JPS61268006A - Anisotropic magnet - Google Patents

Anisotropic magnet

Info

Publication number
JPS61268006A
JPS61268006A JP60111036A JP11103685A JPS61268006A JP S61268006 A JPS61268006 A JP S61268006A JP 60111036 A JP60111036 A JP 60111036A JP 11103685 A JP11103685 A JP 11103685A JP S61268006 A JPS61268006 A JP S61268006A
Authority
JP
Japan
Prior art keywords
magnet
mum
alloy
atmosphere
insert gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60111036A
Other languages
Japanese (ja)
Inventor
Norishige Yamaguchi
山口 紀繁
Osamu Kawamoto
修 河本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP60111036A priority Critical patent/JPS61268006A/en
Publication of JPS61268006A publication Critical patent/JPS61268006A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered

Abstract

PURPOSE:To prevent the increase of a degree that rare earth elements are oxidized even when the size of material powder is too small by giving an alloy magnet using rare earths, iron and boron as basic ingredients magnetic anisotropy by hot plastic working. CONSTITUTION:A magnet consists of 18-63% rare earths R, 0.2-6% B and Fe as the remainder at wt%. A metal, an alloy and a compound a raw materials are mixed, and heated and melted by a high-frequency melting furnace or an electric furnace or the like. A molten metal is ejected to a cooling roll from a nozzle in an inert gas atmosphere, and quenched at high speed, and a ribbon in thickness of approximately several dozen mum is prepared, and pulverized to grain size of approximately several mum - several dozen mum in the insert gas atmosphere. Powder is baked at 700-1,100 deg.C in an insert gas or vacuum atmosphere, and sintered bodies are worked plastically under the state in which they are heated at 750-1,000 deg.C in the insert gas or vacuum atmosphere, thus acquiring a magnet in which crystallographic axes are aligned in the C axis direction.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、希土類、鉄および硼素を基本成分とする高磁
束密度の異方性磁石に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a high magnetic flux density anisotropic magnet containing rare earth elements, iron and boron as basic components.

(従来の技術) この種の従来の異方性磁石のうち、実用性のあるものと
して、特開昭59−46008号公報に記載のように、
Nd等の希土類、FeおよびB等の合金を粉砕し、磁界
中で加圧成形し、結晶軸を一軸に揃えた成形体を得、こ
れを焼結することにより製作されたものが紹介されてい
る。
(Prior Art) Among the conventional anisotropic magnets of this type, one that is practical is as described in Japanese Patent Application Laid-open No. 59-46008.
Introducing products manufactured by crushing rare earth elements such as Nd, alloys such as Fe and B, press-forming them in a magnetic field, obtaining a compact with crystal axes uniaxially aligned, and sintering this. There is.

(発明が解決しようとする問題点) 前記従来の異方性磁石は、材料粉末のサイズが小さすぎ
る場合には、希土類元素が酸化する度合が高くなるので
、特性が落ちるという問題点がある。
(Problems to be Solved by the Invention) The conventional anisotropic magnet has a problem in that when the size of the material powder is too small, the degree of oxidation of the rare earth element increases, resulting in a decrease in characteristics.

(問題点を解決するための手段) 本発明の異方性磁石は、希土類、鉄および硼素を基本成
分とする合金磁石であって、温間塑性加工により磁気異
方性を持たせたものである。すなわち、この種の磁石は
、結晶軸であるA軸に比較してC軸が3倍程度長いため
、本発明は、温間塑性加工によってC軸方向に結晶軸が
配向するように加工したものである。
(Means for Solving the Problems) The anisotropic magnet of the present invention is an alloy magnet whose basic components are rare earth, iron, and boron, and is made to have magnetic anisotropy through warm plastic working. be. That is, in this type of magnet, the C axis is about three times longer than the A axis, which is the crystal axis, so the present invention is a magnet processed by warm plastic working so that the crystal axis is oriented in the C axis direction. It is.

本発明による磁石は、重量%(以下単に%と称す)とし
て、希土類(R)を18〜63%、Bを0.2〜6%、
残部をFeとする。希土類元素は、Sc、Y、La、C
e、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy
、Ho、Er。
The magnet according to the present invention contains 18 to 63% of rare earth (R) and 0.2 to 6% of B, as weight percent (hereinafter simply referred to as %).
The remainder is Fe. Rare earth elements are Sc, Y, La, C
e, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy
, Ho, Er.

Tm、Yb、Luを含むが、この内特にNd、Prが好
ましく、またこれらの希土類金属は、一種のみならず、
二種以上混合して用いる場合もある。また、前記材料以
外に場合によづては、C。
It includes Tm, Yb, and Lu, and among these, Nd and Pr are particularly preferable.
Two or more types may be used in combination. In addition to the above-mentioned materials, depending on the case, C.

を含ませることにより、残留磁束密度Br!高めること
もある。また、製造上混入が避けられないその他の元素
、例えばS、Si、アルカリ金属、アルカリ土類金属、
Cu、P等を総量として数%以下含んでもよい。
By including the residual magnetic flux density Br! It can also be increased. In addition, other elements that cannot be avoided during manufacturing, such as S, Si, alkali metals, alkaline earth metals,
It may contain several percent or less of Cu, P, etc. based on the total amount.

前記した材料は、純粋の金属である必要はなく、特性を
損なわない程度の不純物を含むものを用いることができ
、Bとしては、B単独のもの以外にフェロポロンを用い
ることができ、フェロポロンを用いれば、その融点がB
よりも低いため、材料を溶解させて加工する場合に有利
である。
The above-mentioned materials do not need to be pure metals, and those containing impurities to the extent that they do not impair the properties can be used.As B, ferroporon can be used in addition to B alone, and ferroporon can be used as B. If its melting point is B
This is advantageous when processing materials by melting them.

本発明による磁石を製造する場合には、次のような工程
によることが好ましい。
When manufacturing the magnet according to the present invention, it is preferable to use the following steps.

(1)原材料となる金属1合金または化合物を、混合し
て高周波溶解炉あるいは電気炉等により加熱して溶解さ
せる。
(1) Metal 1 alloys or compounds serving as raw materials are mixed and melted by heating in a high frequency melting furnace or an electric furnace.

(2)次に、例えばアルゴンガス等の不活性ガス雰囲気
で溶融合金を石英製ノズルから冷却ロールに噴出させ、
高速急冷し、厚さ数+pm程度のりポンを作成する。
(2) Next, the molten alloy is jetted from a quartz nozzle onto a cooling roll in an inert gas atmosphere such as argon gas,
Rapidly quench and create gluepon with a thickness of approximately several pm.

(3)このリボンを不活性ガス雰囲気にてミルにより数
ルm〜数+4m程度の粒径となるように粉砕する。
(3) This ribbon is pulverized by a mill in an inert gas atmosphere to a particle size of several meters to several plus four meters.

(4)粉体を不活性ガスまたは真空雰囲気にて電気炉や
高周波等によって700℃〜1100℃に焼結する。
(4) The powder is sintered at 700°C to 1100°C in an inert gas or vacuum atmosphere using an electric furnace, high frequency, or the like.

(5)焼結体を不活性ガスまたは真空雰囲気にて電気炉
や高周波等によって750°C〜l OOO”Cに加温
した状態において、塑性加工することにより、C軸方向
に結晶軸が揃った磁石を得る。
(5) The crystal axes are aligned in the C-axis direction by plastic working the sintered body in an inert gas or vacuum atmosphere heated to 750°C to 100°C using an electric furnace or high frequency. Obtain a magnet.

本発明により得られる磁石のうち、RをNdとし、Nd
を31〜36%、Bを0.7〜1.0%、Feを57〜
68%としたものは、残留磁束密度Brは14KG以上
、保磁カルは8KOe以上、最大エネルギa (B H
) waxは45 M G Oe以上の値となり、従来
の技術の欄で述べた焼結法による場合よりも高い磁気特
性が得られた。
Among the magnets obtained by the present invention, R is Nd, and Nd
31-36%, B 0.7-1.0%, Fe 57-36%
For those set to 68%, the residual magnetic flux density Br is 14KG or more, the coercivity Cal is 8KOe or more, and the maximum energy a (B H
) wax reached a value of 45 M G Oe or more, and higher magnetic properties were obtained than when using the sintering method described in the conventional technology section.

(実施例) Nd36%、Fe60%、フェロポロン合金(Fe76
%、B19%、その他不純物)4%の組成の粉末を混合
し、1300℃に高周波加熱することにより溶解し、ア
ルゴン雰囲気にて周速30n/秒で回転している銅ロー
ルに石英ノズルから噴出し、厚さ約40JLm程度のリ
ボンを得た。
(Example) 36% Nd, 60% Fe, ferroporon alloy (Fe76
%, B (19%, other impurities)) and melted by high-frequency heating to 1300°C, and sprayed from a quartz nozzle onto a copper roll rotating at a circumferential speed of 30 n/s in an argon atmosphere. A ribbon having a thickness of about 40 JLm was obtained.

次にこれをデッドテビルミルにより、1〜20pm程度
の粒径に粉砕し、アルゴン雰囲気にて約1000℃にて
1時間加熱することにより焼結し、第1図に示すような
押出し成形装置1により、アルゴン雰囲気にて、約90
0℃で1.5〜2 、0 t 7cm2の圧力で棒状磁
石合金2を成形した。この成形装置1は、加熱装置3を
装備したコンテナ4にテーパー状をなす押出し穴5を有
し、コンテナ4内に材料6を入れ、ラム7によって材料
6を押出し穴5方向に押出すことにより、テーパー状の
押出し穴5において、粒子が圧力によって結晶軸のC軸
(磁化容易軸)方向に揃い、成形される。
Next, this was pulverized to a particle size of about 1 to 20 pm using a dead cell mill, sintered by heating at about 1000° C. for 1 hour in an argon atmosphere, and then extruded using an extrusion molding device 1 as shown in FIG. Approximately 90% in an argon atmosphere
Bar-shaped magnet alloy 2 was molded at 0° C. and a pressure of 1.5 to 2,0 7 cm2. This molding device 1 has a container 4 equipped with a heating device 3 and a tapered extrusion hole 5. A material 6 is put into the container 4, and a ram 7 extrudes the material 6 in the direction of the extrusion hole 5. In the tapered extrusion hole 5, the particles are aligned in the C-axis (easy magnetization axis) direction of the crystal axis by pressure and are shaped.

このようにして10〜20mmの直径の断面円形または
方形に成形されたものは、残留磁束密度B。
The product thus formed into a circular or rectangular cross section with a diameter of 10 to 20 mm has a residual magnetic flux density B.

が14.3KG、保磁カルは8KOe、最大エネルギ積
(BH)ffiaxは46.2MGOeであった。
was 14.3KG, coercive force was 8KOe, and maximum energy product (BH) ffiax was 46.2MGOe.

このように、本発明は、温間塑性加工によって結晶軸の
C軸を揃えられるように成形するものであり、結晶軸を
揃える手段としては、前記押出し加工以外に、第2図に
示すように、把み装置8によって成形材2を引出すこと
によっても同様の特性のものを成形することができる。
As described above, the present invention is formed by warm plastic working so that the C axes of the crystal axes are aligned, and as a means for aligning the crystal axes, in addition to the extrusion process, as shown in FIG. , a material having similar characteristics can also be molded by drawing out the molding material 2 with the gripping device 8.

また、第3図(A)(B)に示すようなスエジング加工
を用いることも可能である。すなわち、半円形の溝9゜
11をそれぞれ有する下型10、上型12の溝9.11
間で材料13を挟み、材料13を回わすと共に、上型1
2(または下型10)を往復させて材料13をプレスす
ることにより、C軸を揃えることができる。さらに第4
図(A)(B)に示すように、2個を1組とする複数組
の成形ローラ15〜18を配列し、各ローラ15〜18
にはそれぞれ断面半円形(または角形)の成形用溝15
a〜18aを形成し、これらの成形用溝15a〜18a
を次第に小さくし、これらのローラ15〜18によって
順次材料13を成形することにより、結晶軸をC軸方向
に揃えて成形することができる。
It is also possible to use swaging processing as shown in FIGS. 3(A) and 3(B). That is, the grooves 9 and 11 of the lower die 10 and the upper die 12 each have a semicircular groove 9°11.
While rotating the material 13 with the material 13 sandwiched between them, the upper mold 1
2 (or the lower die 10) to press the material 13, the C-axes can be aligned. Furthermore, the fourth
As shown in Figures (A) and (B), multiple sets of forming rollers 15 to 18, each consisting of two sets, are arranged, and each roller 15 to 18 is
Each has a forming groove 15 with a semicircular (or square) cross section.
a to 18a are formed, and these forming grooves 15a to 18a are formed.
By gradually reducing the size of the material 13 and sequentially molding the material 13 using these rollers 15 to 18, it is possible to mold the material 13 with the crystal axes aligned in the C-axis direction.

(発明の効果) 以上述べたように、本発明の異方性磁石は、希土類、鉄
および硼素を基本成分とする合金磁石であり、温間塑性
加工により磁気異方性を持たせたものであって、従来よ
りも磁気特性の優れた磁石を得ることができる。
(Effects of the Invention) As described above, the anisotropic magnet of the present invention is an alloy magnet whose basic components are rare earth elements, iron, and boron, and is made to have magnetic anisotropy through warm plastic working. Therefore, it is possible to obtain a magnet with better magnetic properties than conventional ones.

【図面の簡単な説明】[Brief explanation of drawings]

第1図ないし第4図は本発明による温間塑性加工を行な
う加工装置の例をそれぞれ示す図である。
FIGS. 1 to 4 are diagrams each showing an example of a processing apparatus for performing warm plastic working according to the present invention.

Claims (1)

【特許請求の範囲】[Claims]  希土類、鉄および硼素を基本成分とする合金磁石であ
って、温間塑性加工により磁気異方性を持たせたことを
特徴とする異方性磁石。
An anisotropic magnet that is an alloy magnet whose basic components are rare earth elements, iron, and boron, and is characterized by having magnetic anisotropy through warm plastic working.
JP60111036A 1985-05-23 1985-05-23 Anisotropic magnet Pending JPS61268006A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60111036A JPS61268006A (en) 1985-05-23 1985-05-23 Anisotropic magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60111036A JPS61268006A (en) 1985-05-23 1985-05-23 Anisotropic magnet

Publications (1)

Publication Number Publication Date
JPS61268006A true JPS61268006A (en) 1986-11-27

Family

ID=14550773

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60111036A Pending JPS61268006A (en) 1985-05-23 1985-05-23 Anisotropic magnet

Country Status (1)

Country Link
JP (1) JPS61268006A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1988006797A1 (en) * 1987-03-02 1988-09-07 Seiko Epson Corporation Rare earth element-iron base permanent magnet and process for its production
JPH01150307A (en) * 1987-12-08 1989-06-13 Matsushita Electric Ind Co Ltd Anisotropic permanent magnet
US4960469A (en) * 1987-11-27 1990-10-02 Hitachi Metals, Ltd. Method of manufacturing magnetically anisotropic magnet materials and device for same
US5076861A (en) * 1987-04-30 1991-12-31 Seiko Epson Corporation Permanent magnet and method of production
US5186761A (en) * 1987-04-30 1993-02-16 Seiko Epson Corporation Magnetic alloy and method of production
US5213631A (en) * 1987-03-02 1993-05-25 Seiko Epson Corporation Rare earth-iron system permanent magnet and process for producing the same
US5460662A (en) * 1987-04-30 1995-10-24 Seiko Epson Corporation Permanent magnet and method of production
US5538565A (en) * 1985-08-13 1996-07-23 Seiko Epson Corporation Rare earth cast alloy permanent magnets and methods of preparation
US6136099A (en) * 1985-08-13 2000-10-24 Seiko Epson Corporation Rare earth-iron series permanent magnets and method of preparation

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5538565A (en) * 1985-08-13 1996-07-23 Seiko Epson Corporation Rare earth cast alloy permanent magnets and methods of preparation
US6136099A (en) * 1985-08-13 2000-10-24 Seiko Epson Corporation Rare earth-iron series permanent magnets and method of preparation
US5597425A (en) * 1985-08-13 1997-01-28 Seiko Epson Corporation Rare earth cast alloy permanent magnets and methods of preparation
US5565043A (en) * 1985-08-13 1996-10-15 Seiko Epson Corporation Rare earth cast alloy permanent magnets and methods of preparation
US5560784A (en) * 1985-08-13 1996-10-01 Seiko Epson Corporation Rare earth cast alloy permanent magnets and methods of preparation
US5125988A (en) * 1987-03-02 1992-06-30 Seiko Epson Corporation Rare earth-iron system permanent magnet and process for producing the same
WO1988006797A1 (en) * 1987-03-02 1988-09-07 Seiko Epson Corporation Rare earth element-iron base permanent magnet and process for its production
US5213631A (en) * 1987-03-02 1993-05-25 Seiko Epson Corporation Rare earth-iron system permanent magnet and process for producing the same
US5186761A (en) * 1987-04-30 1993-02-16 Seiko Epson Corporation Magnetic alloy and method of production
US5460662A (en) * 1987-04-30 1995-10-24 Seiko Epson Corporation Permanent magnet and method of production
US5076861A (en) * 1987-04-30 1991-12-31 Seiko Epson Corporation Permanent magnet and method of production
US5039292A (en) * 1987-11-27 1991-08-13 Hitachi Metals, Ltd. Device for manufacturing magnetically anisotropic magnets
US4960469A (en) * 1987-11-27 1990-10-02 Hitachi Metals, Ltd. Method of manufacturing magnetically anisotropic magnet materials and device for same
JPH01150307A (en) * 1987-12-08 1989-06-13 Matsushita Electric Ind Co Ltd Anisotropic permanent magnet

Similar Documents

Publication Publication Date Title
US5039292A (en) Device for manufacturing magnetically anisotropic magnets
EP0187538A2 (en) Permanent magnet and method for producing same
JPH09275004A (en) Permanent magnet and its manufacture
JP3084748B2 (en) Manufacturing method of rare earth permanent magnet
JPS61268006A (en) Anisotropic magnet
EP0261292A2 (en) Method of producing fully dense permanent magnet alloy article
EP0348038B1 (en) Manufacturing method of a permanent magnet
JPS63178505A (en) Anisotropic r-fe-b-m system permanent magnet
JPH04134804A (en) Manufacture of rare earth permanent magnet
JPS63116404A (en) Anisotropic magnet powder and manufacture thereof
JP3818397B2 (en) Manufacturing method of multi-structure rare earth metal magnet body
JPS6181604A (en) Preparation of rare earth magnet
JPS63289905A (en) Manufacture of rare earth-fe-b magnet
JP2597843B2 (en) Rare earth magnet and its manufacturing method
JPH04321202A (en) Manufacture of anisotropic permanent magnet
JPH0562814A (en) Method of manufacturing rare-earth element-fe-b magnet
JP2980254B2 (en) Anisotropic permanent magnet and manufacturing method thereof
JPH0422104A (en) Method of manufacturing permanent magnet
JPH0584043B2 (en)
JPH04218903A (en) Manufacture of anisotropic rare earth magnet or anisotropic rare earth magnet powder
Tattam et al. Improvement in the mechanical properties of PTFE bonded Nd Fe B magnets by heat treatment
JPH04162503A (en) Magnetically anisotropic magnet and its manufacture
JPH01119001A (en) Manufacture of permanent magnetic powder containing rare earth element
JPS63196014A (en) Magnetically anisotropic magnet and manufacture thereof
JPH02172204A (en) Manufacture of anisotropic permanent magnet