JP2660917B2 - Rare earth magnet manufacturing method - Google Patents

Rare earth magnet manufacturing method

Info

Publication number
JP2660917B2
JP2660917B2 JP62304619A JP30461987A JP2660917B2 JP 2660917 B2 JP2660917 B2 JP 2660917B2 JP 62304619 A JP62304619 A JP 62304619A JP 30461987 A JP30461987 A JP 30461987A JP 2660917 B2 JP2660917 B2 JP 2660917B2
Authority
JP
Japan
Prior art keywords
magnet
alloy
powder
rare earth
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62304619A
Other languages
Japanese (ja)
Other versions
JPH01146309A (en
Inventor
忠邦 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOOKIN KK
Original Assignee
TOOKIN KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOOKIN KK filed Critical TOOKIN KK
Priority to JP62304619A priority Critical patent/JP2660917B2/en
Publication of JPH01146309A publication Critical patent/JPH01146309A/en
Application granted granted Critical
Publication of JP2660917B2 publication Critical patent/JP2660917B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は,Nd・Fe・B系永久磁石を代表とする希土類
金属(R)と遷移金属(T)とホウ素(B)を主成分と
してなるR2T14B系金属間化合物磁石の製法に関し,特に
液体急冷非晶質合金粉末を使用した磁石の磁気特性の改
善に関するものである。 〔従来の技術〕 従来のR・Fe・B系磁石の製造方法については,2つの
方法に大別される。ひとつは,溶解している合金を超急
冷させる際に,適度に析出した微細結晶粒(一般には0.
05〜0.1μm程度)を含むように,急冷速度を調整して
得られた超急冷微細結晶化薄帯を作製した後,これを高
分子樹脂と複合化したり,あるいは高温中で一軸方向に
加圧成形して得る液体急冷型の製造方法がある。一方
は,溶解して得られたR2T14B系合金インゴットを微粉砕
し,磁場中で成形してR2T14Bが最も大きな異方性方向に
結晶を備え,これを焼結して製造する焼結型の製造方法
がある。この製法は,前者に比べ,高い磁石特性を得る
のに適している。 尚,焼結型磁石の製造工程は,一般に,原料合金の溶
解,粉砕,磁場中配向,圧縮成形,焼結,時効の順に進
められる。溶解は,アーク,高周波加熱等の真空または
不活性雰囲気中で通常行なわれ,水冷銅鋳型に鋳込み原
料インゴットを得ている。粉砕は粗粉砕と微粉砕にわけ
られ,粗粉砕はジョークラッシャー,鉄乳鉢,ディスク
ミルやロールミル等で行なわれる。微粉砕は,ボールミ
ル,振動ミル,ジェットミル等で行われる。磁場中配向
及び圧縮成形は金型を用いて同時に行なわれるのが通例
であり,ここでR2T17B系結晶が大きな磁気異方性を示す
C軸方向が揃うように,R2T17B系粉末粒子が成形され
る。すなわち,結晶のC面をより高度に配向することに
より,高性能な異方性磁石が実現できる。焼結は,通常
1000〜1150℃の範囲で,不活性雰囲気中で行なわれる。
時効はIHCの向上に寄与し,必要によって施され,通常6
00℃近傍の温度で行なわれる。 〔発明が解決しようとする問題点〕 このように,従来の液体急冷型磁石は,R2T14B系結晶
粒子からなる成形用粉末粒子が異方性を有していない多
結晶体であるために,磁場中成形等による異方性化が困
難であり,高い磁石特性は得られないとされてきてい
た。そのため,高い磁石特性を得ようとする場合には,
粉末を高温中で一軸方向に加圧変形し,異方性を付与し
ていた。この製法では,設備が大がかりで高価なものと
なり,工業的には不利益となっていた。 また,一般に液体急冷磁石に用いる合金粉末はAr等の
不活性雰囲気中で,高周波加熱等によって溶解した合金
を,高速で回転しているFeやCu製ロールに噴射し,厚さ
104μm程度の合金薄帯を粗粉砕して得ている。このロ
ールの回転数を制御することにより,溶解した合金の冷
却速度が制御できるものであるが,従来良好な磁石特性
が得られるとされてきていた0.05μm程度の微細な結晶
粒を含んだ急冷合金薄帯は,20m/sec前後のロール周波数
となる極めて制限された範囲でのみ得られ、この急冷合
金薄帯を目的に応じて粉砕した後,磁石化している。こ
の製法では磁石の異方性化が極めて低いために,工業的
には高い磁石特性が得られないとされている。 参考までに示しておくと,本発明に最も近い製法であ
るホットプレス法で,Br7.9KG,IHC16KOe.(BH)max.13M
・G・Oe程度である。 そこで,本発明の技術的課題は,上記欠点に鑑みR・
T・B系非晶質合金粉末の使用に対し,簡易,且つ,安
価に異方性化を行い,工業的に優れた磁石特性を有する
希土類磁石の製造方法を提供することである。 〔問題点を解決するための手段〕 本発明によれば,Nd,Fe,Bを主成分として含有するR2T
14B系磁石(ここで,RはY及び希土類元素,Tは遷移金属
をあらわす。)を,非晶質R・T・B系合金の使用によ
り製造する方法において,非晶質R・T・B系合金粉末
に対し,R2T17系合金結晶粉末を0〜90wt.%(0を含ま
ず)混合して,磁場成形用粉末とした後,磁場中成形,
焼結を施すことを特徴とする希土類磁石の製造方法が得
られる。 また,本発明によれば磁場成形用粉末の平均粉砕粒径
を5μm以下(0を含まず)とすることを特徴とする希
土類磁石の製造方法が得られる。即ち,本発明は,成形
用粉末中にR2T14B系結晶粒子を含有していなくとも,R2T
14B系焼結体の異方性化が達成されることを発見したこ
とに基づくものである。換言すれば,R2T17系結晶合金粉
末とR・T・B系非晶質合金粉末を混合した成形用粉末
を磁場中成形後,焼結してR2T14B系合金を得ることによ
って、異方性R2T14B系焼結磁石を得るものである。した
がって,本発明はR・T・B系非晶質合金を原料として
使用しても,高い磁石特性が得られ,しかも,焼結性が
向上しており,焼結温度の降下も実現できるので,工業
上極めて有益となる。 ここで,非晶質R・T・B系合金粉末に対するR2T17
系結晶粉末の混合比は,0〜90wt.%(0の含まず)であ
り,上限を90wt.%としたのは,これ以上では非晶質R
・T・B合金の作製が極めて困難となるのに加え,磁石
特性の減少,混合比に関係する実用的価値の低下等が生
ずるためである。 また,これら成形用粉末の平均粒径は,5μm以下(0
を含まず)とする必要がある。平均粉砕粒径を5μm以
下としたのは,それ以下で明らかな磁石特性の向上が認
められるからである。この磁石特性の向上は,焼結体中
のR2T14B結晶粒の結晶C面が磁場配向方向と直交する方
向に更に高度に配向するのに加え,原子の拡散も向上し
R2T14B結晶生成能も向上するためである。 〔実施例〕 以下,本発明の実施例について図面を参照して説明す
る。 実施例1 純度97wt.%のNd(残部はCe.Prを主体とする他の希土
類元素),純度99.5wt.%のB,及び電解鉄を使用し,Ndが
23.3wt.%でFeが76.7wt.%のNd2Fe17系インゴットと,Nd
が32.0〜95.8wt.%でBが1.0〜8.3wt.%で残部がFeのNd
・Fe・B系インゴット6種を,アルゴン雰囲気中で高周
波加熱により得た。 次に,これらインゴットのうち,Nd2Fe17系インゴット
を1250℃で5時間保持した後,1150℃で20時間保持し,
析出していたα−Fe相粒子を消失させ,Nd2Fe17インゴッ
トとした。 一方,Nd・Fe・B系インゴットを使用して,Ar雰囲気中
で高周波加熱により再溶解した後,周速度約100m/secの
Cu製ロールに噴射し,片ロール法により,幅約1mm,厚さ
約10μmの液体急冷非晶質合金を得た。 これらNd2Fe17インゴットと6種のNd・Fe・B系非晶
質合金を粗粉砕した後,秤量組成がNd32.0wt.%,B1.0w
t.%,Febalとなるように,Nd2Fe17合金粉末を0,10,30,5
0,70,88wt.%混合した後,ボールミルを用いて平均粒径
約2.5μmに微粉砕した。この粉末を20KOeの磁界中,1to
n/cm2の圧力で成形した。 次に,この成形体を,真空中,200℃/hrで1060℃まで
昇温し,1060℃で1時間保持した後,Ar中で3時間保持
し,急冷した。 次にこの焼結体をAr雰囲気中450℃〜750℃の範囲で50
℃間隔で時効した。 この焼結体に,約30KOeの磁界を印加して,磁石特性
を測定した。これらの各Nd2Fe17の混合比の試料で得ら
れた最も高い磁石特性値を第1図に示した。 非晶質R・Fe・B原料のみの試料に比べ,Nd2Fe17原料
を0〜90wt.%(ただし,0を含まず,90は外挿値)混合し
た範囲で明らかな磁石特性(Br.(BH)max)の向上が認
められる。 実施例2 5wt.%のCe,15wt.%のPr,残部Nd(ただし,他の希土
類元素はNdとして含めた。)からなるセリウムジジム
と,ホウ素及び電解鉄を使用し,実施例と同様にして,R
が23.5wt.%でFeが76.5wt.%のR2Fe17系インゴットと,R
が76.0wt.%でBが5.0wt・%で残部がFeのR・Fe・B系
インゴットを得た後,R2Fe17系インゴットは熱処理し,R
・Fe・B系インゴットは液体急冷し,非晶質合金とし
た。 次に,これら合金を粗粉砕した後,R2Fe17粉末を80wt.
%,R・Fe・B系非晶質粉末を20wt.%混合し,ボールミ
ルを用いて平均粉砕粒子を1,2,4,7μmとした後,磁場
成形した。これを,1040℃で真空中1時間保持した後,Ar
中3時間保持し,急冷した。次に650℃で1時間時効し
た。 この焼結体の磁石特性を第2図に示す。 粉砕粒径が微細化するにしたがい磁石特性は向上して
いる。その効果は,平均粉砕粒径が5μm以下の領域で
顕著となっている。 実施例3 純度97wt.%のNd(残部はCe,Prを主体とする他の希土
類元素),ホウ素,電解鉄,電解コバルト及びアルミニ
ウムを使用し,実施例1と同様にして,Ndが23.3wt.%で
(Fe77・C20・Al3)が76.7wt.%のNd2T17系インゴット
と,Ndが34.0wt.%でBが1.0wt.%で(Fe77・Co20・A
l3)が残部のNd・T・B系インゴットと,Ndが59.0wt.%
でBが3.3wt.%で(Fe77・Co20・Al3)が残部のNd・T
・B系インゴットを得た後,Nd2T17系インゴットは熱処
理し,Nd・T・B系インゴットは液体急冷し,非晶質合
金とした。 次に,それぞれ粗粉砕した後,Nd34.0wt.%のNd・T・
B系非晶質合金は単独で使用し,Nd2T17合金とNd59wt.%
のNd・T・B系非晶質合金は秤量組成がNd34.0wt.%,B
1.0wt.%(Fe77・Co20・Al3)が残部になるように7対
3の割合で混合した後,ボールミルにて平均粒系が約2
μmに微粉砕した。 この後,実施例1と同様にして,焼結,時効,磁石特
性測定を行なった。その結果を表−1に示す。 その結果,Nd2T17インゴットを混合した試料の方が著
しく高い磁石特性を示している。 以上の実施例で示されたように,非晶質R・T・B系
合金の使用によりR2T14B系磁石を製造する方法におい
て, 1) 非晶質R・T・B系合金粉末に対し,R2T17系合金
粉末を0〜90wt.%(0を含まず)混合した後,磁場中
成形,焼結する。 2) 1)項の成形用粉末の平均粉砕粒径を5μm以下
(0を含まず)とする。 ことにより,焼結磁石の異方性化が向上し,磁石特性の
向上が達成できる。 以上の実施例では,<(Nd・Fe)+(Nd・Fe・B)>
系,<(Ce・Pr・Nd・Fe)+(Ce・Pr・Nd・Fe・B)>
系,<(Nd・Fe・Co・Al)+(Nd・Fe・Co・Al・B)>
系についてのみ述べたが,Ndの一部をY及び他の希土類
元素例えばGd,Dy,Tb,Ho等で置換したり,Feの一部を他の
遷移金属例えばMn,Cr,Ni等で置換したり,Bの一部をSi,C
等の半金属類で置換しても,磁石合金の組成がNd,Fe,B
を主な成分の一部としており,また磁石の化合物系で,N
d2Fe14Bで代表されるようなR2T14Bが磁性に寄与してい
るものであれば,本発明の効果が十分に期待できるもの
であることは容易に推測できる。また,R2T17系合金原料
が必ずしも全てR2T17結晶である必要はなく,その占積
率に磁石特性の向上が関与していることも容易に推察で
きる。 〔発明の効果〕 以上の説明のとおり,本発明によれば,従来,異方性
化の困難であったR・T・B系非晶質合金粉末に対し,R
2T17系合金結晶粉末を混合することにより,簡易且つ安
価に異方性化を行うことができ,しかも,磁石特性を向
上させることができる。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention is based on rare earth metals (R), transition metals (T) and boron (B) represented by Nd.Fe.B permanent magnets. The present invention relates to a method for producing an R 2 T 14 B-based intermetallic compound magnet, and more particularly to improvement of magnetic properties of a magnet using a liquid quenched amorphous alloy powder. [Prior Art] Conventional methods for producing R / Fe / B magnets are roughly classified into two methods. One is that when the molten alloy is rapidly quenched, the fine crystal grains (approx.
After adjusting the quenching rate so as to include the super-quenched microcrystallized ribbon so as to include a polymer resin, it can be combined with a polymer resin or uniaxially applied at high temperature. There is a manufacturing method of a liquid quenching type obtained by pressing. On the other hand, the R 2 T 14 B alloy ingot obtained by melting is finely pulverized and formed in a magnetic field, and R 2 T 14 B has crystals in the most anisotropic direction. There is a manufacturing method of a sintered mold manufactured by using the method. This manufacturing method is more suitable for obtaining high magnet properties than the former. Incidentally, the manufacturing process of the sintered magnet generally proceeds in the order of melting, grinding, orientation in a magnetic field, compression molding, sintering, and aging of the raw material alloy. Melting is usually performed in a vacuum or inert atmosphere such as arc or high-frequency heating, and a raw ingot is cast into a water-cooled copper mold. The pulverization is divided into coarse pulverization and fine pulverization, and the coarse pulverization is performed by a jaw crusher, an iron mortar, a disk mill, a roll mill, or the like. Fine pulverization is performed by a ball mill, a vibration mill, a jet mill, or the like. Orientation and compression molding in a magnetic field is customary to take place at the same time using a mold, wherein as R 2 T 17 B system crystal C axis is aligned to show a large magnetic anisotropy, R 2 T 17 B type powder particles are formed. That is, by orienting the C-plane of the crystal to a higher degree, a high-performance anisotropic magnet can be realized. Sintering is usually
It is performed in an inert atmosphere at a temperature of 1000 to 1150 ° C.
Aging contributes to the improvement of I H C, subjected by the need, typically 6
It is performed at a temperature near 00 ° C. [Problems to be Solved by the Invention] As described above, the conventional liquid quenching magnet is a polycrystalline body in which the molding powder particles composed of R 2 T 14 B-based crystal particles do not have anisotropy. Therefore, it is difficult to make anisotropic by molding in a magnetic field or the like, and high magnet properties have not been obtained. Therefore, when trying to obtain high magnet properties,
The powder was deformed under high pressure uniaxially at high temperature to give anisotropy. In this manufacturing method, the equipment is large and expensive, and is industrially disadvantageous. In general, the alloy powder used for liquid quenching magnets is sprayed in a high-speed rotating Fe or Cu roll on an alloy melted by high-frequency heating in an inert atmosphere such as Ar.
It is obtained by roughly pulverizing an alloy ribbon of about 104 μm. By controlling the number of revolutions of this roll, the cooling rate of the melted alloy can be controlled. However, rapid cooling containing fine crystal grains of about 0.05 μm, which has been considered to provide good magnet properties in the past, has been achieved. The alloy ribbon can be obtained only in a very limited range with a roll frequency of about 20 m / sec, and the quenched alloy ribbon is pulverized according to the purpose and magnetized. According to this manufacturing method, since the anisotropy of the magnet is extremely low, high magnet properties cannot be obtained industrially. If you leave shown for reference, in the hot press method, the closest method to the present invention, Br7.9KG, I H C 16KOe. (BH) max. 13M
・ Approximately G · Oe. Therefore, the technical problem of the present invention is to solve the above-mentioned drawbacks by R.
An object of the present invention is to provide a method for producing a rare-earth magnet having simple and inexpensive anisotropy with respect to the use of a T / B-based amorphous alloy powder and having excellent industrial magnet properties. [Means for Solving the Problems] According to the present invention, R 2 T containing Nd, Fe, B as a main component
In a method of manufacturing a 14B- based magnet (where R represents Y and a rare earth element and T represents a transition metal) by using an amorphous RTB alloy, an amorphous RT R 2 T 17 alloy crystal powder is mixed with B-based alloy powder in an amount of 0 to 90 wt.
A method for producing a rare earth magnet characterized by performing sintering is obtained. Further, according to the present invention, there is provided a method for producing a rare earth magnet, wherein the average pulverized particle size of the magnetic field forming powder is 5 μm or less (excluding 0). That is, the present invention need not contain R 2 T 14 B system crystal particles in a molding powder, R 2 T
This is based on the discovery that the anisotropy of the 14B- based sintered body is achieved. In other words, after forming a molding powder obtained by mixing an R 2 T 17 crystal alloy powder and an R • T • B amorphous alloy powder in a magnetic field, sintering to obtain an R 2 T 14 B alloy. Thus, an anisotropic R 2 T 14 B-based sintered magnet is obtained. Therefore, according to the present invention, even when an RTB-based amorphous alloy is used as a raw material, high magnet properties can be obtained, sinterability is improved, and a reduction in sintering temperature can be realized. It is extremely useful in industry. Here, R 2 T 17 for amorphous RTB alloy powder is used.
The mixing ratio of the system crystal powder is 0 to 90 wt.% (Not including 0), and the upper limit is set to 90 wt.%.
-This is because it is extremely difficult to produce a TB alloy, and in addition, the magnet properties are reduced, and the practical value related to the mixing ratio is reduced. The average particle size of these molding powders is 5 μm or less (0
Is not included). The reason why the average pulverized particle size is set to 5 μm or less is that when the average pulverized particle size is less than 5 μm, a clear improvement in magnet properties is recognized. This improvement in magnet properties is due to the fact that the crystal C plane of the R 2 T 14 B crystal grains in the sintered body is more highly oriented in the direction orthogonal to the magnetic field orientation direction, and the diffusion of atoms is also improved.
This is because the ability to form R 2 T 14 B crystals is also improved. Embodiments Hereinafter, embodiments of the present invention will be described with reference to the drawings. Example 1 Nd with a purity of 97 wt.% (The remainder is another rare earth element mainly composed of Ce.Pr), B with a purity of 99.5 wt.%, And electrolytic iron were used.
Nd 2 Fe 17- based ingot with 23.3 wt.% Fe and 76.7 wt.% Fe
Is 32.0 to 95.8 wt.%, B is 1.0 to 8.3 wt.% And the balance is Fe Nd
-Six types of Fe.B-based ingots were obtained by high-frequency heating in an argon atmosphere. Next, of these ingots, the Nd 2 Fe 17- based ingot was kept at 1250 ° C. for 5 hours, and then kept at 1150 ° C. for 20 hours.
The precipitated α-Fe phase particles were eliminated to obtain a Nd 2 Fe 17 ingot. On the other hand, using an Nd-Fe-B-based ingot, after re-melting by high-frequency heating in an Ar atmosphere, a peripheral speed of about 100 m / sec
A liquid quenched amorphous alloy with a width of about 1 mm and a thickness of about 10 μm was obtained by spraying onto a Cu roll and using the single roll method. After coarsely pulverizing these Nd 2 Fe 17 ingots and six kinds of Nd-Fe-B amorphous alloys, the weighed composition was Nd32.0wt.%, B1.0w
%, Nd 2 Fe 17 alloy powder 0,10,30,5
After being mixed at 0,70,88 wt.%, The mixture was finely pulverized using a ball mill to an average particle size of about 2.5 µm. This powder is placed in a magnetic field of 20 KOe for 1 to
Molded at a pressure of n / cm 2 . Next, the molded body was heated in vacuum at 200 ° C./hr to 1060 ° C., kept at 1060 ° C. for 1 hour, kept in Ar for 3 hours, and rapidly cooled. Next, this sintered body is heated at a temperature of 450 ° C. to 750 ° C. in an Ar atmosphere at 50 ° C.
Aged at ° C intervals. A magnetic field of about 30 KOe was applied to the sintered body to measure magnet properties. FIG. 1 shows the highest magnet characteristic values obtained with these samples having a mixing ratio of Nd 2 Fe 17 . Compared to the sample containing only the amorphous R, Fe, and B raw materials, the magnet characteristics (Br) were clear in the range where the Nd 2 Fe 17 raw material was mixed in the range of 0 to 90 wt.% (Excluding 0 and 90 being an extrapolated value). . (BH) max ). Example 2 Cerium dymium comprising 5% by weight of Ce, 15% by weight of Pr, and the balance Nd (other rare earth elements were included as Nd), boron and electrolytic iron were used. And R
R 2 Fe 17- based ingot with 23.5 wt.% And 76.5 wt.% Fe
After obtaining an R • Fe • B-based ingot of 76.0 wt.%, B of 5.0 wt.% And the balance of Fe, the R 2 Fe 17- based ingot is heat-treated,
・ Fe ・ B system ingot was quenched by liquid and made amorphous alloy. Then, after coarse grinding these alloys, 80 wt the R 2 Fe 17 powder.
%, R, Fe, B type amorphous powder was mixed at 20 wt.%, And the average crushed particles were adjusted to 1, 2, 4, 7 μm using a ball mill, and then magnetic field molded. After maintaining this in a vacuum at 1040 ° C. for 1 hour, Ar
The medium was kept for 3 hours and quenched. Next, it was aged at 650 ° C. for 1 hour. FIG. 2 shows the magnet characteristics of this sintered body. As the crushed particle size becomes finer, the magnet properties are improved. The effect is remarkable in a region where the average crushed particle size is 5 μm or less. Example 3 Nd having a purity of 97 wt.% (The remainder being other rare earth elements mainly composed of Ce and Pr), boron, electrolytic iron, electrolytic cobalt and aluminum was used. % And (Fe 77 · C 20 · Al 3 ) 76.7 wt.% Nd 2 T 17 series ingot, and Nd 34.0 wt.% And B 1.0 wt.% (Fe 77 · Co 20 · A
l 3 ) is the remaining Nd / TB-based ingot and Nd is 59.0 wt.%
With B being 3.3 wt.% And (Fe 77 · Co 20 · Al 3 ) the balance Nd · T
・ After obtaining the B-based ingot, the Nd 2 T 17- based ingot was heat-treated, and the Nd · T · B-based ingot was quenched by liquid to obtain an amorphous alloy. Next, after coarsely pulverizing each, Nd34.0wt.% Nd
B type amorphous alloy is used alone, Nd 2 T 17 alloy and Nd 59wt.%
Nd-TB-based amorphous alloys with a weighing composition of Nd 34.0 wt.
1.0 wt.% After (Fe 77 · Co 20 · Al 3) were mixed at a ratio of as 7 to 3 comprising the remainder, mean particle system with a ball mill of about 2
It was pulverized to μm. Thereafter, sintering, aging, and measurement of magnet properties were performed in the same manner as in Example 1. Table 1 shows the results. As a result, the sample mixed with Nd 2 T 17 ingot shows significantly higher magnet properties. As shown in the above embodiments, in a method of manufacturing an R 2 T 14 B-based magnet by using an amorphous RTB-based alloy, 1) an amorphous RTB-based alloy powder On the other hand, R 2 T 17 alloy powder is mixed in an amount of 0 to 90 wt.% (Excluding 0), and then molded and sintered in a magnetic field. 2) The average pulverized particle size of the molding powder of the item 1) is 5 μm or less (excluding 0). Thereby, the anisotropy of the sintered magnet is improved, and the improvement of the magnet properties can be achieved. In the above embodiment, <(Nd · Fe) + (Nd · Fe · B)>
System, <(CePrNdFe) + (CePrNdFeB)>
System, <(Nd.Fe.Co.Al) + (Nd.Fe.Co.Al.B)>
Although only the system was described, part of Nd was replaced with Y and other rare earth elements such as Gd, Dy, Tb, Ho, etc., and part of Fe was replaced with other transition metals such as Mn, Cr, Ni, etc. Or part of B is Si, C
The composition of the magnet alloy is Nd, Fe, B
Is a part of the main component.
If R 2 T 14 B typified by d 2 Fe 14 B contributes to magnetism, it can be easily presumed that the effects of the present invention can be sufficiently expected. Moreover, it is not necessary R 2 T 17 alloy raw material is not all R 2 T 17 crystals can be readily inferred that the improvement in the magnetic properties is involved in the space factor. [Effects of the Invention] As described above, according to the present invention, the R, T, and B-based amorphous alloy powder, which has been difficult to make
By mixing 2 T 17 alloy crystal powder, it can be performed easily and inexpensively anisotropy of, moreover, it is possible to improve the magnetic properties.

【図面の簡単な説明】 第1図は,実施例1におけるNd2Fe17の混合量(wt.%)
と,Nd2Fe14B系焼結磁石の成形磁場方向での磁石特性(B
r,IHC,(BH)max)との相関図,第2図は,実施例2に
おける成形用粉末の平均粉砕粒径と,Nd2Fe14B系焼結磁
石の成形磁場方向での磁石特性(Br,IHC,(BH)maxとの
相関図である。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 shows the mixing amount (wt.%) Of Nd 2 Fe 17 in Example 1.
Properties of the Nd 2 Fe 14 B sintered magnet in the direction of the forming magnetic field (B
r, I H C , (BH) max ), and FIG. 2 shows the average crushed particle size of the molding powder in Example 2 and the Nd 2 Fe 14 B-based sintered magnet in the molding magnetic field direction. magnetic properties (Br, I H C, is a correlation diagram between (BH) max.

Claims (1)

(57)【特許請求の範囲】 1.Nd,Fe,Bを主成分として含有するR2T14B系磁石(こ
こで,RはY及び希土類元素,Tは遷移金属をあらわす。)
を,非晶質R・T・B系合金の使用により製造する方法
において,非晶質R・T・B系合金粉末に対し,R2T17
合金結晶粉末を0〜90wt.%(0を含まず)混合して,
磁場成形用粉末とした後,磁場中成形,焼結を施すこと
を特徴とする希土類磁石の製造方法。 2.特許請求の範囲第1項記載の希土類磁石の製造方法
において,前記磁場成形用粉末の平均粉砕粒径を5μm
以下(0を含まず)とすることを特徴とする希土類磁石
の製造方法。
(57) [Claims] R 2 T 14 B-based magnet containing Nd, Fe, and B as main components (where R represents Y and a rare earth element, and T represents a transition metal)
And a process for producing by the use of amorphous R · T · B type alloy, amorphous R · T · B based alloy powder to, 0~90wt.% Of R 2 T 17 alloy crystal powder (0 (Not including)
A method for producing a rare earth magnet, which comprises forming a powder for forming a magnetic field, and then forming and sintering in a magnetic field. 2. 2. The method for manufacturing a rare earth magnet according to claim 1, wherein the average particle size of the magnetic field forming powder is 5 μm.
A method for producing a rare earth magnet, characterized by the following (not including 0).
JP62304619A 1987-12-03 1987-12-03 Rare earth magnet manufacturing method Expired - Lifetime JP2660917B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62304619A JP2660917B2 (en) 1987-12-03 1987-12-03 Rare earth magnet manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62304619A JP2660917B2 (en) 1987-12-03 1987-12-03 Rare earth magnet manufacturing method

Publications (2)

Publication Number Publication Date
JPH01146309A JPH01146309A (en) 1989-06-08
JP2660917B2 true JP2660917B2 (en) 1997-10-08

Family

ID=17935201

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62304619A Expired - Lifetime JP2660917B2 (en) 1987-12-03 1987-12-03 Rare earth magnet manufacturing method

Country Status (1)

Country Link
JP (1) JP2660917B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104319049A (en) * 2014-11-06 2015-01-28 钢铁研究总院 Easy-plane type bi-phase nano-crystalline high-frequency soft magnetic material and preparation method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5387291A (en) * 1992-03-19 1995-02-07 Sumitomo Special Metals Co., Ltd. Process for producing alloy powder material for R-Fe-B permanent magnets and alloy powder for adjusting the composition therefor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60162750A (en) * 1984-02-01 1985-08-24 Nippon Gakki Seizo Kk Rare earth magnet and its production
JPS62131503A (en) * 1985-12-04 1987-06-13 Sumitomo Metal Mining Co Ltd Manufacture of rare earth-iron-boron alloy powder for resin magnet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104319049A (en) * 2014-11-06 2015-01-28 钢铁研究总院 Easy-plane type bi-phase nano-crystalline high-frequency soft magnetic material and preparation method thereof

Also Published As

Publication number Publication date
JPH01146309A (en) 1989-06-08

Similar Documents

Publication Publication Date Title
EP0239031B2 (en) Method of manufacturing magnetic powder for a magnetically anisotropic bond magnet
KR960008185B1 (en) Rare earth-iron system permanent magnet and process for producing the same
EP0886284B1 (en) Cast alloy used for production of rare earth magnet and method for producing cast alloy and magnet
US5930582A (en) Rare earth-iron-boron permanent magnet and method for the preparation thereof
JP2727507B2 (en) Permanent magnet and manufacturing method thereof
JPH03153006A (en) Permanent magnet and raw material therefor
EP0632471A2 (en) Permanent magnet containing rare earth metal, boron and iron
JP3505261B2 (en) Sm-Co permanent magnet material, permanent magnet and method for producing the same
US5690752A (en) Permanent magnet containing rare earth metal, boron and iron
JP3488358B2 (en) Method for producing microcrystalline permanent magnet alloy and permanent magnet powder
US6136099A (en) Rare earth-iron series permanent magnets and method of preparation
EP1263003B1 (en) Preparation of a rare earth magnet alloy powder for a bonded magnet and rare earth bonded magnet therewith
JP4276541B2 (en) Alloy for Sm-Co magnet, method for producing the same, sintered magnet, and bonded magnet
JPS6348805A (en) Manufacture of rare-earth magnet
JP2660917B2 (en) Rare earth magnet manufacturing method
KR900006533B1 (en) Anisotropic magnetic materials and magnets made with it and making method for it
JP3299630B2 (en) Manufacturing method of permanent magnet
JP3755902B2 (en) Magnet powder for anisotropic bonded magnet and method for producing anisotropic bonded magnet
JPS6373502A (en) Manufacture of rare earth magnet
JP2587617B2 (en) Manufacturing method of rare earth permanent magnet
JPH07211570A (en) Manufacture of rare-earth permanent magnet
JPS63115307A (en) Manufacture of rare-earth magnet
JP4133315B2 (en) Rare earth magnet manufacturing method, rare earth magnet raw material alloy and powder
JP2827643B2 (en) Method for producing rare earth-Fe-B based magnet alloy powder
JPH0533076A (en) Rare earth permanent magnet alloy and its production