JP2011100881A - Method for manufacturing nanocomposite magnet - Google Patents

Method for manufacturing nanocomposite magnet Download PDF

Info

Publication number
JP2011100881A
JP2011100881A JP2009255140A JP2009255140A JP2011100881A JP 2011100881 A JP2011100881 A JP 2011100881A JP 2009255140 A JP2009255140 A JP 2009255140A JP 2009255140 A JP2009255140 A JP 2009255140A JP 2011100881 A JP2011100881 A JP 2011100881A
Authority
JP
Japan
Prior art keywords
sintering
temperature
ribbon
crystalline
nanocomposite magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009255140A
Other languages
Japanese (ja)
Other versions
JP5504832B2 (en
Inventor
Masao Yano
正雄 矢野
Noritsugu Sakuma
紀次 佐久間
Tetsuya Shoji
哲也 庄司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2009255140A priority Critical patent/JP5504832B2/en
Publication of JP2011100881A publication Critical patent/JP2011100881A/en
Application granted granted Critical
Publication of JP5504832B2 publication Critical patent/JP5504832B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a nanocomposite magnet with satisfactory magnetic characteristics without generating a coarse crystal grain due to crystallization in sintering. <P>SOLUTION: In the method for manufacturing the nanocomposite magnet, the temperature of a quenched alloy is raised to the temperature below crystallization temperature by rapidly raising temperature under pressure for sintering. The quenched alloy is composed of a quench composition comprising a hard magnetic phase and soft magnetic phase and whose crystalline organization is 85 wt.%. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、硬磁性ナノ粒子と軟磁性ナノ粒子とが複合化したナノコンポジット磁石の製造方法に関する。   The present invention relates to a method for producing a nanocomposite magnet in which hard magnetic nanoparticles and soft magnetic nanoparticles are combined.

ナノコンポジット磁石は、硬磁性/軟磁性2相複合構造を備え、特に軟磁性相を数nmの極微細粒とすることにより、硬軟磁性相間に交換結合が働き、残留磁化および飽和磁化を大幅に増大できるという特性が注目されている。   Nanocomposite magnets have a hard magnetic / soft magnetic two-phase composite structure. By making the soft magnetic phase ultrafine particles of several nanometers, exchange coupling works between the hard soft magnetic phases, greatly increasing residual magnetization and saturation magnetization. The property of being able to increase is drawing attention.

このようなナノ組織を備えたバルク体を製造する方法として、所定組成の溶融体を急冷した粉末あるいは薄帯を原料として用いる方法が行なわれている。   As a method for producing a bulk body having such a nanostructure, a method in which a powder or ribbon obtained by rapidly cooling a melt having a predetermined composition is used as a raw material.

すなわち、特許文献1には、非晶質急冷薄帯を用い、温間一軸変形(通電粉末圧延法)により、液相の存在下で直接異方性化する方法が提案されている。   That is, Patent Document 1 proposes a method in which an amorphous quenching ribbon is used and anisotropy is directly made in the presence of a liquid phase by warm uniaxial deformation (electric current powder rolling method).

特許文献2には、非晶質急冷薄帯を用い、水素雰囲気中での加熱処理、放電プラズマ焼結を行なって交換スプリング磁石(ナノコンポジット磁石)を製造する方法が提案されている。   Patent Document 2 proposes a method for manufacturing an exchange spring magnet (nanocomposite magnet) by using an amorphous quenching ribbon and performing heat treatment in a hydrogen atmosphere and discharge plasma sintering.

特許文献3には、非晶質急冷薄帯を用い、その粉砕、放電プラズマ焼結を行なって交換スプリング磁石(ナノコンポジット磁石)を製造する方法が提案されている。   Patent Document 3 proposes a method of manufacturing an exchange spring magnet (nanocomposite magnet) by using an amorphous quenching ribbon, pulverizing it, and performing discharge plasma sintering.

特許文献4には、急冷薄帯を粉砕し、得られた粉末を形に充填し、所定の焼結圧力・焼結温度にて放電プラズマ焼結してバルク交換スプリング磁石を製造する方法が提案されている。特許文献5には、上記技術において、温度500〜650℃、圧力3.1〜6.0ton/cm2で放電プラズマ焼結を行なうことが提案されている。 Patent Document 4 proposes a method for producing a bulk exchange spring magnet by pulverizing a quenched ribbon, filling the obtained powder into a shape, and performing discharge plasma sintering at a predetermined sintering pressure and temperature. Has been. Patent Document 5 proposes that in the above technique, discharge plasma sintering is performed at a temperature of 500 to 650 ° C. and a pressure of 3.1 to 6.0 ton / cm 2 .

しかし、特許文献1〜5には、急冷組織を構成する非晶質/結晶質の割合については、開示がない。   However, Patent Documents 1 to 5 do not disclose the amorphous / crystalline ratio constituting the quenched structure.

特許文献6には、ナノコンポジット磁石の原料粉末に含まれる非晶質の体積比率を50%以上とし、これを熱間成形してバルクのナノコンポジット磁石とする方法が提案されている。熱間成形するために塑性変形能が必要であり、そのために非晶質の割合を高めている。   Patent Document 6 proposes a method in which the volume ratio of amorphous contained in the raw material powder of the nanocomposite magnet is 50% or more, and this is hot-molded to form a bulk nanocomposite magnet. In order to perform hot forming, plastic deformability is required, and for this reason, the amorphous ratio is increased.

特許文献7にも、同様に非晶質の焼結原料を用い、20〜80MPaの加圧下で焼結する方法が開示されている。   Similarly, Patent Document 7 discloses a method of sintering using an amorphous sintering raw material under a pressure of 20 to 80 MPa.

しかし、焼結密度を真密度に近づけるためには焼結温度を高める必要があり、非晶質の多い急冷粉末あるいは急冷薄帯を焼結すると、非晶質の部分が結晶化する際に微結晶組織とならず、粗大結晶粒が混在した組織となり、得られた焼結体の磁気特性(特に保磁力)が低下するという問題があった。   However, in order to bring the sintered density close to the true density, it is necessary to raise the sintering temperature. When a rapidly quenched powder or quenched ribbon with a lot of amorphous material is sintered, the amorphous part is slightly crystallized. There is a problem that the crystal structure is not mixed but a coarse crystal grain is mixed, and the magnetic properties (particularly the coercive force) of the obtained sintered body are lowered.

特開2000−235909号公報JP 2000-235909 A 特開2002−339018号公報JP 2002-339018 A 特開2002−343659号公報JP 2002-343659 A 特開2001−093723号公報JP 2001-093723 A 特開2003−264115号公報JP 2003-264115 A 特開2004−339527号公報JP 2004-339527 A 特開2000−348919号公報JP 2000-348919 A

本発明は、焼結時の結晶化により粗大結晶粒を生成させず、良好な磁気特性を備えたナノコンポジット磁石を製造する方法を提供することを目的とする。   An object of the present invention is to provide a method for producing a nanocomposite magnet having good magnetic properties without generating coarse crystal grains by crystallization during sintering.

上記の目的を達成するために、本発明のナノコンポジット磁石の製造方法は、硬磁性相と軟磁性相とから成る急冷組織から成り、結晶組織が85重量%以上である急冷合金を、加圧下で急速昇温により結晶化温度以下の温度に昇温して焼結することを特徴とする。   In order to achieve the above object, a method for producing a nanocomposite magnet according to the present invention comprises a rapidly cooled alloy comprising a hard magnetic phase and a soft magnetic phase and having a crystal structure of 85% by weight or more under pressure. The temperature is raised to a temperature equal to or lower than the crystallization temperature by rapid heating and is sintered.

結晶組織が85重量%以上の急冷合金を原料とし、急速昇温により結晶化温度以下で焼結するので、粗大結晶粒が生成せず、良好な磁気特性が確保できる。   Since a rapidly cooled alloy having a crystal structure of 85% by weight or more is used as a raw material and sintered at a temperature lower than the crystallization temperature by rapid heating, coarse crystal grains are not generated, and good magnetic properties can be secured.

図1は、メルトスピニング法によって急冷薄帯を製造し、粗粉砕、焼結を行なう本発明による製造プロセスを示す模式図である。FIG. 1 is a schematic diagram showing a manufacturing process according to the present invention in which a rapidly cooled ribbon is manufactured by a melt spinning method, and coarsely pulverized and sintered. 図2は、実施例1で製造した急冷薄帯の(1)非晶質のもの、(2)結晶質のものについて、それぞれXRDチャートを示す模式図である。FIG. 2 is a schematic diagram showing XRD charts for the quenched ribbon (1) amorphous and (2) crystalline manufactured in Example 1. FIG. 図3は、急冷薄帯を非晶質のものと結晶質のものとに分離する方法を示す模式図である。FIG. 3 is a schematic view showing a method for separating the quenched ribbon into an amorphous one and a crystalline one. 図4は、粗粉砕した急冷薄帯(リボン)を焼結する手順を示す模式図である。FIG. 4 is a schematic diagram showing a procedure for sintering the coarsely pulverized quenched ribbon (ribbon). 図5は、焼結体と未焼結の急冷薄帯とについて磁化曲線を示すグラフである。FIG. 5 is a graph showing magnetization curves for a sintered body and an unsintered quenched ribbon. 図6は、焼結原料を構成する結晶質の割合と、結晶質急冷薄帯に対する特性の比との関係を示すグラフである。FIG. 6 is a graph showing the relationship between the ratio of the crystalline material constituting the sintered raw material and the ratio of the characteristics to the crystalline quenched ribbon. 図7は、実施例2において焼結原料として用いた結晶質薄帯の透過電子顕微鏡(TEM)像を示す写真である。7 is a photograph showing a transmission electron microscope (TEM) image of a crystalline ribbon used as a sintering raw material in Example 2. FIG. 図8は、種々の温度で焼結した焼結体と未焼結の急冷リボンの透過電子顕微鏡(TEM)像を示す写真である。FIG. 8 is a photograph showing transmission electron microscope (TEM) images of a sintered body sintered at various temperatures and an unsintered quenched ribbon.

本発明の方法は、結晶質85重量%以上の焼結原料を用いたことにより、結晶質急冷薄帯と同等の優れた磁気特性が達成され、急冷薄帯に比べて保磁力Hcの低下は10%以内、残留磁束密度Brの低下は5%以内である。特に、結晶質100重量%の焼結原料を用いると、Hc、Br共に結晶質急冷薄帯に対して5%以内の低下の優れた磁気特性が得られる。   In the method of the present invention, excellent magnetic properties equivalent to those of a crystalline quenched ribbon are achieved by using a sintering raw material having a crystalline content of 85% by weight or more, and the coercive force Hc is reduced as compared with the quenched ribbon. Within 10%, the decrease in residual magnetic flux density Br is within 5%. In particular, when a sintered raw material having a crystalline weight of 100% is used, both Hc and Br can have excellent magnetic properties with a decrease of 5% or less with respect to the crystalline quenched ribbon.

本発明の方法により、急冷によって作製された希土類合金磁石の粉末または薄帯が樹脂を介さずに結合したバインダーフリー磁石が得られる。バインダーを用いないため、磁気特性が良好であり、高温でも使用可能である。   By the method of the present invention, it is possible to obtain a binder-free magnet in which rare earth alloy magnet powders or ribbons produced by rapid cooling are bonded without a resin. Since no binder is used, the magnetic properties are good and it can be used even at high temperatures.

焼結原料としての急冷合金の作製方法として、メルトスピニングやアトマイズなどの液体急冷法は、単磁区粒子化を伴う微細組織化が達成できるので望ましい。この急冷合金の結晶粒径は、主相としての硬磁性相が10nm〜200nm、軟磁性相が1nm〜100nmであることが望ましい。   A liquid quenching method such as melt spinning or atomizing is preferable as a method for producing a quenched alloy as a sintering raw material because it can achieve a fine structure accompanied by single domain grain formation. The crystal grain size of the quenched alloy is desirably 10 nm to 200 nm for the hard magnetic phase as the main phase and 1 nm to 100 nm for the soft magnetic phase.

液体急冷法により得られた急冷薄帯を粗粉砕して焼結に用いる。一般に粒度200μm以下とすることが望ましい。   The quenched ribbon obtained by the liquid quenching method is coarsely pulverized and used for sintering. In general, the particle size is desirably 200 μm or less.

焼結法としては、ホットプレス法、放電プラズマ法、通電焼結法などの急速昇温が望ましい。焼結は、加圧下で加熱保持して行なう。   As the sintering method, rapid temperature increase such as a hot press method, a discharge plasma method, and an electric current sintering method is desirable. Sintering is performed by heating and holding under pressure.

焼結は、温度500〜650℃、圧力200MPa以上で行なうことが望ましい。   Sintering is desirably performed at a temperature of 500 to 650 ° C. and a pressure of 200 MPa or more.

本発明の方法を適用する急冷合金すなわち焼結原料の代表的な組成は、一般式R100−x−y−zで表され、R、Q、M、Tは、
R:一種以上の希土類金属、
Q:BおよびCの少なくとも一種、
M:Ti、Al、Si、V、Mn、Cu、Zn、Ga、Zr、Nb、Mo、Ag、Hf、Ta、W、Pt、Au、Pbから成る群から選択された少なくとも一種、
T:FeまたはFeの一部をCoおよびNiの少なくとも一種で置換したもの、
であり、上記x、y、zは、
2≦x≦11.8、
1≦y≦22、
0≦z≦10
を満たし、
主相としての硬磁性相はR14Mであり、軟磁性相はαFeまたはFeとBまたはCとの化合物である。
The typical composition of the quenched alloy i.e. sintered material applying the method of the present invention, is represented by the general formula R x Q y M z T 100 -x-y-z, R, Q, M, T is
R: one or more rare earth metals,
Q: at least one of B and C,
M: at least one selected from the group consisting of Ti, Al, Si, V, Mn, Cu, Zn, Ga, Zr, Nb, Mo, Ag, Hf, Ta, W, Pt, Au, Pb,
T: Fe or a part of Fe substituted with at least one of Co and Ni,
And the above x, y, z are
2 ≦ x ≦ 11.8,
1 ≦ y ≦ 22,
0 ≦ z ≦ 10
The filling,
The hard magnetic phase as the main phase is R 2 T 14 M, and the soft magnetic phase is a compound of αFe or Fe and B or C.

〔実施例1〕
本発明により、下記組成のナノコンポジット磁石を製造した。
[Example 1]
According to the present invention, a nanocomposite magnet having the following composition was produced.

硬磁性相:(NdFe14B)0.99Ga0.01
軟磁性相:αFe
硬磁性相:軟磁性相=8:2
<急冷薄帯の作製>
上記組成に対応させてNd、Fe、FeB、Gaを秤量し、アーク溶解炉にて合金インゴットを作製した。
Hard magnetic phase: (Nd 2 Fe 14 B) 0.99 Ga 0.01
Soft magnetic phase: αFe
Hard magnetic phase: soft magnetic phase = 8: 2
<Production of quenching ribbon>
Nd, Fe, FeB, and Ga were weighed in accordance with the above composition, and an alloy ingot was produced in an arc melting furnace.

50kPa以下に減圧したArガス雰囲気の炉中で、図1(1)に示すように、単ロールによるメルトスピニング法にて、合金インゴットを高周波溶解し、溶湯を銅ロールに噴射して急冷薄帯を作製した。なお、図1には、(1)急冷薄帯作製→(2)粗粉砕→(3)焼結の全工程を併せて示した。   As shown in FIG. 1 (1), an alloy ingot is melted at a high frequency in a furnace in an Ar gas atmosphere reduced to 50 kPa or less, and a molten steel is sprayed onto a copper roll to rapidly cool the ribbon. Was made. FIG. 1 also shows all steps of (1) quenching ribbon production → (2) coarse pulverization → (3) sintering.

急冷薄帯(急冷リボン)を回収し、XRDにて結晶構造を解析し、VSMにて磁気特性を評価し、TEMにより結晶組織を観察した。   The quenched ribbon (quenched ribbon) was collected, the crystal structure was analyzed by XRD, the magnetic properties were evaluated by VSM, and the crystal structure was observed by TEM.

図2にXRDチャートの一例を示す。急冷リボンは個々に非晶質のものと結晶質のものがあった。図2(1)に示すように、急冷リボンが非晶質の場合は、ブロードなパターンが表れるが、図2(2)に示すように、急冷リボンが結晶質(この場合、多結晶体)である場合には、硬磁性相の構成相NdFe14Bと軟磁性相αFeのピークが明瞭に現れている。 FIG. 2 shows an example of the XRD chart. The quenched ribbons were individually amorphous and crystalline. As shown in FIG. 2 (1), when the quenched ribbon is amorphous, a broad pattern appears. However, as shown in FIG. 2 (2), the quenched ribbon is crystalline (in this case, polycrystalline). In this case, the peaks of the constituent phase Nd 2 Fe 14 B of the hard magnetic phase and the soft magnetic phase αFe appear clearly.

<分離>
図3に示すように、弱磁石を用いて、急冷薄帯を結晶質のものと非晶質のものとに分離する。すなわち、急冷薄帯(1)のうち、非晶質急冷薄帯は弱磁石で磁化されるので落下せず(2)、結晶質急冷薄帯は弱磁石で磁化されないので落下する(3)。
<Separation>
As shown in FIG. 3, the quenched ribbon is separated into a crystalline one and an amorphous one using a weak magnet. That is, among the quenching ribbon (1), the amorphous quenching ribbon is magnetized by the weak magnet and does not fall (2), and the crystalline quenching ribbon is not magnetized by the weak magnet and falls (3).

このようにして、分離した結晶質/非晶質の急冷薄帯を用い、重量比で(A)結晶質100%、(B)結晶質:非晶質=65:35、(C)結晶質:非晶質=50:50のサンプルを用意した。   In this way, using the separated crystalline / amorphous quenching ribbon, (A) 100% crystalline, (B) crystalline: amorphous = 65: 35, (C) crystalline by weight ratio. : Amorphous = 50:50 sample was prepared.

<焼結>
急冷薄帯のサンプルA、B、Cを粒度200μm以上に粗粉砕し、図4(1)のように超硬ダイス(内径10φ)内に充填し、超硬パンチにより300MPaで加圧した。図4(2)に示すように、加圧を維持した状態で超硬パンチを介して加圧方向に電流を流し、通電加熱した。通電加熱中、超硬パンチの変位をモニターした。圧縮方向への変位が止まった時点で通電を停止し、自然放熱により室温まで冷却した。
<Sintering>
Quenched ribbon samples A, B, and C were coarsely pulverized to a particle size of 200 μm or more, filled into a carbide die (inner diameter 10φ) as shown in FIG. As shown in FIG. 4 (2), a current was applied in the pressurizing direction through the cemented carbide punch while maintaining the pressurization, and heating was conducted. During energization heating, the displacement of the carbide punch was monitored. When the displacement in the compression direction stopped, the energization was stopped, and it was cooled to room temperature by natural heat dissipation.

表1にサンプルA、B、Cを原料とする焼結体A、B、Cについて、結晶質割合(重量%)、焼結圧力(MPa)、焼結温度(℃)をまとめて示す。   Table 1 summarizes the crystalline ratio (% by weight), the sintering pressure (MPa), and the sintering temperature (° C.) for the sintered bodies A, B, and C using the samples A, B, and C as raw materials.

冷却後に焼結体を取り出し、焼結体表面を研磨した後、磁気特性を測定した。測定結果を表2にまとめて示す。比較のため、焼結しない結晶質急冷薄帯の結果を併せて示す。   After cooling, the sintered body was taken out and the surface of the sintered body was polished, and then the magnetic properties were measured. The measurement results are summarized in Table 2. For comparison, the results of a crystalline rapidly quenched ribbon that is not sintered are also shown.

図5に、焼結体A(結晶質100%)と焼結体B(結晶質50%)の磁化曲線を、未焼結の結晶質急冷薄帯の磁化曲線と比較して示す。   FIG. 5 shows the magnetization curves of the sintered body A (100% crystalline) and the sintered body B (50% crystalline) compared to the magnetization curves of the unsintered crystalline quenching ribbon.

図6に、焼結原料の結晶質割合と、未焼結の結晶質急冷薄帯に対する特性比との関係を示す。   FIG. 6 shows the relationship between the crystalline ratio of the sintered raw material and the characteristic ratio to the unsintered crystalline quenching ribbon.

これらの結果から、結晶質急冷薄帯100%を用いた焼結体Aは、未焼結の急冷薄帯に比べて、残留磁束密度Br、保磁力Hcともに2%程度の低下であったが、焼結原料の結晶質割合の低下に伴って急速に低下することが分かる。図6から、未焼結の結晶質急冷薄帯に対して磁気特性の低下を10%以内にするためには、焼結原料中の結晶質急冷薄帯の割合を85%以上とする必要がある。   From these results, the sintered body A using the 100% crystalline quenching ribbon had both the residual magnetic flux density Br and the coercive force Hc decreased by about 2% compared to the unsintered quenching ribbon. It can be seen that the ratio rapidly decreases as the crystalline ratio of the sintered raw material decreases. From FIG. 6, it is necessary to set the ratio of the crystalline quenching ribbon in the sintered raw material to 85% or more in order to reduce the magnetic property within 10% of the unsintered crystalline quenching ribbon. is there.

〔実施例2〕
実施例1と同じ組成のナノコンポジット磁石を製造した。
[Example 2]
A nanocomposite magnet having the same composition as in Example 1 was produced.

<急冷薄帯の作製>
実施例1と同様の手順および条件にて、アーク炉溶解によりインゴットを作製し、単ロール(銅ロール)によるメルトスピニング法にて急冷薄帯を作製した。
<Production of quenching ribbon>
An ingot was prepared by arc furnace melting under the same procedure and conditions as in Example 1, and a quenched ribbon was prepared by a melt spinning method using a single roll (copper roll).

<分離>
実施例1と同様に弱磁石による結晶質/非晶質の分離を行い、結晶質急冷薄帯のみを用いた。
<Separation>
The crystalline / amorphous separation was performed with a weak magnet in the same manner as in Example 1, and only the crystalline quenching ribbon was used.

用いた急冷薄帯のXRDによる結晶構造解析の結果、実施例1において図2(2)に示したのと同様に、硬磁性相の構成相NdFe14Bと軟磁性相αFeのピークが明瞭に現れていることを確認した。 As a result of the crystal structure analysis by XRD of the quenched ribbon used, the peaks of the constituent phase Nd 2 Fe 14 B of the hard magnetic phase and the soft magnetic phase αFe are similar to those shown in FIG. It was confirmed that it appeared clearly.

図7に、用いた急冷薄帯の透過電子顕微鏡(TEM)組織を示す。粒径が約20nmの主相(NdFe14B)と軟磁性相αFeが析出していることが分かる。 FIG. 7 shows the transmission electron microscope (TEM) structure of the quenched ribbon used. It can be seen that the main phase (Nd 2 Fe 14 B) having a particle size of about 20 nm and the soft magnetic phase αFe are precipitated.

これらの結果から、液体急冷法によって薄帯形状の急冷組織が形成され、NdFe14B/Feのナノコンポジット磁石が得られたことを確認した。 From these results, it was confirmed that a ribbon-like quenching structure was formed by the liquid quenching method, and a nanocomposite magnet of Nd 2 Fe 14 B / Fe was obtained.

<焼結>
実施例1と同様に焼結を行なった。ただし、焼結圧力は200MPaと300MPaの2水準とした。焼結条件を表1に示す。得られた焼結体の密度および磁気特性を測定した。
<Sintering>
Sintering was performed in the same manner as in Example 1. However, the sintering pressure was set at two levels of 200 MPa and 300 MPa. The sintering conditions are shown in Table 1. The density and magnetic properties of the obtained sintered body were measured.

表3に、焼結体の密度および相対密度(*1)を従来例(*2)と共に示す。表4に、焼結体の磁気特性を、未焼結の急冷薄帯および従来例(*2)と共に示す。
Table 3 shows the density and relative density (* 1) of the sintered body together with the conventional example (* 2). Table 4 shows the magnetic properties of the sintered body together with the unsintered quenched ribbon and the conventional example (* 2).

(*1)真密度7.65g/cmに対する比
(*2)従来例:出典 T. Saito et al., J. Mater. Res., 19, 2730(2004); 組成NdFe77.5B18.5
(* 1) Ratio to true density of 7.65 g / cm 3 (* 2) Conventional example: Source T. Saito et al., J. Mater. Res., 19, 2730 (2004); Composition Nd 4 Fe 77.5 B 18.5

表1に示すように、本発明による焼結体1〜4は、焼結密度として真密度に近い値が得られており、特に焼結体1は相対密度97%、焼結体2は相対密度99%が得られ、焼結圧力200MPa以上で高密度化することが分かる。その結果、表2に示すように、本発明による焼結体1〜4は、磁気特性も良好な値が得られている。   As shown in Table 1, in the sintered bodies 1 to 4 according to the present invention, a value close to the true density is obtained as the sintered density. In particular, the sintered body 1 has a relative density of 97% and the sintered body 2 has a relative density. It can be seen that a density of 99% is obtained and the density is increased at a sintering pressure of 200 MPa or more. As a result, as shown in Table 2, the sintered bodies 1 to 4 according to the present invention have good magnetic properties.

それに比べて従来例1、2は、焼結圧力が低いため(50MPa)、表1に示すように焼結温度600℃では低密度であり、高密度化するには焼結温度を700℃に上げる必要があるが、表2に示すように、焼結温度700℃(従来例2)にすると磁気特性が大きく低下してしまう。   In contrast, Conventional Examples 1 and 2 have a low sintering pressure (50 MPa), so the density is low at a sintering temperature of 600 ° C. as shown in Table 1, and the sintering temperature is set to 700 ° C. to increase the density. However, as shown in Table 2, when the sintering temperature is set to 700 ° C. (conventional example 2), the magnetic characteristics are greatly deteriorated.

図8に、焼結圧力300MPa(一定)としたときの焼結温度による透過電子顕微鏡(TEM)組織の変化を示す。焼結温度600℃の焼結体2と比較すると、焼結温度700℃の焼結体4は、αFe粒径が大きくなっており(100nm程度)、磁気特性も低下している。したがって、焼結温度は650℃以下が望ましいことが分かる。一方、焼結温度500℃の焼結体3の組織は最も微細であるが、密度は7.11g/cmと相対的に低い。ただし、これはバルク体としては十分な密度である。これから、焼結温度の下限は500℃とすることが望ましい。 FIG. 8 shows changes in the transmission electron microscope (TEM) structure depending on the sintering temperature when the sintering pressure is 300 MPa (constant). Compared with the sintered body 2 having a sintering temperature of 600 ° C., the sintered body 4 having a sintering temperature of 700 ° C. has a larger αFe particle size (about 100 nm) and lower magnetic properties. Therefore, it can be seen that the sintering temperature is preferably 650 ° C. or lower. On the other hand, the structure of the sintered body 3 having a sintering temperature of 500 ° C. is the finest, but the density is relatively low at 7.11 g / cm 3 . However, this is a sufficient density for a bulk body. From this, it is desirable that the lower limit of the sintering temperature be 500 ° C.

本実施例の結果から、焼結圧力200MPa以上、焼結温度500℃〜650℃とすることで、焼結密度7.11g/cm以上が得られることが分かった。 From the results of this example, it was found that a sintering density of 7.11 g / cm 3 or more was obtained by setting the sintering pressure to 200 MPa or more and the sintering temperature to 500 ° C. to 650 ° C.

本発明によれば、焼結時の結晶化により粗大結晶粒を生成させず、良好な磁気特性を備えたナノコンポジット磁石を製造する方法が提供される。   According to the present invention, there is provided a method for producing a nanocomposite magnet having good magnetic properties without generating coarse crystal grains by crystallization during sintering.

Claims (3)

硬磁性相と軟磁性相とから成る急冷組織から成り、結晶組織が85重量%以上である急冷合金を、加圧下で急速昇温により結晶化温度以下の温度に昇温して焼結することを特徴とするナノコンポジット磁石の製造方法。   Sintering a rapidly cooled alloy consisting of a hard magnetic phase and a soft magnetic phase and having a crystal structure of 85% by weight or more by raising the temperature to a temperature below the crystallization temperature by rapid heating under pressure. A method for producing a nanocomposite magnet. 上記焼結は、温度500〜650℃、圧力200MPa以上で行なうことを特徴とする請求項1記載のナノコンポジット磁石の製造方法。   The method for producing a nanocomposite magnet according to claim 1, wherein the sintering is performed at a temperature of 500 to 650 ° C. and a pressure of 200 MPa or more. 前記急冷合金の組成が一般式R100−x−y−zで表され、R、Q、M、Tは、
R:一種以上の希土類金属、
Q:BおよびCの少なくとも一種、
M:Ti、Al、Si、V、Mn、Cu、Zn、Ga、Zr、Nb、Mo、Ag、Hf、Ta、W、Pt、Au、Pbから成る群から選択された少なくとも一種、
T:FeまたはFeの一部をCoおよびNiの少なくとも一種で置換したもの、
であり、上記x、y、zは、
2≦x≦11.8、
1≦y≦22、
0≦z≦10
を満たし、
主相としての上記硬磁性相はR14Mであり、上記軟磁性相はαFeまたはFeとBまたはCとの化合物
であることを特徴とするナノコンポジット磁石の製造方法。
The composition of the rapidly solidified alloy is represented by the general formula R x Q y M z T 100 -x-y-z, R, Q, M, T is
R: one or more rare earth metals,
Q: at least one of B and C,
M: at least one selected from the group consisting of Ti, Al, Si, V, Mn, Cu, Zn, Ga, Zr, Nb, Mo, Ag, Hf, Ta, W, Pt, Au, Pb,
T: Fe or a part of Fe substituted with at least one of Co and Ni,
And the above x, y, z are
2 ≦ x ≦ 11.8,
1 ≦ y ≦ 22,
0 ≦ z ≦ 10
The filling,
The method for producing a nanocomposite magnet, wherein the hard magnetic phase as a main phase is R 2 T 14 M, and the soft magnetic phase is αFe or a compound of Fe and B or C.
JP2009255140A 2009-11-06 2009-11-06 Manufacturing method of nanocomposite magnet Active JP5504832B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009255140A JP5504832B2 (en) 2009-11-06 2009-11-06 Manufacturing method of nanocomposite magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009255140A JP5504832B2 (en) 2009-11-06 2009-11-06 Manufacturing method of nanocomposite magnet

Publications (2)

Publication Number Publication Date
JP2011100881A true JP2011100881A (en) 2011-05-19
JP5504832B2 JP5504832B2 (en) 2014-05-28

Family

ID=44191834

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009255140A Active JP5504832B2 (en) 2009-11-06 2009-11-06 Manufacturing method of nanocomposite magnet

Country Status (1)

Country Link
JP (1) JP5504832B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011159733A (en) * 2010-01-29 2011-08-18 Toyota Motor Corp Method of producing nanocomposite magnet
JP2013021015A (en) * 2011-07-07 2013-01-31 Toyota Motor Corp Rare earth nano composite magnet and manufacturing method thereof
WO2013054779A1 (en) 2011-10-11 2013-04-18 トヨタ自動車株式会社 Sintered body of rare-earth magnet precursor, and manufacturing method for fine magnetic powder for forming sintered body
WO2013054778A1 (en) 2011-10-11 2013-04-18 トヨタ自動車株式会社 Manufacturing method for magnetic powder for forming sintered body of rare-earth magnet precursor
JP2013098319A (en) * 2011-10-31 2013-05-20 Toyota Motor Corp METHOD FOR MANUFACTURING Nd-Fe-B MAGNET
CN104240885A (en) * 2014-09-09 2014-12-24 宁波韵升股份有限公司 NdFeB double-phase composite permanent magnet nanomaterial and preparation method
CN105788794A (en) * 2016-05-23 2016-07-20 苏州思创源博电子科技有限公司 Preparation method of yttrium-enriching permanent magnet material
JP2022082429A (en) * 2020-11-20 2022-06-01 煙台東星磁性材料株式有限公司 MANUFACTURING METHOD OF Nd-Fe-B BASED SINTERED MAGNETIC MATERIAL

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03194906A (en) * 1989-12-22 1991-08-26 Nippon Steel Corp Manufacture of rare earth magnet
JPH04198402A (en) * 1990-11-29 1992-07-17 Toshiba Corp Production and apparatus for magnet element
JPH09143641A (en) * 1995-09-22 1997-06-03 Alps Electric Co Ltd Hard magnetic material and its production
JPH10324958A (en) * 1997-03-25 1998-12-08 Alps Electric Co Ltd Hard magnetic alloy compacted body, its production and thin type hard magnetic alloy compacted body
JP2003264115A (en) * 2002-03-11 2003-09-19 Hitachi Powdered Metals Co Ltd Manufacturing method for bulk magnet containing rare earth

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03194906A (en) * 1989-12-22 1991-08-26 Nippon Steel Corp Manufacture of rare earth magnet
JPH04198402A (en) * 1990-11-29 1992-07-17 Toshiba Corp Production and apparatus for magnet element
JPH09143641A (en) * 1995-09-22 1997-06-03 Alps Electric Co Ltd Hard magnetic material and its production
JPH10324958A (en) * 1997-03-25 1998-12-08 Alps Electric Co Ltd Hard magnetic alloy compacted body, its production and thin type hard magnetic alloy compacted body
JP2003264115A (en) * 2002-03-11 2003-09-19 Hitachi Powdered Metals Co Ltd Manufacturing method for bulk magnet containing rare earth

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011159733A (en) * 2010-01-29 2011-08-18 Toyota Motor Corp Method of producing nanocomposite magnet
JP2013021015A (en) * 2011-07-07 2013-01-31 Toyota Motor Corp Rare earth nano composite magnet and manufacturing method thereof
WO2013054779A1 (en) 2011-10-11 2013-04-18 トヨタ自動車株式会社 Sintered body of rare-earth magnet precursor, and manufacturing method for fine magnetic powder for forming sintered body
WO2013054778A1 (en) 2011-10-11 2013-04-18 トヨタ自動車株式会社 Manufacturing method for magnetic powder for forming sintered body of rare-earth magnet precursor
EP2767992A1 (en) * 2011-10-11 2014-08-20 Toyota Jidosha Kabushiki Kaisha Manufacturing method for magnetic powder for forming sintered body of rare-earth magnet precursor
EP2767992A4 (en) * 2011-10-11 2016-02-10 Toyota Motor Co Ltd Manufacturing method for magnetic powder for forming sintered body of rare-earth magnet precursor
JP2013098319A (en) * 2011-10-31 2013-05-20 Toyota Motor Corp METHOD FOR MANUFACTURING Nd-Fe-B MAGNET
CN104240885A (en) * 2014-09-09 2014-12-24 宁波韵升股份有限公司 NdFeB double-phase composite permanent magnet nanomaterial and preparation method
CN105788794A (en) * 2016-05-23 2016-07-20 苏州思创源博电子科技有限公司 Preparation method of yttrium-enriching permanent magnet material
JP2022082429A (en) * 2020-11-20 2022-06-01 煙台東星磁性材料株式有限公司 MANUFACTURING METHOD OF Nd-Fe-B BASED SINTERED MAGNETIC MATERIAL
JP7211690B2 (en) 2020-11-20 2023-01-24 煙台東星磁性材料株式有限公司 Method for producing Nd--Fe--B based sintered magnetic material

Also Published As

Publication number Publication date
JP5504832B2 (en) 2014-05-28

Similar Documents

Publication Publication Date Title
JP5504832B2 (en) Manufacturing method of nanocomposite magnet
JP4591633B2 (en) Nanocomposite bulk magnet and method for producing the same
KR101378090B1 (en) R-t-b sintered magnet
TWI786162B (en) CRYSTALLINE Fe-BASED ALLOY POWDER AND METHOD OF PRODUCING THE SAME
JP5692231B2 (en) Rare earth magnet manufacturing method and rare earth magnet
JP4743211B2 (en) Rare earth sintered magnet and manufacturing method thereof
US11335484B2 (en) Permanent magnet
KR102605565B1 (en) Method of manufacturing anisotropic rare earth bulk magnet and anisotropic rare earth bulk magnet therefrom
JP2013197414A (en) Sintered compact and production method therefor
JP6691666B2 (en) Method for manufacturing RTB magnet
JP2013021015A (en) Rare earth nano composite magnet and manufacturing method thereof
JP2024020341A (en) Anisotropic rare earth sintered magnet and method for manufacturing the same
JP2000348919A (en) Nanocomposite crystalline sintered magnet and manufacture of the same
JP2017073544A (en) Method for manufacturing rare earth magnet
JP4955217B2 (en) Raw material alloy for RTB-based sintered magnet and method for manufacturing RTB-based sintered magnet
JP6691667B2 (en) Method for manufacturing RTB magnet
JP5447246B2 (en) Method for producing anisotropic rare earth magnet
JP5573444B2 (en) Method for producing rare earth magnet with excellent squareness
JP7238504B2 (en) Bulk body for rare earth magnet
JP7017757B2 (en) Rare earth permanent magnet
JP2021009862A (en) Rare earth magnet material
JP2002285276A (en) R-t-b-c based sintered magnet and production method therefor
JP2013098319A (en) METHOD FOR MANUFACTURING Nd-Fe-B MAGNET
JP5235264B2 (en) Rare earth sintered magnet and manufacturing method thereof
JP2023163209A (en) Rare earth sintered magnet and method for manufacturing rare earth sintered magnet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121019

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131029

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140303