JP2597843B2 - Rare earth magnet and its manufacturing method - Google Patents

Rare earth magnet and its manufacturing method

Info

Publication number
JP2597843B2
JP2597843B2 JP62111664A JP11166487A JP2597843B2 JP 2597843 B2 JP2597843 B2 JP 2597843B2 JP 62111664 A JP62111664 A JP 62111664A JP 11166487 A JP11166487 A JP 11166487A JP 2597843 B2 JP2597843 B2 JP 2597843B2
Authority
JP
Japan
Prior art keywords
magnet
rare earth
alloy
quenched
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62111664A
Other languages
Japanese (ja)
Other versions
JPS63226007A (en
Inventor
忠邦 佐藤
悦夫 大槻
Original Assignee
株式会社 トーキン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 トーキン filed Critical 株式会社 トーキン
Priority to JP62111664A priority Critical patent/JP2597843B2/en
Publication of JPS63226007A publication Critical patent/JPS63226007A/en
Application granted granted Critical
Publication of JP2597843B2 publication Critical patent/JP2597843B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は,Nd,Fe,B系永久磁石を代表とする希土類金属
(R)と遷移金属(T)とホウ素(B)とを主成分とす
るR2T14B系金属間化合物からなる希土類磁石材料とその
製造方法に関し,特に耐食性と塑性加工性とを改善した
希土類磁石材料とその製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention mainly comprises a rare earth metal (R), a transition metal (T), and boron (B) typified by Nd, Fe, B-based permanent magnets. The present invention relates to a rare earth magnet material comprising an R 2 T 14 B-based intermetallic compound and a method for producing the same, and more particularly to a rare earth magnet material having improved corrosion resistance and plastic workability and a method for producing the same.

〔従来の技術〕[Conventional technology]

現在使用されている永久磁石の主流は,マグネトプラ
ムバイト型フェライトマグネット,アルニコ磁石,Sm−C
o系磁石である。これらの磁石材料は,機械的な応力に
対して非常に脆く,割れ易く又欠け易い等の欠点を有し
ている。したがってこれらの磁石は,細線に伸ばした
り,薄く延ばしたりといった機械的加工は不可能であ
る。そのため磁石を切断,研削,研磨等の加工を用い
て,所定の形状を得ている。
The mainstream of permanent magnets currently used are magnetoplumbite ferrite magnets, alnico magnets, Sm-C
oSystem magnet. These magnet materials have drawbacks such as being very brittle against mechanical stress, easily cracking, and chipping. Therefore, these magnets cannot be mechanically processed such as stretching into a thin wire or stretching thinly. Therefore, a predetermined shape is obtained by processing such as cutting, grinding and polishing of the magnet.

逆に,限られた磁石材料の中には,機械的延展性に優
れたものも存在する。例えば,高Br,低IHCであるFe−Cr
−Co系,又は,加工は容易であるが磁石特性の低いCuni
fe及びCunico,中程度の磁石特性ではあるが加工温度が
高いMnAlC系,高い磁石特性を示すが,貴金属を多量に
使用するので高価なPtCo系の磁石があげられる。
Conversely, some of the limited magnet materials have excellent mechanical spreadability. For example, high Br, Fe-Cr is low I H C
-Co-based or Cuni, which is easy to process but has low magnet properties
fe and Cunico, MnAlC-based magnets with moderate magnet properties but high processing temperatures, and PtCo-based magnets that exhibit high magnet properties but are expensive due to the use of large amounts of precious metals.

ところが,磁石特性の優れたR・T・B系磁石は,上
記の磁石材料とは全く異種のものであり,機械的延展性
に劣るものであった。
However, R / T / B magnets having excellent magnet properties are completely different from the above-mentioned magnet materials, and have poor mechanical spreadability.

一方,R・T・B系希土類磁石の製造方法については,
液体急冷型と焼結型との2つの方法に大別されている。
液体急冷型の製造方法は,溶解している合金を超急冷さ
せる際に,適度に析出した微細結晶粒(一般には0.05〜
0.1μm程度を含むように冷却速度を調整して得られた
液体急冷微細結晶化薄帯)を作製した後,これを高分子
樹脂と複合したり,あるいは,高温中で一軸方向に加圧
成形して,液体急冷型磁石を生成する方法である。
On the other hand, regarding the method of manufacturing RTB rare earth magnets,
It is roughly classified into two methods, a liquid quenching type and a sintering type.
The liquid quenching type manufacturing method is based on the method of ultra-quenching a molten alloy, in which fine crystal grains (usually 0.05 to
Liquid quenched micro-crystallized ribbons obtained by adjusting the cooling rate to include about 0.1 μm), and then combining them with a polymer resin, or press molding uniaxially at high temperatures Then, a liquid quenching type magnet is generated.

一般に,液体急冷型磁石に用いる合金粉末は,Ar雰囲
気中等の不活性雰囲気中で,高周波等によって溶解した
合金を,高速で回転しているFeやCu製ロールに噴射し,
厚さ数十μm程度の急冷薄帯を粉砕して得ている。この
とき,このロールの回転数を変化させることにより,溶
解した合金の冷却速度が制御できるものであり,0.05〜
0.1μm程度の微細な結晶粒を含んだ急冷薄帯は,20m/se
c程度のロール周速度となる極めて制限された範囲で得
ることができる。即ち,このようにして得られた急冷薄
帯を目的に応じて粗粉砕した後,磁石化している。
In general, alloy powder used for liquid quenching type magnets is sprayed from an alloy melted by high frequency or the like on an Fe or Cu roll rotating at high speed in an inert atmosphere such as an Ar atmosphere.
It is obtained by pulverizing a quenched ribbon having a thickness of about several tens of μm. At this time, the cooling rate of the melted alloy can be controlled by changing the rotation speed of this roll.
A quenched ribbon containing fine crystal grains of about 0.1 μm is 20 m / se
It can be obtained in a very limited range where the roll peripheral speed is about c. That is, the quenched ribbon thus obtained is roughly pulverized according to the purpose, and then magnetized.

他方,焼結型磁石の製造方法は,溶解して得られた結
晶質の磁石合金のインゴットを微粉砕し,磁場中成形
後,焼結して,焼結型磁石を得るものである。その製造
工程は,一般に原料合金の溶解,粉砕,磁場中配向,圧
縮成形,焼結,時効の順に進められる。溶解は,アー
ク,高周波等の真空または不活性雰囲気中で通常行なわ
れ,まず,合金原料インゴットを得る。粉砕は,粗粉砕
と微粉砕にわけられ,粗粉砕はジョークラッシャー,デ
ィスクミルやロールミル等で行なわれる。磁場配向及び
圧縮成形は,金型を用いて,磁場中で同時に行なわれる
のが通例である。焼結は,1000〜1150℃の範囲で,不活
性雰囲気中で行なわれる。時効は600℃近傍の温度で1
時間程度保持される。
On the other hand, in a method of manufacturing a sintered magnet, an ingot of a crystalline magnet alloy obtained by melting is finely pulverized, molded in a magnetic field, and then sintered to obtain a sintered magnet. The manufacturing process generally proceeds in the order of melting, grinding, orientation in a magnetic field, compression molding, sintering, and aging of the raw material alloy. Melting is usually performed in a vacuum or inert atmosphere such as an arc or high frequency, and an alloy raw material ingot is first obtained. The pulverization is divided into coarse pulverization and fine pulverization, and the coarse pulverization is performed by a jaw crusher, a disc mill, a roll mill, or the like. The magnetic field orientation and compression molding are usually performed simultaneously in a magnetic field using a mold. Sintering is performed in an inert atmosphere at a temperature in the range of 1000 to 1150 ° C. Aging takes place at temperatures around 600 ° C.
Hold for about an hour.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

ところが,上記の2つのR・T・B系希土類磁石の製
造方法のうち,前者の液体急冷型の製造方法は,後者の
焼結型の製造方法に比べて,磁場中配向が困難であるこ
とから,高い異方性を有する希土類磁石を容易に得るこ
とができないという欠点があった。
However, of the above two methods for producing R, T, and B rare earth magnets, the former liquid quenching type manufacturing method is more difficult to orient in a magnetic field than the latter sintered type manufacturing method. Therefore, there is a disadvantage that a rare-earth magnet having high anisotropy cannot be easily obtained.

しかも,希土類磁石自体の延展性を高める為にR組成
値を大きくすると,磁石特性が低下してしまうという欠
点があった。
Moreover, when the R composition value is increased in order to enhance the spreadability of the rare-earth magnet itself, there is a disadvantage that the magnet properties are degraded.

また,希土類磁石は,必然的に化学的に活性な希土類
金属を多量に含有しているため,他の種類の磁石に比べ
て,極めて酸化しやすいという欠点もあった。
In addition, rare earth magnets have a disadvantage that they are very easily oxidized as compared with other types of magnets because they necessarily contain a large amount of chemically active rare earth metals.

そこで,本発明の目的は,上記欠点に鑑み,高い異方
性を有する希土類磁石,延展性の優れた希土類磁石及び
耐酸化性に優れた希土類磁石,或いは,それらの優れた
特性を複合した希土類磁石を提供することである。
In view of the above drawbacks, an object of the present invention is to provide a rare earth magnet having high anisotropy, a rare earth magnet having excellent spreadability and a rare earth magnet having excellent oxidation resistance, or a rare earth magnet having a combination of these excellent properties. Is to provide a magnet.

[問題点を解決するための手段] 本発明によれば,磁石合金表面が展延性及び耐腐食性
の優れた金属で被覆されると共に,粉末成形体,又は焼
結体を細線化或いは圧延化して成る希土類磁石であっ
て,Nd,Fe,Bを主成分として含有し,且つ結晶粒径が10
[μm]以下の液体急冷結晶化合金粉末,又は非晶質の
液体急冷合金粉末であるR2T14B系磁石材料(但し,RはY
を含むCe,Pr,Nd,Gd,Tb,Dy,及びHoの少なくとも一種から
成る希土類金属であり,TはAl,Cr,Mn,Fe,Co,及びNiの少
なくとも一種から成る遷移金属を表わし,Rは組成値は37
〜90[wt%]の範囲にあるとする)により生成された希
土類磁石が得られる。
[Means for Solving the Problems] According to the present invention, the magnet alloy surface is coated with a metal having excellent spreadability and corrosion resistance, and the powder compact or sintered compact is thinned or rolled. A rare earth magnet comprising Nd, Fe, B as a main component and having a crystal grain size of 10
R 2 T 14 B-based magnet material that is a liquid quenched crystallized alloy powder of [μm] or less or an amorphous liquid quenched alloy powder (where R is Y
A rare earth metal composed of at least one of Ce, Pr, Nd, Gd, Tb, Dy, and Ho, and T represents a transition metal composed of at least one of Al, Cr, Mn, Fe, Co, and Ni; R is 37
9090 [wt%]) is obtained.

一方,本発明によれば,Nd,Fe,Bを主成分として含有す
るR2T14B系磁石材料(但し,RはYを含むCe,Pr,Nd,Gd,T
b,Dy,及びHoの少なくとも一種から成る希土類金属であ
り,TはAl,Cr,Mn,Fe,Co,及びNiの少なくとも一種から成
る遷移金属を表わす)により生成される希土類磁石を,
展延性及び耐腐食性の優れた金属で被覆する被覆工程
と,該金属で被覆された後の希土類磁石を細線化する細
線化工程とを含み,被覆工程で用いるR2T14B系磁石材料
は,Rの組成値が37〜90[wt%]の範囲にあり,且つ結晶
粒径が10[μm]以下の液体急冷結晶化合金粉末,又は
非晶質の液体急冷合金粉末である希土類磁石の製造方法
が得られる。
On the other hand, according to the present invention, an R 2 T 14 B-based magnet material containing Nd, Fe, B as a main component (where R is Ce, Pr, Nd, Gd, T
b, Dy, and Ho are rare earth metals, and T represents a transition metal consisting of at least one of Al, Cr, Mn, Fe, Co, and Ni).
An R 2 T 14 B-based magnet material used in the coating step, comprising a coating step of coating with a metal having excellent spreadability and corrosion resistance, and a thinning step of thinning the rare-earth magnet coated with the metal. Is a rare-earth magnet that is a liquid quenched crystallized alloy powder or an amorphous liquid quenched alloy powder with a composition value of R in the range of 37 to 90 [wt%] and a crystal grain size of 10 [μm] or less. Is obtained.

他方,本発明によれば,Nd,Fe,Bを主成分として含有す
るR2T14B系磁石材料(但し,RはYを含むCe,Pr,Nd,Gd,T
b,Dy,及びHoの少なくとも一種から成る希土類金属であ
り,TはAl,Cr,Mn,Fe,Co,及びNiの少なくとも一種から成
る遷移金属を表わす)により生成される希土類磁石を,
展延性及び耐腐食性の優れた金属体間に挟み込む挟み込
み工程と,該金属体間に挟み込まれた後の希土類磁石を
圧延する圧延工程とを含み,挟み込み工程で用いるR2T
14B系磁石材料は,Rの組成値が37〜90[wt%]の範囲に
あり,且つ結晶粒径が10[μm]以下の液体急冷結晶化
合金粉末,又は非晶質の液体急冷合金粉末である希土類
磁石の製造方法が得られる。
On the other hand, according to the present invention, an R 2 T 14 B-based magnet material containing Nd, Fe, B as a main component (where R is Ce, Pr, Nd, Gd, T
b, Dy, and Ho are rare earth metals, and T represents a transition metal consisting of at least one of Al, Cr, Mn, Fe, Co, and Ni).
R 2 T used in the sandwiching step includes a sandwiching step of sandwiching between metal bodies having excellent spreadability and corrosion resistance, and a rolling step of rolling the rare earth magnet after being sandwiched between the metal bodies.
14 B-based magnet material is a liquid quenched crystallized alloy powder with an R composition value in the range of 37 to 90 [wt%] and a crystal grain size of 10 [μm] or less, or an amorphous liquid quenched alloy. A method for producing a rare earth magnet as a powder is obtained.

即ち,従来より展延性が困難とされていたR・T・B
系希土類金属間化合物磁石において,R・T・B系化合物
の組成のうち,Rの組成値を限定(37〜90wt%)すること
により,塑性加工,とくにシース加工による加工性及び
耐酸化性等が改善されることを,本発明者らは種々実験
した結果,発見したものである。
In other words, R, T, and B, which have been considered difficult to extensibility,
In the rare earth intermetallic compound magnets, by limiting the R composition value (37-90 wt%) of the composition of the R, T, and B compound, plastic working, especially workability by sheathing and oxidation resistance, etc. Have been found as a result of various experiments.

本発明中,Rの組成値を37〜90wt%の範囲とした理由
は,Rの組成値が37wt%以下では,磁石の展延性が顕著で
なく,一方,Rが90wt%以上では(BH)maxが1M・G・Oe
以下となり塑性加工が容易なCunife,Cunico磁石材料よ
りも明らかに低い磁石特性となるためである。
In the present invention, the reason that the composition value of R is in the range of 37 to 90 wt% is that when the composition value of R is 37 wt% or less, the ductility of the magnet is not remarkable, while when R is 90 wt% or more, (BH) max is 1M ・ G ・ Oe
This is because the magnetic properties are clearly lower than those of Cunife and Cunico magnet materials, which are easy to plastically process.

また,液体急冷合金粉末である非晶質合金粉末又は,
液体急冷結晶化合金粉末を用いる理由は,次の通りであ
る。
Liquid quenched alloy powder, amorphous alloy powder or
The reason for using the liquid quenched crystallized alloy powder is as follows.

磁石合金インゴットを原料として使用する場合,粗粉
砕及び微粉砕はRが約50wt%の組成を有するインゴット
までは,通常の粉末冶金法で行なわれる機械的な粉砕で
十分可能である。
When a magnet alloy ingot is used as a raw material, rough pulverization and fine pulverization can be sufficiently performed by mechanical pulverization performed by ordinary powder metallurgy up to an ingot having a composition of about 50% by weight of R.

しかしながら,Rが約50wt%以上のインゴットは靭性が
増すために,粉砕がR値の増加とともに困難となる。そ
こでR値が50wt%を越える組成においては,液体急冷合
金薄帯を原料として使用することにより粉砕が容易に実
施できる。この液体急冷法により磁石合金原料を得るこ
とはRが50wt%以上でその効果はより有用となり,これ
以下の組成であっても適用できるものである。
However, ingots with an R of about 50 wt% or more have an increased toughness, so that pulverization becomes more difficult as the R value increases. Therefore, in a composition having an R value exceeding 50% by weight, pulverization can be easily performed by using a liquid quenched alloy ribbon as a raw material. The effect of obtaining a magnet alloy raw material by this liquid quenching method becomes more useful when R is 50 wt% or more, and it can be applied even if the composition is less than this.

また,理由は明確ではないが,合金インゴット粉末を
無磁場中で成形し焼結した試料に比べ,液体急冷合金粉
末を磁場中成形し焼結した試料の方が,著しく高い異方
性を示している。したがってこれら焼結体を塑性加工す
る場合,原料インゴットの粉砕が困難な組成領域では,
液体急冷合金を原料として使用した方が,磁石特性上も
有利となる。
Although the reason is not clear, the sample obtained by molding and sintering the liquid quenched alloy powder in a magnetic field shows significantly higher anisotropy than the sample obtained by molding and sintering the alloy ingot powder in a magnetic field. ing. Therefore, when plasticizing these sintered bodies, in the composition region where it is difficult to grind the raw material ingot,
Using a liquid quenched alloy as a raw material is more advantageous in terms of magnet properties.

尚,磁石特性は,液体急冷非晶質合金薄帯に比べ,液
体急冷結晶化合金薄帯を使用した方が,高い値が得られ
る。この液体急冷結晶化合金薄帯に含有されている結晶
粒径は約20μm以下であっても,インゴットに比べ被粉
砕性は優れているが,約10μm以下であることが望まし
い。
As for the magnet properties, higher values can be obtained by using the liquid quenched crystallized alloy ribbon than the liquid quenched amorphous alloy ribbon. Although the crystal grain size contained in the liquid quenched crystallized alloy ribbon is about 20 μm or less, the crushability is superior to that of an ingot, but it is preferably about 10 μm or less.

次に,展延性,耐腐食性の優れた金属で磁石の表面を
被覆し,塑性加工を施す理由は次の通りである。本系磁
石は化学的に活性な希土類金属を多量に含有しているの
で,他種の磁石に比べ,極めて酸化しやすい。また,一
軸加圧等により大きな塑性変形を生じさせる場合,被加
工物の端部にき裂が生じ易い。したがって,本系磁石材
料を展延性及び耐酸化性が良好な金属で被覆し又はその
中に挿入した後,塑性加工を施すことにより,端部にき
裂等の欠陥が生じず,耐酸化性の改善された磁石が得ら
れる。このとき,磁石粒子の成長は,加工時の応力方向
と垂直方向に制御されるため,異方性化も得ることにな
る。
Next, the reason why the surface of the magnet is covered with a metal having excellent spreadability and corrosion resistance and subjected to plastic working is as follows. Since the present magnet contains a large amount of a chemically active rare earth metal, it is extremely easily oxidized as compared with other types of magnets. Further, when large plastic deformation is caused by uniaxial pressing or the like, a crack is easily generated at the end of the workpiece. Therefore, by coating this magnet material with a metal having good spreadability and oxidation resistance or inserting it into it, and then performing plastic working, defects such as cracks do not occur at the ends and oxidation resistance An improved magnet is obtained. At this time, the growth of the magnet particles is controlled in the direction perpendicular to the stress direction at the time of processing, so that anisotropy can be obtained.

尚,後述する本実施例では,加工温度を400℃として
いるのは,普通の焼入鋼を押型として使用した場合の繰
り返し使用が可能な上限温度を目安としたものである。
したがって,高速度鋼,セラミックス等を使用すれば,
より高温での塑性加工が可能である。また,本系磁石合
金は,約400℃を越えると塑性変形はより容易となる傾
向を示す。
In this embodiment described later, the processing temperature is set to 400 ° C. based on the upper limit temperature at which repetitive use is possible when ordinary hardened steel is used as a stamping die.
Therefore, if high speed steel, ceramics, etc. are used,
Plastic working at higher temperatures is possible. In addition, plastic deformation tends to become easier in this magnet alloy when the temperature exceeds about 400 ° C.

〔実施例〕〔Example〕

以下に実施例を挙げ,本発明の希土類磁石とその製造
方法について,詳細に説明する。
The rare earth magnet of the present invention and the method of manufacturing the same will be described in detail below with reference to examples.

最初に本発明の希土類磁石の物性的概要について簡単
に説明する。この希土類磁石は,磁石合金表面が展延性
及び耐腐食性の優れた金属で被覆されると共に,粉末成
形体又は焼結体を細線化或いは圧延化して成る希土類磁
石であって,Nd,Fe,Bを主成分として含有し,且つ結晶粒
径が10[μm]以下の液体急冷結晶化合金粉末,又は非
晶質の液体急冷合金粉末であるR2T14B系磁石材料(但
し,RはYを含むCe,Pr,Nd,Gd,Tb,Dy,及びHoの少なくとも
一種から成る希土類金属であり,TはAl,Cr,Mn,Fe,Co,及
びNiの少なくとも一種から成る遷移金属を表わし,Rの組
成値は37〜90[wt%]の範囲にあるとする)により生成
されたものである。
First, the physical properties of the rare earth magnet of the present invention will be briefly described. This rare earth magnet is a rare earth magnet in which the surface of a magnet alloy is coated with a metal having excellent spreadability and corrosion resistance, and a powder compact or sintered compact is thinned or rolled. R 2 T 14 B-based magnet material containing B as a main component and having a crystal grain size of 10 [μm] or less, or a liquid quenched crystallized alloy powder or an amorphous liquid quenched alloy powder (where R is Y is a rare earth metal composed of at least one of Ce, Pr, Nd, Gd, Tb, Dy, and Ho, and T represents a transition metal composed of at least one of Al, Cr, Mn, Fe, Co, and Ni. , R is in the range of 37 to 90 [wt%]).

このような希土類金属を製造する場合,Nd,Fe,Bを主成
分として含有するR2T14B系磁石材料(但し,RはYを含む
Ce,Pr,Nd,Gd,Tb,Dy,及びHoの少なくとも一種から成る希
土類金属であり,TはAl,Cr,Mn,Fe,Co,及びNiの少なくと
も一種から成る遷移金属を表わす)により生成される希
土類磁石を,展延性及び耐腐食性の優れた金属で被覆す
る被覆工程と,該金属で被覆された後の希土類磁石を細
線化する細線化工程とを含むようにすれば良く,更に,
被覆工程ではR2T14B系磁石材料をRの組成値が37〜90
[wt%]の範囲にあり,且つ結晶粒径が10[μm]以下
の液体急冷結晶化合金粉末,又は非晶質の液体急冷合金
粉末とすれば良い。
When producing such a rare earth metal, an R 2 T 14 B-based magnet material containing Nd, Fe, and B as a main component (where R includes Y
Is a rare earth metal composed of at least one of Ce, Pr, Nd, Gd, Tb, Dy, and Ho, and T represents a transition metal composed of at least one of Al, Cr, Mn, Fe, Co, and Ni) It is sufficient to include a coating step of coating the rare earth magnet to be coated with a metal having excellent spreadability and corrosion resistance, and a thinning step of thinning the rare earth magnet after being coated with the metal. ,
In the coating process, the R 2 T 14 B-based magnet material is changed to a composition value of R of 37 to 90.
It may be liquid quenched crystallized alloy powder or amorphous liquid quenched alloy powder having a range of [wt%] and a crystal grain size of 10 [μm] or less.

又,このような希土類金属は,Nd,Fe,Bを主成分として
含有するR2T14B系磁石材料(但し,RはYを含むCe,Pr,N
d,Gd,Tb,Dy,及びHoの少なくとも一種から成る希土類金
属であり,TはAl,Cr,Mn,Fe,Co,及びNiの少なくとも一種
から成る遷移金属を表わす)により生成される希土類磁
石を,展延性及び耐腐食性の優れた金属間に挟み込む挟
み込み工程と,該金属体間に挟み込まれた後の希土類磁
石を圧延する圧延工程とを含むようにしても製造するこ
とができる。この場合も,挟み込み工程ではR2T14B系磁
石材料をRの組成値が37〜90[wt%]の範囲にあり,且
つ結晶粒径が10[μm]以下の液体急冷結晶化合金粉
末,又は非晶質の液体急冷合金粉末とすれば良い。
Such a rare earth metal is a R 2 T 14 B-based magnet material containing Nd, Fe, B as a main component (where R is Ce, Pr, N containing Y).
a rare earth metal formed by at least one of d, Gd, Tb, Dy, and Ho, and T representing a transition metal consisting of at least one of Al, Cr, Mn, Fe, Co, and Ni) Can also be manufactured by including a sandwiching step of sandwiching the rare earth magnet between metals having excellent spreadability and corrosion resistance, and a rolling step of rolling the rare earth magnet sandwiched between the metal bodies. Also in this case, in the sandwiching step, the R 2 T 14 B-based magnet material is mixed with a liquid quenched crystallized alloy powder having a composition value of R of 37 to 90 [wt%] and a crystal grain size of 10 [μm] or less. Or an amorphous liquid quenched alloy powder.

そこで,以下は幾つかの具体的な実施例並びに参考例
を挙げ,希土類磁石の製造方法並びに磁石特性につい
て,詳細に説明する。
Therefore, the method of manufacturing the rare earth magnet and the magnet characteristics will be described in detail below with reference to some specific examples and reference examples.

−参考例1− 参考例1ではR値が50wt%未満の場合における展延性
を比較した。
-Reference Example 1-In Reference Example 1, the extensibility when the R value was less than 50 wt% was compared.

順度97wt%のNd(残部はCe,Prを主体とする他の希土
類元素),フェロボロン(B純分約20wt%)及び電解鉄
を使用し,Ndが各々34,37,40,43wt%,B1.0wt%,残部Fe
となるようにアルゴン雰囲気中で高周波加熱により溶解
し,合金インゴットを得た。
Using 97% by weight of Nd (the remainder is other rare earth elements mainly composed of Ce and Pr), ferroboron (about 20% by weight of pure B) and electrolytic iron, Nd is 34, 37, 40, 43% by weight, respectively. B1.0wt%, balance Fe
And melted by high frequency heating in an argon atmosphere to obtain an alloy ingot.

次にこのインゴットを粗粉砕した後,ボールミルを用
いて約3μmに粉砕した。この粉末を2kOeの磁界中,1to
n/cm2で直径15mm,高さ10mmの形状に磁場中成形した。こ
の成形体を1050℃で真空中1時間保持した後,Ar中1時
間保持し,焼結した。
Next, this ingot was roughly pulverized and then pulverized to about 3 μm using a ball mill. This powder was placed in a magnetic field of 2 kOe for 1 to
It was molded in a magnetic field to a shape of 15 mm in diameter and 10 mm in height at n / cm 2 . The compact was held at 1050 ° C. for 1 hour in a vacuum and then for 1 hour in Ar and sintered.

次に,この焼結体を,400℃で一軸方向に3ton/cm2の圧
力で加圧した。その後,Ar雰囲気中650℃で1時間保持
し,時効した。
Next, the sintered body was pressed uniaxially at 400 ° C. at a pressure of 3 ton / cm 2 . Then, it was kept at 650 ° C. for 1 hour in an Ar atmosphere to age.

この試料の磁石特性と,400℃,8ton/cm2の加圧による
径方向の伸び率を第1表に示す。
Table 1 shows the magnet properties of this sample and the elongation in the radial direction by applying a pressure of 8 ton / cm 2 at 400 ° C.

その結果,Nd37wt%以上では,磁石の塑性変形が明ら
かに認められ,展延性に優れていることが分る。
As a result, when Nd is 37wt% or more, plastic deformation of the magnet is clearly observed, indicating that the magnet is excellent in ductility.

−参考例2− 参考例2では,R値が50%以上の場合における磁石特性
を比較した。尚,磁石材料には,非晶質合金粉末を出発
原料とした。
-Reference Example 2-In Reference Example 2, the magnet characteristics when the R value was 50% or more were compared. The starting material for the magnet material was an amorphous alloy powder.

参考例1と同様にして,Ndが各々50,60,70,80,90wt%,
Bが0.8wt%,残部Feとなるように,合金インゴットを得
た。
In the same manner as in Reference Example 1, Nd was 50, 60, 70, 80, 90 wt%,
An alloy ingot was obtained so that B was 0.8 wt% and the balance was Fe.

次に,このインゴットを使用してAr雰囲気中で高周波
加熱により再溶解した後,周速度約50m/secのCu製ロー
ルに噴射し,片ロール法により,幅約2mm,厚さ約30μm
の非晶質合金薄帯を得た。
Next, using this ingot, redissolve it by high-frequency heating in an Ar atmosphere, spray it onto a Cu roll with a peripheral speed of about 50 m / sec, and use the single roll method to obtain a width of about 2 mm and a thickness of about 30 μm.
Was obtained.

この非晶質合金薄帯を粗粉砕した後,ボールミルにて
平均粒径3μmの成形用粉末を得た。この粉末を参考例
1と同様にして,磁場成形した後,Ndが50wt%と60wt%
の成形体を900℃で,Ndが70wt%と80wt%と90wt%の成形
体を700℃で各々焼結した。
After the amorphous alloy ribbon was roughly pulverized, a molding powder having an average particle diameter of 3 μm was obtained by a ball mill. This powder was subjected to magnetic field molding in the same manner as in Reference Example 1 and Nd was 50 wt% and 60 wt%.
Compacts were sintered at 900 ° C, and compacts with Nd of 70 wt%, 80 wt% and 90 wt% were sintered at 700 ° C.

これらの焼結体を,400℃でロール圧延し,厚みを1/3
に減少させた。
These sintered compacts were roll-rolled at 400 ° C to reduce the thickness by 1/3.
Reduced to.

次に,得られたロール圧延体を,Ar雰囲気中,600℃で
2時間保持し,時効した。この試料の磁石特性を第2表
に示す。
Next, the obtained rolled body was aged at 600 ° C. for 2 hours in an Ar atmosphere. Table 2 shows the magnet properties of this sample.

その結果,Nd90wt%の組成でも,(BH)maxが1M・G・
Oeを越える磁石特性を示している。
As a result, even with a composition of Nd90wt%, (BH) max is 1M · G ·
It shows magnet properties exceeding Oe.

−実施例1− 実施例1は,R値60wt%の非晶質合金粉末より生成した
棒状の希土類磁石を,被覆工程としてCuパイプ中に挿入
し、細線化工程として細線化加工を施した場合における
耐腐食性を比較した。
-Example 1-Example 1 is a case where a rod-shaped rare earth magnet produced from an amorphous alloy powder having an R value of 60 wt% is inserted into a Cu pipe as a coating process, and a thinning process is performed as a thinning process. The corrosion resistance was compared.

5wt%のCe,15wt%のPr,残部Nd(ただし,他の残留希
土類元素はNdとして含めた。)からなるセリウムジジム
と純度95wt%以上のDy,フェロボロン及び電解鉄を使用
し,参考例1と同様にして,希土類中のDyが5at%とな
るように,Rが60wt%,Bが0.9wt%,残部Feとなるインゴ
ットを得た。
Cerium dymium consisting of 5 wt% Ce, 15 wt% Pr, balance Nd (other residual rare earth elements were included as Nd) and Dy, ferroboron and electrolytic iron having a purity of 95 wt% or more were used. In the same manner as described above, an ingot was obtained in which R was 60 wt%, B was 0.9 wt%, and the balance was Fe so that Dy in the rare earth was 5 at%.

次に,このインゴットを使用して,参考例2と同様に
して,液体急冷非晶質薄帯を得た後,成形用粉末を作製
した。次に,この粉末を使用して,10kOeの磁界中,0.5to
n/cm2の圧力で,直径10mm長さ約100mmの棒状成形体を得
た。
Next, using this ingot, a liquid quenched amorphous ribbon was obtained in the same manner as in Reference Example 2, and a molding powder was produced. Next, using this powder in a 10 kOe magnetic field, 0.5 to
At a pressure of n / cm 2 , a rod-shaped compact having a diameter of 10 mm and a length of about 100 mm was obtained.

この成形体を850℃で参考例1と同様にして焼結し
た。次にこの焼結体を,長さ1mmの内径8mmのCu製パイプ
に内接するように加工した後,Cu製パイプに挿入し,400
℃にてスウェージングダイスを用いて細線化加工を施
し,直径2mmまで細線化した。
This compact was sintered at 850 ° C. in the same manner as in Reference Example 1. Next, the sintered body was processed so as to be inscribed in a Cu pipe with a length of 1 mm and an inner diameter of 8 mm.
The wire was thinned using a swaging die at ℃ and thinned to a diameter of 2 mm.

次に,この細線をAr雰囲気中,650℃で0.5時間保持
し,時効した。
Next, the thin wire was kept in an Ar atmosphere at 650 ° C. for 0.5 hour to age.

その磁石特性は,Br6.8kG,IHC15.0kOe,(BH)max11.0M
・G・Oeであった。また,この磁石のCuで被覆された側
面は90%湿度中70℃で100時間保持しても錆の発生は認
められなかったが,未被覆部分は約1時間で著しく錆が
発生していた。
Its magnetic properties, Br6.8kG, I H C 15.0kOe, (BH) max 11.0M
・ It was G ・ Oe. No rust was observed on the side of this magnet coated with Cu for 100 hours at 70 ° C in 90% humidity, but significant rust was generated in the uncoated part in about 1 hour. .

−実施例2− 実施例2は,R値65wt%の非晶質合金粉末を無磁場中で
加圧成形した後,被覆工程として粉末成形体をAl製リン
グに挿入して加圧成形した場合における磁石特性を比較
した。
-Example 2-Example 2 is a case where an amorphous alloy powder having an R value of 65 wt% is press-formed in a magnetic field-free state, and then the powder compact is inserted into an Al ring as a coating step and pressed. The magnet characteristics in were compared.

参考例2と同様にして,Ndが65wt%,Bが0.8wt%,残部
Feとなる非晶質合金薄帯を得た。この非晶質合金薄帯を
平均粒径約50μmに粉砕した後,Ar雰囲気中650℃で1時
間熱処理した。
Nd was 65 wt%, B was 0.8 wt%, and the balance was the same as in Reference Example 2.
An amorphous alloy ribbon to be Fe was obtained. This amorphous alloy ribbon was pulverized to an average particle size of about 50 μm, and then heat-treated at 650 ° C. for 1 hour in an Ar atmosphere.

次に,この粉末を無磁場中,2ton/cm2の圧力で直径15m
m,高さ10mmに加圧成形した。
Next, this powder was applied under a magnetic field of 2 ton / cm 2 under a magnetic field of 15 m in diameter.
It was press molded to a height of 10 mm.

次に,この加圧成形体を内径15mm,外径17mmのAl製リ
ングに挿入した後,400℃で5ton/cm2の圧力で,厚さ5mm,
直径19mmに加圧成形した。
Next, after inserting this pressed compact into an Al ring having an inner diameter of 15 mm and an outer diameter of 17 mm, a thickness of 5 mm was applied at 400 ° C under a pressure of 5 ton / cm 2 .
Pressure molding was performed to a diameter of 19 mm.

この試料の磁石特性はBr4.5kG,IHC12kOe,(BH)max4.
5M・G・Oeであった。尚,この実施例2や後述する実施
例5及び実施例6では,粉末成形体を円筒管や上下の金
属板間で挟み込むことにより加工時の成形体の形状が崩
れることを防止できるため,焼結工程を省くことができ
る。
Magnetic properties of this sample Br4.5kG, I H C 12kOe, ( BH) max 4.
It was 5M · G · Oe. In Example 2 and Examples 5 and 6, which will be described later, since the powder compact is sandwiched between a cylindrical tube and upper and lower metal plates, the shape of the compact during processing can be prevented from being collapsed. The bonding step can be omitted.

−実施例3− 実施例3は,R値60wt%の非晶質合金粉末を磁場中で生
成した希土類磁石を,挟み込み工程としてAl板で挾み,
圧延工程として圧延加工を施した場合における磁石特性
及び耐腐食性を比較した。
Example 3 In Example 3, a rare earth magnet produced by forming an amorphous alloy powder having an R value of 60 wt% in a magnetic field was sandwiched between Al plates as a sandwiching step.
The magnet properties and the corrosion resistance when the rolling process was performed as the rolling process were compared.

参考例2で作製した組成Nd60wt%,B0.8wt%,残部Fe
の非晶質合金薄帯を平均粒径約8μmに粉砕した後,Ar
雰囲気中800℃で1時間熱処理した。
Composition Nd60wt%, B0.8wt%, balance Fe made in Reference Example 2
After crushing the amorphous alloy ribbon of
Heat treatment was performed at 800 ° C. for 1 hour in an atmosphere.

この粉末を30kOeの磁界中2ton/cm2の圧力で幅50mm,長
さ100mm,厚さ10mm(印加磁場方向)に成形した。
This powder was molded in a magnetic field of 30 kOe under a pressure of 2 ton / cm 2 to a width of 50 mm, a length of 100 mm, and a thickness of 10 mm (in the direction of the applied magnetic field).

次にこの成形体を厚さ1mmのAl板で上下に挾んだ後,40
0℃で厚さ3mmまで圧延加工を施した。
Next, after sandwiching this compact vertically with a 1 mm thick Al plate,
Rolling was performed at 0 ° C. to a thickness of 3 mm.

次にこの圧延した成形体を550℃で2時間保持し,時
効した。
Next, the rolled compact was kept at 550 ° C. for 2 hours and aged.

この磁石の磁石特性はBr6.2kG,IHC15.0kOe,(BH)max
8.5M・G・Oeであった。
Magnetic properties of this magnet Br6.2kG, I H C 15.0kOe, ( BH) max
8.5M · G · Oe.

また,この磁石のAlで被覆された面は,90%湿度中70
℃で100時間保持しても錆の発生は認められなかった
が,未被覆の部分は約1時間で著しく錆が発生した。
In addition, the surface of this magnet coated with Al
No rust was observed even after holding at 100 ° C. for 100 hours, but significant rust occurred in the uncoated part in about 1 hour.

−参考例3− 参考例3は,R値40wt%の液体急冷合金である非晶質合
金粉末及び微細結晶化合金粉末を各々出発原料として生
成された希土類磁石の展延性と磁石特性とを比較した。
-Reference Example 3-Reference Example 3 compares the ductility and magnet properties of rare earth magnets produced using amorphous alloy powder and microcrystallized alloy powder, which are liquid quenched alloys with an R value of 40 wt%, as starting materials. did.

純度97wt%のNd(残部はCe,Prを主体とする他の希土
類元素),フェロボロン(B純分約20wt%)及び電解鉄
を使用し,希土類元素(R)が40wt%,B1.0wt%,残部F
eとなるように,アルゴン雰囲気中で高周波加熱により
溶解し,合金インゴットを得た。
Using Nd with purity of 97wt% (the remainder is other rare earth elements mainly composed of Ce and Pr), ferroboron (B pure content about 20wt%) and electrolytic iron, 40wt% of rare earth element (R) and 1.0wt% of B , Rest F
The alloy was melted by high-frequency heating in an argon atmosphere to obtain an alloy ingot.

次に,このインゴットを使用して,Ar雰囲気中で高周
波加熱により再溶解した後,周速度を約50m/secと約10m
/secに変化させたCu製ロールに噴射し,片ロール法によ
り,幅約2mm厚さ約20μmの非晶質合金薄帯と,幅約10m
m厚さ約100μmの液体急冷微細結晶化合金薄帯を得た。
尚,この微細結晶化急冷合金薄帯は,約3μm以下の微
細な結晶粒を含有していた。
Next, after using this ingot to redissolve by high-frequency heating in an Ar atmosphere, the peripheral speed was increased to about 50 m / sec and about 10 m.
sprayed onto a Cu roll changed to / sec, and a single roll method was used to form an amorphous alloy ribbon with a width of about 2mm and a thickness of about 20μm, and a width of about 10m.
A liquid quenched microcrystallized alloy ribbon having a thickness of about 100 μm was obtained.
The microcrystallized quenched alloy ribbon contained fine crystal grains of about 3 μm or less.

これら液体急冷合金薄帯を各々粗粉砕した後,ボール
ミルを用いて平均粒径約3μmに粉砕した。この粉末を
各々20kOeの磁界中,1ton/cm2の圧力で直径15mm,高さ10m
mの円盤状に成形した。得られた成形体を1020℃で真空
中1時間保持した後,Ar中1時間保持し,焼結した。
Each of these liquid quenched alloy ribbons was roughly pulverized, and then pulverized to an average particle size of about 3 μm using a ball mill. Each of these powders is 15 mm in diameter and 10 m in height at a pressure of 1 ton / cm 2 in a magnetic field of 20 kOe.
m. The obtained compact was kept in vacuum at 1020 ° C. for 1 hour, and then kept in Ar for 1 hour and sintered.

次に,この焼結体を,400℃で一軸方向に8ton/cm2の圧
力で加圧した。その後,Ar雰囲気中,600℃で1時間保持
し,時効した。この試料の磁石特性と,400℃,8ton/cm2
の加圧による径方向の伸び率を第3表に示す。
Next, this sintered body was pressed uniaxially at 400 ° C. at a pressure of 8 ton / cm 2 . After that, it was kept at 600 ° C. for 1 hour in an Ar atmosphere to age. The magnetic properties of this sample and 400 ° C, 8ton / cm 2
Table 3 shows the elongation percentage in the radial direction by pressurizing.

その結果,展延性は同じであるが,微細結晶化合金薄
帯を使用した方が,著しく高い磁石特性を示している。
As a result, although the extensibility is the same, the use of the finely crystallized alloy ribbon shows significantly higher magnet properties.

参考例4 参考例4はR値が70wt%であるインゴットと微細結晶
化急冷合金薄帯とを各々出発原料として生成された希土
類磁石の展延性及び磁石特性を比較した。
Reference Example 4 In Reference Example 4, the extensibility and the magnet properties of the rare earth magnets produced by using an ingot having an R value of 70 wt% and a microcrystalline quenched alloy ribbon as starting materials were compared.

参考例3と同様にして,Rが70wt%,Bが1wt%,残部Fe
のインゴットと,幅約5mm厚さ約50μmの液体急冷微細
結晶化合金薄帯を得た。尚,この合金薄帯は約1μm以
下の微細な結晶粒を含有していた。
As in Reference Example 3, R was 70 wt%, B was 1 wt%, and the balance was Fe.
And a liquid quenched microcrystallized alloy ribbon about 5mm wide and about 50μm thick. The alloy ribbon contained fine crystal grains of about 1 μm or less.

この急冷薄帯及びインゴットを粗粉砕した後,ボール
ミルを用いて微粉砕した。その結果,急冷薄帯に比べ,
インゴットは著しく被粉砕性が低下し,広い粒度分布を
示しているため,粗粒子が多量に存在し,平均粒径約2
μmまで粉砕しても均質性の低下した成形用粉末となっ
ていた。(尚,本系磁石合金は酸化等の反応が極めて顕
著であるので,平均粒径2μm程度以下の粉砕は好まし
くない。) そこで,粉砕条件を一定にして粉砕したところ,急冷
薄帯粉末は約3μm,インゴット粉末は約30μmとなっ
た。この粉末を,参考例3と同様にして,磁場中成形し
た後,700℃で焼結し,加圧変形,時効した。この試料の
磁石特性と,400℃の加圧変形による径方向の伸び率を第
4表に示す。
The quenched ribbon and ingot were roughly pulverized and then finely pulverized using a ball mill. As a result, compared to quenched ribbons,
Since the ingot has remarkably reduced grindability and shows a wide particle size distribution, a large amount of coarse particles are present, and the average particle size is about 2%.
Even when pulverized to a size of μm, the powder for molding had reduced homogeneity. (Because the reaction such as oxidation is very remarkable in this magnet alloy, pulverization with an average particle size of about 2 μm or less is not preferable.) Therefore, when the pulverization was performed under constant pulverization conditions, the quenched ribbon powder was reduced 3 μm and ingot powder was about 30 μm. This powder was compacted in a magnetic field in the same manner as in Reference Example 3, sintered at 700 ° C., deformed under pressure, and aged. Table 4 shows the magnet properties of this sample and the elongation percentage in the radial direction due to deformation under pressure at 400 ° C.

その結果,微細結晶化急冷薄帯を使用した方が,明ら
かに高い展延性及び磁石特性を示している。
As a result, the use of the microcrystallized quenched ribbon shows clearly higher ductility and magnet properties.

−参考例5− 参考例5はR値が37wt%以上の液体急冷結晶化合金粉
末を出発原料として生成された希土類磁石の展延性及び
磁石特性を比較した。
-Reference Example 5-In Reference Example 5, the extensibility and magnet properties of a rare earth magnet produced using a liquid quenched crystallized alloy powder having an R value of 37 wt% or more as a starting material were compared.

参考例3と同様にして,Rが34,37,40wt%,B1.0wt%,
残部Feとなる3種類のインゴットを得た後,幅約10mmで
厚さ約100μmの液体急冷結晶化合金薄帯を得た。尚,
この急冷結晶化合金薄帯は約3μm以下の微細な結合粒
を含有していた。
In the same manner as in Reference Example 3, R was 34, 37, 40 wt%, B 1.0 wt%,
After obtaining three kinds of ingots to be the remaining Fe, a liquid quenched crystallized alloy ribbon having a width of about 10 mm and a thickness of about 100 μm was obtained. still,
This rapidly crystallized alloy ribbon contained fine bonded grains of about 3 μm or less.

この急冷結晶化合金薄帯を使用して,参考例3と同様
にして,粉砕,磁場中成形,焼結した後,400℃で一軸方
向に8ton/cm2の圧力で加圧した。その後,600℃で5時間
時効した。
The quenched crystallized alloy ribbon was used, pulverized, formed in a magnetic field, and sintered in the same manner as in Reference Example 3, and then pressed uniaxially at 400 ° C. at a pressure of 8 ton / cm 2 . After that, it was aged at 600 ° C for 5 hours.

この試料の磁石特性と,400℃,8ton/cm2の加圧による
径方向の伸び率を第5表に示す。
Table 5 shows the magnet properties of this sample and the elongation percentage in the radial direction by applying a pressure of 8 ton / cm 2 at 400 ° C.

その結果,R値37wt%以上では,高い展延性が明らかに
認められ,又,IHCの向上も認められる。
As a result, with R-values 37 wt% or more, high ductility can clearly be recognized, also, is also observed improvement of I H C.

−参考例6− 参考例6は,R値が50wt%以上の場合における液体急冷
結晶化合金粉末を出発原料とした希土類磁石の磁石特性
を比較した。
-Reference Example 6-Reference Example 6 compared the magnet properties of rare earth magnets using a liquid quenched crystallized alloy powder as a starting material when the R value was 50 wt% or more.

参考例3と同様にして,Rが50,70,90wt%,B1.0wt%,
残部Feとなる3種類のインゴットを得た後,幅約10mmで
厚さ約100μmの液体急冷結晶化合金薄帯を得た。尚,
この急冷合金薄帯は約5mm以下の微細な結晶粒を含有し
ていた。
As in Reference Example 3, R was 50, 70, 90 wt%, B 1.0 wt%,
After obtaining three kinds of ingots to be the remaining Fe, a liquid quenched crystallized alloy ribbon having a width of about 10 mm and a thickness of about 100 μm was obtained. still,
The quenched alloy ribbon contained fine crystal grains of about 5 mm or less.

この急冷薄帯を使用して,実施例1と同様にして,粉
砕,磁場中成形した後,Rが50wt%の成形体を900℃で,R
が70wt%と90wt%の成形体を700℃で焼結した。
Using this quenched ribbon, pulverization and molding in a magnetic field were performed in the same manner as in Example 1, and then a molded body having an R of 50 wt% was heated at 900 ° C.
Were sintered at 700 ° C. at 70 and 90 wt%.

この焼結体を400℃でロール圧延し,厚みを1/2に減少
させた。次に,このロール圧延体をAr雰囲気中,600℃で
2時間時効した。この試料の磁石特性を第6表に示す。
The sintered body was roll-rolled at 400 ° C. to reduce the thickness by half. Next, the rolled body was aged at 600 ° C. for 2 hours in an Ar atmosphere. Table 6 shows the magnet properties of this sample.

その結果,R値90wt%の組成でも,(BH)maxが1M・G
・Oeを越える磁石特性を示している。
As a result, (BH) max is 1M · G even with a composition with an R value of 90 wt%.
・ Shows magnet properties exceeding Oe.

−実施例4− 実施例4は,R値60wt%の液体急冷結晶化合金粉末より
生成した棒状の希土類磁石を,被覆工程としてCuパイプ
中に挿入し、細線化工程として細線化加工を施した場合
における磁石特性及び耐腐食性を比較した。
-Example 4 In Example 4, a rod-shaped rare earth magnet produced from a liquid quenched crystallized alloy powder having an R value of 60 wt% was inserted into a Cu pipe as a coating step, and thinning was performed as a thinning step. The magnet properties and corrosion resistance in the cases were compared.

5wt%のCe,15wt%のPr,残部Nd(ただし,他の希土類
元素はNdとして含めた。)からなるセリウムジジムと純
度95wt%のDy,フェロボロン及び電解鉄を使用し,参考
例3と同様にして,R中のDyが5at%となるように,R60wt
%,B0.9wt%,残部Feとなるインゴットを得た後,幅約1
0mmで厚さ約100μmの液体急冷結晶化薄帯を得た。尚,
この急冷合金薄帯は約5mm以下の微細な結晶粒を含有し
ていた。
Cerium dymium consisting of 5 wt% Ce, 15 wt% Pr, balance Nd (other rare earth elements were included as Nd) and 95 wt% pure Dy, ferroboron and electrolytic iron were used. R60wt so that Dy in R becomes 5at%.
%, B0.9wt%, balance ingot after obtaining ingot which is Fe
A liquid quenched crystallized ribbon of 0 mm and a thickness of about 100 μm was obtained. still,
The quenched alloy ribbon contained fine crystal grains of about 5 mm or less.

次に,この急冷薄帯を使用して,参考例3と同様にし
て粉砕した後,10kOeの磁界中,0.5ton/cm2の圧力で,直
径10mm,長さ約100mmの棒状成形体を得た。
Next, using this quenched ribbon, pulverization was performed in the same manner as in Reference Example 3, and a rod-shaped compact having a diameter of 10 mm and a length of about 100 mm was obtained in a 10 kOe magnetic field at a pressure of 0.5 ton / cm 2. Was.

この成形体を850℃で参考例3と同様にして焼結し
た。次に,この焼結体を,厚さ1mm,内径8mmのCu製パイ
プに内接するように加工した後,Cu製パイプに挿入し,40
0℃にてスウェージングダイスを用いて,直径2mmまで細
線化した。
This compact was sintered at 850 ° C. in the same manner as in Reference Example 3. Next, this sintered body was processed so as to be inscribed in a Cu pipe with a thickness of 1 mm and an inner diameter of 8 mm, and then inserted into the Cu pipe.
Using a swaging die at 0 ° C., the wire was thinned to a diameter of 2 mm.

次に,この細線をAr雰囲気中,650℃で0.5時間時効し
た。
Next, this thin wire was aged at 650 ° C. for 0.5 hour in an Ar atmosphere.

その磁石特性は,Br7.4kG,IHC15.0kOe,(BH)max12.5M
・G・Oeであった。また,この磁石のCuで被覆された側
面は,90%湿度中70℃で100時間保持しても錆の発生は認
められなかったが,未被覆部分は約1時間で著しく錆が
発生していた。
Its magnetic properties, Br7.4kG, I H C 15.0kOe, (BH) max 12.5M
・ It was G ・ Oe. No rust was observed on the side of the magnet coated with Cu at 70 ° C in 90% humidity for 100 hours, but no rust was observed in the uncoated part in about 1 hour. Was.

−実施例5− 実施例5は,R値が65wt%の液体急冷結晶化合金粉末を
磁場中で加圧成形した後,被覆工程として粉末成形体Al
製リングに挿入して加圧成形した場合における磁石特性
を比較した。
-Example 5-In Example 5, a liquid quenched crystallized alloy powder having an R value of 65 wt% was press-formed in a magnetic field, and then the powder compact Al was formed as a coating step.
The magnet characteristics in the case where the magnet was inserted into a ring made and pressed were compared.

参考例4と同様にして,Rが65wt%,Bが0.8wt%,残部F
eとなる幅約10mmで厚さ約100μmの液体急冷結晶化合金
薄帯を得た。この急冷薄帯を約50μmに粉砕した後,Ar
雰囲気中600℃で1時間熱処理した。
As in Reference Example 4, R was 65 wt%, B was 0.8 wt%, and the balance was F
A liquid quenched crystallized alloy ribbon having a width of about 10 mm and a thickness of about 100 μm was obtained. After quenching the quenched ribbon to about 50 μm,
Heat treatment was performed at 600 ° C. for 1 hour in an atmosphere.

次に,この液体急冷結晶化合金粉末を,参考例3と同
様にして磁場中成形した。この加圧成形体を内径15mm,
外径17mmのAl製リングに挿入した後,400℃で5ton/cm2
圧力で,厚さ5mm,直径19mm程度に加圧成形した。
Next, the liquid quenched crystallized alloy powder was molded in a magnetic field in the same manner as in Reference Example 3. This pressed body is 15 mm in inner diameter,
After being inserted into an Al ring having an outer diameter of 17 mm, it was pressed at 400 ° C. with a pressure of 5 ton / cm 2 to a thickness of 5 mm and a diameter of about 19 mm.

この試料の磁石特性は,Br4.7kG,IHC12.0kOe,(BH)
max5.0M・G・Oeであった。
Magnetic properties of this sample, Br4.7kG, I H C 12.0kOe, (BH)
The maximum was 5.0M · G · Oe.

−実施例6− 実施例6は結晶粒が5μm以下である液体急冷結晶化
合金粉末より生成した希土類磁石を,挟み工程としてAl
板で挾み,圧延工程として圧延加工を施して場合におけ
る磁石特性及び耐腐食性を比較した。
-Example 6-In Example 6, a rare earth magnet produced from a liquid quenched crystallized alloy powder having crystal grains of 5 µm or less was used as a sandwiching step by using Al as a sandwiching step.
The magnet properties and corrosion resistance in the case where the sheet was sandwiched and rolled as a rolling process were compared.

純度97wt%のNd(残部はCe,Prを主体とする他の希土
類元素),フェロボロン,電解鉄,電解コバルト及びア
ルミニウムを使用し,実施例2と同様にして,Rが60wt
%,Bが1.1wt%,残部がFe87・Co10・Al3となる幅約10mm
で厚さ約100μmの液体急冷結晶化合金薄帯を得た。
尚,この急冷合金薄帯は約5μm以下の微細の結晶粒を
含有していた。
Using Nd with a purity of 97 wt% (the remainder is other rare earth elements mainly composed of Ce and Pr), ferroboron, electrolytic iron, electrolytic cobalt and aluminum, the R is 60 wt% in the same manner as in Example 2.
%, B is 1.1 wt%, a width of about 10mm and the balance being the Fe 87 · Co 10 · Al 3
As a result, a liquid quenched crystallized alloy ribbon having a thickness of about 100 μm was obtained.
The quenched alloy ribbon contained fine crystal grains of about 5 μm or less.

次に,この液体急冷結晶化合金薄帯を平均粒径約10μ
mに粉砕した後,30kOeの磁界中2ton/cm2の圧力で幅50m
m,長さ100mm,厚さ10mm(印加磁場方向)に成形した。
Next, this liquid quenched crystallized alloy ribbon is made to have an average particle size of about 10μ.
After being crushed to 30 mOm, the width is 50 m at a pressure of 2 ton / cm 2 in a magnetic field of 30 kOe
m, length 100 mm, thickness 10 mm (direction of applied magnetic field).

次に,この成形体を厚さ1mmのAl板で上下に挾んだ後,
400℃で厚さ3mmまで圧延した。
Next, after sandwiching this compact vertically with a 1mm thick Al plate,
It was rolled at 400 ° C. to a thickness of 3 mm.

次に,この圧延した成形体を550℃で5時間保持し,
時効した。この磁石の磁気特性は,Br6.2kG,IHC14.5kOe,
(BH)max8.5M・G・Oeであった。
Next, the rolled compact is held at 550 ° C. for 5 hours.
It became stale. Magnetic properties of the magnet, Br6.2kG, I H C 14.5kOe,
(BH) max 8.5 M · G · Oe.

又,この磁石のAlで被覆された面は,90%湿度中,70℃
で100時間保持しても錆の発生は認められなかったが,
未被覆の部分は約1時間で著しく錆が発生した。
The surface of this magnet coated with Al is 70 ° C in 90% humidity.
No rust was observed after holding for 100 hours at
The uncoated portion was significantly rusted in about one hour.

以上の実施例で示されたように,Nd,Fe,Bを主成分とし
て含有するR2T14B系磁石において, 1)前記磁石組成中,Rの組成値を37〜90wt%とする。
As shown in the above examples, in the R 2 T 14 B-based magnet containing Nd, Fe, and B as main components, 1) In the magnet composition, the composition value of R is 37 to 90 wt%.

2)上記組成の液体急冷合金である非晶質合金粉末又は
液体急冷結晶化合金粉末を出発原料として使用する。
2) An amorphous alloy powder or a liquid quenched crystallized alloy powder which is a liquid quenched alloy having the above composition is used as a starting material.

3)延展性,耐腐食性が良好な金属で成形体又は焼結体
の表面を被覆して塑性加工する。
3) Cover the surface of the compact or sintered body with a metal having good spreadability and corrosion resistance, and perform plastic working.

以上の1)〜3)に述べたことにより,簡便な製造工
程で従来では作製が困難であって,しかもコスト高を招
く傾向にあった細線状や薄板状の磁石を容易に作製する
ことができるようになると共に,被覆する金属の作用に
よって耐腐食性も向上するため,工業上極めて有益とな
る。
As described in the above 1) to 3), it is possible to easily produce a thin wire or thin plate magnet which has been conventionally difficult to produce with a simple production process and which tends to increase the cost. In addition to the fact that it becomes possible, the corrosion resistance is also improved by the action of the coating metal, which is extremely useful in industry.

以上の実施例では,Nd・Fe・B系,Ce・Pr・Nd・Dy・Fe
・B系についてのみ述べたが,Ndの一部をY及び他の希
土類金属例えばGd,Tb,Ho等で置換したり,Feの一部をAl
及び他の遷移金属例えばCr,Mn,Co,Ni等で置換したりB
の一部をSi,C等で置換しても,磁石合金の組成がNd・Fe
・Bを主な成分の一部としており,また磁石の化合物系
でNd2Fe14B系で代表されるようなR2T14Bが磁性に寄与し
ているものであれば,本発明の効果が十分に期待できる
ものであることは容易に推測できる。
In the above embodiment, NdFeB system, CePrNdDyFe
・ Only B type was described, but part of Nd was replaced with Y and other rare earth metals such as Gd, Tb, Ho, etc.
And other transition metals such as Cr, Mn, Co, Ni, etc.
The composition of the magnet alloy is Nd / Fe even if part of
・ If B is a part of the main component, and R 2 T 14 B as represented by Nd 2 Fe 14 B is a magnet compound, it contributes to the present invention. It can be easily inferred that the effect can be sufficiently expected.

また,本実施例では,塑性加工をプレス,ロール圧
延,スエージングについてのみ述べたが,これのみに限
定されるものではなく,目的に応じた形状の磁石が得ら
れるようであれば他の塑性加工方法(例えば押し出し
等)においても適用できることは明らかである。
In this embodiment, the plastic working is described only for press, roll rolling, and swaging. However, the present invention is not limited to this, and other plastic working is possible as long as a magnet having a desired shape can be obtained. Obviously, the present invention can also be applied to a processing method (for example, extrusion or the like).

また本実施例では加工後に磁石表面が被覆される金属
としてCuとAlのみについてのみ述べたが,これのみに限
定されるものでなく,磁石の加工条件において展延性を
有し,耐腐食性の優れた金属であれば,本発明の範囲に
あることは容易に推察できる。
In this example, only Cu and Al were described as metals coated on the magnet surface after processing. However, the present invention is not limited to this. It can be easily inferred that any excellent metal is within the scope of the present invention.

以上の磁石の塑性加工においては,条件により磁石の
IHC,BHCが減少することも見られるが,通常500℃〜700
℃程度の熱処理で回復できるものである。
In the plastic working of magnets described above, the magnet
Although I H C and B H C can be seen to decrease, it is usually 500 ° C to 700 ° C.
It can be recovered by heat treatment at about ° C.

〔発明の効果〕〔The invention's effect〕

以上の説明のとおり,本発明によれば,R2T14B系磁石
において, 1)磁石組成中,Rを37〜90wt%とする。
As described above, according to the present invention, in the R 2 T 14 B-based magnet, 1) R is 37 to 90 wt% in the magnet composition.

2)液体急冷合金粉末をR2T14B系磁石材料として使用す
る。
2) Use liquid quenched alloy powder as R 2 T 14 B magnet material.

3)延展性,耐腐食性が良好な金属で成形体又は焼結体
の表面を被覆して塑性加工する。
3) Cover the surface of the compact or sintered body with a metal having good spreadability and corrosion resistance, and perform plastic working.

以上の1)〜3)に述べたことにより,簡便な製造工
程で従来では作製が困難であって,しかもコスト高を招
く傾向にあった細線状や薄板状の磁石を容易に作製する
ことできるようになると共に,被覆する金属の作用によ
って耐腐食性も向上するため,工業上極めて有益とな
る。
As described in the above 1) to 3), it is possible to easily produce a thin wire or thin plate magnet which has been conventionally difficult to manufacture with a simple manufacturing process and which tends to increase the cost. In addition, the corrosion resistance is improved by the action of the coating metal, which is extremely useful in industry.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭57−141901(JP,A) 特開 昭59−76856(JP,A) 特開 昭60−152652(JP,A) 特開 昭61−150201(JP,A) 特開 昭61−129802(JP,A) 特開 昭61−48904(JP,A) 特開 昭60−54406(JP,A) ──────────────────────────────────────────────────続 き Continuation of front page (56) References JP-A-57-141901 (JP, A) JP-A-59-76856 (JP, A) JP-A-60-152652 (JP, A) JP-A 61-141 150201 (JP, A) JP-A-61-129802 (JP, A) JP-A-61-48904 (JP, A) JP-A-60-54406 (JP, A)

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】磁石合金表面が展延性及び耐腐食性の優れ
た金属で被覆されると共に,粉末成形体,又は焼結体を
細線化或いは圧延化して成る希土類磁石であって,Nd,F
e,Bを主成分として含有し,且つ結晶粒径が10[μm]
以下の液体急冷結晶化合金粉末,又は非晶質の液体急冷
合金粉末であるR2T14B系磁石材料(但し,RはYを含むC
e,Pr,Nd,Gd,Tb,Dy,及びHoの少なくとも一種から成る希
土類金属であり,TはAl,Cr,Mn,Fe,Co,及びNiの少なくと
も一種から成る遷移金属を表わし,Rの組成値は37〜90
[wt%]の範囲にあるとする)により生成されたことを
特徴とする希土類磁石。
1. A rare earth magnet comprising a magnet alloy surface coated with a metal having excellent spreadability and corrosion resistance, and a powder compact or sintered compact thinned or rolled.
Contains e and B as main components and has a crystal grain size of 10 [μm]
The following liquid quenched crystallized alloy powders or amorphous liquid quenched alloy powders of R 2 T 14 B-based magnet materials (where R is C containing Y
e is a rare earth metal composed of at least one of Pr, Nd, Gd, Tb, Dy, and Ho; T is a transition metal composed of at least one of Al, Cr, Mn, Fe, Co, and Ni; Composition value is 37-90
[Wt%]).
【請求項2】Nd,Fe,Bを主成分として含有するR2T14B系
磁石材料(但し,RはYを含むCe,Pr,Nd,Gd,Tb,Dy,及びHo
の少なくとも一種から成る希土類金属であり,TはAl,Cr,
Mn,Fe,Co,及びNiの少なくとも一種から成る遷移金属を
表わす)により生成される希土類磁石を,展延性及び耐
腐食性の優れた金属で被覆する被覆工程と,該金属で被
覆された後の希土類磁石を細線化する細線化工程とを含
み,前記被覆工程で用いるR2T14B系磁石材料は,Rの組成
値が37〜90[wt%]の範囲にあり,且つ結晶粒径が10
[μm]以下の液体急冷結晶化合金粉末,又は非晶質の
液体急冷合金粉末であることを特徴とする希土類磁石の
製造方法。
2. An R 2 T 14 B-based magnet material containing Nd, Fe, and B as main components (where R is Ce, Pr, Nd, Gd, Tb, Dy, and Ho containing Y).
T is Al, Cr,
A transition metal consisting of at least one of Mn, Fe, Co, and Ni), and a step of coating the rare earth magnet with a metal having excellent spreadability and corrosion resistance. The R 2 T 14 B-based magnet material used in the coating step has a composition value of R in the range of 37 to 90 [wt%] and a crystal grain size. Is 10
A method for producing a rare earth magnet, wherein the powder is a liquid quenched crystallized alloy powder of [μm] or less or an amorphous liquid quenched alloy powder.
【請求項3】Nd,Fe,Bを主成分として含有するR2T14B系
磁石材料(但し,RはYを含むCe,Pr,Nd,Gd,Tb,Dy,及びHo
の少なくとも一種から成る希土類金属であり,TはAl,Cr,
Mn,Fe,Co,及びNiの少なくとも一種から成る遷移金属を
表わす)により生成される希土類磁石を,展延性及び耐
腐食性の優れた金属体間に挟み込む挟み込み工程と,該
金属体間に挟み込まれた後の希土類磁石を圧延する圧延
工程とを含み,前記挟み込み工程で用いるR2T14B系磁石
材料は,Rの組成値が37〜90[wt%]の範囲にあり,且つ
結晶粒径が10[μm]以下の液体急冷結晶化合金粉末,
又は非晶質の液体急冷合金粉末であることを特徴とする
希土類磁石の製造方法。
3. An R 2 T 14 B-based magnet material containing Nd, Fe, and B as main components (where R is Ce, Pr, Nd, Gd, Tb, Dy, and Ho containing Y).
T is Al, Cr,
A transition metal consisting of at least one of Mn, Fe, Co, and Ni) and a step of sandwiching a rare earth magnet between metal bodies having excellent spreadability and corrosion resistance. The R 2 T 14 B-based magnet material used in the sandwiching step has a composition value of R in the range of 37 to 90 [wt%] and a crystal grain size. Liquid quenched crystallized alloy powder with a diameter of 10 [μm] or less,
Or a method for producing a rare earth magnet, characterized by being an amorphous liquid quenched alloy powder.
JP62111664A 1986-10-31 1987-05-09 Rare earth magnet and its manufacturing method Expired - Fee Related JP2597843B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62111664A JP2597843B2 (en) 1986-10-31 1987-05-09 Rare earth magnet and its manufacturing method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP26176086 1986-10-31
JP61-261760 1986-10-31
JP62111664A JP2597843B2 (en) 1986-10-31 1987-05-09 Rare earth magnet and its manufacturing method

Publications (2)

Publication Number Publication Date
JPS63226007A JPS63226007A (en) 1988-09-20
JP2597843B2 true JP2597843B2 (en) 1997-04-09

Family

ID=26451005

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62111664A Expired - Fee Related JP2597843B2 (en) 1986-10-31 1987-05-09 Rare earth magnet and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2597843B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2623731B2 (en) * 1988-07-29 1997-06-25 三菱マテリアル株式会社 Manufacturing method of rare earth-Fe-B based anisotropic permanent magnet
JPH02206106A (en) * 1989-02-06 1990-08-15 Tokin Corp Manufacture of anisotropic rare-earth magnet
JP5692231B2 (en) * 2010-07-16 2015-04-01 トヨタ自動車株式会社 Rare earth magnet manufacturing method and rare earth magnet

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57141901A (en) * 1981-02-26 1982-09-02 Mitsubishi Steel Mfg Co Ltd Permanent magnet powder
JPS5976856A (en) * 1982-10-22 1984-05-02 Fujitsu Ltd Permanent magnet material and its manufacture
JPS6054406A (en) * 1983-09-03 1985-03-28 Sumitomo Special Metals Co Ltd Permanent magnet having excellent oxidation resistance characteristic
JPS60152652A (en) * 1984-01-21 1985-08-10 Nippon Gakki Seizo Kk Rapidly cooled magnet and its manufacture
JPS6148904A (en) * 1984-08-16 1986-03-10 Hitachi Metals Ltd Manufacture of permanent magnet
JPS61129802A (en) * 1984-11-28 1986-06-17 Hitachi Metals Ltd Heat treatment of iron-rare earth metal-boron system permanent magnet
JPS61150201A (en) * 1984-12-24 1986-07-08 Sumitomo Special Metals Co Ltd Permanent magnet with excellent anticorrosion property

Also Published As

Publication number Publication date
JPS63226007A (en) 1988-09-20

Similar Documents

Publication Publication Date Title
KR100360533B1 (en) Method for producing high silicon steel, and silicon steel
US4765848A (en) Permanent magnent and method for producing same
CN101370606B (en) Rare earth sintered magnet and method for producing same
JP3084748B2 (en) Manufacturing method of rare earth permanent magnet
JPS62202506A (en) Permanent magnet and manufacture thereof
JPH03153006A (en) Permanent magnet and raw material therefor
EP0595477A1 (en) Method of manufacturing powder material for anisotropic magnets and method of manufacturing magnets using the powder material
JP2597843B2 (en) Rare earth magnet and its manufacturing method
JP3148581B2 (en) Method for producing R-Fe-BC-based permanent magnet material having excellent corrosion resistance
JPH07272914A (en) Sintered magnet, and its manufacture
JPS61268006A (en) Anisotropic magnet
WO2005043558A1 (en) Method for producing sintered rare earth element magnet
KR102261143B1 (en) Manufacturing method of rare earth sintered magnet
JP3047239B2 (en) Warm-worked magnet and manufacturing method thereof
JP2019062156A (en) Method for manufacturing r-t-b based sintered magnet
JPS63178505A (en) Anisotropic r-fe-b-m system permanent magnet
JPH04134804A (en) Manufacture of rare earth permanent magnet
JPS6386502A (en) Rare earth magnet and manufacture thereof
JPWO2004013873A1 (en) Rare earth-iron-boron magnet manufacturing method
JP2823076B2 (en) Warm magnet
JP2660917B2 (en) Rare earth magnet manufacturing method
JPH05152119A (en) Hot-worked rare earth element-iron-carbon magnet
JPWO2004013872A1 (en) Permanent magnet and method for manufacturing the same
JPS62192568A (en) Production of magnet consisting of rare earth cobalt
JPH03295202A (en) Hot-worked magnet and manufacture thereof

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees