JP7287215B2 - Manufacturing method of sintered body for rare earth magnet - Google Patents

Manufacturing method of sintered body for rare earth magnet Download PDF

Info

Publication number
JP7287215B2
JP7287215B2 JP2019172814A JP2019172814A JP7287215B2 JP 7287215 B2 JP7287215 B2 JP 7287215B2 JP 2019172814 A JP2019172814 A JP 2019172814A JP 2019172814 A JP2019172814 A JP 2019172814A JP 7287215 B2 JP7287215 B2 JP 7287215B2
Authority
JP
Japan
Prior art keywords
phase
sintered body
rare earth
alloy
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019172814A
Other languages
Japanese (ja)
Other versions
JP2021052052A (en
Inventor
大介 古澤
武司 西内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Proterial Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Proterial Ltd filed Critical Proterial Ltd
Priority to JP2019172814A priority Critical patent/JP7287215B2/en
Publication of JP2021052052A publication Critical patent/JP2021052052A/en
Application granted granted Critical
Publication of JP7287215B2 publication Critical patent/JP7287215B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、希土類磁石用焼結体の製造方法に関する。 The present invention relates to a method for producing a sintered body for rare earth magnets.

永久磁石は自動車部品や産業機械、家電製品などの各種モータに使用されている。 Permanent magnets are used in various motors such as automobile parts, industrial machinery, and home appliances.

代表的な高性能永久磁石としてNd-Fe-B系磁石が挙げられる。Nd-Fe-B系磁石は、主として電気自動車(EV、HV、PHVなど)やハイブリッド自動車の駆動モータなどに使用されている。モータの更なる高効率化や小型化のニーズが高まり、より高い磁気物性を有する永久磁石の開発が期待されている。 Nd--Fe--B system magnets can be cited as typical high-performance permanent magnets. Nd--Fe--B magnets are mainly used in drive motors for electric vehicles (EV, HV, PHV, etc.) and hybrid vehicles. As the need for motors with higher efficiency and smaller size increases, the development of permanent magnets with higher magnetic properties is expected.

Nd-Fe-B系磁石の磁気物性を超える永久磁石の主相系合金の候補の一つとして、ThMn12型結晶構造またはその類似構造を有するRT12化合物が注目されている。RT12化合物はNd-Fe-B系磁石の主相を構成する化合物であるR14B(Rは希土類元素の少なくとも一種、Tは少なくともFeを含んだ1種以上の鉄族遷移金属元素)より高い濃度の鉄族遷移金属を含有するため高い磁気物性が期待される。以下、ThMn12型結晶構造またはその類似構造を有するRT12化合物からなる相を1-12相と記述することがある。 An RT 12 compound having a ThMn 12 type crystal structure or a structure similar thereto is attracting attention as one of the candidates for main phase system alloys for permanent magnets that surpasses the magnetic properties of Nd--Fe--B magnets. The RT 12 compound is R 2 T 14 B (R is at least one rare earth element, T is at least one iron group transition metal element containing at least Fe), which is a compound that constitutes the main phase of an Nd—Fe—B magnet. ) Higher magnetic properties are expected due to higher concentrations of iron group transition metals. Hereinafter, a phase composed of an RT 12 compound having a ThMn 12 -type crystal structure or a similar structure may be referred to as a 1-12 phase.

特許文献1には、T元素であるFeの一部を、構造安定化元素であるTiにより部分的に置換して、高い磁化と引き換えに、熱安定性を高めた希土類永久磁石が開示されている。 Patent Document 1 discloses a rare earth permanent magnet in which a portion of Fe, which is a T element, is partially replaced with Ti, which is a structure stabilizing element, to improve thermal stability in exchange for high magnetization. there is

特許文献2には、RFe12系化合物のR元素を、Zr、Hf等の置換元素M1により部分的に置換することで、遷移金属元素を置換するTi等の置換元素M2の量を減らして飽和磁化を保ったまま、ThMn12型結晶構造を安定化した希土類永久磁石が開示されている。 In Patent Document 2, by partially substituting the R element of the RFe 12 -based compound with the substituting element M1 such as Zr and Hf, the amount of the substituting element M2 such as Ti substituting the transition metal element is reduced and saturated. A rare earth permanent magnet is disclosed that has a stabilized ThMn 12 -type crystal structure while retaining its magnetization.

特許文献3には、RFe12のR元素の一部としてYまたはGdを選択した、R´-Fe-Co系強磁性合金が開示されており、このR´-Fe-Co系強磁性合金が、超急冷法により生成させたThMn12型結晶構造を有することで、高い磁気特性を示す点が記載されている。 Patent Document 3 discloses an R'--Fe--Co system ferromagnetic alloy in which Y or Gd is selected as part of the R element of RFe 12 , and this R'--Fe--Co system ferromagnetic alloy is , which has a ThMn 12 -type crystal structure produced by an ultra-quenching method, thereby exhibiting high magnetic properties.

特許文献4には、Cuを添加することで非磁性かつ低融点の1-4組成(SmCu相)の相が生成し、焼結と高保磁力化が可能なことが記載されている。 Patent Document 4 describes that the addition of Cu generates a non-magnetic and low melting point 1-4 composition (SmCu 4- phase) phase, which enables sintering and high coercive force.

特許文献5には、ThMn12型の主相に対し副相としてSmFe17系相、SmCo系相、Sm系相、およびSmCu系相の少なくともいずれかを含むことで、高保磁力化が可能なことが記載されている。 In Patent Document 5, at least one of Sm 5 Fe 17 -based phase, SmCo 5 -based phase, Sm 2 O 3 -based phase, and Sm 7 Cu 3- based phase is included as a secondary phase in addition to the ThMn 12- type main phase. It is described that high coercive force is possible.

特許文献6には、Cuを添加することで液相が生成し緻密なバルク体が形成可能なことが記載されている。 Patent Literature 6 describes that the addition of Cu generates a liquid phase to form a dense bulk body.

特許文献7には、Yを含むThMn12型の相を主相とする強磁性合金をストリップキャスト法で作製することで、主相組成の不均一性が少なく、主相比率が高い合金が得られることが記載されている。 In Patent Document 7, by producing a ferromagnetic alloy having a Y-containing ThMn 12 type phase as the main phase by a strip casting method, an alloy with less nonuniformity in the main phase composition and a high main phase ratio can be obtained. It is stated that

特許文献8には、Yを含むThMn12型の相を主相とする磁石材料で高い飽和磁化や異方性磁界が得られることが記載されている。 Patent Document 8 describes that a magnetic material having a Y-containing ThMn 12- type phase as a main phase can provide high saturation magnetization and anisotropic magnetic field.

特許文献9には、Yを含むThMn12型の相を主相とする熱安定性が高い強磁性合金が得られることが記載されている。 Patent Literature 9 describes that a ferromagnetic alloy having high thermal stability and having a Y-containing ThMn 12 type phase as a main phase can be obtained.

特許文献10には、Cuを添加することで異方性焼結磁粉作製に適した合金が得られることが記載されている。 Patent Document 10 describes that an alloy suitable for producing anisotropic sintered magnetic powder can be obtained by adding Cu.

特許文献11には、Yを含むThMn12型の相を主相とする磁石材料で高い飽和磁化が得られることが記載されている。 Patent Document 11 describes that a magnetic material having a Y-containing ThMn 12 -type phase as a main phase can obtain high saturation magnetization.

特開昭64-76703号公報JP-A-64-76703 特開平4-322406号公報JP-A-4-322406 特開2015-156436号公報JP 2015-156436 A 特開2001-189206号公報Japanese Patent Application Laid-Open No. 2001-189206 特開2017-112300号公報Japanese Unexamined Patent Application Publication No. 2017-112300 国際公開第2016/162990号WO2016/162990 特開2018-103211号公報JP 2018-103211 A 特開2018-125512号公報JP 2018-125512 A 国際公開第2018/123988号WO2018/123988 特開2019-44259号公報JP 2019-44259 A 特開2019-54217号公報JP 2019-54217 A

高性能磁石に用いる焼結体の条件の一つとして、磁気特性に悪影響を及ぼす異相が少ない組織であることが必要である。焼結体中にbcc-Fe相に代表される軟磁性相が存在すると、その軟磁性相が磁化反転の起点となり、容易に磁化反転が進行するため、保磁力、角形性、残留磁束密度といった磁気特性が著しく低下する。そのため、このような軟磁性の異相が極力存在しないような焼結体が求められる。また、高い磁気特性を得るためには、密度の高い焼結体が求められる。 As one of the conditions for a sintered body to be used for a high-performance magnet, it is necessary to have a structure with few heterogeneous phases that adversely affect magnetic properties. When a soft magnetic phase typified by the bcc-Fe phase exists in the sintered body, the soft magnetic phase becomes a starting point for magnetization reversal, and magnetization reversal easily progresses. Magnetic properties are significantly degraded. Therefore, a sintered body in which such a heterogeneous phase of soft magnetism does not exist as much as possible is required. Also, in order to obtain high magnetic properties, a sintered body with high density is required.

特許文献1に記載の希土類永久磁石は、TiによるFeの元素置換により、熱安定性が高められているものの、TiによるFe置換量が多いため、その分磁化が小さくなり、十分な磁気特性を得られない。 The rare earth permanent magnet described in Patent Document 1 has improved thermal stability due to element substitution of Fe with Ti, but since the amount of Fe substituted with Ti is large, the magnetization is correspondingly reduced, and sufficient magnetic properties are obtained. I can't get it.

一方、特許文献2に記載の希土類永久磁石では、Ti等で遷移金属元素を置換することによりThMn12構造の安定化を図っているものの、その効果は必ずしも十分でない。 On the other hand, in the rare earth permanent magnet described in Patent Document 2, the ThMn12 structure is stabilized by substituting a transition metal element with Ti or the like, but the effect is not necessarily sufficient.

特許文献3に記載のR´-Fe-Co系強磁性合金は、Fe元素を構造安定化元素M(Ti等)で置換していないため、高い磁化と大きい磁気異方性と高いキュリー温度を得られているが、非平衡相であるために、焼結等の高温での緻密化プロセスにおいて主相化合物が分解することがある。 The R'--Fe--Co ferromagnetic alloy described in Patent Document 3 does not replace the Fe element with the structure stabilizing element M (such as Ti), so it exhibits high magnetization, large magnetic anisotropy, and a high Curie temperature. However, due to the non-equilibrium phase, the main phase compound may decompose in a high temperature densification process such as sintering.

特許文献4に記載の希土類磁石では、Ti添加量が多いために磁気物性値が高くないことがある。 The rare earth magnet described in Patent Document 4 may not have high magnetic physical properties due to the large amount of Ti added.

特許文献5に記載の希土類磁石では、希土類リッチな副相SmCuを使用した場合、熱処理時に主相とSmCuの反応により、主相よりも希土類リッチな相が生成することが懸念される。 In the rare earth magnet described in Patent Document 5, when the rare earth-rich secondary phase Sm 7 Cu 3 is used, a phase richer in rare earth than the main phase may be generated due to the reaction between the main phase and Sm 7 Cu 3 during heat treatment. Concerned.

特許文献6に記載の希土類磁石では、Fe元素を構造安定化元素Mで置換していないため、高い磁化と大きい磁気異方性と高いキュリー温度を得られ、かつバルク体としての密度が高いが、非平衡相であるために、1000℃以上の焼結等の高温でのプロセスにおいて主相化合物が分解することがある。 In the rare earth magnet described in Patent Document 6, since the Fe element is not replaced with the structure stabilizing element M, high magnetization, large magnetic anisotropy, and a high Curie temperature can be obtained, and the density as a bulk body is high. Since it is a non-equilibrium phase, the main phase compound may decompose in a high temperature process such as sintering at 1000° C. or higher.

特許文献7に記載の強磁性合金や特許文献8に記載の磁石材料、特許文献9に記載の強磁性合金、特許文献10に記載の希土類磁石用合金、ならびに特許文献11に記載の磁石材料の組成は、焼結体の作製工程で不可避的に混入する酸素の影響が考慮されていないため、酸素が希土類元素と優先的に反応し、主相が分解し、bcc-Fe相などの軟磁性相が生成することが懸念される。 The ferromagnetic alloy described in Patent Document 7, the magnetic material described in Patent Document 8, the ferromagnetic alloy described in Patent Document 9, the rare earth magnet alloy described in Patent Document 10, and the magnetic material described in Patent Document 11. Since the composition does not consider the influence of oxygen that is inevitably mixed in the manufacturing process of the sintered body, oxygen preferentially reacts with the rare earth element, the main phase decomposes, and soft magnetic such as bcc-Fe phase There is concern about the generation of phases.

本開示の実施形態は、磁気特性に悪影響を及ぼす異相が少なく、密度の高い希土類磁石用焼結体の製造方法を提供する。 Embodiments of the present disclosure provide a method for manufacturing a sintered body for a rare earth magnet with a small number of heterogeneous phases that adversely affect magnetic properties and a high density.

本開示の希土類磁石用焼結体の製造方法は、例示的な実施形態において、
焼結体の全体組成が下記の組成式(1)で表され、
R(Fe1-yCow-zCuαβ (1)
RはR1及びR1以外の希土類元素の少なくとも1種であり、R1はY、Gd、HfおよびZrからなる群から選択される少なくとも1種であり、 MはSi、Al、Ti、V、Cr、Nb、Mo、Ta、Wからなる群から選択される少なくとも1種であり、 y、z、w、αおよびβはそれぞれ、 0≦y≦0.4、 0.35≦z≦1.0、 7≦w≦12、 0.2≦α≦1.0、 0.02≦β≦0.5、および -0.06≦1-1.45z-0.5α―0.5β≦0.02、を満足する、ThMn12型結晶構造を有する相を主相とする希土類磁石用焼結体の製造方法であって、 原料粉末を得る工程と、 前記原料粉末を成形して成形体を得る工程と、 前記成形体を1160℃以上1210℃未満で0.5時間以上50時間以下の熱処理をして焼結体を得る工程と、 前記焼結体を900℃以上1150℃未満で0.5時間以上50時間以下の追加熱処理をする工程と、を含む。
ある実施形態において、前記焼結体の組成において、R1を含有し、R1がR全体の10mol%以上70mol%以下である。
ある実施形態において、前記焼結体の組成において、Smを含有し、SmがR全体の20mol%以上80mol%以下である。
ある実施形態において、前記焼結体の組成において、Tiを含有し、TiがM全体の50mol%以上である。
In an exemplary embodiment of the method for producing a sintered body for a rare earth magnet of the present disclosure,
The overall composition of the sintered body is represented by the following composition formula (1),
R(Fe 1-y Co y ) wz M z Cu α O β (1)
R is at least one of R1 and rare earth elements other than R1, R1 is at least one selected from the group consisting of Y, Gd, Hf and Zr, M is Si, Al, Ti, V, Cr, is at least one selected from the group consisting of Nb, Mo, Ta and W, and y, z, w, α and β are respectively 0≦y≦0.4, 0.35≦z≦1.0 7≤w≤12, 0.2≤α≤1.0, 0.02≤β≤0.5, and -0.06≤1-1.45z-0.5α-0.5β≤0.02, A method for producing a sintered body for a rare earth magnet, the main phase being a phase having a ThMn type 12 crystal structure, which satisfies the following steps: obtaining a raw material powder; a step of heat-treating the molded body at 1160° C. or more and less than 1210° C. for 0.5 hours or more and 50 hours or less to obtain a sintered body; and performing an additional heat treatment for 50 hours or less.
In one embodiment, the composition of the sintered body contains R1, and R1 is 10 mol % or more and 70 mol % or less of the total R.
In one embodiment, the composition of the sintered body contains Sm, and Sm is 20 mol % or more and 80 mol % or less of the entire R.
In one embodiment, the composition of the sintered body contains Ti, and Ti accounts for 50 mol % or more of the total M.

本開示の実施形態によれば、磁気特性に悪影響を及ぼす異相が少なく、密度の高い希土類磁石用焼結体の製造方法を提供することができる。 According to the embodiments of the present disclosure, it is possible to provide a method for producing a sintered body for a rare earth magnet with a small number of heterogeneous phases that adversely affect magnetic properties and a high density.

[希土類磁石用焼結体の組成]
本開示の希土類磁石用焼結体は、全体の組成が下記の組成式(1)によって表される。
[Composition of sintered body for rare earth magnet]
The overall composition of the sintered body for a rare earth magnet of the present disclosure is represented by the following compositional formula (1).

R(Fe1-yCow-zCuαβ (1)
ここで、RはR1及びR1以外の希土類元素の少なくとも1種であり、R1はY、Gd、HfおよびZrからなる群から選択される少なくとも1種であり、MはSi、Al、Ti、V、Cr、Nb、Mo、Ta、Wからなる群から選択される少なくとも1種である。
またy、z、w、αおよびβはそれぞれ、0≦y≦0.4、0.35≦z≦1.0、7≦w≦12、0.2≦α≦1.0および0.02≦β≦0.5を満足し、さらに関係式-0.06≦1-1.45z-0.5α―0.5β≦0.02を満たす。
R(Fe 1-y Co y ) wz M z Cu α O β (1)
Here, R is at least one of R1 and rare earth elements other than R1, R1 is at least one selected from the group consisting of Y, Gd, Hf and Zr, M is Si, Al, Ti, V , Cr, Nb, Mo, Ta and W.
and y, z, w, α and β are 0≤y≤0.4, 0.35≤z≤1.0, 7≤w≤12, 0.2≤α≤1.0 and 0.02 respectively. ≦β≦0.5 and further satisfies the relational expression −0.06≦1−1.45z−0.5α−0.5β≦0.02.

本発明者らが鋭意研究した結果、焼結体を上記の式(1)に示されるような特定の組成範囲に設定することにより、磁気特性に悪影響を及ぼすbcc-(Fe,Co,Ti)相や、ThNi17型結晶あるいはその類似構造となる化合物の相(以下、2-17相と記述することがある)の生成量を低減できることを見出した。さらに、本開示の特定組成の焼結体を作製する時に、後述する特定の狭い温度範囲で成形体を熱処理することで密度の高い焼結体が得られることを見出した。 As a result of intensive research by the present inventors, by setting the sintered body to a specific composition range as shown in the above formula (1), bcc-(Fe, Co, Ti), which adversely affects the magnetic properties, It was found that the amount of the phase and the phase of a compound having a Th 2 Ni 17 -type crystal or its similar structure (hereinafter sometimes referred to as the 2-17 phase) can be reduced. Further, the present inventors have found that a high-density sintered body can be obtained by heat-treating the molded body in a specific narrow temperature range described later when producing the sintered body of the specific composition of the present disclosure.

[焼結体の組成等の限定理由について]
(Rの種類)
RはR1及びR1以外の希土類元素の少なくとも1種であり、R1はY、Gd、HfおよびZrからなる群から選択される少なくとも1種である。「R1以外の希土類元素」とは、R1のうちの希土類元素であるY及びGd以外の希土類元素のことをいう。Rは1-12相、Cu含有の粒界相、および酸化物相構成に必要な元素である。好ましくはR1がR全体の10mol%以上70mol%以下であることが好ましい。Y、Gd、HfおよびZrは1-12相を安定化させる役割があるため、1-12相の分解を抑制するために添加したほうが好ましい。さらに、YがR1全体の50mol%以上であることがより好ましく、R1はYからなることがもっとも好ましい。GdやHfはYよりも高価である。また、R1がZrの場合はThMn23型の相、およびそれに伴ったbcc-(Fe,Co,Ti)相が生成する可能性がある。また、磁気物性値の観点から、SmがR全体の20mol%以上80mol%以下含まれている方が好ましく、Smは50mol%以上80mol%以下含まれている方がさらに好ましい。RにSmが含まれることで、1-12相が強い一軸異方性(正方晶のc軸方向が磁化容易軸)を発現する。
[Regarding the reason for limiting the composition of the sintered body, etc.]
(Type of R)
R is at least one of R1 and rare earth elements other than R1, and R1 is at least one selected from the group consisting of Y, Gd, Hf and Zr. “Rare earth elements other than R1” means rare earth elements other than Y and Gd which are rare earth elements in R1. R is an element necessary for the formation of the 1-12 phase, the Cu-containing grain boundary phase, and the oxide phase. R1 is preferably 10 mol % or more and 70 mol % or less of the entire R. Since Y, Gd, Hf and Zr play a role in stabilizing the 1-12 phase, they are preferably added to suppress the decomposition of the 1-12 phase. Furthermore, Y is more preferably 50 mol % or more of the entire R1, and most preferably R1 consists of Y. Gd and Hf are more expensive than Y. Also, when R1 is Zr, a Th 6 Mn 23 type phase and a bcc-(Fe, Co, Ti) phase associated therewith may be generated. From the viewpoint of magnetic physical properties, Sm is preferably contained in an amount of 20 mol % or more and 80 mol % or less of the entire R, and more preferably 50 mol % or more and 80 mol % or less. By including Sm in R, the 1-12 phase develops strong uniaxial anisotropy (the c-axis direction of the tetragonal crystal is the easy magnetization axis).

(Mの種類)
MはSi、Al、Ti、V、Cr、Nb、Mo、Ta、Wからなる群から選択される少なくとも1種である。これらの元素は1-12相を安定化させる役割がある。好ましくは、TiがM元素全体の50mol%以上であることが好ましく、TiがM元素全体の80mol%以上であることがさらに好ましい。M元素の中でもTiは少量でも1-12相を安定化させる効果があり、1-12相の磁気物性値の低下を最小限にとどめることができる。
(Type of M)
M is at least one selected from the group consisting of Si, Al, Ti, V, Cr, Nb, Mo, Ta and W; These elements play a role in stabilizing the 1-12 phase. Preferably, Ti accounts for 50 mol % or more of the total M element, and more preferably 80 mol % or more of the total M element. Among the M elements, Ti has the effect of stabilizing the 1-12 phase even in a small amount, and can minimize the deterioration of the magnetic property values of the 1-12 phase.

(FeとCoの比率)
FeとCoの合計に対するCoの原子数比率を示すy(Co置換量y)の範囲は0≦y≦0.4である。1-12相のキュリー温度の低下を避けるためyは0.05以上であることがより好ましい。また、yが0.4より大きいと1-12相の体積磁化および磁気異方性磁界が低下するため好ましくない。
(ratio of Fe and Co)
The range of y (Co substitution amount y), which indicates the atomic number ratio of Co to the sum of Fe and Co, is 0≦y≦0.4. In order to avoid a decrease in the Curie temperature of the 1-12 phase, y is more preferably 0.05 or more. Also, if y is larger than 0.4, the volume magnetization and magnetic anisotropic magnetic field of the 1-12 phase are lowered, which is not preferable.

(Mの含有量)
R含有量に対するMの含有量の原子数比率を示すz(M含有量z)の範囲は0.35≦z≦1.0である。zが0.35未満であると焼結中に2-17相やbcc-(Fe,Co,Ti)相が安定して生成するため好ましくない。また、zが1.0より大きいと1-12相の磁気物性が低下するため好ましくない。より高い磁気特性、特にJを得るためにはM含有量は少ない方が好ましい。具体的には、zの範囲が0.35≦z≦0.60であることがさらに好ましい。
(Content of M)
The range of z (M content z), which indicates the atomic number ratio of the content of M to the content of R, is 0.35≦z≦1.0. When z is less than 0.35, the 2-17 phase and the bcc-(Fe, Co, Ti) phase are stably generated during sintering, which is not preferable. Moreover, if z is larger than 1.0, the magnetic properties of the 1-12 phase are lowered, which is not preferable. In order to obtain higher magnetic properties, especially Js , the smaller the M content, the better. Specifically, it is more preferable that the range of z is 0.35≦z≦0.60.

(Cuの含有量)
R含有量に対するCuの含有量の原子数比率を示すα(Cu含有量α)の範囲は、0.2≦α≦1.0である。αが0.2未満であると、熱処理中の液相量が少なくなるため、溶体化処理時の異相低減や、焼結時の緻密化が進行しにくくなるため好ましくない。αが1.0より大きいと、副相であるR-Cu相の比率が高くなり、主相の比率が低下し、焼結体全体としての磁化が低下するため好ましくない。また、焼結時の緻密化促進のためにαの範囲は0.4≦α≦1.0であることがより好ましい。
(Cu content)
The range of α (Cu content α), which indicates the atomic number ratio of the Cu content to the R content, is 0.2≦α≦1.0. If α is less than 0.2, the amount of liquid phase during heat treatment is reduced, which makes it difficult to reduce heterogeneous phases during solution treatment and densification during sintering. If α is greater than 1.0, the ratio of the R—Cu phase, which is a secondary phase, increases, the ratio of the main phase decreases, and the magnetization of the sintered body as a whole decreases, which is not preferable. Further, the range of α is more preferably 0.4≦α≦1.0 in order to promote densification during sintering.

(Fe、Co、Mの総量)
R含有量に対するFe、Co、Mの総量の原子数比率を示すwの範囲は、7≦w≦12である。wが12より大きいと、bcc-(Fe、Co、Ti)相が顕著に生成するため好ましくない。またwが7より小さいと、2-17相のような1-12相よりも希土類含有量が多く磁気特性に悪影響を及ぼす相が顕著に生成するため好ましくない。
(Total amount of Fe, Co, M)
The range of w, which indicates the atomic number ratio of the total amount of Fe, Co, and M to the R content, is 7≦w≦12. When w is larger than 12, the bcc-(Fe, Co, Ti) phase is produced significantly, which is not preferable. If w is less than 7, a phase such as the 2-17 phase, which has a higher rare earth element content than the 1-12 phase and has an adverse effect on the magnetic properties, is not preferable.

(酸素(O)の含有量)
R含有量に対する酸素の含有量の原子数比率を示すβは、0.02≦β≦0.5の範囲が適切である。βが0.02より小さいと、焼結前の微粉が発火しやすくなり、ハンドリングが困難になるため好ましくない。また、βが0.5より大きいと、焼結体中の酸化物相の比率が高くなり、1-12相の比率が低下し、磁石全体としての磁化が低下するため好ましくない。
(Content of oxygen (O))
β, which indicates the atomic number ratio of the oxygen content to the R content, is suitably in the range of 0.02≦β≦0.5. If β is less than 0.02, the fine powder before sintering tends to ignite, making handling difficult. If β is more than 0.5, the ratio of the oxide phase in the sintered body increases, the ratio of the 1-12 phase decreases, and the magnetization of the magnet as a whole decreases, which is not preferable.

(酸素量と他の元素の量の関係)
z、α、βは関係式-0.06≦1-1.45z-0.5α―0.5β≦0.02を満たす。焼結体は一般的に粉末を用いるため、通常、原料合金よりも酸素量が高くなる。そのため、原料合金の段階では異相が少ないような合金でも、粉砕や焼結時に酸素が主相や粒界相(焼結時は液相)中の希土類と反応して酸化物相となり、結果として1-12相が分解してbcc-(Fe、Co、Ti)相が生成する場合がある。筆者らは鋭意研究の結果、各相にRがどのように配分されるかを突き止めた。上記関係式は、zの値から1-12相として消費されるRの量を1.45z、αの値からR-Cu相として消費されるRを0.5α、βの値からR酸化物相として消費されるRを0.5βとそれぞれ記述し、Rの実際の量1からz、α、βから計算したRの量を差し引いたものの上下限を定めた式である。1-1.45z-0.5α―0.5βが小さくなるほど、1-12相、R-Cu相およびR酸化物相生成に必要なRが不足していることを意味し、逆に大きくなるほどRが余剰になることを意味する。1-1.45z-0.5α―0.5βが-0.06未満であると、bcc-(Fe、Co、Ti)相が多量生成するため好ましくない。また、0.02より大きいと2-17相のような1-12相よりも希土類含有量の多い相が多量生成するため好ましくない。焼結体中の相比率でいうと、bcc-(Fe、Co、Ti)相および2-17相はいずれも10体積%以下であることが好ましい。
(Relationship between the amount of oxygen and the amount of other elements)
z, α, and β satisfy the relational expression -0.06≤1-1.45z-0.5α-0.5β≤0.02. Since the sintered body generally uses powder, it usually has a higher oxygen content than the raw material alloy. Therefore, even in alloys with few heterogeneous phases at the raw material alloy stage, oxygen reacts with the rare earth elements in the main phase and grain boundary phase (liquid phase during sintering) during pulverization and sintering to form oxide phases. The 1-12 phase may decompose to form the bcc-(Fe, Co, Ti) phase. As a result of earnest research, the authors found out how R is distributed to each phase. From the value of z, the amount of R consumed as a 1-12 phase is 1.45z, from the value of α, the amount of R consumed as an R-Cu phase is 0.5α, and from the value of β, R oxide It is a formula that describes the R consumed as a phase as 0.5β, respectively, and defines the upper and lower limits of the actual amount of R 1 minus the amount of R calculated from z, α, and β. As 1-1.45z-0.5α-0.5β becomes smaller, it means that R necessary for forming 1-12 phase, R-Cu phase and R oxide phase is insufficient. It means that R becomes redundant. If 1-1.45z-0.5α-0.5β is less than -0.06, a large amount of bcc-(Fe, Co, Ti) phase is generated, which is not preferable. On the other hand, if it is more than 0.02, a large amount of a phase such as a 2-17 phase having a higher rare earth content than the 1-12 phase is generated, which is not preferable. In terms of the phase ratio in the sintered body, both the bcc-(Fe, Co, Ti) phase and the 2-17 phase are preferably 10% by volume or less.

[作製方法の限定理由について]
<工程A>原料粉末を得る工程
上述した希土類磁石用焼結体の組成になるように各元素を秤量し原料粉末を得る。原料粉末は、溶解時や焼結時の希土類元素(例えばSm)の蒸発を加味して準備する。原料粉末の作製方法としては、インゴットやフレーク、リボン状などの原料合金を作製したあと粉砕することで粉末を得る方法や、アトマイズ法などで直接粉末を得る方法が採用できる。インゴットやフレーク、リボン状などの原料合金の作製法としては、金型鋳造法、遠心鋳造法、ストリップキャスト法、液体超急冷法などの公知の方法を採用できる。これらの方法は、合金の溶湯を作製した後、この溶湯を冷却して凝固させる。合金溶湯の凝固時に粗大なbcc-(Fe、Co、Ti)相や2-17相の生成を極力抑えることが望ましい。比較的冷却速度の高い、ストリップキャスト法または液体超急冷法など、回転ロール上に溶湯を供給して凝固させ、薄帯又薄片状の合金を作製する方法を採用することにより、粗大なbcc-(Fe、Co、Ti)相や2-17相の生成を抑制することができる。凝固時の冷却速度が低いと、析出する異相の粒サイズが大きくなる。合金中に含まれる異相の粒サイズが大きくなると、焼結工程などの熱処理時に異相を消失しにくくなる。
なお、凝固過程で生成した異相の低減や主相粒の粗大化などを目的とした合金熱処理をおこなってもよい。合金の組成に応じて変わるが、R-Cu相の融点が850~900℃である。そのため、熱処理温度は900℃以上1250℃以下が好ましく、1000℃以上1150℃以下がより好ましい。また、熱処理時間は、熱処理温度によるが、5分以上50時間以下が望ましい。時間が短すぎると、異相を消失させるのに十分な反応が起こらない。時間が長すぎると、希土類元素の蒸発および酸化が生じ、かつ操業上の効率も悪い。
さらに、粉砕工程の前に、合金を水素中で熱処理して合金中にクラックを導入させてもよい。合金中のR-Cu相は水素を吸収および放出することができる。本合金によれば、たとえば、250℃から400℃の温度で水素の吸収が生じ、540℃から660℃の間で水素の放出が生じる。そのため、この合金を水素中で250℃以上まで昇温して水素を吸収させた後、真空や不活性ガス雰囲気に切り替えて十分に水素を放出させることができる。その場合、真空雰囲気に切り替える温度は700℃以下である。このように本合金に含まれる副相は、少なくとも700℃以下の温度で水素吸収と放出が起こる。なお、700℃を超える温度で水素雰囲気中に本合金をさらすと水素化-不均化反応による主相の分解が起こる可能性がある。水素の吸収と放出を行うことにより、希土類リッチ相(副相)は体積膨張と収縮を起し、主相結晶粒と副相との間にクラックが生じる。これによって、粉砕工程における粉砕効率が高まる。
[Regarding the reason for limiting the manufacturing method]
<Step A> Step of Obtaining Raw Material Powder Each element is weighed so as to obtain the above-described composition of the sintered body for a rare earth magnet to obtain a raw material powder. The raw material powder is prepared in consideration of evaporation of rare earth elements (for example, Sm) during melting and sintering. As a method for producing the raw material powder, a method of producing a raw material alloy in the form of ingots, flakes, ribbons, or the like and then pulverizing the alloy to obtain powder, or a method of directly obtaining powder by an atomizing method or the like can be employed. Known methods such as metal mold casting, centrifugal casting, strip casting, and liquid ultra-quenching can be employed as methods for producing raw material alloys in the form of ingots, flakes, ribbons, and the like. These methods involve making a molten alloy and then cooling and solidifying the molten alloy. It is desirable to minimize the formation of coarse bcc-(Fe, Co, Ti) phases and 2-17 phases during solidification of the molten alloy. Coarse bcc- It is possible to suppress the generation of (Fe, Co, Ti) phases and 2-17 phases. When the cooling rate during solidification is low, the grain size of the precipitated heterogeneous phase becomes large. When the grain size of the heterogeneous phase contained in the alloy becomes large, it becomes difficult to eliminate the heterophase during heat treatment such as a sintering process.
An alloy heat treatment may be performed for the purpose of reducing heterogeneous phases generated during the solidification process and coarsening main phase grains. Depending on the composition of the alloy, the melting point of the R—Cu phase is 850-900°C. Therefore, the heat treatment temperature is preferably 900° C. or higher and 1250° C. or lower, more preferably 1000° C. or higher and 1150° C. or lower. Moreover, although the heat treatment time depends on the heat treatment temperature, it is desirable to be 5 minutes or more and 50 hours or less. If the time is too short, there will not be enough reaction to eliminate the heterophases. If the time is too long, evaporation and oxidation of the rare earth elements will occur, and the operational efficiency will be poor.
Additionally, prior to the grinding step, the alloy may be heat treated in hydrogen to introduce cracks into the alloy. The R—Cu phase in the alloy can absorb and release hydrogen. With this alloy, for example, hydrogen absorption occurs at temperatures between 250°C and 400°C, and hydrogen release occurs between 540°C and 660°C. Therefore, after the alloy is heated to 250° C. or higher in hydrogen to absorb hydrogen, the atmosphere can be switched to a vacuum or an inert gas atmosphere to sufficiently release hydrogen. In that case, the temperature for switching to the vacuum atmosphere is 700° C. or lower. Thus, the subphase contained in the present alloy undergoes hydrogen absorption and desorption at a temperature of at least 700° C. or less. If the alloy is exposed to a hydrogen atmosphere at temperatures above 700° C., decomposition of the main phase by hydrogenation-disproportionation reaction may occur. By absorbing and releasing hydrogen, the rare earth-rich phase (subphase) expands and contracts in volume, and cracks occur between the main phase grains and the subphase. This increases the pulverization efficiency in the pulverization process.

粉砕をおこなう前に予備粉砕をおこなってもよい。予備粉砕は、例えば、ジョークラッシャーやハンマーミル、ローラーミルなどの公知の方法を採用できる。粉砕方法は、例えば、ジェットミルやスタンプミル、ボールミルなどの公知の方法を採用できる。予備粉砕及び粉砕時に、粉砕の効率化のために粉砕助剤を添加してもよい。粉砕助剤には、ステアリン酸亜鉛などの公知の助剤を使用できる。粉末の酸化の抑制、および発火や爆発の危険性の低減のために、窒素やアルゴン、ヘリウムといった不活性ガス中で粉砕をおこなう。粉砕後の微粉のハンドリング性の向上のために不活性ガスに少量の空気や酸素を混合してもよい。粉末のハンドリングや成形性を考慮して、粉砕後の粉末の粒度は、気流分散法によるレーザー回折法で得られたD50(頻度の累積が50%になるときの粒子の体積基準メジアン径)が1μm以上20μm以下となるようにすることが好ましい。D50が1μm未満であると、発火の危険性が高くなったり、成形時に金型を傷めたりするため好ましくない。また、D50が20μmより大きいと焼結工程において緻密化が進行しにくくなるため好ましくない。焼結体中の酸素量は本粉砕工程の影響が大きく、粉砕粒度や粉砕ガス中の酸素濃度が大きく寄与する。粉末の粒度が細かいほど、また、粉砕ガス中の酸素濃度が高いほど焼結体中の酸素量βは大きい値となる。逆に、粉末の粒度が粗いほど、また、粉砕ガス中の酸素濃度が低いほどβは小さい値となる。なお、アトマイズ法など直接粉末が作製可能な方法で合金を作製した場合は必ずしも粉砕工程をおこなう必要はない。このような粉末を得る際に、所望の焼結体の組成となるように単一の原料合金から作製してもよいし、複数の原料合金の混合粉として得てもよい。 Preliminary pulverization may be performed before pulverization. For preliminary pulverization, known methods such as jaw crusher, hammer mill, and roller mill can be adopted. As a pulverization method, for example, a known method such as a jet mill, stamp mill, or ball mill can be adopted. During pre-grinding and grinding, a grinding aid may be added for efficient grinding. Known aids such as zinc stearate can be used as grinding aids. Grinding is performed in an inert gas such as nitrogen, argon, or helium to suppress oxidation of the powder and reduce the risk of ignition or explosion. A small amount of air or oxygen may be mixed with the inert gas in order to improve the handleability of the fine powder after pulverization. Considering the handling and moldability of the powder, the particle size of the powder after pulverization is D50 (volume-based median diameter of particles when the cumulative frequency is 50%) obtained by a laser diffraction method using an airflow dispersion method. is preferably 1 μm or more and 20 μm or less. If the D50 is less than 1 μm, the risk of ignition increases and the mold is damaged during molding, which is not preferable. Further, when D50 is larger than 20 μm, densification is difficult to proceed in the sintering process, which is not preferable. The amount of oxygen in the sintered body is greatly affected by the pulverization process, and the grain size of the pulverization and the oxygen concentration in the pulverization gas greatly contribute. The finer the particle size of the powder and the higher the oxygen concentration in the pulverizing gas, the larger the value of the oxygen content β in the sintered body. Conversely, the coarser the particle size of the powder and the lower the oxygen concentration in the pulverization gas, the smaller the value of β. It should be noted that the pulverization step is not necessarily required when the alloy is produced by a method such as an atomizing method that can directly produce a powder. When obtaining such a powder, it may be produced from a single raw material alloy so as to obtain a desired composition of the sintered body, or it may be obtained as a mixed powder of a plurality of raw material alloys.

<工程B>成形工程
工程Aで得られた原料粉末を成形し、成形体を得る。結晶を配向させるために成形時に磁界を印加しながら成形することが好ましい。また成形は、金型のキャビティー内に乾燥した原料粉末を挿入し成形する乾式成形法、金型のキャビティー内にスラリー(分散媒中に原料粉末が分散している)を注入しスラリーの分散媒を排出しながら成形する湿式成形法を含む公知の方法を採用することができる。
<Step B> Molding Step The raw material powder obtained in Step A is molded to obtain a compact. In order to orient the crystals, it is preferable to carry out molding while applying a magnetic field during molding. In addition, the molding method is a dry molding method in which dried raw material powder is inserted into the cavity of the mold and molded. A known method including a wet molding method in which molding is performed while discharging a dispersion medium can be employed.

<工程C>焼結工程
工程Bで得られた成形体を熱処理することで焼結体を得る。焼結方法として、真空や不活性ガス雰囲気で高温に保持して固相焼結や液相焼結を進行させる方法や、成形体に圧力を付与しながら高温に保持する方法などが採用できる。操業コストなどの面から、真空や不活性ガス雰囲気で固相焼結や液相焼結をおこなうことが好ましい。なお、焼結時の雰囲気による酸化を防止するために、焼結は真空雰囲気中やアルゴン、ヘリウムなどの不活性ガス中でおこなうことが好ましい。さらに、高温では特にSmが顕著に蒸発するため、成形体を覆う、密閉する、Smを含む物質とともに密閉するなどの方法で、Smの蒸発を抑制することがより好ましい。焼結処理温度は1160℃以上1210℃以下である。焼結処理温度を1160℃以上1210℃以下という、特定の狭い温度範囲で行うことにより密度の高い焼結体を得ることができる。焼結処理温度が1160℃未満であると緻密化が不十分となる。また、焼結処理温度が1210℃超であると、焼結処理中に粗大な(Fe,Co,Ti)相(焼結処理温度ではbcc構造でない可能性も考えられるので単に(Fe,Co,Ti)相と記述する)や2-17相が生成してしまい、その後の追加熱処理工程でも十分に異相が低減できない場合がある。焼結処理温度は1180℃以上1210℃以下がより好ましい。焼結処理時間は、0.5時間以上50時間以下である。焼結処理時間が0.5時間未満であると緻密化が十分進行しないおそれがある。また、焼結処理時間が50時間超であると、リードタイムが長くなり操業上好ましくない。また、成形体が湿式の場合は、焼結温度に到達する前に、油が蒸発する温度で脱油処理をおこなった方がよい。
<Step C> Sintering Step A sintered body is obtained by heat-treating the compact obtained in Step B. As a sintering method, a method in which solid-phase sintering or liquid-phase sintering proceeds by maintaining a high temperature in a vacuum or an inert gas atmosphere, or a method in which a compact is maintained at a high temperature while applying pressure can be employed. From the viewpoint of operating costs, etc., it is preferable to perform solid-phase sintering or liquid-phase sintering in a vacuum or an inert gas atmosphere. In order to prevent oxidation due to the atmosphere during sintering, sintering is preferably performed in a vacuum atmosphere or in an inert gas such as argon or helium. Furthermore, since Sm evaporates particularly significantly at high temperatures, it is more preferable to suppress the evaporation of Sm by a method such as covering the compact, sealing it, or sealing it with a substance containing Sm. The sintering treatment temperature is 1160° C. or higher and 1210° C. or lower. A high-density sintered body can be obtained by performing the sintering treatment in a specific narrow temperature range of 1160° C. or higher and 1210° C. or lower. If the sintering temperature is lower than 1160°C, densification will be insufficient. In addition, if the sintering temperature is higher than 1210° C., a coarse (Fe, Co, Ti) phase may occur during the sintering treatment (because it may not be a bcc structure at the sintering temperature, simply (Fe, Co, Ti) phase) and 2-17 phase may be generated, and the heterogeneous phase may not be sufficiently reduced even in the subsequent additional heat treatment process. The sintering treatment temperature is more preferably 1180° C. or higher and 1210° C. or lower. The sintering treatment time is 0.5 hours or more and 50 hours or less. If the sintering treatment time is less than 0.5 hours, the densification may not proceed sufficiently. Moreover, if the sintering treatment time exceeds 50 hours, the lead time becomes long, which is not preferable in terms of operation. Moreover, when the compact is wet, it is better to deoil it at a temperature at which oil evaporates before reaching the sintering temperature.

<工程D>追加熱処理
工程Dで得られた焼結体を追加で熱処理することにより、異相の少ない焼結体を得る。工程Cにおける焼結温度の領域では1-12相だけでなく、2-17相や(Fe,Co,Ti)相も安定な領域となるため焼結中に異相が増加する。そこで、1-12相が安定な温度領域で追加熱処理をおこない、2-17相+(Fe,Co,Ti)相→1-12相の反応を促進させ異相を低減する。熱処理温度は900℃以上1150℃以下である。熱処理温度が900℃未満であると原子が十分に拡散されず、2-17相+(Fe,Co,Ti)相→1-12相の反応が進行しにくい。また、熱処理温度が1150℃超であると、2-17相やα-Fe相も安定な領域となるため異相低減が不十分となり不適である。熱処理温度は950℃以上1120℃以下がより好ましい。熱処理時間は、0.5時間以上50時間以下である。熱処理時間が0.5時間未満であると異相の低減が十分進行しないおそれがある。また、熱処理時間が50時間超であると、リードタイムが長くなり操業上好ましくない。
追加熱処理後の焼結体に対し、保磁力向上などの目的でさらに追加で熱処理や特定元素の拡散処理などをおこなってもよい。
<Step D> Additional heat treatment By additionally heat-treating the sintered body obtained in step D, a sintered body with less heterogeneous phases is obtained. In the sintering temperature range in step C, not only the 1-12 phase but also the 2-17 phase and (Fe, Co, Ti) phase are stable, so the number of different phases increases during sintering. Therefore, an additional heat treatment is performed in a temperature range in which the 1-12 phase is stable to promote the reaction of the 2-17 phase + (Fe, Co, Ti) phase → 1-12 phase and reduce the heterogeneous phase. The heat treatment temperature is 900° C. or higher and 1150° C. or lower. If the heat treatment temperature is less than 900° C., the atoms are not sufficiently diffused, and the reaction of 2-17 phase+(Fe, Co, Ti) phase→1-12 phase is difficult to proceed. Further, if the heat treatment temperature exceeds 1150° C., the 2-17 phase and the α-Fe phase are also in a stable region, so the reduction of heterogeneous phases is insufficient, which is not suitable. The heat treatment temperature is more preferably 950° C. or higher and 1120° C. or lower. The heat treatment time is 0.5 hours or more and 50 hours or less. If the heat treatment time is less than 0.5 hours, there is a possibility that the reduction of heterogeneous phases will not proceed sufficiently. Moreover, if the heat treatment time exceeds 50 hours, the lead time becomes long, which is not preferable in terms of operation.
The sintered body after the additional heat treatment may be additionally subjected to heat treatment or diffusion treatment of a specific element for the purpose of improving the coercive force.

以下、本開示の実施例を具体的に説明するが、本開示はこれらの実施例に限定されるものではない。 Examples of the present disclosure will be specifically described below, but the present disclosure is not limited to these examples.

実験例1
まず、主相系原料合金として、表1のA1、A2およびA3の組成となるように各元素を秤量し、ストリップキャスト法で作製した。具体的には、純度が99.9%以上のY、Sm、Fe、Co、Ti、Cuの原料金属(なお、Siは製造工程中に不可避的不純物として含有)を、溶解時の希土類元素の蒸発を加味し、得られる合金組成がねらい値になるように秤量した。秤量した各金属を混合してシリカ坩堝に投入し、高周波誘導加熱により1500℃まで昇温して原料を溶解した。その後、溶湯を1450℃まで降温させ、タンディッシュで一時的に貯湯した後、周速度1.5m/sで回転している銅製の冷却ロール上に供給して冷却させた。冷却された合金は冷却ロール下部に設置した解砕機で解砕された。
Experimental example 1
First, each element was weighed so as to have the compositions of A1, A2 and A3 in Table 1 as main phase material alloys, and strip casting was performed. Specifically, raw material metals of Y, Sm, Fe, Co, Ti, and Cu with a purity of 99.9% or more (Si is contained as an unavoidable impurity during the manufacturing process) are added to the rare earth element at the time of melting. Evaporation was taken into account and weighing was carried out so that the obtained alloy composition would be the target value. The weighed metals were mixed and charged into a silica crucible, and heated to 1500° C. by high-frequency induction heating to melt the raw materials. Thereafter, the molten metal was cooled to 1450° C., temporarily stored in a tundish, and then fed onto a cooling roll made of copper rotating at a peripheral speed of 1.5 m/s for cooling. The cooled alloy was pulverized by a pulverizer installed below the cooling rolls.

次に副相系合金として、表1のB1の組成となるように各元素を秤量し、超急冷法で作製した。具体的には、純度が99.9%以上のY、Sm、Fe、Co、Ti、Cuの原料金属(なお、Siは製造工程中に不可避的不純物として含有)を、溶解時の希土類元素の蒸発を加味し、得られる合金組成がねらい値になるように秤量した。これらの原料金属を液体超急冷装置(メルトスピニング装置)の出湯管内で十分に溶解して合金の要等を形成した後、20m/sのロール周速度で回転するCu製のロール上に溶湯を出湯した。 Next, each element was weighed so that the composition of B1 in Table 1 was obtained as a subphase alloy, and the alloy was produced by a super-quenching method. Specifically, raw material metals of Y, Sm, Fe, Co, Ti, and Cu with a purity of 99.9% or more (Si is contained as an unavoidable impurity during the manufacturing process) are added to the rare earth element at the time of melting. Evaporation was taken into account and weighing was carried out so that the obtained alloy composition would be the target value. After sufficiently melting these raw metals in the tapping pipe of a liquid ultra-quenching device (melt spinning device) to form the core of the alloy, the molten metal is poured onto a Cu roll rotating at a roll peripheral speed of 20 m/s. I took a bath.

作製した主相系合金A1~A3および副相系合金B1の一部をそれぞれ乳鉢で粉砕し、425μmメッシュおよび75μmメッシュを用いて分級した。粒径75~425μmの粉砕粉を用いて、ICP(誘導結合プラズマ)発光分光分析法にてY・Sm・Fe・Co・Ti・Cu・Siの成分分析をおこなった。各合金の組成を表1に示す。 A portion of the main phase alloys A1 to A3 and the sub phase alloy B1 thus prepared were each pulverized in a mortar and classified using a 425 μm mesh and a 75 μm mesh. Using pulverized powder with a particle size of 75 to 425 μm, component analysis of Y, Sm, Fe, Co, Ti, Cu, and Si was performed by ICP (inductively coupled plasma) emission spectrometry. Table 1 shows the composition of each alloy.

Figure 0007287215000001
Figure 0007287215000001

作製した主相系合金A1~A3について合金熱処理をおこなった。具体的には、それぞれを500g秤量してモリブデン製の容器に入れ、容器を管状熱処理炉の内部に挿入した。炉内をArで置換したのち、Arを2L/分流気させた雰囲気で1100℃、1.5時間の熱処理をおこなった。合金熱処理終了後は熱処理炉を開放して合金を冷却させた。このとき、1100℃から100℃までの平均冷却速度は10℃/分以上であった。 The main phase system alloys A1 to A3 thus produced were subjected to alloy heat treatment. Specifically, 500 g of each was weighed and placed in a molybdenum container, and the container was inserted into a tubular heat treatment furnace. After replacing the atmosphere in the furnace with Ar, heat treatment was performed at 1100° C. for 1.5 hours in an atmosphere in which 2 L/min of Ar was allowed to flow. After finishing the alloy heat treatment, the heat treatment furnace was opened to cool the alloy. At this time, the average cooling rate from 1100°C to 100°C was 10°C/min or more.

上記工程で得た合金熱処理後の主相系合金A1~A3および副相系合金B1を、モリブデン製の容器に入れ、容器を管状熱処理炉の内部に挿入した。炉内をHで置換したのち、Hを2L/分流気させた雰囲気で350℃、1.5時間の熱処理をおこなった。熱処理終了後は炉内をArに置換したのち、熱処理炉を開放して合金を冷却させた。 The main phase alloys A1 to A3 and the sub phase alloy B1 after alloy heat treatment obtained in the above steps were placed in a molybdenum container, and the container was inserted into a tubular heat treatment furnace. After replacing the atmosphere in the furnace with H 2 , heat treatment was performed at 350° C. for 1.5 hours in an atmosphere in which 2 L/min of H 2 was allowed to flow. After the heat treatment was finished, the atmosphere in the furnace was replaced with Ar, and then the heat treatment furnace was opened to cool the alloy.

上記工程で得た水素処理後の主相系合金および副相系合金をそれぞれAr流気雰囲気のグローブボックス内で乳鉢を用いて粉砕した。粉砕粉を1mmメッシュで篩い分け、メッシュを通った粉を回収した。回収した主相系合金粉末および副相系合金粉末とステアリン酸亜鉛(次工程のための粉砕助剤)をロッキングミキサーで20分間混合した。 The hydrogen-treated main phase alloy and sub phase alloy obtained in the above steps were pulverized using a mortar in a glove box in an Ar stream atmosphere. The pulverized powder was sieved through a 1 mm mesh, and the powder that passed through the mesh was recovered. The collected main phase alloy powder and sub phase alloy powder and zinc stearate (grinding aid for the next step) were mixed in a rocking mixer for 20 minutes.

上記工程で得た混合粉を日本ニューマチック工業製の気流式ジェットミルPJM-100を用いて微粉砕して微粉を得た。粉砕ガスには窒素ガスを用い、粉砕圧7.0MPaで粉砕して粉末を得た。このときの粉末のD50はいずれも5μmであった。 The mixed powder obtained in the above step was pulverized using an air jet mill PJM-100 manufactured by Nippon Pneumatic Industry Co., Ltd. to obtain a fine powder. Nitrogen gas was used as the pulverizing gas, and pulverization was performed at a pulverization pressure of 7.0 MPa to obtain powder. D50 of the powder at this time was 5 μm.

上記工程で得た粉末を油と混ぜてスラリー状にしたのち、磁界中成形をおこない成形体を得た。成形装置は磁界印加方向と加圧方向とが直交する、いわゆる直角磁界成形装置(横磁界成形装置)を用いた。得られた成形体をニオブ箔で被覆した。 The powder obtained in the above step was mixed with oil to form a slurry, which was compacted in a magnetic field to obtain a compact. A so-called perpendicular magnetic field forming device (transverse magnetic field forming device) was used as the forming device, in which the direction of magnetic field application and the direction of pressure are orthogonal. The molded body obtained was covered with a niobium foil.

上記工程で得られた成形体をモリブデン製の容器に入れ、熱処理炉にて真空雰囲気で200℃、5時間の脱油処理をしたのち炉内にArを満たし、表2に示す焼結処理温度で20時間の焼結工程をおこなった。 The molded body obtained in the above process was placed in a molybdenum container, deoiled in a heat treatment furnace in a vacuum atmosphere at 200 ° C. for 5 hours, then filled with Ar, and the sintering treatment temperature shown in Table 2. 20 hours of sintering process.

上記工程で得られた焼結体の一部をモリブデン製の容器に入れ、容器を管状熱処理炉の内部に挿入した。炉内をArで置換したのち、Arを2L/分流気させた雰囲気で1100℃、20時間の追加熱処理をする工程をおこなった。熱処理終了後は熱処理炉を開放して合金を冷却させた。このとき、1100℃から100℃までの平均冷却速度は10℃/分以上であった。 A portion of the sintered body obtained in the above step was placed in a molybdenum container, and the container was inserted into a tubular heat treatment furnace. After replacing the atmosphere in the furnace with Ar, an additional heat treatment was performed at 1100° C. for 20 hours in an atmosphere in which 2 L/min of Ar was allowed to flow. After the heat treatment was completed, the heat treatment furnace was opened to cool the alloy. At this time, the average cooling rate from 1100°C to 100°C was 10°C/min or more.

上記工程で得られた焼結体の一部を乳鉢で粉砕し、425μmメッシュおよび75μmメッシュを用いて分級した。粒径75~425μmの粉砕粉を用いて、ICP発光分光分析法にてY・Sm・Fe・Co・Ti・Cu・Siの成分分析を、燃焼・赤外線吸収法にて炭素量の分析をおこなった。また、粒径425μm以上の粉砕粉を用いて、不活性ガス溶融・熱伝導法にて酸素量・窒素量の分析をおこなった。分析結果から、各焼結体のy、z、w、α、β、および1-1.45z-0.5α―0.5βの値を求めた。また、焼結体密度はイオン交換水を用いたアルキメデス法により求めた。なお、粒径75μm以下の粉砕粉を用いた粉末X線回折法により、ThMn12型結晶構造を有する相が主相であることを確認した。 A portion of the sintered body obtained in the above step was pulverized in a mortar and classified using a 425 μm mesh and a 75 μm mesh. Using pulverized powder with a particle size of 75 to 425 μm, the components of Y, Sm, Fe, Co, Ti, Cu, and Si are analyzed by ICP emission spectrometry, and the carbon content is analyzed by combustion and infrared absorption. rice field. In addition, using pulverized powder having a particle size of 425 μm or more, the oxygen content and nitrogen content were analyzed by the inert gas fusion/heat conduction method. From the analysis results, the values of y, z, w, α, β, and 1-1.45z-0.5α-0.5β of each sintered body were determined. Also, the density of the sintered body was obtained by the Archimedes method using ion-exchanged water. It was confirmed by a powder X-ray diffraction method using pulverized powder having a particle size of 75 μm or less that a phase having a ThMn type 12 crystal structure was the main phase.

焼結体を外周刃切断機で切断した。切断した焼結体を樹脂に埋め、研磨し、焼結体断面を走査型電子顕微鏡(SEM)で観察した。SEMは日本電子製JCM-6000Plus NeoScope(登録商標)を用い、加速電圧15kVで反射電子像を撮影した。撮影した反射電子像を画像処理ソフトを用いて解析した。各相のコントラストをもとに、400μm×600μmの領域でbcc-(Fe、Co、Ti)相および2-17相の断面積比率を求めた。 The sintered body was cut with a peripheral blade cutting machine. The cut sintered body was embedded in resin, polished, and the cross section of the sintered body was observed with a scanning electron microscope (SEM). A JCM-6000Plus NeoScope (registered trademark) manufactured by JEOL Ltd. was used as the SEM, and backscattered electron images were taken at an acceleration voltage of 15 kV. The captured backscattered electron image was analyzed using image processing software. Based on the contrast of each phase, the cross-sectional area ratios of the bcc-(Fe, Co, Ti) phase and the 2-17 phase were obtained in a region of 400 μm×600 μm.

作製した焼結体に用いた主相系合金および副相系合金の種類、主相系合金の重量を1としたときの副相系合金の混合重量比、焼結体の組成、y、z、w、α、β、1-1.45z-0.5α-0.5βの値、焼結処理温度、追加熱処理の有無、焼結体密度、bcc-(Fe,Co,Ti)相比率および2-17相比率を表2に示す。なお、No.21~25の試料は主相系合金のみを用いており、副相系合金の混合をおこなわなかった。 Types of main phase alloy and sub phase alloy used in the produced sintered body, mixing weight ratio of the sub phase alloy when the weight of the main phase alloy is 1, composition of the sintered body, y, z , w, α, β, 1-1.45z-0.5α-0.5β values, sintering temperature, presence or absence of additional heat treatment, sintered body density, bcc-(Fe, Co, Ti) phase ratio and Table 2 shows the 2-17 phase ratio. In addition, No. Samples Nos. 21 to 25 used only the main phase system alloy and did not mix the sub phase system alloy.

Figure 0007287215000002
Figure 0007287215000002

No.1、6、11、16、21は焼結温度が1150℃の実験例である。No.1、6、11、16、21以外の試料と比較すると、焼結体密度が著しく低い結果となった。 No. 1, 6, 11, 16 and 21 are experimental examples in which the sintering temperature is 1150°C. No. Compared with samples other than 1, 6, 11, 16 and 21, the sintered body density was remarkably low.

No.2、3、7,8、12、13、17、18、22、23は1200℃あるいは1220℃で焼結後、追加熱処理をおこなわなかった試料である。焼結体密度は高いが、bcc-(Fe,Co,Ti)相比率と2-17相比率のいずれか、あるいはその両方が10%を超えており、異相が非常に多い結果となった。 No. Samples 2, 3, 7, 8, 12, 13, 17, 18, 22, and 23 were sintered at 1200°C or 1220°C without additional heat treatment. Although the density of the sintered body was high, either or both of the bcc-(Fe, Co, Ti) phase ratio and the 2-17 phase ratio exceeded 10%, resulting in an extremely large number of different phases.

No.4、9、19、24は1200℃焼結処理後、1100℃で追加熱処理をおこなった試料である。焼結体密度が高く、bcc-(Fe,Co,Ti)相比率および2-17相比率のいずれも10%以下に抑制することができた。 No. Nos. 4, 9, 19 and 24 are samples which were subjected to additional heat treatment at 1100°C after sintering at 1200°C. The density of the sintered body was high, and both the bcc-(Fe, Co, Ti) phase ratio and the 2-17 phase ratio could be suppressed to 10% or less.

No.14は、No.4、9、19、24と同様に1200℃焼結処理後、1100℃で追加熱処理をおこなった試料であるが、1-1.45z-0.5α-0.5βの値が0.023であり、0.02よりも高い試料である。焼結体密度は高いが、2-17相比率が10%を超えており、異相が非常に多い結果となった。 No. 14 is No. Similar to 4, 9, 19, and 24, after sintering at 1200°C, additional heat treatment was performed at 1100°C. Yes, samples higher than 0.02. Although the density of the sintered body is high, the 2-17 phase ratio exceeds 10%, resulting in an extremely large number of different phases.

No.5、10、15、20、25は1220℃焼結処理後、1100℃で追加熱処理をおこなった試料である。焼結体密度は高いが、bcc-(Fe,Co,Ti)相比率と2-17相比率のいずれか、あるいはその両方が10%を超えており、異相が非常に多い結果となった。 No. 5, 10, 15, 20, and 25 are samples which were subjected to additional heat treatment at 1100°C after sintering at 1220°C. Although the density of the sintered body was high, either or both of the bcc-(Fe, Co, Ti) phase ratio and the 2-17 phase ratio exceeded 10%, resulting in an extremely large number of different phases.

本開示の希土類磁石用焼結体は、Nd-Fe-B系磁石の磁気物性を超える永久磁石が求められている各技術分野、特にモータおよびアクチュエータなどに好適に利用され、産業上の様々な用途を持つ。
The sintered body for rare earth magnets of the present disclosure is suitably used in various technical fields where permanent magnets that exceed the magnetic properties of Nd--Fe--B magnets are required, especially motors and actuators, etc., and various industrial applications. have a use.

Claims (4)

焼結体の全体組成が下記の組成式(1)で表され、
R(Fe1-yCow-zCuαβ (1)
RはR1及びR1以外の希土類元素の少なくとも1種であり、R1はY、Gd、HfおよびZrからなる群から選択される少なくとも1種であり、
MはSi、Al、Ti、V、Cr、Nb、Mo、Ta、Wからなる群から選択される少なくとも1種であり、
y、z、w、αおよびβはそれぞれ、
0≦y≦0.4、
0.35≦z≦1.0、
7≦w≦12、
0.2≦α≦1.0、
0.02≦β≦0.5、および
-0.06≦1-1.45z-0.5α―0.5β≦0.02、
を満足する、ThMn12型結晶構造を有する相を主相とする希土類磁石用焼結体の製造方法であって、
原料粉末を得る工程と、
前記原料粉末を成形して成形体を得る工程と、
前記成形体を1160℃以上1210℃未満で0.5時間以上50時間以下の熱処理をして焼結体を得る工程と、
前記焼結体を900℃以上1150℃未満で0.5時間以上50時間以下の追加熱処理をする工程と、
を含む希土類磁石用焼結体の製造方法。
The overall composition of the sintered body is represented by the following composition formula (1),
R(Fe 1-y Co y ) wz M z Cu α O β (1)
R is at least one of R1 and rare earth elements other than R1, R1 is at least one selected from the group consisting of Y, Gd, Hf and Zr,
M is at least one selected from the group consisting of Si, Al, Ti, V, Cr, Nb, Mo, Ta and W;
y, z, w, α and β are each
0≤y≤0.4,
0.35≦z≦1.0,
7≦w≦12,
0.2≤α≤1.0,
0.02≦β≦0.5, and −0.06≦1−1.45z−0.5α−0.5β≦0.02,
A method for producing a sintered body for a rare earth magnet having a phase having a ThMn type 12 crystal structure as a main phase, satisfying
a step of obtaining raw material powder;
a step of molding the raw material powder to obtain a molded body;
a step of heat-treating the molded body at 1160° C. or higher and less than 1210° C. for 0.5 hours or more and 50 hours or less to obtain a sintered body;
a step of subjecting the sintered body to additional heat treatment at 900° C. or more and less than 1150° C. for 0.5 hours or more and 50 hours or less;
A method for producing a sintered body for rare earth magnets.
前記焼結体の組成において、R1を含有し、R1がR全体の10mol%以上70mol%以下である、請求項1に記載の希土類磁石用焼結体の製造方法。 2. The method for producing a sintered body for a rare earth magnet according to claim 1, wherein the composition of said sintered body contains R1, and R1 is 10 mol % or more and 70 mol % or less of the total R. 前記焼結体の組成において、Smを含有し、SmがR全体の20mol%以上80mol%以下である、請求項1または2に記載の希土類磁石用焼結体の製造方法。 3. The method for producing a sintered body for a rare earth magnet according to claim 1, wherein the composition of said sintered body contains Sm, and Sm is 20 mol % or more and 80 mol % or less of the whole R. 前記焼結体の組成において、Tiを含有し、TiがM全体の50mol%以上である、請求項1から3のいずれかに記載の希土類磁石用焼結体の製造方法。

4. The method for producing a sintered body for a rare earth magnet according to any one of claims 1 to 3, wherein the composition of the sintered body contains Ti, and Ti accounts for 50 mol% or more of the total M.

JP2019172814A 2019-09-24 2019-09-24 Manufacturing method of sintered body for rare earth magnet Active JP7287215B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019172814A JP7287215B2 (en) 2019-09-24 2019-09-24 Manufacturing method of sintered body for rare earth magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019172814A JP7287215B2 (en) 2019-09-24 2019-09-24 Manufacturing method of sintered body for rare earth magnet

Publications (2)

Publication Number Publication Date
JP2021052052A JP2021052052A (en) 2021-04-01
JP7287215B2 true JP7287215B2 (en) 2023-06-06

Family

ID=75156449

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019172814A Active JP7287215B2 (en) 2019-09-24 2019-09-24 Manufacturing method of sintered body for rare earth magnet

Country Status (1)

Country Link
JP (1) JP7287215B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022176506A (en) * 2021-05-17 2022-11-30 信越化学工業株式会社 Anisotropic rare earth sintered magnet and manufacturing method therefor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000114017A (en) 1998-09-30 2000-04-21 Toshiba Corp Permanent magnet and material thereof
JP2000114016A (en) 1998-09-30 2000-04-21 Toshiba Corp Permanent magnet and manufacture thereof
JP2001189206A (en) 1999-12-28 2001-07-10 Toshiba Corp Permanent magnet
WO2016162990A1 (en) 2015-04-08 2016-10-13 株式会社日立製作所 Rare earth permanent magnet and method for producing same
JP6330252B2 (en) 2013-03-28 2018-05-30 セイコーエプソン株式会社 Positioning signal receiving method and positioning signal receiving apparatus

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3118740B2 (en) * 1993-05-24 2000-12-18 ミネベア株式会社 Rare earth magnet materials and rare earth bonded magnets
JP3792737B2 (en) * 1994-09-16 2006-07-05 株式会社東芝 Magnet material and permanent magnet using the same
JP6733871B2 (en) * 2017-08-22 2020-08-05 トヨタ自動車株式会社 Magnetic compound and method for producing the same
JP7263696B2 (en) * 2017-08-31 2023-04-25 株式会社プロテリアル Alloys for rare earth magnets

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000114017A (en) 1998-09-30 2000-04-21 Toshiba Corp Permanent magnet and material thereof
JP2000114016A (en) 1998-09-30 2000-04-21 Toshiba Corp Permanent magnet and manufacture thereof
JP2001189206A (en) 1999-12-28 2001-07-10 Toshiba Corp Permanent magnet
JP6330252B2 (en) 2013-03-28 2018-05-30 セイコーエプソン株式会社 Positioning signal receiving method and positioning signal receiving apparatus
WO2016162990A1 (en) 2015-04-08 2016-10-13 株式会社日立製作所 Rare earth permanent magnet and method for producing same

Also Published As

Publication number Publication date
JP2021052052A (en) 2021-04-01

Similar Documents

Publication Publication Date Title
JP5477282B2 (en) R-T-B system sintered magnet and manufacturing method thereof
JP5259351B2 (en) Permanent magnet and permanent magnet motor and generator using the same
JP6406255B2 (en) R-T-B system sintered magnet and method for manufacturing R-T-B system sintered magnet
JP5331885B2 (en) Permanent magnet and variable magnetic flux motor and generator using the same
JP6288076B2 (en) R-T-B sintered magnet
JP6094612B2 (en) Method for producing RTB-based sintered magnet
JP5348124B2 (en) Method for producing R-Fe-B rare earth sintered magnet and rare earth sintered magnet produced by the method
JP2006210893A (en) Nd-fe-b based rare earth permanent magnet material
JP4743211B2 (en) Rare earth sintered magnet and manufacturing method thereof
US11087922B2 (en) Production method of rare earth magnet
JP2010123722A (en) Permanent magnet, permanent magnet motor using the same, and power generator
WO2004029995A1 (en) R-t-b rare earth permanent magnet
JP2018028123A (en) Method for producing r-t-b sintered magnet
JP4254121B2 (en) Rare earth sintered magnet and manufacturing method thereof
JP7287215B2 (en) Manufacturing method of sintered body for rare earth magnet
JP7021578B2 (en) Manufacturing method of RTB-based sintered magnet
JP7196666B2 (en) Sintered body for rare earth magnet and method for producing the same
JP2018029108A (en) Method of manufacturing r-t-b based sintered magnet
JP7196667B2 (en) Manufacturing method of sintered body for rare earth magnet
JP6623998B2 (en) Method for producing RTB based sintered magnet
JP6325744B2 (en) Permanent magnets, motors, and generators
CN114255949A (en) Magnetic material and method for producing the same
JP2018060997A (en) Method for manufacturing r-t-b based sintered magnet
JP7238504B2 (en) Bulk body for rare earth magnet
JP2013098319A (en) METHOD FOR MANUFACTURING Nd-Fe-B MAGNET

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220809

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230413

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230425

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230508

R150 Certificate of patent or registration of utility model

Ref document number: 7287215

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150