JPH04198402A - Production and apparatus for magnet element - Google Patents

Production and apparatus for magnet element

Info

Publication number
JPH04198402A
JPH04198402A JP2325597A JP32559790A JPH04198402A JP H04198402 A JPH04198402 A JP H04198402A JP 2325597 A JP2325597 A JP 2325597A JP 32559790 A JP32559790 A JP 32559790A JP H04198402 A JPH04198402 A JP H04198402A
Authority
JP
Japan
Prior art keywords
die
magnet
alloy powder
punches
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2325597A
Other languages
Japanese (ja)
Inventor
Naoyuki Sori
蘓理 尚行
Hideki Yamamiya
山宮 秀樹
Seiki Sato
佐藤 清喜
Tomohisa Arai
智久 新井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2325597A priority Critical patent/JPH04198402A/en
Publication of JPH04198402A publication Critical patent/JPH04198402A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To obtain a magnet element having fine crystal structure with a simple apparatus for short time by compression-compacting alloy powder for magnet obtd. with super rapid cooling method in a die having high electric resistance with one pair of punches having low electric resistance and at the same time, conducting electric current between the punches to heat the alloy powder. CONSTITUTION:The alloy powder 5 for magnet produced with the super rapid cooling method, is packed into compressing space 2 in the die 1 and compression-compacted with the upper and lower punches 4a, 4b and at the same time, the electric current is conducted between the upper and lower punches with electric conduction heating device 5. The powder 3 is rapidly heated with resistance heat, and stickness among mutual powder particles is progressed and also the electric resistance in powder is reduced and current value for heating is increased, but in order to keep sintering condition to the constant and prevent excess temp. raising, the device 5 is worked and the conducted max. current value is automatically regulated. After passing the fixed time, the current for heating is shut off and the pressurizing force with the upper and lower punches is released and the compression-compacted magnet element is ejected to out of the die 1 with ascent of the punch 4b after radiating the heat through the die 1.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は磁石素体の製造方法および装置に係り、特に簡
易な装置構成によって経済的かつ効率的に磁気特性か優
れた磁石素体を形成することかできる磁石素体の製造方
法および装置に関する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to a method and apparatus for manufacturing a magnet body, and particularly to a method and apparatus for manufacturing a magnet body, and particularly for manufacturing a magnet element with excellent magnetic properties economically and efficiently using a simple apparatus configuration. The present invention relates to a method and apparatus for manufacturing a magnet body that can form a magnet body.

(従来の技術) 一般に磁石素体を製造する方法として、磁石合金粉末の
圧縮と焼結とを同時に行なうホットプレス法か採用され
ている。
(Prior Art) Generally, as a method for manufacturing a magnet body, a hot press method is employed in which magnet alloy powder is compressed and sintered at the same time.

使用されるホットプレス装置は、ダイスとパンチとから
成る加圧装置と、加圧装置全体を加熱する加熱装置と、
炉内に不活性カス宿を供給し雰囲気を調整する炉内雰囲
気調整装置とか炉内に一体的に組み込まれて構成されて
いる。
The hot press equipment used includes a pressurizing device consisting of a die and a punch, a heating device that heats the entire pressurizing device,
An in-furnace atmosphere adjustment device that supplies inert sludge into the furnace and adjusts the atmosphere is constructed integrally within the furnace.

そして磁石素体の製造にあたっては、まず希土類元素、
鉄なとの遷移金属元素およびホウ素などの原料粉末を溶
融固化して均一な鋳塊を形成し、しかる後に得られた鋳
塊をスタンプミルまたはボールミルなど機械的粉砕手段
によって粉砕し、所定粒度の磁石合金粉末を得る。次に
、得られた磁石合金粉末を、ダイスと上下パンチとの間
に形成れた成形空間内に充填し、ダイスおよびパンチと
ともに磁石合金粉末を所定温度に加熱した状態で下パン
チと」−パンチとにより所定圧力で磁石合金粉末を圧縮
し、成形後に磁石素体を下パンチによりダイス上面まで
押し出しする方法か採用されていた。
In manufacturing the magnet body, we first use rare earth elements,
Raw material powders such as transition metal elements such as iron and boron are melted and solidified to form a uniform ingot, and then the obtained ingot is crushed by a mechanical crushing means such as a stamp mill or a ball mill to obtain a predetermined particle size. Obtain magnet alloy powder. Next, the obtained magnet alloy powder is filled into the molding space formed between the die and the upper and lower punches, and the magnet alloy powder is heated to a predetermined temperature along with the die and the punch, and then the lower punch and the "-punch" are heated. A method was adopted in which the magnet alloy powder was compressed under a predetermined pressure, and after molding, the magnet body was extruded to the upper surface of the die using a lower punch.

(発明が解決しようとする課題) しかしながら従来の磁石素体の製造方法によると、原料
粉末を均一な組成に鋳造して得た鋳塊を機械的粉砕手段
によって粉砕していたため、得られた磁石合金粉末の結
晶構造に歪みを生じ、磁気特性か低下してしまう欠点が
あった。
(Problem to be Solved by the Invention) However, according to the conventional manufacturing method of a magnet body, an ingot obtained by casting raw material powder to a uniform composition was crushed by mechanical crushing means. This has the disadvantage that the crystal structure of the alloy powder is distorted, resulting in a decrease in magnetic properties.

一方上記機械的粉砕手段によらず、超急冷法によって胃
られた微細結晶構造ををする磁石合金粉末を圧縮、焼結
する方法では、高温度で長時間にわたる焼結時に結晶か
粗大化してしまい、当初の微細結晶組織をそのまま維持
した高密度の磁石素体を得ることが困難であった。
On the other hand, in the method of compressing and sintering magnetic alloy powder with a fine crystal structure that has been crushed by an ultra-quenching method without using the mechanical crushing method described above, the crystals become coarse during sintering at high temperatures for a long time. However, it was difficult to obtain a high-density magnet body that maintained the original fine crystal structure.

また従来のホットプレス法において、固化成形しようと
する磁石合金粉末を加熱する場合には、ダイスおよびパ
ンチとから成る加圧装置全体を加熱装置によって加熱す
る必要かある。そのため、ホットプレス装置が過大にな
り、投入するエネルギ量か大きく、比例して熱損失も大
きくなる不経済性があった。
Further, in the conventional hot pressing method, when heating the magnetic alloy powder to be solidified and molded, it is necessary to heat the entire pressing device consisting of a die and a punch using a heating device. As a result, the hot press apparatus becomes too large, requires a large amount of energy, and is uneconomical in that the heat loss increases proportionally.

さらに希土類元素−鉄一ホウ素系の磁石合金粉末を超急
冷法によって製造した場合、得られた磁石合金粉末を効
率的かつ高密度に焼結させるためには、少なくとも70
0°C以上の高温度に加熱する必要がある。しかし長期
間にわたって繰り返して作用する高温度高圧力負荷に耐
える経済的なダイス用またはパンチ用部材は少なく、高
頻度で型材の交換を実施する必要かあり、運転管理、保
守管理か煩雑となる欠点かあった。
Furthermore, when rare earth element-iron-boron based magnet alloy powder is produced by an ultra-quenching method, at least 70
It is necessary to heat it to a high temperature of 0°C or higher. However, there are few economical die or punch members that can withstand high temperature and high pressure loads that are applied repeatedly over a long period of time, and the disadvantage is that it is necessary to frequently replace the mold material, making operation management and maintenance management complicated. There was.

さらに希土類−鉄−ホウ素系の磁石用合金は反応性が高
く、長時間にわたる焼結時にダイスに溶着したり、ダイ
スを損傷してしまう欠点があった。
Furthermore, rare earth-iron-boron alloys for magnets have high reactivity, and have the drawback of welding to the die or damaging the die during long-term sintering.

上記溶着を防止するために予めダイスに離型剤を塗布す
る対策も採用されたが、離型剤の厚みに起因、して、成
形された磁石素体の形状の寸法精度か低下したり、製品
に付着した離型剤を除去するために多大な労力を費すな
どの問題点があった。
In order to prevent the above-mentioned welding, a measure was taken to apply a mold release agent to the die in advance, but due to the thickness of the mold release agent, the dimensional accuracy of the shape of the molded magnet body may deteriorate. There were problems such as the great effort required to remove the mold release agent adhering to the product.

本発明は上記の問題点を解決するためになされたもので
あり、磁石合金粉末の結晶構造を微細化して磁気特性を
向上し、またその微細結晶構造を損うことなく短時間内
に焼結操作が可能であり、さらに装置構成を簡素化する
ことができる磁石素体の製造方法および装置を提供する
ことを目的とする。
The present invention was made in order to solve the above problems, and it improves the magnetic properties by refining the crystal structure of magnet alloy powder and sintering it within a short time without damaging the fine crystal structure. It is an object of the present invention to provide a method and device for manufacturing a magnet body that can be operated and further simplify the device configuration.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) 本発明に係る磁石素体の製造方法は、超急冷法によって
得られた磁石用合金粉末を電気抵抗が大きなダイス内の
成形空間に充填し、電気抵抗か小さな一対のパンチで圧
縮成形すると同時に、パンチ間に電流を通し発生する抵
抗熱によって充填した磁石用合金粉末を加熱固化して磁
石素体を形成することを特徴とする。
(Means for Solving the Problems) The method for manufacturing a magnet body according to the present invention is to fill a molding space in a die with a large electrical resistance with a magnet alloy powder obtained by an ultra-quenching method, and It is characterized by compression molding using a pair of punches and simultaneously heating and solidifying the filled magnet alloy powder by the resistance heat generated by passing an electric current between the punches to form a magnet body.

また、本発明に係る磁石素体の製造装置は、セラミック
などの非導電部材で形成したダイスと、ダイス内の成形
空間に充填した磁石用合金粉末を上下方向から圧縮成形
するために、銅なとの導電性部祠で形成した一対のパン
チと、上記パンチ間に通電し磁石用合金粉末を抵抗熱に
よって加熱する通電加熱装置と、成形空間内に不活性ガ
スを供給して炉内雰囲気を調整する炉内雰囲気調整装置
とを備えることを特徴とする。
Furthermore, the magnet body manufacturing apparatus according to the present invention uses a die made of a non-conductive material such as ceramic and a material made of copper to compression mold the magnet alloy powder filled in the molding space in the die from above and below. A pair of punches formed with a conductive part, an energization heating device that heats the magnet alloy powder by resistance heat by passing electricity between the punches, and an inert gas supplied into the molding space to create an atmosphere in the furnace. It is characterized by comprising a furnace atmosphere adjustment device for adjusting the atmosphere inside the furnace.

(作用) 上記構成の磁石素体の製造方法および装置によれば、磁
石合金用粉末か超急冷法によって形成されているため、
結晶粒度か超微細化し、磁気特性が優れた磁石素体を得
ることができる。また機械的粉砕を行なわないため、結
晶格子の歪みが少なく、高い保磁力を有する磁石素体を
iワることができる。
(Function) According to the method and apparatus for manufacturing a magnet body having the above configuration, since the powder for magnet alloy is formed by an ultra-quenching method,
It is possible to obtain a magnet body with ultra-fine crystal grain size and excellent magnetic properties. In addition, since mechanical crushing is not performed, it is possible to create a magnet body with less distortion in the crystal lattice and a high coercive force.

また焼結時には、上下パンチ間に通電され、成形空間内
に充填された磁石合金粉末のみか短時間に所定温度まで
加熱されるため、結晶の粗大化か少なく磁気特性の低下
が防止される。また短時間で緻密化が完了するため、連
続成形による大量生産が可能となる。さらに局部的な加
熱操作となるため、ダイスやパンチ自体か高温度に加熱
されることがなく、融着による損傷事故も発生しにくく
、ダイス等の型材の寿命を大幅に延伸することができる
。また加熱するために装置に投入する熱句゛か少なく、
省エネルギ型装置となる。
Further, during sintering, electricity is applied between the upper and lower punches, and only the magnetic alloy powder filled in the molding space is heated to a predetermined temperature in a short time, so that coarsening of the crystals is minimized and deterioration of magnetic properties is prevented. Moreover, since densification is completed in a short time, mass production by continuous molding becomes possible. Furthermore, since the heating operation is localized, the dies and punches themselves are not heated to high temperatures, and damage accidents due to fusion are less likely to occur, making it possible to significantly extend the life of mold materials such as dies. It also reduces the amount of heat that needs to be put into the equipment for heating.
It becomes an energy-saving device.

さらに加熱時における磁石合金粉末の酸化を防止するた
めに炉内雰囲気を調整する必要かあるか、調整対象とす
る領域をダイス周辺のみに限定することかできる。
Furthermore, whether it is necessary to adjust the atmosphere in the furnace to prevent oxidation of the magnet alloy powder during heating, it is possible to limit the area to be adjusted only to the periphery of the die.

また超急冷法によって得られた磁石合金粉末は比較的低
い電気抵抗値を有するため高電圧の加熱用電源を必要と
しない。
Furthermore, since the magnetic alloy powder obtained by the ultra-quenching method has a relatively low electrical resistance value, a high-voltage heating power source is not required.

したかって通電加熱装置および炉内雰囲気調整装置等を
小型化することか可能であり、磁石素体の製造装置全体
を簡素小型に構成することができる。
Therefore, it is possible to downsize the energization heating device, the furnace atmosphere adjustment device, etc., and the entire magnet body manufacturing device can be configured to be simple and compact.

(実施例) 以下本発明の一実施例について添付図面を参照して説明
する。第1図は本発明に係る磁石素体の製造方法を実施
するための製造装置の一構成例を示している。
(Example) An example of the present invention will be described below with reference to the accompanying drawings. FIG. 1 shows an example of the configuration of a manufacturing apparatus for carrying out the method for manufacturing a magnet body according to the present invention.

本実施例に係る磁石素体の製造装置はセラミックなどの
非導電部材で形成したダイス1−と、ダイス1内の成形
空間2に充填した磁石用合金粉末3を上下方向から圧縮
成形するために、銅などの導電性部材で形成した一対の
上下パンチ4a、4bと、上記上下パンチ4a、4.b
間に通電し磁石用合金粉末3を抵抗熱によって加熱する
通電加熱装置5と、成形空間2内に不活性カス等を供給
して炉内雰囲気を調整する炉内雰囲気調整装置6とを備
えて構成される。
The apparatus for manufacturing a magnet body according to this embodiment is for compression molding a die 1- formed of a non-conductive material such as ceramic and a magnet alloy powder 3 filled in a molding space 2 in the die 1 from above and below. , a pair of upper and lower punches 4a, 4b made of a conductive material such as copper, and the upper and lower punches 4a, 4. b
A heating device 5 for heating the alloy powder 3 for magnets with resistance heat, and a furnace atmosphere adjusting device 6 for supplying inert scum etc. into the molding space 2 to adjust the furnace atmosphere. configured.

また通電加熱装置5から上下パンチ4a、  4bに送
電する回路には電流計7か配設され、また上パンチ4a
の変位量fを検出する検出器8が設けられており、この
検出器8は上パンチ4a側面に突設したストライカ9か
当接したときに圧縮工程の終点を検知する。
In addition, an ammeter 7 is disposed in the circuit that transmits power from the current heating device 5 to the upper and lower punches 4a and 4b, and the upper punch 4a
A detector 8 is provided to detect the amount of displacement f of the upper punch 4a, and this detector 8 detects the end point of the compression process when the striker 9 protruding from the side surface of the upper punch 4a comes into contact with it.

次に本実施例に係る磁石素体の製造方法について工程順
に説明する。
Next, a method for manufacturing a magnet body according to this embodiment will be explained in order of steps.

まず超急冷法によって磁石用合金粉末3を調製する。す
なわち希土類元素、遷移金属およO・ホウ素を所定割合
で均一に混合した混合物をアーク炉等で溶解して合金イ
ンゴットを形成し、次いて、この合金インゴットを再溶
融し、微小なノズルを通して溶融体を、回転する冷表面
上に絞り出し、冷表面上に薄膜状ないし粉末状の合金を
生成せさるものである。
First, alloy powder 3 for magnets is prepared by an ultra-quenching method. In other words, a mixture of rare earth elements, transition metals, and O/boron is uniformly mixed in a predetermined ratio and melted in an arc furnace to form an alloy ingot.Then, this alloy ingot is remelted and melted through a minute nozzle. The material is squeezed onto a rotating cold surface to form an alloy in the form of a thin film or powder on the cold surface.

このようにして極めて急速に冷却されて生成した磁石用
合金粉末3は殆ど完全に無定形状ないし極めて微細の結
晶構造を有する。
The magnet alloy powder 3 produced by extremely rapid cooling in this manner has an almost completely amorphous or extremely fine crystal structure.

得られた磁石用合金粉末3はダイス1内の成形空間2に
充填され、上下パンチ4a、4bによって所定圧力で圧
縮成形されると同時に、通電加熱装置5によって上下パ
ンチ4a、4b間に電流か流される。磁石用合金粉末は
抵抗熱によって急速に加熱され、粉末粒子相互間の同相
結合か開始され固着か進行する。固着の進行とともに粉
末層の電気抵抗が減少し、加熱用電流値か増大するか、
焼結条件を一定に保持し、過昇温を防止するために、通
電加熱装置か動作し、流れる最大電流値か自動的に規制
される。
The obtained alloy powder 3 for magnets is filled into the molding space 2 in the die 1, and compressed and molded at a predetermined pressure by the upper and lower punches 4a and 4b. be swept away. The alloy powder for magnets is rapidly heated by resistance heat, and in-phase bonding between the powder particles begins and progresses to fixation. As the adhesion progresses, the electrical resistance of the powder layer decreases and the heating current value increases.
In order to maintain the sintering conditions constant and prevent excessive temperature rise, the electrical heating device operates and the maximum current value that flows is automatically regulated.

一定時間経過後、加熱用電流か遮断され、−1−下パン
チ4a、4.bによる加圧力も解放される。圧縮成形さ
れた磁石素体はダイス]を通して放熱した後に下パンチ
4bの」1昇によってダイス1外へ摘出される。
After a certain period of time has elapsed, the heating current is cut off, and -1-lower punches 4a, 4. The pressing force caused by b is also released. The compression-molded magnet body radiates heat through the die and is then extracted out of the die 1 by the upward movement of the lower punch 4b.

上記磁石素体の製造方法および装置によれは、磁石合金
粉末か超急冷法によって形成されているため、結晶粒度
か微細化する上に、結晶格子の歪みが少なく磁気特性に
優れた磁石素体を得ることかできる。
The above manufacturing method and equipment for the magnet body are made using magnet alloy powder or ultra-quenching method, so the crystal grain size is fine and the magnet body has excellent magnetic properties with less distortion in the crystal lattice. Can you get it?

また焼結時には上下パンチ4a、4b間への通電により
磁石用合金粉末3のみか短時間に昇熱され緻密化か完了
するため、結晶の粗大化か少なく、磁気特性の低下が防
止される。
In addition, during sintering, only the magnet alloy powder 3 is heated in a short time by applying electricity between the upper and lower punches 4a and 4b, and densification is completed, so that coarsening of the crystals is minimized and deterioration of magnetic properties is prevented.

さらに磁石用合金粉末3に対する局部的な加熱操作とな
るため、タイスコなとの型材が高温度に加熱されること
なく、原料の融着事故が発生しに<<、型材の寿命を大
幅に延伸することかできる。
In addition, since the heating operation is localized to the alloy powder 3 for magnets, the mold material of Tyco Nato is not heated to high temperatures, and the life of the mold material is significantly extended, without causing an accident of fusion of raw materials. I can do something.

また投入する熱量が低減され、省エネルギ型の装置とな
る。
Furthermore, the amount of heat input is reduced, resulting in an energy-saving device.

また炉内雰囲気を調整する対象領域をダイス1周辺のみ
に限定することが可能となり、炉内雰囲気調整装置6お
よび通電加熱装置5等を小型化することか可能となり、
製造装置全体を小型化することかできる。
In addition, it becomes possible to limit the target area for adjusting the furnace atmosphere to only the area around the die 1, and it becomes possible to downsize the furnace atmosphere adjustment device 6, the energization heating device 5, etc.
The entire manufacturing equipment can be downsized.

次に本発明の、より具体的な実施例について以下に説明
する。
Next, more specific embodiments of the present invention will be described below.

出発原料としてネオジム(Nd)33%、鉄(Fe)6
6%、ホウ素(B)1%からなる磁石合金鋳塊を溶融せ
しめ、その溶融混合物を直径500μmの図示しない噴
射口から、回転する冷表面ドラム上に噴出せしめ、冷表
面上で急速冷却し= 11− て得た合金薄片をスタンプミルによって粒径500μm
以下の微粉末状に粉砕し、得られた磁石用合金粉末3を
セラミック製のダイス1内の成形空間2に充填した。次
に12 K Oeで磁界配向して1.5t/clIfの
加圧力で成形し、炉内雰囲気調整装置6によって炉内を
真空排気した後に上下パンチ4a、4’bに電極を接続
して通電を行なうと同時に上下パンチ4a、4bを動作
させ1.500 kg/ cnfの加圧力で磁石用合金
粉末3を圧縮成形した。
Neodymium (Nd) 33%, iron (Fe) 6 as starting materials
A magnetic alloy ingot consisting of 6% boron (B) and 1% boron (B) was melted, and the molten mixture was jetted onto a rotating cold surface drum from an injection port (not shown) with a diameter of 500 μm, and rapidly cooled on the cold surface = 11- The obtained alloy flakes are stamp milled to a particle size of 500 μm.
The alloy powder 3 for magnets obtained by pulverizing into the following fine powder form was filled into the molding space 2 in the ceramic die 1. Next, the magnetic field is oriented at 12 K Oe and the molding is performed at a pressure of 1.5 t/clIf. After the furnace is evacuated using the furnace atmosphere adjustment device 6, electrodes are connected to the upper and lower punches 4a and 4'b and energized. At the same time, the upper and lower punches 4a and 4b were operated to compress and mold the magnet alloy powder 3 with a pressing force of 1.500 kg/cnf.

電流値は電流計7によって計測した。The current value was measured by an ammeter 7.

通電によって発生した抵抗熱によって面相結合か進行し
、磁石用合金粉末3は圧密され」ニパンチ4aは下方に
変位する。その変位量では検出器8により検出される。
The face-to-face bonding progresses due to the resistance heat generated by the energization, and the magnet alloy powder 3 is consolidated, and the double punch 4a is displaced downward. The amount of displacement is detected by the detector 8.

圧密化の終点は検出器8に当接するストライカ9によっ
て検知される。得られた磁石素体の密度および磁気特性
等を測定したところ第1表の実施例1に示す特性値を得
た。
The end point of consolidation is detected by a striker 9 that abuts a detector 8. The density, magnetic properties, etc. of the obtained magnet body were measured, and the characteristic values shown in Example 1 in Table 1 were obtained.

また比較例Jとして実施例1に示す組成を有する磁石合
金鋳塊を機械的粉砕よって粒径を500μm以下に調整
して得た磁石合金粉末を使用し、同様な処理を行なって
磁石素体を製造して特性値を測定し下記第1表の結果を
得た。
Further, as Comparative Example J, a magnet alloy powder obtained by mechanically crushing a magnet alloy ingot having the composition shown in Example 1 to adjust the particle size to 500 μm or less was used, and the same treatment was performed to produce a magnet body. The product was manufactured and its characteristic values were measured, and the results shown in Table 1 below were obtained.

第1表 第1゜表に示す通り本実施例の製造方法によれは残留磁
束密度、保磁力および最大エネルギー積なとの磁気特性
に優れた磁石素体か得られる。また本実施例の磁石素体
はいずれも高密度であった。
As shown in Table 1, the manufacturing method of this example yields a magnet body with excellent magnetic properties such as residual magnetic flux density, coercive force, and maximum energy product. Moreover, all the magnet bodies of this example had high density.

また比較のための従来のホットプレス装置を使用して同
一寸法の成形品を製造したが、ホットプレスではダイス
全体を加熱するため、金属性のダイスでは融着が著しく
、また炭化物のダイスでは磁石合金粉末との反応が生じ
るため、良好な成形体か得られなかった。
Molded products of the same dimensions were also produced using a conventional hot press machine for comparison, but since the entire die is heated in the hot press, there was significant fusion with metal dies, and magnets with carbide dies. Because of the reaction with the alloy powder, a good compact could not be obtained.

またセラミック製のダイスを使用し、超急冷法によって
得たNd−Fe−B合金薄片を充填して同一寸法の磁石
素体を製造したところ、はぼ真密度に近い密度を有する
成形品か得られたが、セラミック製ダイスとの融着が顕
著であり、連続操作を必要とする工業的製法としては、
不適であることが確認された。
In addition, when we used a ceramic die and filled it with Nd-Fe-B alloy flakes obtained by an ultra-quenching method to produce a magnet body of the same size, we obtained a molded product with a density close to the true density. However, as an industrial manufacturing method that requires continuous operation, the fusion with the ceramic die is significant.
Confirmed to be unsuitable.

C発明の効果〕 以上説明の通り本発明に係る磁石素体の製造方法によれ
は、磁石素体の製造方法および装置によれば、磁石合金
粉末が超急冷法によって形成されているため、結晶粒度
か微細化する」二に、結晶格子の歪みが少なく磁気特性
に優れた磁石素体を得ることができる。
C Effects of the Invention] As explained above, according to the method and apparatus for manufacturing a magnet element according to the present invention, since the magnet alloy powder is formed by an ultra-quenching method, crystals do not form. Second, it is possible to obtain a magnet body with less distortion in the crystal lattice and excellent magnetic properties.

また焼結時には上下パンチ間への通電により磁石用合金
粉末のみが短時間に昇熱され緻密化が完了するため、結
晶の粗大化が少なく、磁気特性の低下が防止される。
In addition, during sintering, only the magnet alloy powder is heated in a short time by applying electricity between the upper and lower punches, and densification is completed, so that coarsening of the crystals is small and deterioration of magnetic properties is prevented.

さらに磁石用合金粉末に対する局部的な加熱操作となる
ため、ダイスなどの型材が高温度に加熱されることなく
、原料の融着事故が発生しにくく、型材の寿命を大幅に
延伸することかできる。また投入する熱量が低減され、
省エネルギ型の装置となる。
Furthermore, since the heating operation is performed locally on the alloy powder for magnets, mold materials such as dies are not heated to high temperatures, making it less likely that accidents will occur due to fusion of raw materials, and greatly extending the life of the mold materials. . In addition, the amount of heat input is reduced,
This is an energy-saving device.

また炉内雰囲気を調整する対象領域をダイス周辺のみに
限定することか可能となり、炉内雰囲気調整装置および
通電加熱装置等を小型化することか可能となり、製造装
置全体を小型化することかできる。
In addition, it is possible to limit the target area for adjusting the furnace atmosphere to only the area around the die, which makes it possible to downsize the furnace atmosphere adjustment device, energization heating device, etc., and the entire manufacturing equipment can be downsized. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る磁石素体の製造方法を使用して磁
石素体を製造する製造装置の一実施例を示す断面図であ
る。 ]・・ダイス、2・・・成形空間、3・磁石用合金粉末
、4・・パンチ、4a 上パンチ、4b・・下パンチ、
5・・・通電加熱装置、6・・炉内雰囲気調整装置、7
 ・電流計、8・・検出器、9・スI・ライ力。
FIG. 1 is a sectional view showing an embodiment of a manufacturing apparatus for manufacturing a magnet body using the method for manufacturing a magnet body according to the present invention. ]...Dice, 2...Molding space, 3...Alloy powder for magnet, 4...Punch, 4a Upper punch, 4b...Lower punch,
5... Electrical heating device, 6... Furnace atmosphere adjustment device, 7
- Ammeter, 8... Detector, 9 - Sliding force.

Claims (2)

【特許請求の範囲】[Claims] 1.超急冷法によって得られた磁石用合金粉末を電気抵
抗が大きなダイス内の成形空間に充填し、電気抵抗が小
さな一対のパンチで圧縮成形すると同時に、パンチ間に
電流を通じ発生する抵抗熱によって充填した磁石用合金
粉末を加熱固化して磁石素体を形成することを特徴とす
る磁石素体の製造方法。
1. The alloy powder for magnets obtained by the ultra-quenching method was filled into the molding space in a die with high electrical resistance, and compression molded using a pair of punches with low electrical resistance.At the same time, the powder was filled using the resistance heat generated by passing an electric current between the punches. A method for manufacturing a magnet body, comprising forming a magnet body by heating and solidifying an alloy powder for a magnet.
2.セラミックなどの非導電部材で形成したダイスと、
ダイス内の成形空間に充填した磁石用合金粉末を上下方
向から圧縮成形するために、銅などの導電性部材で形成
した一対のパンチと、上記パンチ間に通電し磁石用合金
粉末を抵抗熱によって加熱する通電加熱装置と、成形空
間内に不活性ガスを供給して炉内雰囲気を調整する炉内
雰囲気調整装置とを備えることを特徴とする磁石素体の
製造装置。
2. A die made of a non-conductive material such as ceramic,
In order to compression mold the magnet alloy powder filled in the molding space in the die from above and below, a pair of punches made of a conductive material such as copper are used, and electricity is passed between the punches to compress the magnet alloy powder by resistance heat. 1. An apparatus for producing a magnet body, comprising: an energization heating device for heating; and a furnace atmosphere adjustment device for supplying inert gas into a molding space to adjust the furnace atmosphere.
JP2325597A 1990-11-29 1990-11-29 Production and apparatus for magnet element Pending JPH04198402A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2325597A JPH04198402A (en) 1990-11-29 1990-11-29 Production and apparatus for magnet element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2325597A JPH04198402A (en) 1990-11-29 1990-11-29 Production and apparatus for magnet element

Publications (1)

Publication Number Publication Date
JPH04198402A true JPH04198402A (en) 1992-07-17

Family

ID=18178659

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2325597A Pending JPH04198402A (en) 1990-11-29 1990-11-29 Production and apparatus for magnet element

Country Status (1)

Country Link
JP (1) JPH04198402A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008111198A (en) * 2008-01-25 2008-05-15 Honda Motor Co Ltd Compacting die
JP2011100881A (en) * 2009-11-06 2011-05-19 Toyota Motor Corp Method for manufacturing nanocomposite magnet
JP2012023192A (en) * 2010-07-14 2012-02-02 Toyota Motor Corp Method of producing rare-earth magnet excellent in squareness

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008111198A (en) * 2008-01-25 2008-05-15 Honda Motor Co Ltd Compacting die
JP2011100881A (en) * 2009-11-06 2011-05-19 Toyota Motor Corp Method for manufacturing nanocomposite magnet
JP2012023192A (en) * 2010-07-14 2012-02-02 Toyota Motor Corp Method of producing rare-earth magnet excellent in squareness

Similar Documents

Publication Publication Date Title
JP5411956B2 (en) Rare earth permanent magnet, rare earth permanent magnet manufacturing method, and rare earth permanent magnet manufacturing apparatus
JPH09186010A (en) Large electric resistance rare earth magnet and its manufacture
JP2013219353A (en) Manufacturing method of sintered magnet controlled in structure and component distribution
CN100394521C (en) Forming method in magnetic field, and method for producing rare-earth sintered magnet
WO2013137132A1 (en) Rare earth permanent magnet and rare earth permanent magnet production method
EP0378698B1 (en) Method of producing permanent magnet
US4920009A (en) Method for producing laminated bodies comprising an RE-FE-B type magnetic layer and a metal backing layer
CN103081041B (en) The manufacture method of rare earth element permanent magnet and rare earth element permanent magnet
JPH04198402A (en) Production and apparatus for magnet element
JP3168630B2 (en) Manufacturing method of electrode material
JPS61268006A (en) Anisotropic magnet
JP2007123467A (en) Method for manufacturing anisotropic magnet
JPH10172850A (en) Production of anisotropic permanent magnet
JPH07211566A (en) Manufacture of anisotropic magnet
JPH01111303A (en) Manufacture of rare earth magnet
JPH01192105A (en) Manufacture of permanent magnet
JPH0718366A (en) Production of r-fe-b permanent magnet material
JPH10189319A (en) Manufacture of material powder for anisotropic permanent magnet
JP5203521B2 (en) Rare earth permanent magnet and method for producing rare earth permanent magnet
JPH02250921A (en) Production of rare earth element-transition element -b magnet by forging
JP2004339527A (en) Method of producing hot molded type nanocomposite magnet
JPH0617102A (en) Caking method by sintering
JPH05114328A (en) Manufacture of electrode material
JPH08167516A (en) Manufacturing for material of r-fe-b-based permanent magnet
JPH0745412A (en) R-fe-b permanent magnet material