給拡散処理を施したR−T−B系焼結磁石(試料No.2、3、6、7、9、10)には粒界3重点にTiBが生成しており、副合金粉末を混合しないもの(試料No.1、4、8)に比べ二粒子粒界の厚みが太くなっていることが分かる。 As is apparent from FIGS. 7 to 9, RH is supplied to an R-T-B system sintered magnet material obtained by mixing, molding, sintering and heat-treating a sub-alloy powder containing Pr and Ti to the main alloy powder according to the present invention. In the RTB sintered magnet (sample No. 2, 3, 6, 7, 9, 10) subjected to the diffusion treatment, TiB 2 is generated at the triple point of the grain boundary, and the secondary alloy powder is mixed. It can be seen that the thickness of the two-particle grain boundary is thicker than those not (sample Nos. 1, 4, 8).

図10に示す特許文献1の再現例である試料No.11においても二粒子粒界の厚みが太くなっているが、図4に示す通り、本発明のように優れたHcJは得られていない。これは二粒子粒界にR−T−Ga相が多く存在し、HcJ向上の妨げになっていると考えられる。また、図3および図6に示す通り、RH供給拡散前に比べH/HcJが大幅に低下している。これは、B量が少なく(0.88質量%)、二粒子粒界および粒界三重点に含有されるB量が低いため、RH供給拡散処理時に有害な相(例えばR17相)が生成されていると考えられる。 Sample No. 1 which is a reproduction example of Patent Document 1 shown in FIG. In FIG. 11, the thickness of the two-particle grain boundary is thick, but as shown in FIG. 4, excellent HcJ is not obtained as in the present invention. This is considered that there are many RT-Ga phases in the two-grain grain boundary, which hinders the improvement of HcJ . Further, as shown in FIGS. 3 and 6, H k / H cJ is significantly reduced as compared to before RH supply diffusion. This is because the amount of B is small (0.88% by mass), and the amount of B contained in the two-grain grain boundaries and the grain boundary triple points is low, and therefore a harmful phase (for example, R 2 T 17 phase) during the RH supply diffusion treatment. Is considered to have been generated.

前記試料No.6のR−T−B系焼結磁石について、EPMA装置を用いてPrの濃度分布を調べた。その結果を図11に示す。図11において、白黒画像の濃淡が薄い部分(白色部分)はPrの濃度が高く、濃淡が濃い部分(黒色部分)はPrの濃度が低く、濃淡が両者の中間の部分(灰色部分)はPrの濃度がそれらの間の濃度であることを示す。図11において黒い粒子状をなしているのが主相であり、主相間の灰色部分または白色部分が粒界(二粒子粒界および粒界三重点)である。図11から明らかなように、二粒子粒界および粒界三重点におけるPrの濃度が高くなっていることが分かる。また、個々の主相は中心部が黒く外殻部が濃い灰色になっており、Prが主相外殻部に濃縮していることが分かる。   Sample No. About the RTB type | system | group sintered magnet of 6, Pr density | concentration distribution was investigated using the EPMA apparatus. The result is shown in FIG. In FIG. 11, the dark and light portion (white portion) of the black and white image has a high Pr concentration, the dark portion (black portion) has a low Pr concentration, and the dark portion between the two portions (gray portion) has Pr. Indicates that the concentration is between them. In FIG. 11, the main phase is in the form of black particles, and the gray portion or white portion between the main phases is the grain boundary (two-particle grain boundary and grain boundary triple point). As is apparent from FIG. 11, it can be seen that the Pr concentration at the two-grain grain boundary and the grain boundary triple point is high. In addition, it can be seen that each main phase is black in the center and dark gray in the outer shell, and Pr is concentrated in the outer shell.

図12は、前記試料No.6(Pr59.0質量%、Ti12.0質量%を含有する副合金粉末を使用)と、副合金粉末としてTiHを用いて混合合金粉末の成分、組成におけるTi量が0.1質量%(比較例イ)と0.3質量%(比較例ロ)になるように混合する以外は前記実施例1の試料No.6と同じ方法により得たR−T−B系焼結磁石の組織観察の結果である。図12の左側の写真が試料No.6(本発明例)、中央の写真が比較例イ、右側の写真が比較例ロである。試料No.6(本発明例)と比較例イとは副合金粉末として混合するTi量はほぼ同じでPr量の有無が異なり、比較例イと比較例ロとはいずれも副合金粉末にPrを含まずTi量が異なる。 FIG. 6 (using a secondary alloy powder containing Pr 59.0% by mass and Ti 12.0% by mass), and using TiH 2 as the secondary alloy powder, the amount of Ti in the composition and composition of the mixed alloy powder is 0.1% by mass ( Sample No. of Example 1 was mixed except that the mixture was mixed so that it was 0.3% by mass (Comparative Example B). 6 is a result of structural observation of an R-T-B sintered magnet obtained by the same method as in FIG. The photograph on the left side of FIG. 6 (invention example), the middle photo is Comparative Example i, and the right photo is Comparative Example B. Sample No. No. 6 (invention example) and Comparative Example A have substantially the same amount of Ti to be mixed as a sub-alloy powder, and the presence or absence of Pr amount is different. Comparative Example A and Comparative Example B do not contain Pr in the sub-alloy powder. Ti amount is different.

図12から明らかなように、比較例イよりも試料No.6および比較例ロの方が、二粒子粒界がはっきりしており、粒界の厚みが太くなっている。つまり、試料No.6は比較例イとTi量はほぼ同じでPrの有無が異なるのであるから、Prの存在によって粒界が太くなったことになる。一方比較例ロは比較例イとTi量のみが異なるのであるから、Ti量の増加、つまり、TiBの増加によって粒界が太くなったことになる。すなわち、本発明においては、主として、粒界3重点に生成されるTiBと、Prの存在(二粒子粒界および粒界三重点に含有されるPr量が高くなる)とによる相乗効果によって二粒子粒界の厚みが太くなっていると考えられ、それが高いHcJの発現に寄与しているものと考えられる。 As can be seen from FIG. In the case of No. 6 and Comparative Example B, the two-grain grain boundary is clearer and the grain boundary thickness is thicker. That is, sample no. In No. 6, since the Ti amount is almost the same as in Comparative Example A, and the presence or absence of Pr is different, the grain boundary becomes thick due to the presence of Pr. On the other hand, Comparative Example B differs from Comparative Example A only in the amount of Ti, so that the grain boundary becomes thicker due to the increase in Ti amount, that is, the increase in TiB 2 . That is, in the present invention, the two effects are mainly due to the synergistic effect due to TiB 2 generated at the grain boundary triple point and the presence of Pr (the amount of Pr contained in the two-grain grain boundary and the grain boundary triple point increases). It is considered that the grain boundary thickness is thick, which is considered to contribute to the high expression of HcJ .

以上の通り、本発明によれば、Bの低下を抑制しつつ高いHcJおよび高いH/HcJを有し、かつ高温下においても優れたHcJを有するR−T−B系焼結磁石を提供することができる。 As described above, according to the present invention, while suppressing the decrease in B r has a high H cJ and high H k / H cJ, and the R-T-B-based sintered with excellent H cJ even at high temperatures A magnetized magnet can be provided.

実施例2
本実施例は主合金粉末にPrを含まない場合の例を示すものである。表5のE、Fに示す合金成分、組成となるように各元素の原料を秤量し、ストリップキャスティング法により合金を作製した。得られた各合金を水素粉砕法により粗粉砕粉末となした後、ジェットミル粉砕法により微粉砕し、粒径D50が4.2μmの主合金粉末E、Fを準備した。また、実施例1の表2と同様に副合金粉末b、cを準備した。
Example 2
In this example, the main alloy powder does not contain Pr. Raw materials of each element were weighed so as to have the alloy components and compositions shown in E and F of Table 5, and an alloy was produced by a strip casting method. Each of the obtained alloys was made into a coarsely pulverized powder by a hydrogen pulverization method, and then finely pulverized by a jet mill pulverization method to prepare main alloy powders E and F having a particle diameter D50 of 4.2 μm. In addition, suballoy powders b and c were prepared in the same manner as in Table 2 of Example 1.

準備した主合金粉末E、Fと副合金粉末b、cを、表6に示す成分、組成となるように混合し、試料No.12〜19の混合合金粉末を準備した。なお、表6の主合金粉末における記号E、Fは使用した合金を示し、括弧内は混合比率(質量%)を示す。同様に、副合金粉末における記号b、cは使用した合金を示し、括弧内は混合比率(質量%)を示す。   The prepared main alloy powders E and F and suballoy powders b and c were mixed so as to have the components and compositions shown in Table 6. 12-19 mixed alloy powders were prepared. In addition, the symbols E and F in the main alloy powder of Table 6 indicate the alloys used, and the parentheses indicate the mixing ratio (% by mass). Similarly, symbols b and c in the secondary alloy powder indicate the alloy used, and the parentheses indicate the mixing ratio (% by mass).

試料No.12〜19の混合合金粉末を直角磁界成形装置(横磁界成形装置)にて49MPa(0.5ton/cm)の圧力でそれぞれ2個成形した後、得られた成形体を各成分、組成に応じて1000〜1040℃で4時間焼結し、試料No.12〜19の混合合金粉末に基づくR−T−B系焼結磁石素材(以下、「試料No.**のR−T−B系焼結磁石素材」という)をそれぞれ2個準備した。 Sample No. After forming two of the mixed alloy powders of 12 to 19 at a pressure of 49 MPa (0.5 ton / cm 2 ) with a perpendicular magnetic field molding device (transverse magnetic field molding device), the resulting molded body was made into each component and composition. Depending on the case, the sample was sintered at 1000 to 1040 ° C. for 4 hours. Two RTB-based sintered magnet materials (hereinafter referred to as “RTB-based sintered magnet materials of sample No. **”) based on 12 to 19 mixed alloy powders were prepared.

試料No.12〜19のR−T−B系焼結磁石素材の磁石特性を測定するため、それぞれ2個のうち1個に、真空雰囲気下、880℃の温度で3時間の熱処理を施し、冷却後、R−T−B系焼結磁石素材の成分、組成に応じて480〜540℃で2時間、真空雰囲気下で熱処理を行った。得られた試料No.12〜19のR−T−B系焼結磁石素材の磁石特性をB−Hトレーサによって測定した。測定結果を図13〜図15に示す。図13は横軸がTi量、縦軸がHcJの測定結果を示し、図14は横軸がTi量、縦軸がBの測定結果を示し、図15は横軸がTi量、縦軸がHk/HcJの測定結果を示す。図13〜図15において菱形のプロットが試料No.12〜15、丸形のプロットが試料No.16〜19を示す。 Sample No. In order to measure the magnet characteristics of 12 to 19 RTB-based sintered magnet materials, one of each of the two was subjected to a heat treatment at a temperature of 880 ° C. for 3 hours in a vacuum atmosphere, and after cooling, Heat treatment was performed in a vacuum atmosphere at 480 to 540 ° C. for 2 hours depending on the components and composition of the R-T-B system sintered magnet material. The obtained sample No. The magnet characteristics of 12-19 RTB-based sintered magnet materials were measured with a BH tracer. The measurement results are shown in FIGS. Figure 13 is the horizontal axis the amount of Ti, the vertical axis indicates the measurement result of H cJ, 14 weight abscissa Ti, the vertical axis indicates the measurement results of B r, 15 horizontal axis Ti amount, vertical An axis | shaft shows the measurement result of Hk / H cJ . In FIG. 13 to FIG. 12-15, the round plot is sample No. 16-19 are shown.

図13に示す通り、Prを含有しない主合金粉末に、PrおよびTiを含有する副合金粉末を混合、成形、焼結および熱処理したR−T−B系焼結磁石素材(本発明例)は、副合金粉末を添加しないもの(比較例)に比べ、HcJが向上することが分かる。 As shown in FIG. 13, the RTB-based sintered magnet material (example of the present invention) obtained by mixing, molding, sintering, and heat-treating a sub-alloy powder containing Pr and Ti to a main alloy powder not containing Pr It can be seen that HcJ is improved as compared with the case where no suballoy powder is added (comparative example).

また、図14に示す通り、本発明によるR−T−B系焼結磁石素材はBが低下するもののHcJの向上効果に対するBの低下はそれほど大きくない。すなわち、Bの低下を抑制しつつHcJが向上している。さらに、図15に示す通り、H/Hcjはいずれの試料も0.97を超える高い値を有している。 Further, as shown in FIG. 14, R-T-B based sintered magnet material according to the present invention is not so large reduction in B r for enhancing the effect of H cJ although B r drops. That, H cJ is improved while suppressing a decrease in B r. Further, as shown in FIG. 15, H k / H cj has a high value exceeding 0.97 in any sample.

次に、RH拡散源として板状のDyメタルと、試料No.12〜19のR−T−B系焼結磁石素材の2個のうち1個を準備し、それぞれのR−T−B系焼結磁石素材について、Mo板上に、RH拡散源、保持部材、R−T−B系焼結磁石素材、保持部材、RH拡散源の順で積層することにより、8種類の積層体を準備した。なお、保持部材にはMo製の平織り金網を用いた。前記8種類の積層体を熱処理炉内へ装入し、圧力0.1Paの真空雰囲気下、880℃の温度で5.5時間RH供給拡散処理を行った。その後炉内を冷却し、試料No.12〜19のR−T−B系焼結磁石素材にRH供給拡散処理を施したR−T−B系焼結磁石(以下、「試料No.**のR−T−B系焼結磁石」という)のみを取り出した。RH供給拡散処理後の試料No.12〜19のR−T−B系焼結磁石を、真空雰囲気下、880℃の温度で5時間RH拡散処理を行い、冷却後、R−T−B系焼結磁石の成分、組成に応じて480〜540℃で2時間、真空雰囲気下で熱処理を行った。   Next, plate-like Dy metal as the RH diffusion source, and sample No. 1 to 2 of 19 to 19 R-T-B system sintered magnet materials are prepared, and for each R-T-B system sintered magnet material, an RH diffusion source and a holding member are formed on the Mo plate. Eight types of laminates were prepared by laminating in order of the R-T-B sintered magnet material, the holding member, and the RH diffusion source. The holding member was a plain weave wire mesh made of Mo. The eight types of laminates were charged into a heat treatment furnace and subjected to RH supply diffusion treatment at a temperature of 880 ° C. for 5.5 hours in a vacuum atmosphere at a pressure of 0.1 Pa. Thereafter, the inside of the furnace was cooled, and sample No. 12-19 R-T-B system sintered magnet materials subjected to RH supply diffusion treatment (hereinafter referred to as “Sample No. ** R-T-B system sintered magnet) "). Sample No. after RH supply diffusion treatment 12-19 R-T-B system sintered magnets were subjected to RH diffusion treatment at a temperature of 880 ° C. for 5 hours in a vacuum atmosphere, and after cooling, depending on the components and composition of the R-T-B system sintered magnets Then, heat treatment was performed in a vacuum atmosphere at 480 to 540 ° C. for 2 hours.

得られた試料No.12〜19のR−T−B系焼結磁石の両面を0.1mmずつ研削し、さらに、それぞれのR−T−B系焼結磁石の中央部から厚み3.0mm×幅7mm×長さ7mmの試験片を切り出した。前記試験片の磁石特性をパルスB−Hトレーサによって測定した。測定結果を図16〜図18に示す。図16は横軸がTi量、縦軸がHcJの測定結果を示し、図17は横軸がTi量、縦軸がBの測定結果を示し、図18は横軸がTi量、縦軸がHk/HcJの測定結果を示す。図16〜図18において菱形のプロットが試料No.12〜15、丸形のプロットが試料No.16〜19を示す。 The obtained sample No. Both surfaces of 12 to 19 R-T-B system sintered magnets are ground by 0.1 mm each, and further, a thickness of 3.0 mm × width 7 mm × length from the center of each R-T-B system sintered magnet A 7 mm test piece was cut out. The magnet properties of the specimen were measured with a pulse BH tracer. The measurement results are shown in FIGS. Figure 16 is the horizontal axis the amount of Ti, the vertical axis indicates the measurement result of H cJ, 17 horizontal axis Ti amount, and the vertical axis represents the measured results of the B r, 18 horizontal axis Ti amount, vertical An axis | shaft shows the measurement result of Hk / H cJ . In FIG. 16 to FIG. 12-15, the round plot is sample No. 16-19 are shown.

図16に示す通り、Prを含有しない主合金粉末に、PrおよびTiを含有する副合金粉末を混合、成形、焼結および熱処理したR−T−B系焼結磁石素材にRH供給拡散処理を施したR−T−B系焼結磁石(本発明例)は、副合金粉末を混合しないもの(比較例)に比べ、高いHcJを有していることが分かる。また、図17および図18に示す通り、RH供給拡散処理後においてもBおよびHk/HcJの低下が抑制されており、高いBおよび高いHk/HcJを有していることが分かる。 As shown in FIG. 16, the RH supply diffusion treatment is applied to the RTB-based sintered magnet material obtained by mixing, molding, sintering, and heat-treating the sub-alloy powder containing Pr and Ti to the main alloy powder not containing Pr. It can be seen that the applied RTB -based sintered magnet (example of the present invention) has a high HcJ as compared with the one not mixed with the secondary alloy powder (comparative example). Further, as shown in FIGS. 17 and 18, are also suppressed decrease in B r and Hk / H cJ after RH supply diffusion process, it is found to have a high B r and a high Hk / H cJ .

また、図16〜図18に示す通り、本発明によるR−T−B系焼結磁石において、Ga含有量が少ない方(Ga0.2質量%、図16〜図18における丸形のプロット)が高い磁石特性(特にB)が得られている。すなわち、比較的高価なGaの含有量を低減することができるため、R−T−B系焼結磁石を安価にして提供することが可能となる。 Moreover, as shown in FIGS. 16-18, in the RTB type | system | group sintered magnet by this invention, the direction with smaller Ga content (Ga0.2 mass%, the round plot in FIGS. 16-18) is. High magnet characteristics (particularly B r ) are obtained. That is, since the content of relatively expensive Ga can be reduced, it is possible to provide an RTB-based sintered magnet at a low cost.

前記試料No.16〜19のR−T−B系焼結磁石について、140℃における磁石特性をB−Hトレーサによって測定した。測定結果を表7に示す。   Sample No. About the 16-19 R-T-B system sintered magnet, the magnet characteristic in 140 degreeC was measured with the BH tracer. Table 7 shows the measurement results.

表7に示す通り、本発明によるR−T−B系焼結磁石(試料No.17〜19)は、副合金粉末を添加しないもの(試料No.16)に比べ、高温下においても優れたHcJを有していることが分かる。 As shown in Table 7, the RTB-based sintered magnets according to the present invention (Sample Nos. 17 to 19) were superior even at high temperatures compared to those without the addition of the secondary alloy powder (Sample No. 16). It can be seen that it has H cJ .

以上の通り、主合金粉末にPrを含まない場合においても、実施例1の主合金粉末にPrを含む場合と同様に、Bの低下を抑制しつつ高いHcJおよび高いH/HcJを有し、かつ高温下においても優れたHcJを有するR−T−B系焼結磁石を提供することができる。 As described above, in the case of not containing Pr in the main alloy powder, as in the case of containing the Pr in the main alloy powder of Example 1, while suppressing the decrease in B r high H cJ and high H k / H cJ And an RTB -based sintered magnet having excellent HcJ even at high temperatures.

本発明により得られたR−T−B系焼結磁石は、ハードディスクドライブのボイスコイルモータ(VCM)や、電気自動車用モータ、ハイブリッド自動車用モータなどの各種モータ、家電製品などに好適に利用することができる。   The RTB-based sintered magnet obtained by the present invention is suitably used for various motors such as voice coil motors (VCM) for hard disk drives, motors for electric vehicles, motors for hybrid vehicles, and home appliances. be able to.

Claims (3)

R30.0〜31.7質量%(Rは希土類元素のうち少なくとも一種でありNdを必ず含む)、
B0.90〜0.96質量%、
Ga0.15〜0.4質量%、
残部T(Tは遷移金属元素のうち少なくとも一種でありFeを必ず含む)および不可避的不純物を含有する主合金粉末を準備する工程と、
PrおよびTiを含有する副合金粉末を準備する工程と、
主合金粉末と副合金粉末とを、混合後の混合合金粉末100質量%に含有されるTiが0.3質量%以下となるように混合し、混合合金粉末を準備する工程と、
混合合金粉末を成形し、成形体を準備する工程と、
成形体を焼結し、R−T−B系焼結磁石素材を準備する工程と、
DyまたはTbを含む金属、合金または化合物からなるRH拡散源を準備する工程と、
RH拡散源のDyまたはTbをR−T−B系焼結磁石素材に供給、拡散させるRH供給拡散処理を施す工程と、
RH供給拡散処理工程後のR−T−B系焼結磁石に熱処理を施す工程と、
を含むことを特徴とするR−T−B系焼結磁石の製造方法。
R30.0 to 31.7% by mass (R is at least one of rare earth elements and must contain Nd),
B0.90-0.96 mass%,
Ga 0.15-0.4 mass%,
Preparing a main alloy powder containing the balance T (T is at least one of transition metal elements and necessarily contains Fe) and inevitable impurities;
Preparing a sub-alloy powder containing Pr and Ti;
Mixing the main alloy powder and the sub-alloy powder so that Ti contained in 100% by mass of the mixed alloy powder after mixing is 0.3% by mass or less, and preparing a mixed alloy powder;
Forming a mixed alloy powder and preparing a formed body; and
Sintering the compact and preparing an R-T-B sintered magnet material;
Providing an RH diffusion source comprising a metal, alloy or compound containing Dy or Tb;
Supplying RH diffusion source Dy or Tb to the R-T-B system sintered magnet material, and performing an RH supply diffusion treatment;
A step of heat-treating the RTB-based sintered magnet after the RH supply diffusion treatment step;
The manufacturing method of the RTB type | system | group sintered magnet characterized by including.
副合金粉末がPr53〜66質量%およびTi5〜21質量%を含有することを特徴とする請求項1に記載のR−T−B系焼結磁石の製造方法。   The method for producing an RTB-based sintered magnet according to claim 1, wherein the suballoy powder contains Pr 53 to 66 mass% and Ti 5 to 21 mass%. 副合金粉末にFeおよびAlを含有することを特徴とする請求項1または2に記載のR−T−B系焼結磁石の製造方法。   The method for producing an RTB-based sintered magnet according to claim 1 or 2, wherein the sub-alloy powder contains Fe and Al.
JP2013264930A 2013-12-24 2013-12-24 Method for manufacturing r-t-b-based sintered magnet Pending JP2015122395A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013264930A JP2015122395A (en) 2013-12-24 2013-12-24 Method for manufacturing r-t-b-based sintered magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013264930A JP2015122395A (en) 2013-12-24 2013-12-24 Method for manufacturing r-t-b-based sintered magnet

Publications (1)

Publication Number Publication Date
JP2015122395A true JP2015122395A (en) 2015-07-02

Family

ID=53533782

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013264930A Pending JP2015122395A (en) 2013-12-24 2013-12-24 Method for manufacturing r-t-b-based sintered magnet

Country Status (1)

Country Link
JP (1) JP2015122395A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017045828A (en) * 2015-08-26 2017-03-02 日立金属株式会社 R-T-B based sintered magnet
CN106710765A (en) * 2015-07-21 2017-05-24 宁波科田磁业有限公司 High-coercivity sintered-neodymium-iron-boron magnetic body and preparing method thereof
JP2017157833A (en) * 2016-02-26 2017-09-07 Tdk株式会社 R-t-b based permanent magnet
CN112435847A (en) * 2020-11-18 2021-03-02 宁波金鸡强磁股份有限公司 Preparation method of high-performance magnetic ring
JP7471389B1 (en) 2022-10-13 2024-04-19 ▲包▼▲頭▼金山磁材有限公司 Auxiliary alloy castings and neodymium-iron-boron permanent magnets with high remanence and high coercivity, and manufacturing method thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106710765A (en) * 2015-07-21 2017-05-24 宁波科田磁业有限公司 High-coercivity sintered-neodymium-iron-boron magnetic body and preparing method thereof
CN106710765B (en) * 2015-07-21 2018-08-10 宁波科田磁业有限公司 A kind of high-coercive force Sintered NdFeB magnet and preparation method thereof
JP2017045828A (en) * 2015-08-26 2017-03-02 日立金属株式会社 R-T-B based sintered magnet
JP2017157833A (en) * 2016-02-26 2017-09-07 Tdk株式会社 R-t-b based permanent magnet
CN112435847A (en) * 2020-11-18 2021-03-02 宁波金鸡强磁股份有限公司 Preparation method of high-performance magnetic ring
JP7471389B1 (en) 2022-10-13 2024-04-19 ▲包▼▲頭▼金山磁材有限公司 Auxiliary alloy castings and neodymium-iron-boron permanent magnets with high remanence and high coercivity, and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP7379362B2 (en) Low B content R-Fe-B sintered magnet and manufacturing method
JP6380652B2 (en) Method for producing RTB-based sintered magnet
JP6361813B2 (en) Method for producing RTB-based sintered magnet
JP6288076B2 (en) R-T-B sintered magnet
JP6406255B2 (en) R-T-B system sintered magnet and method for manufacturing R-T-B system sintered magnet
JP6090550B1 (en) R-T-B system sintered magnet and manufacturing method thereof
JP5729051B2 (en) R-T-B rare earth sintered magnet
JP6489201B2 (en) Method for producing RTB-based sintered magnet
JPWO2018034264A1 (en) R-T-B sintered magnet
JP6094612B2 (en) Method for producing RTB-based sintered magnet
US20130099150A1 (en) R-t-b-based rare earth permanent magnet, motor, automobile, power generator, and wind power-generating apparatus
JP6142794B2 (en) Rare earth magnets
JP6142792B2 (en) Rare earth magnets
JP6221233B2 (en) R-T-B system sintered magnet and manufacturing method thereof
JP2016152246A (en) Rare earth based permanent magnet
JP2023509225A (en) Heavy rare earth alloy, neodymium iron boron permanent magnet material, raw material and manufacturing method
JP6443757B2 (en) Method for producing RTB-based sintered magnet
JP6541038B2 (en) RTB based sintered magnet
JP2015122395A (en) Method for manufacturing r-t-b-based sintered magnet
US10242781B2 (en) Method for manufacturing R-T-B based sintered magnet
JP6142793B2 (en) Rare earth magnets
JP6508447B1 (en) Method of manufacturing RTB based sintered magnet
JP6511844B2 (en) RTB based sintered magnet
JP6623998B2 (en) Method for producing RTB based sintered magnet
JP6610957B2 (en) Method for producing RTB-based sintered magnet