JPH03153006A - Permanent magnet and raw material therefor - Google Patents

Permanent magnet and raw material therefor

Info

Publication number
JPH03153006A
JPH03153006A JP1292889A JP29288989A JPH03153006A JP H03153006 A JPH03153006 A JP H03153006A JP 1292889 A JP1292889 A JP 1292889A JP 29288989 A JP29288989 A JP 29288989A JP H03153006 A JPH03153006 A JP H03153006A
Authority
JP
Japan
Prior art keywords
permanent magnet
less
grain size
plastic working
molten metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1292889A
Other languages
Japanese (ja)
Other versions
JP2693601B2 (en
Inventor
Yasuto Nozawa
野沢 康人
Katsunori Iwasaki
克典 岩崎
Shigeo Tanigawa
茂穂 谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP1292889A priority Critical patent/JP2693601B2/en
Publication of JPH03153006A publication Critical patent/JPH03153006A/en
Application granted granted Critical
Publication of JP2693601B2 publication Critical patent/JP2693601B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To obtain a permanent magnet whose residual flux density is high and whose anisotropy degree is good by a method wherein, in a permanent magnet formed while an R-Fe-B-based alloy (where R is one or more kinds of rare-earth elements including Y) formed by quenching a molten metal is made magnetically anisotropic by a plastic working operation, a range of an average crystal particle diameter and a volume partial rate of coarse and large crystal particles are prescribed. CONSTITUTION:While a shape measured by using a picture of a fracture is regarded as a disk having the central axis in the c-axis direction, a volume is found; a diameter of a sphere having a volume equal to the disk is regarded as a crystal particle diameter. A degree of anisotropy by a plastic working operation differs according to the crystal particle diameter. Especially when an average crystal particle diameter is set to 0.1 to 0.5mum and a volume partial rate of crystal particles exceeding a crystal particle diameter of 0.5mum is set to less than 20%, it is possible to manufacture a permanent magnet whose residual flux density is 90% or higher of a saturation magnetization and whose anisotropy degree is good.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はR−Fe−B系永久磁石(Rは希土類元素)に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an R-Fe-B permanent magnet (R is a rare earth element).

〔従来の技術〕[Conventional technology]

希±1rrm石の市場において、R−Fe−B系焼結磁
石(特開昭59−46008)は、高い磁気特性と従来
のSm−Co磁石よりも低い価格のため広く実用に供さ
れている。一方、超急冷プロセスまたは鋳造プロセスと
熱間塑性加工を利用したR−Fe−B基型性加工磁石(
特開昭60−1゜0402)も広く研究されており、熱
安定性が焼結磁石よりも良好であり、容易磁化方向の厚
みが小さい磁石では、焼結磁石よりも高い磁気特性を得
られるという特徴を有している。また、超急冷プロセス
を利用した塑性加工磁石は、高い磁気特性を有する異方
性ボンド磁石の原料として使用可能であるという利点を
有している。(特開昭63232301)このような、
塑性加工を利用した永久磁石において、原料として急冷
薄帯(粉、片状体)の保磁力を3kOe以下に制御した
R−Fe−B系合金を用いる事により、高エネルギ積を
有する磁石の製造方法が提案されている(特開昭63−
152110)。
In the rare ±1 rrm stone market, R-Fe-B sintered magnets (JP-A-59-46008) are widely put into practical use due to their high magnetic properties and lower price than conventional Sm-Co magnets. . On the other hand, R-Fe-B basic processed magnets using ultra-quenching process or casting process and hot plastic working (
JP-A-60-1゜0402) has also been widely studied, and has been shown to have better thermal stability than sintered magnets, and magnets with a smaller thickness in the direction of easy magnetization can obtain higher magnetic properties than sintered magnets. It has the following characteristics. Furthermore, a plastically worked magnet using an ultra-quenching process has the advantage that it can be used as a raw material for anisotropic bonded magnets having high magnetic properties. (Unexamined Japanese Patent Publication No. 63232301) Like this,
In permanent magnets using plastic working, we manufacture magnets with a high energy product by using R-Fe-B alloys in which the coercive force of quenched ribbons (powder, flakes) is controlled to 3 kOe or less as raw materials. A method has been proposed (Japanese Patent Application Laid-open No. 1983-
152110).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら1本発明者等が実験したところでは、保磁
力が3kOe以下の急冷薄片を用いた塑性加工磁石の残
留磁束密度は低かったにの理由としては、急冷薄片同士
の界面で異常結晶粒成長が起こり、0.7μmを越える
結晶粒径を有する粗大結晶粒が塑性流動による異方性化
を阻害している事が明らかになった。
However, according to experiments conducted by the present inventors, the reason why the residual magnetic flux density of plastically worked magnets using quenched flakes with a coercive force of 3 kOe or less was low was due to abnormal grain growth at the interface between the quenched flakes. It has become clear that coarse crystal grains with a crystal grain size exceeding 0.7 μm inhibit anisotropy due to plastic flow.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、上記問題点を解決するために下記のような技
術的手段を用いた。
The present invention uses the following technical means to solve the above problems.

すなわち、溶湯急冷により作成したR−Fe−B系合金
(RはYを含む1種類以上の希土類元素)を塑性加工に
より磁気的に異方性化した永久磁石において、平均結晶
粒径が0.1μm以上0゜5μm以下であり、結晶粒径
が0.7μmを越える結晶粒の体積分率が20%未満で
ある事を特徴とする永久磁石を用いることにより、上記
目的を達成した。
That is, in a permanent magnet in which an R-Fe-B alloy (R is one or more rare earth elements including Y) created by rapid cooling of a molten metal is made magnetically anisotropic by plastic working, the average crystal grain size is 0. The above object has been achieved by using a permanent magnet characterized in that the volume fraction of crystal grains having a crystal grain size of 1 μm or more and 0.5 μm or less and a crystal grain size exceeding 0.7 μm is less than 20%.

上記合金の組成は、RvFewcoxByMz (Rは
Yを含む1種類以上の希土類元素、MはGa。
The composition of the above alloy is RvFewcoxByMz (R is one or more rare earth elements including Y, M is Ga.

Zn、Si+ Al、Nb、Zr、Hf、Mo、P! 
C,Cu、Niよりなる元素の1種以上および不可避不
純物)の組成式で表され、11≦v≦18、w=100
−u−x−y−z、0≦x≦304≦y≦11.O≦Z
≦3であることが好ましい。
Zn, Si+ Al, Nb, Zr, Hf, Mo, P!
One or more elements consisting of C, Cu, Ni and unavoidable impurities), 11≦v≦18, w=100
-u-x-y-z, 0≦x≦304≦y≦11. O≦Z
It is preferable that ≦3.

また、塑性加工前の合金の、常温における保磁力が3k
Oeを超え、結晶粒径が0.7μmを越える結晶粒の体
積分率が20%未満であることを特徴とする永久磁石原
料であることが好ましい、また、このR−Fe−B系合
金の表面粗さが3μm以下であることが好ましい。
In addition, the coercive force of the alloy before plastic working at room temperature is 3k.
It is preferable that the permanent magnet raw material is characterized in that the volume fraction of crystal grains exceeding Oe and the crystal grain size exceeding 0.7 μm is less than 20%. It is preferable that the surface roughness is 3 μm or less.

さらに、R−Fe−B系合金の表面粗さを3μm以下に
するためには、溶湯急冷が双ロール法により行われるか
、溶湯急冷が真空または大気圧力よりも低い圧力下で行
われるか、溶湯急冷がHeまたはNeガス中で行われる
ことが望ましい。
Furthermore, in order to make the surface roughness of the R-Fe-B alloy 3 μm or less, the molten metal quenching is performed by a twin roll method, the molten metal quenching is performed in a vacuum or under a pressure lower than atmospheric pressure, Preferably, the molten metal quenching is performed in He or Ne gas.

本発明において、R−Fe−B系合金は主相としてR2
Fe14BあるいはR2(F e 、 Co) 14B
を有する合金を意味する。単ロール法、双ロール法、超
音波ガスアトマイズ法等の溶湯急冷法を用いて、溶融金
属を急速冷却する事により、非晶質状態または微細な結
晶よりなる合金を作成する事が可能である。この合金を
600℃から850℃の範囲で塑性加工する事により、
磁気的に異方性化した永久磁石を作成可能である。ここ
で磁気的な異方性化とは、残留磁束密度が測定方向によ
り異なる現象を言い、結晶軸方向が塑性加工により一方
向に揃う事と対応している。
In the present invention, the R-Fe-B alloy has R2 as the main phase.
Fe14B or R2 (F e , Co) 14B
means an alloy with By rapidly cooling molten metal using a molten metal quenching method such as a single roll method, a twin roll method, or an ultrasonic gas atomization method, it is possible to create an alloy consisting of an amorphous state or fine crystals. By plastically working this alloy in the range of 600℃ to 850℃,
It is possible to create permanent magnets that are magnetically anisotropic. Here, magnetic anisotropy refers to a phenomenon in which the residual magnetic flux density differs depending on the measurement direction, and corresponds to the fact that the crystal axis direction is aligned in one direction due to plastic working.

本発明者等は、塑性加工による異方性化の度合が結晶粒
径により異なることを見いだした。特に、平均結晶粒径
を0.1〜0.5μmとし、かつ結晶粒径が0.7μm
を越える結晶粒の体積分率を20%未満とすることによ
り、残留磁束密度が飽和磁化の90%以上である異方性
化度の良好な永久磁石を作成することが可能であること
を見いだした。
The present inventors have found that the degree of anisotropy caused by plastic working differs depending on the crystal grain size. In particular, the average crystal grain size is 0.1 to 0.5 μm, and the crystal grain size is 0.7 μm.
It has been discovered that by setting the volume fraction of crystal grains exceeding Ta.

平均結晶粒径は、組成(とくに希土類量)や塑性加工条
件(昇温速度、加工温度、加工時間等)により、大きく
異なる。また、異方性化した結晶粒は、正方晶のC軸方
向が短くC面方向に長い板状の結晶粒である。本発明に
おいては、破面の写真より81り定した形状をC軸方向
に中心軸を有する円板として体積を求め、この円板と等
しい体積を有する球の直径をもって結晶粒径と定義した
。また、結晶粒径の平均が平均結晶粒径である。
The average grain size varies greatly depending on the composition (particularly the amount of rare earth) and plastic working conditions (heating rate, working temperature, working time, etc.). Further, the anisotropic crystal grains are plate-shaped crystal grains that are short in the C-axis direction of a tetragonal crystal and long in the C-plane direction. In the present invention, the volume was determined from a shape determined from a photograph of the fracture surface as a disk having its central axis in the C-axis direction, and the diameter of a sphere having the same volume as this disk was defined as the crystal grain size. Further, the average crystal grain size is the average crystal grain size.

塑性加工温度が低すぎる場合や希土類量が少なすぎる場
合には、結晶粒成長を促進する希土類リッチな低融点液
相(融点580〜690℃)が存在しないために結晶粒
成長が抑制され、平均結晶粒径は0.1μm以下になる
。平均結晶粒径が01μm未満の場合、合金の塑性変形
能が不十分で結晶粒の異方性化が充分に進行しないため
に。
If the plastic working temperature is too low or the amount of rare earth is too small, there is no rare earth-rich low melting point liquid phase (melting point 580-690°C) that promotes grain growth, so grain growth is suppressed and the average The crystal grain size becomes 0.1 μm or less. If the average crystal grain size is less than 0.1 μm, the plastic deformability of the alloy is insufficient and the anisotropy of the crystal grains does not progress sufficiently.

残留磁束密度を飽和磁化の90%以上にすることが困難
である8 急冷状態の合金に多くの粗大結晶粒が含まれる場合、塑
性加工温度が高すぎる場合、希土類量が多すぎる場合し
こは、平均結晶粒径が大きくなる。
It is difficult to increase the residual magnetic flux density to 90% or more of the saturation magnetization. , the average grain size increases.

平均結晶粒径が0.5μmを越える場合、塑性加工温度
での結晶成長速度速度が結晶粒の大きさに大きく依存す
るために、結晶粒径のばらつきが大きくなる。粗大結晶
粒は塑性変形しにくく異方性化しない、粗大結晶粒は周
囲の塑性流動を乱し、他の結晶粒の容易磁化方向をばら
つかせる。このため残留磁束密度を飽和磁化の90%以
上にすることが困難である。
When the average crystal grain size exceeds 0.5 μm, the crystal growth rate at the plastic working temperature largely depends on the size of the crystal grains, so that the variation in the crystal grain sizes becomes large. Coarse crystal grains are difficult to plastically deform and do not become anisotropic. Coarse crystal grains disturb the surrounding plastic flow and cause the easy magnetization directions of other crystal grains to vary. Therefore, it is difficult to increase the residual magnetic flux density to 90% or more of the saturation magnetization.

平均結晶粒径が前記範囲内(0,1μm以上0.5μm
以下)に入っていても、結晶粒径が0゜7μmを越える
結晶粒(以下、粗大結晶粒と呼ぶ)は、塑性加工による
異方性化を妨害する。すなわち、粗大結晶粒そのものが
異方性化しない効果の他に、周囲の塑性流方向を乱す効
果を有する。
The average crystal grain size is within the above range (0.1 μm or more 0.5 μm
(below), crystal grains with a crystal grain size exceeding 0.7 μm (hereinafter referred to as coarse grains) interfere with anisotropy caused by plastic working. That is, in addition to the effect that the coarse crystal grains themselves do not become anisotropic, they also have the effect of disturbing the direction of plastic flow in the surrounding area.

このため、粗大結晶粒は、少なければ少ないほどよい。Therefore, the smaller the number of coarse crystal grains, the better.

しかし、昇温過程で急冷薄片(粉)界面に発生する粗大
結晶粒を全くなくすることは、困難である。粗大結晶粒
の体積分率を20%未満にすることにより、残留磁束密
度が飽和磁化の90%以上である異方性化度の良好な磁
石を作成可能である。
However, it is difficult to completely eliminate coarse crystal grains generated at the interface of the quenched flakes (powder) during the temperature raising process. By setting the volume fraction of coarse crystal grains to less than 20%, it is possible to create a magnet with a good degree of anisotropy and a residual magnetic flux density of 90% or more of the saturation magnetization.

粗大結晶粒の体積分率を20%未満にするためには、 
溶湯急冷法により作成した急冷薄片(粉)中の粗大結晶
粒、 昇温過程で、急冷薄片(粉)同志の界面に形成さ
れる粗大粒、 昇温過程でアモルファス相が急激に結晶
化した部分から生じる粗大結晶粒、の3者の和を20%
未満にすることが要請される。このため、望ましい組成
範囲、望ましい急冷薄片(粉)、塑性加工のための望ま
しい熱履歴、望ましい塑性加工条件が存在する。
In order to make the volume fraction of coarse grains less than 20%,
Coarse crystal grains in the rapidly cooled flakes (powder) created by the molten metal quenching method, coarse grains formed at the interface between rapidly cooled flakes (powders) during the heating process, areas where the amorphous phase rapidly crystallized during the heating process 20% of the sum of the three coarse grains generated from
It is requested that the amount be kept below. Therefore, there are desirable composition ranges, desirable quenched flakes (powders), desirable thermal histories for plastic working, and desirable plastic working conditions.

永久磁石として望ましい組成範囲は以下の通りである。Desirable composition ranges for permanent magnets are as follows.

R(Yを含む希土類元素の1種または2種以上の組合せ
)量が1lat%未滴の場合には希土類リッチな液相成
分が存在しないために塑性加工が回置であり、かつ十分
な保磁力を得られない、Rが18at%を越えると主相
量が減少し、0.7μmを越える粗大結晶粒が発生し易
いために残留磁束密度が低下する。よって、11≦R≦
18とした。特に、13≦R≦15の時、高い残留磁束
密度と保磁力を同時に実現可能であり望ましい。
When the amount of R (one type or combination of two or more types of rare earth elements including Y) is 1 lat%, plastic working is rotational because there is no rare earth-rich liquid phase component, and sufficient storage is required. If magnetic force cannot be obtained and R exceeds 18 at%, the amount of the main phase decreases, and coarse crystal grains exceeding 0.7 μm are likely to occur, resulting in a decrease in residual magnetic flux density. Therefore, 11≦R≦
It was set at 18. In particular, when 13≦R≦15, it is possible to simultaneously achieve high residual magnetic flux density and coercive force, which is desirable.

B量が4at%未滴の場合は水系磁石の主相であるNd
2Fe14B相の形成が完全でなく、残留磁束密度、保
磁力ともに低い。また、B量が11at%を越えるとき
には、磁気特性的に好ましくない相の出現により、残留
磁束密度が低下する。
When the amount of B is 4 at%, the main phase of the water-based magnet is Nd.
The 2Fe14B phase is not completely formed, and both the residual magnetic flux density and coercive force are low. Furthermore, when the amount of B exceeds 11 at %, the residual magnetic flux density decreases due to the appearance of phases that are unfavorable in terms of magnetic properties.

よって、B量は4≦y≦11とした。残留磁束密度と保
磁力のために特に好ましい範囲としては、5≦y≦7で
ある。
Therefore, the amount of B was set to 4≦y≦11. A particularly preferred range for residual magnetic flux density and coercive force is 5≦y≦7.

Goを添加することによりキュリー点は向上するが、主
相の異方性定数が低下し、高保磁力が得られない。よっ
て、Go量は30a t%以下とした。また、Go量が
20at%を超えると、塑性加工が徐々に難しくなる。
Although the Curie point improves by adding Go, the anisotropy constant of the main phase decreases, making it impossible to obtain a high coercive force. Therefore, the amount of Go was set to 30 at% or less. Moreover, when the amount of Go exceeds 20 at%, plastic working becomes gradually difficult.

このため、Goを20at%以下とすることが更に望ま
しい。
For this reason, it is more desirable to control Go to 20 at% or less.

添加元素として、Ga、Zn、Sx、AI+ Nb、Z
r、Hf、Mo、P、C,Cu、を選択した理由は以下
の通りである。3at%以下のGat Zn、Si,A
l,Nb、Zr、Hf、MotPは保磁力向上に効果が
ある。3at%を超える添加は保磁力を大きく減少させ
る。希土類やホウ素の還元過程で原料に混入するCは、
3at%以下であれば保磁力を減少させない。Cuは磁
気特性をあまり変化させずに耐食性を向上する。Gaも
また耐食性を向上させる効果を有する。
Additional elements include Ga, Zn, Sx, AI+Nb, Z
The reason why r, Hf, Mo, P, C, and Cu were selected is as follows. Gat Zn, Si, A of 3at% or less
l, Nb, Zr, Hf, and MotP are effective in improving coercive force. Addition of more than 3 at% significantly reduces coercive force. C mixed into raw materials during the reduction process of rare earths and boron is
If it is 3 at% or less, the coercive force will not be reduced. Cu improves corrosion resistance without significantly changing magnetic properties. Ga also has the effect of improving corrosion resistance.

望ましい急冷薄片(粉)は、以下の通りである。Desirable quenched flakes (powders) are as follows.

溶湯急冷法により作成したR−Fe−B系合金の常温に
おける保磁力が3kOeを超え、結晶粒径が0.7μm
を越える結晶粒の体積分率が20%未満であることが望
ましい、急冷薄片の冷却がニュートン冷却であると仮定
すると、急冷薄片(粉)の冷却速度は厚さ(直径)に反
比例することが知られている。  (R,C,Ruhl
  Mat、Sci、Eng、、1(1967)、ρ3
13)常温における保磁力が3kOe以下の時は、薄片
厚さが薄いために圧縮高密度化状態での薄片同士の接触
面積が増加する。薄片厚さが薄いと急冷雰囲気ガスを巻
き込みやすく1表面粗さが大きくなる。これらの理由で
圧縮高密化状態での薄片界面の面積が大きくなり、薄片
界面の粗大結晶粒の量が多くなる。常温に於ける保磁力
が3koe以下の時には、アモルファスが多く含まれて
おり、昇温過程で粗大結晶粒を発生しやすい。
The coercive force of the R-Fe-B alloy created by the molten metal quenching method at room temperature exceeds 3 kOe, and the grain size is 0.7 μm.
It is desirable that the volume fraction of grains exceeding Are known. (R, C, Ruhl
Mat, Sci, Eng., 1 (1967), ρ3
13) When the coercive force at room temperature is 3 kOe or less, the contact area between the flakes increases when the flakes are compressed and densified because the flakes are thin. If the flake thickness is thin, the quenching atmosphere gas is likely to be drawn in, resulting in increased surface roughness. For these reasons, the area of the flake interface increases in the compressed and densified state, and the amount of coarse crystal grains at the flake interface increases. When the coercive force at room temperature is 3 koe or less, it contains a large amount of amorphous, and coarse crystal grains are likely to be generated during the heating process.

したがって、薄片保磁力は3kOe以上であることが望
ましい、一方、薄片内部に含まれる粗大結晶粒は、20
%未満である必要がある。粗大結晶粒が10%以下であ
れば、より望ましい。
Therefore, it is desirable that the thin piece coercive force is 3 kOe or more, while the coarse crystal grains contained inside the thin piece are 20 kOe or more.
Must be less than %. It is more desirable that the coarse crystal grains be 10% or less.

薄片界面での粗大結晶粒の発生を抑制するためには、急
冷薄片の表面粗さを3μm以下にすることが望ましい。
In order to suppress the generation of coarse crystal grains at the flake interface, it is desirable that the surface roughness of the quenched flake be 3 μm or less.

その理由は1表面粗さを3μm以下にすることにより、
薄片界面の自由空間を減少させ、薄片界面に発生する粗
大結晶粒の量を減少可能だからである。このような表面
粗さの改善のためには、急冷薄片表面へのガスの巻き込
みを減少させることが有効である。具体的な方法として
は、双ロール法による急冷薄片作成、減圧下での急冷薄
片を作成、通常用いられるArよりも原子量が小さく、
巻き込みが起こりにくい不活性ガスのHe、Ne等の中
で急冷薄片を作成する等の方法が有効である。双ロール
法による急冷薄片の場合、薄片の厚さが大きくなるため
、圧縮高密度化状態での薄片界面の面積が減少し、薄片
界面に発生する粗大結晶粒が減少する長所もある。
The reason is that by reducing the surface roughness to 3 μm or less,
This is because the free space at the flake interface can be reduced and the amount of coarse crystal grains generated at the flake interface can be reduced. In order to improve such surface roughness, it is effective to reduce gas entrainment on the surface of the quenched flake. Specific methods include creating quenched flakes using a twin-roll method, creating quenched flakes under reduced pressure, and using Ar, which has a smaller atomic weight than the commonly used Ar.
An effective method is to create a quenched flake in an inert gas such as He or Ne that does not cause entrainment. In the case of quenched flakes produced by the twin-roll method, the thickness of the flakes increases, which reduces the area of the flake interface in the compressed and densified state, and has the advantage of reducing the number of coarse crystal grains generated at the flake interface.

望ましい熱履歴は、以下の通りである。良好な塑性加工
のための温度領域は600℃〜850℃であり、磁石原
料はこの温度領域に速やかに加熱される必要がある。加
熱される物体の大きさにより、温度が均質化するための
必要時間が異なるため、一義的に良好な昇温速度が存在
するわけではない。一般には、600℃未満の低温度領
域では10〜b 1〜b 粗大結晶粒を抑制するためには、塑性加工のための金型
の温度をできるだけ均質化することにより、試料温度の
均質性を向上させる必要がある。
The desirable thermal history is as follows. The temperature range for good plastic working is 600°C to 850°C, and the magnet raw material needs to be quickly heated to this temperature range. Since the time required for the temperature to become homogenized differs depending on the size of the object to be heated, there is no uniquely good temperature increase rate. Generally, in the low temperature range below 600℃, 10~b 1~b In order to suppress coarse grains, the temperature of the mold for plastic working should be made as homogeneous as possible to improve the homogeneity of the sample temperature. Need to improve.

また、温度の均質化が終了し所定の温度に到達してから
の保持時間が短いほど、粗大結晶粒が少なく好ましい。
Furthermore, the shorter the holding time after the temperature has been homogenized and reached a predetermined temperature, the fewer coarse crystal grains will be produced.

望ましい塑性加工条件は、以下の通りである。Desirable plastic working conditions are as follows.

塑性加工歪は、少なくとも50%必要である。6○%以
上の歪を与えることにより、同形状の焼結磁石よりも明
らかに高い特性を有する塑性加工磁石を作成可能である
。歪速度10−4〜1O−2s−1の範囲で高い残留磁
束密度を得られるが、経済的側面からは、歪速度を大き
くすることが望ましい。
Plastic working strain is required to be at least 50%. By applying a strain of 60% or more, it is possible to create a plastically worked magnet that has clearly higher characteristics than a sintered magnet of the same shape. A high residual magnetic flux density can be obtained at a strain rate in the range of 10-4 to 1O-2 s-1, but from an economical point of view, it is desirable to increase the strain rate.

(以下、余白) 〔実施例〕 実施例1 組成式N d 14F e73c o6B6G a 1
 (表示は原子%、以下同様)に秤量した原料0.2k
gを、Ar雰囲気中でアーク溶解炉を用いて溶解し母合
金を作製した。母合金を下部に孔を有する透明石英ノズ
ルに入れ、Be−Cuロール上でセットした。ロールを
組み込んだチャンバーを5 X 10−3Torrまで
真空引きした後、380 To r rまで Arガスを導入した。母合金を高周波により再溶解後、
250g/cm2の Ar圧力により、周速25m/s
ecで回転するロール上に溶湯を噴出した。溶湯は急速
に冷却されて薄片状に凝固した。平均厚さ26μm、表
面粗さ2.8μm、保磁力3.6kOeであった。薄片
破面の観察結果、0.7μmを越える粗大結晶粒は観察
されなかった。
(Hereinafter, blank space) [Example] Example 1 Composition formula N d 14F e73c o6B6G a 1
(Displayed as atomic %, same below) 0.2k of raw material weighed
g was melted using an arc melting furnace in an Ar atmosphere to produce a master alloy. The master alloy was placed in a transparent quartz nozzle with a hole at the bottom and set on a Be-Cu roll. After the chamber containing the roll was evacuated to 5 x 10-3 Torr, Ar gas was introduced to 380 Torr. After remelting the master alloy using high frequency,
Circumferential speed of 25 m/s due to Ar pressure of 250 g/cm2
The molten metal was spouted onto the rolls rotated by EC. The molten metal was rapidly cooled and solidified into flakes. The average thickness was 26 μm, the surface roughness was 2.8 μm, and the coercive force was 3.6 kOe. As a result of observing the fractured surface of the thin section, no coarse crystal grains exceeding 0.7 μm were observed.

得られた薄片を冷間で成形し、直径28mmの円柱状の
成形体(150g)を作製した。この成形体を真空ホッ
トプレスを用いて710℃で相対密度が98%以上にな
るまで圧縮、高密度化し、圧密化磁石を作製した。つい
で、高密度化した試料を側面の拘束がない状態で、71
0℃で軸方向に74%圧縮する事により、塑性加工磁石
を作製した。平均歪速度は、4X10−3s−1であっ
た。
The obtained flakes were cold molded to produce a cylindrical molded body (150 g) with a diameter of 28 mm. This molded body was compressed and densified at 710° C. using a vacuum hot press until the relative density became 98% or more to produce a consolidated magnet. Next, the densified sample was held at 71°C without side restraints.
A plastically worked magnet was produced by compressing the magnet by 74% in the axial direction at 0°C. The average strain rate was 4×10−3 s−1.

得られた磁石は、直径約60mm、厚さ約7.3mmで
厚さ方向が容易磁化方向であった。
The obtained magnet had a diameter of about 60 mm, a thickness of about 7.3 mm, and the direction of easy magnetization was in the thickness direction.

70kOeパルス着磁した磁石の平均特性は。The average characteristics of a 70kOe pulse magnetized magnet are:

残留磁束密度12.75kG、保磁力19.6に○e、
 エネルギー積((BH)ma x)39゜3 M G
 Oeであった。磁石の破面を観察し、平均結晶粒径と
粗大結晶粒の割合を求めた。それぞれ、0.32μm、
8.2%であった。比較例として、急冷時のロール周速
を40m/seCとする以外は、同様の方法で、磁石を
作成した。70kOeパルス着磁した磁石の平均特性は
、残留磁束密度11.1kG、保磁力19.6kOe、
(BH)max26MGOeであった。磁石の破面を観
察し、平均結晶粒径と粗大結晶粒の割合を求めた。
Residual magnetic flux density 12.75kG, coercive force 19.6, ○e,
Energy product ((BH)max) 39゜3 MG
It was Oe. The fracture surface of the magnet was observed, and the average crystal grain size and the proportion of coarse crystal grains were determined. 0.32μm, respectively.
It was 8.2%. As a comparative example, a magnet was created in the same manner except that the peripheral speed of the roll during quenching was 40 m/secC. The average characteristics of a 70 kOe pulse magnetized magnet are: residual magnetic flux density 11.1 kG, coercive force 19.6 kOe,
(BH) max 26MGOe. The fracture surface of the magnet was observed, and the average crystal grain size and the proportion of coarse crystal grains were determined.

それぞれ、0.28μm、26%であった。They were 0.28 μm and 26%, respectively.

実施例2 0一ル周速を変化させる以外は実施例1と同様にして、
磁石を作成した。薄片保磁力(koe)と塑性加工後の
平均結晶粒径、粗大粒の割合、磁気特性を表1に示す、
薄片保磁力を3kOeよりも大きくすることにより、高
い(BH)maxを得られることが分かる。
Example 2 Same as Example 1 except for changing the circumferential speed,
Created a magnet. Table 1 shows the thin piece coercive force (koe), average grain size after plastic working, proportion of coarse grains, and magnetic properties.
It can be seen that a high (BH)max can be obtained by increasing the flake coercive force to more than 3 kOe.

(以下、余白) 表1 実施例3 塑性加工温度を変化させる以外は実施例1と同様にして
、磁石を作成した。塑性加工後の平均結晶粒径、粗大粒
の割合、磁気特性を表2に示す。
(Hereinafter, blank spaces) Table 1 Example 3 A magnet was created in the same manner as in Example 1 except that the plastic working temperature was changed. Table 2 shows the average grain size, proportion of coarse grains, and magnetic properties after plastic working.

高い(BH)maxを得るためには塑性加工温度は60
0℃〜850℃が望ましい。
In order to obtain a high (BH)max, the plastic working temperature is 60
0°C to 850°C is desirable.

表2 を実施例3と同様にして、磁石を作成した。塑性加工温
度が600℃以下の場合、塑性変形できなかった。塑性
加工後の平均結晶粒径、粗大粒の割合、磁気特性を表3
に示す、塑性加工温度が850℃以下で、高い(BH)
maxを示している。
A magnet was created using Table 2 in the same manner as in Example 3. When the plastic working temperature was 600°C or lower, plastic deformation could not be achieved. Table 3 shows the average grain size, proportion of coarse grains, and magnetic properties after plastic working.
The plastic working temperature is 850℃ or less, which is high (BH).
max is shown.

表3 実施例4 組成式N d 12F e75c o6B6G a 1
の急冷薄片実施例5 組成を変化させる以外は実施例1と同様にして、磁石を
作成した。磁気特性を表4に示す、なお。
Table 3 Example 4 Composition formula N d 12F e75c o6B6G a 1
Quenched flake Example 5 A magnet was produced in the same manner as in Example 1 except for changing the composition. The magnetic properties are shown in Table 4.

平均結晶粒径はいずれも0.1〜0.5μmの範囲に入
っていた。粗大結晶粒も20%未満であった。空欄は塑
性加工できなかったことを示す。
The average crystal grain size was in the range of 0.1 to 0.5 μm in all cases. Coarse grains were also less than 20%. A blank column indicates that plastic working could not be performed.

(以下、余白) 表4 〜0.5μmの範囲に入っていた。粗大結晶粒も20%
未満であった。
(Hereinafter, blank space) Table 4 It was within the range of 0.5 μm. 20% coarse grains
It was less than

表5 実施例6 組成式をNd14Febalco686Mx (Mは添
加元素)とし、添加物元素を変化させる以外は実施例1
と同様にして磁石を作成した。磁気特性を表5に示す。
Table 5 Example 6 Example 1 except that the composition formula is Nd14Febalco686Mx (M is an additive element) and the additive element is changed.
A magnet was created in the same way. The magnetic properties are shown in Table 5.

なお、平均結晶粒径はいずれも0.1石を作成した。急
冷薄片の表面粗さ、塑性加工後の粗大粒の割合、磁気特
性を表6に示す。表面粗さが3μm以下の時に、高い(
BH)maxが得られる。
Note that the average crystal grain size was 0.1 stone in each case. Table 6 shows the surface roughness, proportion of coarse grains after plastic working, and magnetic properties of the rapidly cooled flakes. High when the surface roughness is 3 μm or less (
BH) max is obtained.

表6 実施例7 急冷薄片の表面粗さを変化させるために、噴出圧力を変
化させる以外は実施例1と同様にして磁実施例8 急冷する雰囲気ガスのAr圧力を変化させて急冷薄片を
作成し、実施例1と同様の方法で磁石を作成した。急冷
薄片の表面粗さ、塑性加工後の粗大粒の割合、磁気特性
を表7に示す。急冷雰囲気の圧力は760 T o r
 r以下が望ましい。
Table 6 Example 7 In order to change the surface roughness of the quenched flake, the same procedure as in Example 1 was carried out except that the ejection pressure was changed.Example 8: A quenched flake was created by changing the Ar pressure of the atmospheric gas to be quenched. A magnet was produced in the same manner as in Example 1. Table 7 shows the surface roughness, proportion of coarse grains after plastic working, and magnetic properties of the rapidly cooled flakes. The pressure of the quenching atmosphere is 760 T or
r or less is desirable.

表7 片を作成し、実施例1と同様の方法で磁石を作成した。Table 7 A piece was prepared, and a magnet was prepared in the same manner as in Example 1.

急冷薄片の表面粗さ、塑性加工後の粗大粒の割合、磁気
特性を表8に示す、He、Ne中で作成した原料粉を用
いる事により、高い磁気特性が得られることがわかる。
The surface roughness of the quenched flakes, the proportion of coarse grains after plastic working, and the magnetic properties are shown in Table 8, and it can be seen that high magnetic properties can be obtained by using the raw material powder prepared in He and Ne.

なお、窒素雰囲気中ではノズルの初期閉塞のために急冷
薄片を作成できなかった。
It should be noted that in a nitrogen atmosphere, it was not possible to create rapidly quenched flakes due to initial blockage of the nozzle.

表8 実施例9 急冷する雰囲気ガスの種類を変化させて急冷溝〔発明の
効果〕 以上の記述のように本発明による永久磁石は高い磁気特
性を示し有用である。
Table 8 Example 9 Quenching groove by changing the type of atmospheric gas for quenching [Effects of the invention] As described above, the permanent magnet according to the present invention exhibits high magnetic properties and is useful.

Claims (7)

【特許請求の範囲】[Claims] (1)溶湯急冷により作成したR−Fe−B系合金(R
はYを含む1種類以上の希土類元素)を塑性加工により
磁気的に異方性化した永久磁石において、平均結晶粒径
が0.1μm以上0.5μm以下であり、結晶粒径が0
.7μmを越える結晶粒の体積分率が20%未満である
事を特徴とする永久磁石。
(1) R-Fe-B alloy (R
is one or more kinds of rare earth elements (including Y) made magnetically anisotropic by plastic working, and the average crystal grain size is 0.1 μm or more and 0.5 μm or less, and the crystal grain size is 0.
.. A permanent magnet characterized in that the volume fraction of crystal grains exceeding 7 μm is less than 20%.
(2)R−Fe−B系合金が、R_vFe_wCO_x
B_yM_z(RはYを含む1種類以上の希土類元素、
MはGa,Zn,Si,Al,Nb,Zr,Hf,Mo
,P,C,Cu,Niよりなる元素の1種以上および不
可避不純物)の組成式で表され、11≦v≦18、w=
100−u−x−y−z、0≦x≦30、4≦y≦11
、0≦z≦3である事を特徴とする請求項1に記載の永
久磁石。
(2) R-Fe-B alloy is R_vFe_wCO_x
B_yM_z (R is one or more rare earth elements including Y,
M is Ga, Zn, Si, Al, Nb, Zr, Hf, Mo
, one or more of the elements consisting of P, C, Cu, and Ni and unavoidable impurities), 11≦v≦18, w=
100-u-x-y-z, 0≦x≦30, 4≦y≦11
, 0≦z≦3.
(3)溶湯急冷法により作成したR−Fe−B系合金の
常温における保磁力が3kOeを超え、結晶粒径が0.
7μmを越える結晶粒の体積分率が20%未満であるこ
とを特徴とする永久磁石原料。
(3) The coercive force of the R-Fe-B alloy produced by the molten metal quenching method at room temperature exceeds 3 kOe, and the crystal grain size is 0.5 kOe.
A permanent magnet raw material characterized in that the volume fraction of crystal grains exceeding 7 μm is less than 20%.
(4)R−Fe−B系合金の表面粗さが3μm以下であ
ることを特徴とする特許請求の範囲第3項に記載の永久
磁石原料。
(4) The permanent magnet raw material according to claim 3, wherein the R-Fe-B alloy has a surface roughness of 3 μm or less.
(5)溶湯急冷が双ロール法により行われた事を特徴と
する請求項3に記載の永久磁石原料。
(5) The permanent magnet raw material according to claim 3, wherein the molten metal is rapidly cooled by a twin roll method.
(6)溶湯急冷が真空または大気圧力よりも低い圧力下
の不活性ガス雰囲気で行われた事を特徴とする請求項3
に記載の永久磁石原料。
(6) Claim 3, characterized in that the quenching of the molten metal is carried out in a vacuum or in an inert gas atmosphere at a pressure lower than atmospheric pressure.
Permanent magnet raw materials listed in .
(7)溶湯急冷がHeガスまたはNeガス中で行われた
ことを特徴とする請求項3に記載の永久磁石原料。
(7) The permanent magnet raw material according to claim 3, wherein the molten metal is rapidly cooled in He gas or Ne gas.
JP1292889A 1989-11-10 1989-11-10 Permanent magnet and permanent magnet raw material Expired - Lifetime JP2693601B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1292889A JP2693601B2 (en) 1989-11-10 1989-11-10 Permanent magnet and permanent magnet raw material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1292889A JP2693601B2 (en) 1989-11-10 1989-11-10 Permanent magnet and permanent magnet raw material

Publications (2)

Publication Number Publication Date
JPH03153006A true JPH03153006A (en) 1991-07-01
JP2693601B2 JP2693601B2 (en) 1997-12-24

Family

ID=17787694

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1292889A Expired - Lifetime JP2693601B2 (en) 1989-11-10 1989-11-10 Permanent magnet and permanent magnet raw material

Country Status (1)

Country Link
JP (1) JP2693601B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011129768A (en) * 2009-12-18 2011-06-30 Toyota Motor Corp Rare earth magnet and method of manufacturing the same
JP2012023197A (en) * 2010-07-14 2012-02-02 Toyota Motor Corp Method of producing anisotropic rare-earth magnet
WO2013008756A1 (en) * 2011-07-08 2013-01-17 昭和電工株式会社 Alloy for r-t-b-based rare earth sintered magnet, process for producing alloy for r-t-b-based rare earth sintered magnet, alloy material for r-t-b-based rare earth sintered magnet, r-t-b-based rare earth sintered magnet, process for producing r-t-b-based rare earth sintered magnet, and motor
JP2014169505A (en) * 2011-07-08 2014-09-18 Showa Denko Kk Alloy for r-t-b-based rare earth sintered magnet and method for manufacturing the same
JP5692231B2 (en) * 2010-07-16 2015-04-01 トヨタ自動車株式会社 Rare earth magnet manufacturing method and rare earth magnet
JP2015529004A (en) * 2012-07-02 2015-10-01 グリレム アドヴァンスド マテリアルズ カンパニー リミテッドGrirem Advanced Materials Co.,Ltd. Rare earth permanent magnet powder, bonded magnet and device using the bonded magnet
US20180182516A1 (en) * 2016-12-28 2018-06-28 Toyota Jidosha Kabushiki Kaisha Rare earth magnet

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5093215B2 (en) 2009-11-26 2012-12-12 トヨタ自動車株式会社 Method for producing sintered rare earth magnet
JP2011159733A (en) 2010-01-29 2011-08-18 Toyota Motor Corp Method of producing nanocomposite magnet
RU2538272C2 (en) 2010-09-15 2015-01-10 Тойота Дзидося Кабусики Кайся Manufacturing method of magnets from rare-earth metals
JP5413383B2 (en) 2011-02-23 2014-02-12 トヨタ自動車株式会社 Rare earth magnet manufacturing method
DE112012004742T5 (en) 2011-11-14 2014-10-23 Toyota Jidosha Kabushiki Kaisha Rare earth magnet and process for its production
JP5742813B2 (en) 2012-01-26 2015-07-01 トヨタ自動車株式会社 Rare earth magnet manufacturing method
JP5790617B2 (en) 2012-10-18 2015-10-07 トヨタ自動車株式会社 Rare earth magnet manufacturing method
WO2014196605A1 (en) 2013-06-05 2014-12-11 トヨタ自動車株式会社 Rare-earth magnet and method for manufacturing same
JP6003920B2 (en) 2014-02-12 2016-10-05 トヨタ自動車株式会社 Rare earth magnet manufacturing method

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011129768A (en) * 2009-12-18 2011-06-30 Toyota Motor Corp Rare earth magnet and method of manufacturing the same
JP2012023197A (en) * 2010-07-14 2012-02-02 Toyota Motor Corp Method of producing anisotropic rare-earth magnet
JP5692231B2 (en) * 2010-07-16 2015-04-01 トヨタ自動車株式会社 Rare earth magnet manufacturing method and rare earth magnet
JP2014205918A (en) * 2011-07-08 2014-10-30 昭和電工株式会社 Alloy for r-t-b-based rare earth sintered magnet, method of producing alloy for r-t-b-based rare earth sintered magnet, alloy material for r-t-b-based rare earth sintered magnet, r-t-b-based rare earth sintered magnet, method of producing r-t-b-based rare earth sintered magnet and motor
CN103582715A (en) * 2011-07-08 2014-02-12 昭和电工株式会社 Alloy for R-T-B-based rare earth sintered magnet, process for producing alloy for R-T-B-based rare earth sintered magnet, alloy material for R-T-B-based rare earth sintered magnet, R-T-B-based rare earth sintered magnet, process for producing R-T-B, and motor
JP2014169505A (en) * 2011-07-08 2014-09-18 Showa Denko Kk Alloy for r-t-b-based rare earth sintered magnet and method for manufacturing the same
JP2013216965A (en) * 2011-07-08 2013-10-24 Showa Denko Kk Alloy for r-t-b-based rare earth sintered magnet, method for manufacturing the same, alloy material for the same, r-t-b-based rare earth sintered magnet, method for manufacturing the same, and motor
WO2013008756A1 (en) * 2011-07-08 2013-01-17 昭和電工株式会社 Alloy for r-t-b-based rare earth sintered magnet, process for producing alloy for r-t-b-based rare earth sintered magnet, alloy material for r-t-b-based rare earth sintered magnet, r-t-b-based rare earth sintered magnet, process for producing r-t-b-based rare earth sintered magnet, and motor
CN104900361A (en) * 2011-07-08 2015-09-09 昭和电工株式会社 ALLOY FOR R-T-B-BASED RARE EARTH SINTERED MAGNET, PROCESS OF PRODUCING ALLOY FOR R-T-B-BASED RARE EARTH SINTERED MAGNET, ALLOY MATERIAL, the manufacturing method of the R-T-B-BASED RARE EARTH SINTERED MAGNET AND MOTOR
CN103582715B (en) * 2011-07-08 2016-01-20 昭和电工株式会社 The manufacture method of the manufacture method of R-T-B system rare earths sintered magnet alloy, R-T-B system rare earths sintered magnet alloy, R-T-B system rare earths sintered magnet alloy material, R-T-B system rare earths sintered magnet, R-T-B system rare earths sintered magnet and electric motor
CN104900361B (en) * 2011-07-08 2017-10-24 昭和电工株式会社 R T B systems rare earths sintered magnet alloy, alloy material, the magnet and their manufacture method and motor
US11024448B2 (en) 2011-07-08 2021-06-01 Tdk Corporation Alloy for R-T-B-based rare earth sintered magnet, process of producing alloy for R-T-B-based rare earth sintered magnet, alloy material for R-T-B-based rare earth sintered magnet, R-T-B-based rare earth sintered magnet, process of producing R-T-B-based rare earth sintered magnet, and motor
JP2015529004A (en) * 2012-07-02 2015-10-01 グリレム アドヴァンスド マテリアルズ カンパニー リミテッドGrirem Advanced Materials Co.,Ltd. Rare earth permanent magnet powder, bonded magnet and device using the bonded magnet
US20180182516A1 (en) * 2016-12-28 2018-06-28 Toyota Jidosha Kabushiki Kaisha Rare earth magnet

Also Published As

Publication number Publication date
JP2693601B2 (en) 1997-12-24

Similar Documents

Publication Publication Date Title
US5597425A (en) Rare earth cast alloy permanent magnets and methods of preparation
US5125988A (en) Rare earth-iron system permanent magnet and process for producing the same
JPH0420242B2 (en)
JPH03153006A (en) Permanent magnet and raw material therefor
JPH01704A (en) Rare earth-iron permanent magnet
US5009706A (en) Rare-earth antisotropic powders and magnets and their manufacturing processes
US4919732A (en) Iron-neodymium-boron permanent magnet alloys which contain dispersed phases and have been prepared using a rapid solidification process
JP2727507B2 (en) Permanent magnet and manufacturing method thereof
EP1154445A2 (en) Alloy for high-performance rare earth permanent magnet and manufacturing method thereof
JPH11186016A (en) Rare-earth element-iron-boron permanent magnet and its manufacture
JPH05209210A (en) Production of magnet alloy particle
JP3505261B2 (en) Sm-Co permanent magnet material, permanent magnet and method for producing the same
US4983230A (en) Platinum-cobalt alloy permanent magnets of enhanced coercivity
US6136099A (en) Rare earth-iron series permanent magnets and method of preparation
JPH03129702A (en) Rare-earth-fe-b-based permanent magnet powder and bonded magnet excellent in magnetic anisotropy and corrosion resistance
JPH0831385B2 (en) Method for manufacturing anisotropic rare earth permanent magnet
EP1263003B1 (en) Preparation of a rare earth magnet alloy powder for a bonded magnet and rare earth bonded magnet therewith
JPH01100242A (en) Permanent magnetic material
JPH0831386B2 (en) Method for manufacturing anisotropic rare earth permanent magnet
US4966633A (en) Coercivity in hot worked iron-neodymium boron type permanent magnets
JPH1171645A (en) Hard magnetic alloy sintered compact and its production
JP2660917B2 (en) Rare earth magnet manufacturing method
JPH03295204A (en) Permanent magnet and manufacture thereof
JP3427765B2 (en) Rare earth-Fe-Co-B based magnet powder, method for producing the same, and bonded magnet using the powder
CN1060178A (en) The preparation method and the equipment thereof of anisotropy crystallite rare earth permanent-magnetic material

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080905

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080905

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090905

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100905

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100905

Year of fee payment: 13