JP3505261B2 - Sm-Co permanent magnet material, permanent magnet and method for producing the same - Google Patents

Sm-Co permanent magnet material, permanent magnet and method for producing the same

Info

Publication number
JP3505261B2
JP3505261B2 JP08457295A JP8457295A JP3505261B2 JP 3505261 B2 JP3505261 B2 JP 3505261B2 JP 08457295 A JP08457295 A JP 08457295A JP 8457295 A JP8457295 A JP 8457295A JP 3505261 B2 JP3505261 B2 JP 3505261B2
Authority
JP
Japan
Prior art keywords
permanent magnet
weight
magnet material
hours
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP08457295A
Other languages
Japanese (ja)
Other versions
JPH08260083A (en
Inventor
力 岡田
山本  和彦
和弘 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Santoku Corp
Original Assignee
Santoku Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Santoku Corp filed Critical Santoku Corp
Priority to JP08457295A priority Critical patent/JP3505261B2/en
Publication of JPH08260083A publication Critical patent/JPH08260083A/en
Application granted granted Critical
Publication of JP3505261B2 publication Critical patent/JP3505261B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/0555Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together
    • H01F1/0557Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together sintered

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Continuous Casting (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、Sm、Fe、Cu、Z
r及びCoを必須成分として含有するSm−Co系永久
磁石材料及びその製造法、この材料を原料とし、優れた
磁石特性を有するSm−Co系焼結永久磁石、Sm−C
o系ボンド永久磁石並びにこれらの製造法に関する。
The present invention relates to Sm, Fe, Cu, Z
Sm-Co based permanent magnet material containing r and Co as essential components and a method for producing the same, Sm-Co based sintered permanent magnet using this material as a raw material and having excellent magnetic properties, Sm-C
The present invention relates to an o-type bonded permanent magnet and manufacturing methods thereof.

【0002】[0002]

【従来の技術】従来、金属(合金を含む)が凝固する
際、固液界面前方にある金属液体中の温度勾配が小さく
て結晶の成長速度が大きいと、得られる結晶は樹枝状形
態に成長し易いことが知られており、この樹枝状形態の
結晶は、樹枝状晶又はデントライトと呼ばれている。こ
の樹枝状晶は、柱状晶のサブ組織を形成することが知ら
れており、樹枝状晶の幹となる部分を一次の枝(アー
ム)と呼び、一つの柱状晶内には柱状に成長している多
数の平行に並んだ枝が存在する。この枝の間隔をデンド
ライト一次アームの間隔と言い、測定法としては垂直断
面の顕微鏡組織写真を基に計測できることが知られてい
る。しかし、このようなデンドライト一次アームの間隔
が磁石性能や磁石製造条件にどのような影響を及ぼして
いるかについては知られていない。また金属の結晶配向
度を示す指標として、X線配向度f値が知られている
(佐藤等:「Nd−Fe−B系液体急冷合金の結晶配向
度と焼結磁石特性」,Tokin Technikal Review 第15号 P
29(1989))。しかし、従来Sm−Co系磁石においてX
線配向度f値が80以上の高い値を示すものについては
知られていないのが現状である。
2. Description of the Related Art Conventionally, when a metal (including alloy) solidifies, the obtained crystal grows in a dendritic form when the temperature gradient in the metal liquid in front of the solid-liquid interface is small and the crystal growth rate is high. It is known that this is easy to do, and this dendrite form crystal is called dendrite or dentrite. It is known that this dendrite forms a substructure of columnar crystals. The part that serves as the trunk of dendrites is called the primary branch (arm), and it grows into columns within one columnar crystal. There are many parallel branches. The distance between the branches is called the distance between the dendrite primary arms, and it is known that the distance can be measured based on a microscopic photograph of a vertical section. However, it is not known how the distance between the dendrite primary arms affects magnet performance and magnet manufacturing conditions. The X-ray orientation degree f value is known as an index indicating the crystal orientation degree of a metal (Sato et al .: "Crystal orientation degree and sintered magnet characteristics of Nd-Fe-B system liquid quenched alloy", Tokin Technikal Review No. 15 P
29 (1989)). However, in conventional Sm-Co magnets, X
At present, there is no known material having a high degree of linear orientation f of 80 or more.

【0003】Sm−Co系磁石において焼結磁石の製造
法は、組成調整した合金鋳塊を、1〜5μmに粉砕し、
8〜15KOe/cm2の磁場中において加圧成形した
後、純アルゴン気流中、1150℃を超え、1350℃
以内、通常1200℃程度において、2時間を超え、5
時間以内の条件で焼結し、溶体化処理する。次いで80
0〜900℃の温度範囲から設定温度を選択し、該設定
温度±2℃に制御して8時間程度時効処理を行ない、磁
石性能が得られたところで寸法精度を出すための研削加
工をし、その後着磁処理をして製品磁石とするのが一般
的である。
In the method for producing a sintered magnet for an Sm-Co magnet, the alloy ingot having the adjusted composition is crushed to 1 to 5 μm,
After pressure forming in a magnetic field of 8 to 15 KOe / cm 2 , the temperature exceeds 1150 ° C. and 1350 ° C. in a pure argon stream.
Less than 2 hours, usually at 1200 ℃
Sintering is performed within the time and solution treatment is performed. Then 80
A set temperature is selected from a temperature range of 0 to 900 ° C., the set temperature is controlled to ± 2 ° C., an aging treatment is performed for about 8 hours, and a grinding process is performed to obtain dimensional accuracy when the magnet performance is obtained, After that, it is generally magnetized to obtain a product magnet.

【0004】前記焼結磁石の場合、磁場中での加圧成形
時の配向度の良否が、直接異方化の度合いを決め、配向
度が悪いと磁石材料の磁石特性が100%引出せないこ
とになる。この配向度は磁石粉末の結晶組織の均一性
と、粒度の均一性に大きな要因があると考えられてい
る。また製造法においても、前記従来法では焼結処理の
焼結温度が1200℃程度と高く、また焼結時間も長い
ので多大のエネルギーコストを要し、しかもこのような
高温長時間焼成の場合、得られる焼結磁石の磁石特性に
悪影響を及ぼしている。更に時効処理は、設定温度を±
2℃の範囲で厳密に制御しないと良い磁気特性が得られ
ないのが実状であって、高度な時効処理設備を必要とし
ている。
In the case of the above-mentioned sintered magnet, the quality of the orientation during pressure molding in a magnetic field directly determines the degree of anisotropy, and if the orientation is poor, the magnet characteristics of the magnet material cannot be fully extracted. become. It is considered that this degree of orientation has a large factor in the uniformity of the crystal structure of the magnet powder and the uniformity of the particle size. Also in the manufacturing method, in the conventional method, the sintering temperature of the sintering process is as high as about 1200 ° C., and the sintering time is long, which requires a great energy cost. It adversely affects the magnetic properties of the obtained sintered magnet. Furthermore, for aging treatment, the set temperature is ±
The actual situation is that good magnetic properties cannot be obtained unless the temperature is strictly controlled within the range of 2 ° C., which requires advanced aging treatment equipment.

【0005】一方Sm−Co系磁石においてボンド磁石
の製造法は、組織調整した合金鋳塊をそのままの形状で
アルゴン気流中1100〜1300℃で15〜30時間
溶体化処理をし、続いて800〜900℃の温度範囲か
ら設定温度を選択し、該設定温度±2℃に制御して8時
間程度時効処理をする。次いで得られた合金鋳塊を10
〜30μmに粉砕し、エポキシ樹脂、ナイロン樹脂等の
樹脂を1〜5容量%混合混練後、8〜15KOe/cm
2の磁場中において1〜5t/cm2のプレス圧で圧縮成
形して成形体を得、得られた成形体を整形研削後、着磁
して製品磁石とするのが一般的な方法である。
On the other hand, in the method for producing a bonded magnet in an Sm-Co type magnet, the alloy ingot having its structure adjusted is subjected to solution treatment in an argon stream at 1100 to 1300 ° C. for 15 to 30 hours, and then 800 to. A set temperature is selected from the temperature range of 900 ° C., the set temperature is controlled to ± 2 ° C., and an aging treatment is performed for about 8 hours. Then, the obtained alloy ingot was mixed with 10
8 to 15 KOe / cm after crushing to ~ 30 μm and mixing and kneading 1 to 5% by volume of resin such as epoxy resin and nylon resin.
It is a general method to perform compression molding in a magnetic field of 2 at a press pressure of 1 to 5 t / cm 2 to obtain a molded body, shape-grind the obtained molded body, and magnetize it to obtain a product magnet. .

【0006】しかし、従来の前記ボンド磁石において
は、磁石粒内の組織が均一でないため、磁石粉粒径が1
0〜30μmと粗大である場合、直ちに配向度、引いて
は異方性に悪影響を及ぼし、磁気特性低下の原因となっ
ている。また溶体化と時効処理も焼結磁石の場合と同様
に高温で長時間を要し、しかも時効処理の温度制御が厳
密であって、時効処理設備にコストがかかるという欠点
がある。
However, in the above-mentioned conventional bonded magnet, the grain size of the magnet powder is 1 because the structure in the magnet grain is not uniform.
When the grain size is as coarse as 0 to 30 μm, the degree of orientation, and hence the anisotropy, are immediately adversely affected, which causes deterioration of magnetic properties. Further, solution treatment and aging treatment also require a long time at a high temperature as in the case of the sintered magnet, and further, the temperature control of the aging treatment is strict, and the aging treatment equipment is expensive.

【0007】[0007]

【発明が解決しようとする課題】従って本発明の目的
は、組織が均一であって、得られる永久磁石に優れた磁
気特性を付与することができ、しかも永久磁石製造時の
温度条件を低温に、且つ処理時間を短時間に設定するこ
とができ、且つ製造時の条件制御も簡便に行なうことを
可能にし得る新規なSm−Co系永久磁石材料及びその
製造法を提供することにある。本発明の別の目的は、優
れた磁石特性を有するSm−Co系焼結永久磁石及びS
m−Co系ボンド永久磁石を提供することにある。本発
明の他の目的は、製造時の温度条件を低温に、且つ処理
時間を短時間に設定することができ、且つ製造時の条件
制御も簡便に行なうことができ、しかも優れた磁石特性
が得られるSm−Co系焼結永久磁石及びSm−Co系
ボンド永久磁石の製造法を提供することにある。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a permanent magnet having a uniform structure with excellent magnetic properties, and to lower the temperature condition during the production of the permanent magnet. The present invention is to provide a novel Sm-Co based permanent magnet material that can set the treatment time to a short time and can easily control the conditions at the time of manufacturing, and a method for manufacturing the same. Another object of the present invention is an Sm-Co based sintered permanent magnet having excellent magnet characteristics and S.
An object is to provide an m-Co based bonded permanent magnet. Another object of the present invention is to set the temperature condition at the time of manufacture to a low temperature and the treatment time to a short time, and to easily control the conditions at the time of manufacture, and to obtain excellent magnet characteristics. An object of the present invention is to provide a method for producing the obtained Sm-Co based sintered permanent magnet and Sm-Co based bonded permanent magnet.

【0008】[0008]

【課題を解決するための手段】本発明によれば、Sm5
0重量%以上を含む希土類金属20〜30重量%、Fe
10〜25重量%、Cu2〜7重量%、Zr0.5〜4
重量%及びCo残量からなる合金組成を主成分とする永
久磁石材料であって、この材料が短軸長さ10〜200
μm、長軸長さ50〜500μmの柱状晶粒を結晶組織
中に90容量%以上含有し、この柱状晶粒のサブ組織で
ある樹枝状のデンドライト一次アームの間隔が0.5〜
20μmである結晶を80容量%以上含み、且つ下記数
式2に従うX線配向度f値がf≧80であることを特徴
とするSm−Co系永久磁石材料が提供される。
According to the present invention, Sm5
20-30 wt% rare earth metal containing 0 wt% or more, Fe
10 to 25% by weight, Cu 2 to 7% by weight, Zr 0.5 to 4
A permanent magnet material whose main component is an alloy composition consisting of wt% and the remaining amount of Co, and the material has a minor axis length of 10 to 200.
The crystal structure contains 90% by volume or more of columnar grains having a long axis length of 50 to 500 μm and the dendritic primary arms that are substructures of the columnar grains have an interval of 0.5 to
There is provided an Sm-Co based permanent magnet material, which comprises 80% by volume or more of a crystal having a size of 20 μm and has an X-ray orientation degree f value according to the following mathematical formula 2 of f ≧ 80.

【0009】[0009]

【数2】 [Equation 2]

【0010】また本発明によれば、前記合金組成を主成
分とする合金溶融物を、単ロール法により過冷度10〜
500℃、冷却速度500℃/秒を超え、10000℃
/秒以下の冷却条件下で、厚さ0.1〜0.7mmの帯
状に均一に凝固させて鋳造することを特徴とする前記S
m−Co系永久磁石材料の製造法が提供される。
Further, according to the present invention, the alloy melt containing the above alloy composition as a main component is subjected to a subcooling of 10 to 10 by a single roll method.
Over 500 ℃, cooling rate over 500 ℃ / sec, 10,000 ℃
The above-mentioned S characterized by being uniformly solidified and cast into a strip having a thickness of 0.1 to 0.7 mm under a cooling condition of less than 1 / second.
A method for manufacturing an m-Co based permanent magnet material is provided.

【0011】更に本発明によれば、前記Sm−Co系永
久磁石材料を原料として得たSm−Co系焼結永久磁石
及びSm−Co系ボンド永久磁石が提供される。更にま
た本発明によれば、前記Sm−Co系永久磁石材料を微
粉砕した後、磁場中で圧縮成形し、非酸化性雰囲気中に
おいて1000〜1250℃で1〜2時間焼結し、次い
で800〜900℃の温度範囲から設定温度を選択し、
該設定温度±5℃に制御して5〜10時間時効処理する
ことを特徴とする前記Sm−Co系焼結永久磁石の製造
法が提供される。また本発明によれば、前記Sm−Co
系永久磁石材料を、非酸化性雰囲気中において1000
〜1200℃で0.1〜5時間加熱溶体化処理した後、
800〜900℃の温度範囲から設定温度を選択し、該
設定温度±5℃に制御して5〜10時間時効処理を行な
い、次いで粉砕して粒径10〜30μmの磁石粉を得、
該磁石粉と、1〜3容量%の樹脂とを混合混練し、磁場
中で成形することを特徴とする前記Sm−Co系ボンド
永久磁石の製造法が提供される。
Further, according to the present invention, there are provided an Sm-Co based sintered permanent magnet and an Sm-Co based bonded permanent magnet obtained by using the Sm-Co based permanent magnet material as a raw material. Furthermore, according to the present invention, the Sm—Co based permanent magnet material is finely pulverized, compression-molded in a magnetic field, sintered in a non-oxidizing atmosphere at 1000 to 1250 ° C. for 1 to 2 hours, and then 800 Select the set temperature from the temperature range of ~ 900 ℃,
There is provided a method for producing the Sm-Co based sintered permanent magnet, which is characterized in that the aging treatment is performed for 5 to 10 hours while controlling the set temperature to ± 5 ° C. Further, according to the present invention, the Sm-Co
1000-based permanent magnet material in a non-oxidizing atmosphere
After heat solution treatment at ~ 1200 ° C for 0.1 to 5 hours,
A preset temperature is selected from a temperature range of 800 to 900 ° C., the preset temperature is controlled to ± 5 ° C., an aging treatment is performed for 5 to 10 hours, and then the powder is pulverized to obtain a magnet powder having a particle diameter of 10 to 30 μm.
There is provided a method for producing the Sm-Co based bonded permanent magnet, which comprises mixing and kneading the magnet powder and a resin of 1 to 3% by volume and molding the mixture in a magnetic field.

【0012】以下本発明を更に詳細に説明する。本発明
のSm−Co系永久磁石材料は、特定の合金組成を主成
分とし、特定の結晶構造及び結晶配向度を有する。この
際主成分とは、本発明の所望の目的が達成される量の配
合であれば良く、特に限定されるものではないが、磁石
材料全量に対して、通常95重量%以上、好ましくは9
7重量%以上を意味する。前記合金組成の主成分は、S
m50重量%以上を含む希土類金属20〜30重量%、
Fe10〜25重量%、Cu2〜7重量%、Zr0.5
〜4重量%及びCo残量からなる。前記Sm以外の希土
類金属としては、特に限定されるものではなく、La、
Nd、Ce、Pr、Sc、Gd等を挙げることができ
る。希土類金属中のSmの含有量が50重量%未満の場
合には、磁石としての物理的性質を付与できない。
The present invention will be described in more detail below. The Sm-Co based permanent magnet material of the present invention contains a specific alloy composition as a main component, and has a specific crystal structure and a crystal orientation degree. In this case, the main component is not particularly limited as long as it is contained in an amount that achieves the desired object of the present invention, but is usually 95% by weight or more, preferably 9% by weight based on the total amount of the magnetic material.
It means 7% by weight or more. The main component of the alloy composition is S
20 to 30 wt% of rare earth metal containing 50 wt% or more of m,
Fe 10-25 wt%, Cu 2-7 wt%, Zr0.5
˜4 wt% and Co balance. The rare earth metal other than Sm is not particularly limited, and La,
Examples thereof include Nd, Ce, Pr, Sc and Gd. When the content of Sm in the rare earth metal is less than 50% by weight, physical properties as a magnet cannot be imparted.

【0013】本発明の永久磁石材料には、前記主成分の
他に、所望の目的に影響を及ぼさない範囲において、更
にTi、Bi、Nb、Cr、W、Al、Ge、Si、N
i、V、Ta、Mo、Mn、Sb、Sn又はこれらの混
合物を3重量%以下含有させることができる他、通常製
造時に不可避的に含有される他の不純物が含有されてい
ても良い。
In addition to the above-mentioned main components, the permanent magnet material of the present invention further contains Ti, Bi, Nb, Cr, W, Al, Ge, Si and N, as long as it does not affect the desired purpose.
In addition to 3 wt% or less of i, V, Ta, Mo, Mn, Sb, Sn or a mixture thereof, other impurities that are inevitably contained in the normal production may be contained.

【0014】本発明のSm−Co系永久磁石材料は、短
軸長さ10〜200μm、好ましくは10〜100μ
m、長軸長さ50〜500μm、好ましくは70〜50
0μmの柱状晶粒を結晶組織中に90容量%以上含有
し、この柱状晶粒のサブ組織である樹枝状のデンドライ
ト一次アームの間隔が0.5〜20μm、好ましくは
0.5〜10μmである結晶を80容量%以上含む。前
記柱状晶粒の短軸及び長軸長さが前記範囲外、また90
容量%未満の場合には、均一組織の度合いが低く、得ら
れる磁石に優れた磁石特性を付与することができない。
一方デンドライト一次アームの間隔が前記範囲外の場
合、またこの樹枝状結晶が80容量%未満の場合には、
この永久磁石材料を用いた永久磁石の製造時において、
焼結、溶体化を容易に、しかも低温度、短時間で行なう
ことができず、更には磁気特性を低下させる酸化を防止
するのが困難になる。前記柱状晶粒のサブ組織である樹
枝状のデンドライト一次アームの間隔とは、「鋳造凝
固;講座・現代の金属学材料編10:日本金属学会発
行、p91〜97(1992)」に詳述されており、垂直断面の顕
微鏡組織写真を基に計測評価できる。
The Sm-Co based permanent magnet material of the present invention has a minor axis length of 10 to 200 μm, preferably 10 to 100 μm.
m, major axis length 50 to 500 μm, preferably 70 to 50
90 μm or more of 0 μm columnar grains are contained in the crystal structure, and the interval between the dendritic primary arms that are substructures of the columnar grains is 0.5 to 20 μm, preferably 0.5 to 10 μm. Contains 80% by volume or more of crystals. The minor axis and major axis lengths of the columnar grains are out of the above range, and 90
When the content is less than the volume%, the degree of uniform structure is low and excellent magnet characteristics cannot be imparted to the obtained magnet.
On the other hand, when the distance between the dendrite primary arms is outside the above range, and when the dendrites are less than 80% by volume,
When manufacturing a permanent magnet using this permanent magnet material,
Sintering and solution treatment cannot be performed easily at low temperature in a short time, and it becomes difficult to prevent oxidation that deteriorates magnetic properties. The interval between the dendritic primary arms that are sub-structures of the columnar grains is described in detail in "Casting and solidification; Lecture / Modern Metallurgical Materials 10: Published by The Japan Institute of Metals, p91-97 (1992)". Therefore, it can be measured and evaluated based on the microstructure photograph of the vertical section.

【0015】また本発明のSm−Co系永久磁石材料
は、前記特定の柱状晶を有し、その結晶配向度が高い。
即ち配向度指標である前記数式2で示されるX線配向度
f値がf≧80である。このX線配向度f値とは、佐藤
等:「Nd−Fe−B系液体急冷合金の結晶配向度と焼
結磁石特性」(Tokin Technikal Review 第15号 P29(198
9))に詳述されている。前記数式2において、回折X線
強度は通常の粉末X線回折法により強度測定した値を用
いることができる。このf値が80未満の場合には、磁
石材料粒子中の結晶の整列性が悪く、磁石とした際の異
方化度が低下する。f≧80と高い場合には、粉末粒子
の径が大きいボンド永久磁石に使用する際であっても高
性能な異方性のボンド永久磁石が得られる。
Further, the Sm-Co based permanent magnet material of the present invention has the above-mentioned specific columnar crystal and has a high degree of crystal orientation.
That is, the X-ray orientation degree f value shown by the above-mentioned mathematical expression 2 which is an orientation degree index is f ≧ 80. The X-ray orientation degree f-value is Sato et al .: "Crystal orientation degree and sintered magnet characteristics of Nd-Fe-B system liquid quenched alloy" (Tokin Technikal Review No. 15, P29 (198).
9)). In the above mathematical formula 2, the value of the intensity of the diffracted X-ray can be measured by the usual powder X-ray diffraction method. When this f value is less than 80, the crystallinity in the magnet material particles is poor, and the anisotropy when the magnet is used is reduced. When f ≧ 80, a high-performance anisotropic bonded permanent magnet can be obtained even when used in a bonded permanent magnet having a large powder particle diameter.

【0016】本発明の前記Sm−Co系永久磁石材料の
製造法では、まず前記合金組成を主成分とする合金溶融
物を調製する。この合金溶融物には、前記主成分以外の
前述の他の金属を3重量%以下含有させることもでき
る。合金溶融物を調製するには、例えば真空溶融炉法、
高周波溶融炉法等により、好ましくはるつぼ等を用いて
不活性ガス雰囲気下等において得ることができる。
In the method for producing the Sm-Co based permanent magnet material of the present invention, first, an alloy melt containing the alloy composition as a main component is prepared. This alloy melt may contain 3% by weight or less of the above-mentioned other metal other than the above-mentioned main component. To prepare the alloy melt, for example, the vacuum melting furnace method,
It can be obtained by a high frequency melting furnace method or the like, preferably using a crucible or the like in an inert gas atmosphere or the like.

【0017】次いで本発明のSm−Co系永久磁石材料
の製造法では、前記合金溶融物の過冷度を10〜500
℃、好ましくは得られる柱状晶の長軸方向の長さと、短
軸方向の長さとの比を大きくし、異方化度を向上させ、
更に希土類金属に富む相の分散性を良好にして得られる
永久磁石の磁石特性を向上させるために、過冷度の下限
値は100℃に調整する。この際過冷度とは、(合金の
融点)−(融点以下の合金溶融物の実際の温度)の値で
ある。更に詳細には、「過冷」とは、合金溶融物が冷却
されて合金の融点に達しても凝固が実際に生じず、更に
降下した温度であって、核生成温度に達すると合金溶融
物中に微細な固相、即ち結晶が形成され凝固がはじめて
生ずる現象を言う。このような過冷度制御は、例えば前
述のるつぼ等を用いて調製した合金溶融物の温度を制御
すると共に、凝固させるための単ロールに導くまでの時
間及び速度等を適宜調整することにより行なうことがで
きる。
Next, in the method for producing the Sm-Co based permanent magnet material of the present invention, the degree of supercooling of the alloy melt is 10 to 500.
° C, preferably by increasing the ratio of the length of the obtained columnar crystal in the major axis direction and the length in the minor axis direction to improve the degree of anisotropy,
Further, in order to improve the magnetic properties of the permanent magnet obtained by improving the dispersibility of the phase rich in rare earth metal, the lower limit of the degree of supercooling is adjusted to 100 ° C. In this case, the degree of supercooling is a value of (melting point of alloy)-(actual temperature of alloy melt below melting point). More specifically, "supercooling" is the temperature at which the alloy melt does not actually solidify even when the alloy melt is cooled to reach the melting point of the alloy, and the temperature is further lowered. It is a phenomenon in which a fine solid phase, that is, crystals are formed and solidification occurs for the first time. Such supercooling degree control is performed, for example, by controlling the temperature of the alloy melt prepared by using the above-mentioned crucible or the like, and by appropriately adjusting the time and speed for leading to a single roll for solidification. be able to.

【0018】そして本発明の前記永久磁石材料の製造法
では、好ましくは不活性ガス雰囲気中において、冷却速
度500℃/秒を超え、10000℃/秒以下、好まし
くは1000〜5000℃/秒の冷却条件下で、単ロー
ルを用いて、好ましくは連続的に行なうストリップキャ
スティング法によって、前記過冷度制御された合金溶融
物を厚さ0.1〜0.7mm、好ましくは0.1〜0.
5mmの帯状に均一に凝固させて鋳造する。前記冷却速
度及び厚さの制御は、例えばロールの回転数、表面温
度、雰囲気温度、あるいは合金溶融物をロールに供給す
る量等を調整することにより行なうことができる。前記
規定する冷却速度及び厚さの範囲外の場合には、前述の
所望の結晶構造及び高配向度が得られない。また単ロー
ルを採用したのは、双ロール、回転円盤を使用する場
合、結晶成長方向及び冷却速度の管理が困難であり、目
的の結晶構造が得られず、しかも装置自体の耐久性にも
劣るためであり、単ロール法では、このような合金溶融
物の条件制御が容易である。本発明のSm−Co系焼結
永久磁石及びSm−Co系ボンド永久磁石は、共に前記
Sm−Co系永久磁石材料を原料として得られたもので
あって、好ましくは後述する製造法により得ることがで
きる。
In the method for producing a permanent magnet material of the present invention, the cooling rate is preferably more than 500 ° C./sec and 10,000 ° C./sec or less, preferably 1000 to 5000 ° C./sec in an inert gas atmosphere. Under the conditions, the alloy casting having a controlled subcooling degree having a thickness of 0.1 to 0.7 mm, preferably 0.1 to 0.
A 5 mm strip is uniformly solidified and cast. The cooling rate and thickness can be controlled, for example, by adjusting the number of rotations of the roll, the surface temperature, the ambient temperature, or the amount of the alloy melt supplied to the roll. If the cooling rate and thickness are out of the specified ranges, the desired crystal structure and high degree of orientation cannot be obtained. In addition, the single roll is adopted because when a twin roll or a rotating disk is used, it is difficult to control the crystal growth direction and the cooling rate, the desired crystal structure cannot be obtained, and the durability of the apparatus itself is poor. This is because the single roll method makes it easy to control the conditions of such an alloy melt. The Sm-Co based sintered permanent magnet and the Sm-Co based bonded permanent magnet of the present invention are both obtained by using the Sm-Co based permanent magnet material as a raw material, and preferably obtained by the production method described later. You can

【0019】本発明の前記Sm−Co系焼結永久磁石の
製造法では、まず前記Sm−Co系永久磁石材料を微粉
砕する。この微粉砕は、例えばクラッシャーで粗粉砕
後、湿式ボールミル等を用いて不活性気流中等で、好ま
しくは1〜5μmに粉砕する方法等により行なうことが
できる。
In the method for producing the Sm-Co based sintered permanent magnet of the present invention, first, the Sm-Co based permanent magnet material is finely pulverized. This fine pulverization can be carried out, for example, by roughly pulverizing with a crusher and then pulverizing with a wet ball mill or the like in an inert gas stream, preferably to 1 to 5 μm.

【0020】次に、前記微粉砕物を、好ましくは8〜1
5kOeの印加磁場中で、例えば磁場プレス機等により
圧縮成形する。続いて得られた圧縮成形物を、真空加熱
炉等を用いて真空置換した高純度アルゴンガス気流等の
非酸化性雰囲気中で、1000〜1250℃、好ましく
は1150〜1250℃において1〜2時間焼結する。
従来法の焼結は、1300℃程度で、2時間を超え、5
時間以内の条件で行なわれているが、本発明の製造法で
は、前記柱状晶のサブ組織である樹枝状のデンドライト
一次アーム間隔が0.5〜20μmの結晶を80容量%
以上含有する永久磁石材料を用いているので、焼結を、
前記低温度短時間で行なうことを可能にし、コスト低減
を行なうことができる。また磁気特性を低下させる酸化
も防止することを可能にしている。
Next, the finely ground product is preferably 8 to 1
In an applied magnetic field of 5 kOe, compression molding is performed using, for example, a magnetic field press. Subsequently, the obtained compression molded product is 1000 to 1250 ° C., preferably 1150 to 1250 ° C., for 1 to 2 hours in a non-oxidizing atmosphere such as a high-purity argon gas stream that is vacuum-substituted using a vacuum heating furnace or the like. Sinter.
Sintering by the conventional method is at about 1300 ° C for more than 2 hours and 5
In the production method of the present invention, 80% by volume of crystals having a dendrite primary arm interval of 0.5 to 20 μm, which is a substructure of the columnar crystals, is used in the production method of the present invention.
Since the permanent magnet material contained above is used, sintering
The low temperature can be performed in a short time, and the cost can be reduced. It also makes it possible to prevent oxidation that deteriorates magnetic properties.

【0021】続いて焼結後急冷し、800〜900℃、
好ましくは830〜850℃の温度範囲から設定温度を
選択し、該設定温度±5℃に制御して5〜10時間時効
処理を行なう。この時効処理の温度設定は、従来法にお
いては炉の温度分布の不均一さもあり、非常にデリケー
トで、±2℃程度に制御しなければ性能向上が図れなか
ったが、本発明における組織均一性の高い前記Sm−C
o系永久磁石材料を用いる場合、±5℃の温度制御によ
っても高磁石特性が得られ、温度管理が容易である。
Subsequently, after sintering, the material is rapidly cooled to 800 to 900 ° C.
Preferably, the set temperature is selected from the temperature range of 830 to 850 ° C., the set temperature is controlled to ± 5 ° C., and the aging treatment is performed for 5 to 10 hours. The temperature setting of this aging treatment is very delicate due to the non-uniformity of the temperature distribution of the furnace in the conventional method, and the performance could not be improved unless it was controlled to about ± 2 ° C. High Sm-C
When an o-based permanent magnet material is used, high magnet characteristics can be obtained even by temperature control of ± 5 ° C, and temperature control is easy.

【0022】次いで得られた時効処理後の磁石素材は、
従来法と同様に寸法精度を出すために研削加工後着磁す
る方法等の公知の方法により焼結永久磁石とすることが
できる。
Next, the obtained magnet material after aging treatment is
Similar to the conventional method, a sintered permanent magnet can be obtained by a known method such as a method of magnetizing after grinding to obtain dimensional accuracy.

【0023】本発明のSm−Co系ボンド永久磁石の製
造法では、前記Sm−Co系永久磁石材料を、まず例え
ば高真空加熱炉等を用いて真空置換したアルゴンガス気
流等の非酸化性雰囲気中において、1000〜1200
℃において0.1〜5時間、加熱溶体化処理をする。こ
の加熱溶体化処理により、結晶粒径を、好ましくは短軸
長さ50〜700μm、長軸長さを300〜1000μ
mとするのが望ましい。従来法においては、前記柱状晶
のサブ組織である樹枝状のデンドライト一次アーム間隔
が0.5〜20μmの結晶を80容量%以上含有する永
久磁石材料を原料としていないので、この溶体化処理に
は15〜30時間を要している。
In the method of manufacturing the Sm-Co based bonded permanent magnet of the present invention, the Sm-Co based permanent magnet material is first vacuum-replaced using, for example, a high vacuum heating furnace or the like, and a non-oxidizing atmosphere such as an argon gas stream is used. Inside, 1000-1200
Heat solution treatment is performed at 0 ° C. for 0.1 to 5 hours. By this heat solution treatment, the crystal grain size is preferably 50 to 700 μm for the short axis length and 300 to 1000 μ for the long axis length.
It is desirable to set m. In the conventional method, a permanent magnet material containing 80% by volume or more of crystals having a dendrite primary arm spacing of 0.5 to 20 μm, which is a substructure of the columnar crystals, is not used as a raw material. It takes 15 to 30 hours.

【0024】次いで800〜900℃、好ましくは83
0〜850℃の温度範囲から設定温度を選択し、該設定
温度±5℃に制御して5〜10時間時効処理を行なう。
この時効処理の温度設定は、従来法においては前記焼結
永久磁石と同様に±2℃程度に制御しなければ性能向上
が図れなかったが、本発明における組織均一性の高い前
記Sm−Co系永久磁石材料を用いる場合、±5℃の温
度制御によっても高磁石特性が得られ、温度管理が容易
である。
Next, 800 to 900 ° C., preferably 83
A set temperature is selected from a temperature range of 0 to 850 ° C., the set temperature is controlled to ± 5 ° C., and an aging treatment is performed for 5 to 10 hours.
In the conventional method, the temperature setting of the aging treatment could not be improved unless it was controlled to about ± 2 ° C. in the same manner as in the sintered permanent magnet, but the Sm-Co system having high texture uniformity in the present invention was not achieved. When using a permanent magnet material, high magnet characteristics can be obtained even by temperature control of ± 5 ° C, and temperature control is easy.

【0025】続いて得られた鋳塊を、クラッシャー、デ
ィスクミル等で、好ましくは10〜30μmに粉砕後、
通常の方法でエポキシ樹脂、ナイロン樹脂等の樹脂を1
〜3容量%混合し、良く混練して、好ましくは8〜15
kOeの印加磁場中で、1〜5t/cm2のプレス圧等
で圧縮成形又は射出成形等の成形処理することにより所
望のボンド永久磁石を得ることができる。この際前記鋳
塊の粉砕は、従来法と同様に10〜30μmの粗粉砕で
行なうことができるが、このような粗粉砕であっても、
前記X線配向度f値がf≧80と高い結晶配向度を有す
るSm−Co系永久磁石材料を原料として用いた場合、
従来のように配向度や異方化度に悪影響を及ぼすことは
なく、粗粒子でも磁場成形によって高異方化度を有する
ボンド永久磁石を得ることができる。
Subsequently, the obtained ingot is crushed with a crusher, a disc mill or the like to preferably 10 to 30 μm,
Epoxy resin, nylon resin etc
~ 3% by volume, knead well, preferably 8-15
A desired bonded permanent magnet can be obtained by performing a molding process such as compression molding or injection molding with a press pressure of 1 to 5 t / cm 2 in an applied magnetic field of kOe. At this time, the ingot can be pulverized by coarse pulverization of 10 to 30 μm as in the conventional method. Even with such coarse pulverization,
When the Sm—Co based permanent magnet material having a high degree of crystal orientation with an X-ray orientation degree f value of f ≧ 80 is used as a raw material,
It is possible to obtain a bonded permanent magnet having a high degree of anisotropy by magnetic field molding even with coarse particles without adversely affecting the degree of orientation or anisotropy as in the conventional case.

【0026】[0026]

【発明の効果】本発明のSm−Co系焼結又はボンド永
久磁石及びその製造法では、特定の結晶構造及び高配向
度を有する本発明の永久磁石材料を原料としているの
で、焼結磁石においては焼結が容易であり、且つ残留磁
束密度、保磁力等の磁石特性に優れ、特に優れた異方性
を示す。またボンド磁石においては、合金鋳塊の溶体化
処理が容易であり、得られる磁石粉末の配向性が良好で
粗粒子であっても高異方化度に優れ、残留磁束密度、保
磁力等の磁石特性に優れている。従って従来より優れた
磁石特性が要望される分野への利用が期待される。また
本発明のSm−Co系永久磁石材料は、このような永久
磁石の原料として極めて有効であり、製造におけるコス
ト削減にも有用である。
In the Sm-Co based sintered or bonded permanent magnet of the present invention and the method for producing the same, the permanent magnet material of the present invention having a specific crystal structure and a high degree of orientation is used as a raw material. Is easy to sinter, has excellent magnetic properties such as residual magnetic flux density and coercive force, and exhibits particularly excellent anisotropy. Further, in a bonded magnet, the solution treatment of the alloy ingot is easy, the orientation of the obtained magnet powder is good, and even if it is coarse particles, it is excellent in the degree of anisotropy, and the residual magnetic flux density, coercive force, etc. Excellent magnet characteristics. Therefore, it is expected to be applied to the fields in which excellent magnetic properties are required. Further, the Sm-Co based permanent magnet material of the present invention is extremely effective as a raw material for such a permanent magnet, and is also useful for cost reduction in manufacturing.

【0027】[0027]

【実施例】以下実施例及び比較例により更に詳細に説明
するが、本発明はこれらに限定されるものではない。
EXAMPLES The present invention will be described in more detail with reference to Examples and Comparative Examples below, but the present invention is not limited thereto.

【0028】[0028]

【実施例1】Sm23.5重量部、Co51.0重量
部、Fe19.0重量部、Cu4.0重量部及びZr
2.5重量部の組成の金属混合物を、真空高周波誘導溶
解炉にてアルゴン雰囲気中溶湯として、過冷度150
℃、冷却速度800〜1000℃/秒の条件下、単ロー
ル鋳造装置を用いて0.4mm厚さの帯状鋳塊に鋳造し
た。得られた帯状鋳塊を日本電子製の走査型電子顕微鏡
で観察し、柱状晶粒の形状と樹枝状のデンドライト一次
アーム間隔とを測定した。この走査型電子顕微鏡写真に
おいてをデンドライト一次アーム間隔を測定するための
写真を図1に、柱状晶粒の形状を測定するための写真を
図2示す。また同じ帯状鋳塊をリガク電機社製のX線回
折装置を用いて粉末X線回折図を作成し、その回折強度
からX線配向度f値を算出した。その結果を表1に示
す。
Example 1 Sm 23.5 parts by weight, Co 51.0 parts by weight, Fe 19.0 parts by weight, Cu 4.0 parts by weight and Zr
A metal mixture having a composition of 2.5 parts by weight was melted in a vacuum high frequency induction melting furnace in an argon atmosphere at a supercooling degree of 150.
C. and a cooling rate of 800 to 1000.degree. C./sec. Were used to cast into a band-shaped ingot having a thickness of 0.4 mm using a single roll casting device. The obtained strip-shaped ingot was observed with a scanning electron microscope manufactured by JEOL Ltd., and the shape of columnar grains and the dendrite primary arm interval were measured. In this scanning electron micrograph, a photograph for measuring the primary arm spacing of the dendrite is shown in FIG. 1, and a photograph for measuring the shape of columnar grains is shown in FIG. A powder X-ray diffraction pattern was prepared from the same strip-shaped ingot using an X-ray diffractometer manufactured by Rigaku Electric Co., and the X-ray orientation degree f value was calculated from the diffraction intensity. The results are shown in Table 1.

【0029】次いで前記帯状鋳塊をクラッシャーで粗粉
砕後、湿式ボールミルで平均粒径4μmに粉砕し、この
粉末を12KOeの印加磁場中の2t/cm2のプレス
圧で10×10×10mm角の圧粉体に多数個成形し
た。得られた圧粉成形体を、真空加熱炉で高純度アルゴ
ン気流中、1200℃、2時間焼結処理を行なった。続
いてアルゴンガスを大量に流して急冷した後、830〜
880℃の間で温度を5℃づつ変え、それぞれの温度で
8時間づつ時効処理を行ない、研削、着磁処理して焼結
永久磁石を得た。それぞれの焼結永久磁石の磁気特性
を、東英工業社製の直流磁化測定装置で測定した。結果
を表2及び図3に示す。
[0029] Then after rough grinding the strip ingot with a crusher, then pulverized to an average particle size 4μm in a wet ball mill, a 10 × 10 × 10 mm square at a press pressure of 2t / cm 2 in an applied magnetic field of 12KOe this powder A large number of green compacts were formed. The green compact thus obtained was sintered in a vacuum heating furnace in a high-purity argon stream at 1200 ° C. for 2 hours. Subsequently, after a large amount of argon gas was flowed to quench the cooling, 830-
The temperature was changed in increments of 5 ° C. between 880 ° C., aging treatment was performed for 8 hours at each temperature, and grinding and magnetization were performed to obtain a sintered permanent magnet. The magnetic characteristics of each sintered permanent magnet were measured with a direct current magnetization measuring device manufactured by Toei Industry Co., Ltd. The results are shown in Table 2 and FIG.

【0030】[0030]

【比較例1】実施例1と同様な組成の金属混合物を、従
来の金型鋳造法で厚さ40mmの鋳塊とした以外は、実
施例1と同様に柱状晶粒の形状及び樹枝状のデンドライ
ト一次アーム間隔を測定し、またX線配向度f値を算出
した。その結果を表1に示す。次いで得られた鋳塊を実
施例1と同様に圧粉成形体とした後、焼結、時効処理を
行ない、研削、着磁処理して焼結永久磁石を得た。磁気
特性結果を表2及び図3に示す。
[Comparative Example 1] A columnar grain shape and a dendrite shape were obtained in the same manner as in Example 1 except that the metal mixture having the same composition as in Example 1 was formed into a slab having a thickness of 40 mm by a conventional die casting method. The dendrite primary arm interval was measured, and the X-ray orientation degree f value was calculated. The results are shown in Table 1. Then, the obtained ingot was formed into a powder compact in the same manner as in Example 1, followed by sintering, aging treatment, grinding and magnetization treatment to obtain a sintered permanent magnet. The magnetic property results are shown in Table 2 and FIG.

【0031】[0031]

【表1】 [Table 1]

【0032】[0032]

【表2】 [Table 2]

【0033】[0033]

【実施例2】Sm24.5重量部、Co47.5重量
部、Fe21.0重量部、Cu5.0重量部及びZr
2.0重量部の組成の金属混合物を、実施例1と同様の
装置を用い、過冷度150℃、冷却速度1000〜20
00℃/秒の条件下、0.3mm厚さの帯状鋳塊に鋳造
した。得られた帯状鋳塊について、実施例1と同様に柱
状晶粒の形状と樹枝状のデンドライト一次アーム間隔と
を測定し、またX線配向度f値を算出した。その結果を
表3に示す。次いで前記帯状鋳塊を、真空加熱炉でアル
ゴン気流中1150℃で溶体化処理を行なった後、アル
ゴン気流で急冷した。溶体化処理の時間を0〜20時間
の間で変化させた試料を作成し、その全てを同時に86
5℃で8時間時効処理した。この際最適溶体化時間を4
時間とした際の柱状晶の大きさを測定した。結果を表3
に示す。
Example 2 Sm 24.5 parts by weight, Co 47.5 parts by weight, Fe 21.0 parts by weight, Cu 5.0 parts by weight and Zr
Using a device similar to that of Example 1, 2.0 parts by weight of the metal mixture was used, and the degree of supercooling was 150 ° C. and the cooling rate was 1000 to 20.
It was cast into a strip-shaped ingot having a thickness of 0.3 mm under the condition of 00 ° C / sec. With respect to the obtained strip-shaped ingot, the shape of columnar grains and the dendrite primary arm spacing were measured in the same manner as in Example 1, and the X-ray orientation degree f value was calculated. The results are shown in Table 3. Next, the strip-shaped ingot was subjected to solution treatment at 1150 ° C. in an argon stream in a vacuum heating furnace, and then rapidly cooled in the argon stream. A sample was prepared by changing the solution treatment time from 0 to 20 hours, and all of them were subjected to 86
Aged at 5 ° C. for 8 hours. At this time, the optimum solution time is 4
The size of the columnar crystals when the time was taken was measured. The results are shown in Table 3.
Shown in.

【0034】次いで、試料各々を平均粒径30μmに粉
砕し、エポキシ樹脂を2容量%添加混合混練し、10K
Oeの印加磁場で配向させた後、加圧成形を行なって、
更に研削、着磁処理してボンド永久磁石を得た。得られ
たボンド永久磁石について実施例1と同様に磁気特性を
測定した。結果を表4及び図4に示す。
Next, each sample was ground to an average particle size of 30 μm, 2% by volume of epoxy resin was added, mixed and kneaded, and then 10 K.
After orienting with an applied magnetic field of Oe, pressure molding is performed,
Further, it was ground and magnetized to obtain a bonded permanent magnet. The magnetic characteristics of the obtained bonded permanent magnet were measured in the same manner as in Example 1. The results are shown in Table 4 and FIG.

【0035】また最適溶体化時間である4時間溶体化の
後、840〜880℃の間で温度を5℃ずつ変え、それ
ぞれの温度で8時間づつ時効処理を行ない、次いで前記
と同様に粉砕、エポキシ樹脂混合混練、配向、成形を行
って、更に研削、着磁処理しボンド永久磁石を作成し
た。得られたボンド永久磁石のそれぞれについて磁気特
性を実施例1と同様に測定した。結果を表5及び図5に
示す。
After solution treatment for 4 hours, which is the optimum solution treatment time, the temperature is changed by 5 ° C. between 840 and 880 ° C., aging treatment is carried out for 8 hours at each temperature, and then pulverization is carried out in the same manner as described above. The epoxy resin was mixed and kneaded, oriented and molded, and then ground and magnetized to prepare a bonded permanent magnet. The magnetic characteristics of each of the obtained bonded permanent magnets were measured in the same manner as in Example 1. The results are shown in Table 5 and FIG.

【0036】[0036]

【比較例2】実施例2と同様な組成の金属混合物を、比
較例1と同様に金型鋳造法で鋳造し、40mm厚さの鋳
塊を得た。得られた鋳塊について、実施例1と同様に柱
状晶粒の形状と樹枝状のデンドライト一次アーム間隔と
を測定し、またX線配向度f値を算出した。その結果を
表3に示す。次いで前記鋳塊を、実施例2と同様に溶体
化処理の時間を0〜20時間の間で変化させた試料を作
成し、その全てを同時に865℃で8時間時効処理し
た。この際最適溶体化時間を16時間とした際の柱状晶
の大きさを測定した。結果を表3に示す。
Comparative Example 2 A metal mixture having the same composition as in Example 2 was cast by the die casting method in the same manner as in Comparative Example 1 to obtain a 40 mm thick ingot. With respect to the obtained ingot, the shape of columnar crystal grains and the spacing between dendrite primary arms were measured in the same manner as in Example 1, and the X-ray orientation degree f value was calculated. The results are shown in Table 3. Then, in the same manner as in Example 2, a sample was prepared by changing the solution treatment time from 0 to 20 hours, and all the ingots were simultaneously aged at 865 ° C. for 8 hours. At this time, the size of the columnar crystals was measured when the optimum solution time was 16 hours. The results are shown in Table 3.

【0037】次に、試料各々を実施例2と同様に処理し
てボンド永久磁石を得た。得られたボンド永久磁石につ
いて実施例1と同様に磁気特性を測定した。結果を表4
及び図4に示す。
Next, each sample was treated in the same manner as in Example 2 to obtain a bonded permanent magnet. The magnetic characteristics of the obtained bonded permanent magnet were measured in the same manner as in Example 1. The results are shown in Table 4.
And shown in FIG.

【0038】また最適溶体化時間である16時間溶体化
の後、840〜880℃の間で温度を5℃ずつ変え、そ
れぞれの温度で8時間づつ時効処理を行ない、実施例2
と同様にボンド永久磁石を作成した。得られたボンド永
久磁石のそれぞれについて磁気特性を実施例1と同様に
測定した。結果を表5及び図5に示す。
After solution treatment for 16 hours, which is the optimum solution treatment time, the temperature was changed by 5 ° C between 840 and 880 ° C, and the aging treatment was performed for 8 hours at each temperature.
Bond permanent magnets were prepared in the same manner as in. The magnetic characteristics of each of the obtained bonded permanent magnets were measured in the same manner as in Example 1. The results are shown in Table 5 and FIG.

【0039】[0039]

【表3】 [Table 3]

【0040】[0040]

【表4】 [Table 4]

【0041】[0041]

【表5】 [Table 5]

【0042】[0042]

【実施例3〜6】金属混合物の組成をSm24.5重量
部、Co47.4重量部、Fe21.0重量部、Cu
5.0重量部、Zr2.0重量部及びV0.10重量部
(実施例3)、Sm24.5重量部、Co47.45重
量部、Fe21.0重量部、Cu5.0重量部、Zr
2.0重量部及びSi0.05重量部(実施例4)、S
m24.5重量部、Co47.4重量部、Fe21.0
重量部、Cu5.0重量部、Zr2.0重量部及びTi
0.10重量部(実施例5)又はSm24.5重量部、
Co47.45重量部、Fe21.0重量部、Cu5.
0重量部、Zr2.0重量部及びBi0.05重量部
(実施例6)にそれぞれ代えた以外は、実施例2と同様
に0.3mm厚さの帯状鋳塊に鋳造した。得られた帯状
鋳塊について、実施例1と同様に柱状晶粒の形状と樹枝
状のデンドライト一次アーム間隔とを測定し、またX線
配向度f値を算出した。その結果を表6に示す。
Examples 3 to 6 The composition of the metal mixture was Sm 24.5 parts by weight, Co 47.4 parts by weight, Fe 21.0 parts by weight, Cu.
5.0 parts by weight, Zr 2.0 parts by weight and V 0.10 parts by weight (Example 3), Sm 24.5 parts by weight, Co 47.45 parts by weight, Fe 21.0 parts by weight, Cu 5.0 parts by weight, Zr
2.0 parts by weight and Si 0.05 parts by weight (Example 4), S
m24.5 parts by weight, Co47.4 parts by weight, Fe21.0
Parts by weight, Cu 5.0 parts by weight, Zr 2.0 parts by weight and Ti
0.10 parts by weight (Example 5) or Sm24.5 parts by weight,
Co 47.45 parts by weight, Fe 21.0 parts by weight, Cu 5.
It was cast into a strip ingot having a thickness of 0.3 mm in the same manner as in Example 2 except that 0 parts by weight, 2.0 parts by weight of Zr, and 0.05 parts by weight of Bi (Example 6) were used instead. With respect to the obtained strip-shaped ingot, the shape of columnar grains and the dendrite primary arm spacing were measured in the same manner as in Example 1, and the X-ray orientation degree f value was calculated. The results are shown in Table 6.

【0043】次いで前記帯状鋳塊を、真空加熱炉でアル
ゴン気流中1150℃、4時間で溶体化処理を行なった
後、アルゴン気流で急冷した。続いて855℃で8時間
時効処理を行った後、実施例2と同様に粉砕、エポキシ
樹脂混合混練、磁場配向、加圧成形を行ない、更に研
削、着磁処理してボンド永久磁石を得た。得られたボン
ド永久磁石について実施例1と同様に磁気特性を測定し
た。結果を表7に示す。
Next, the strip-shaped ingot was subjected to solution treatment at 1150 ° C. for 4 hours in an argon stream in a vacuum heating furnace, and then rapidly cooled in the argon stream. Subsequently, after aging treatment at 855 ° C. for 8 hours, pulverization, epoxy resin mixing and kneading, magnetic field orientation, pressure molding were performed in the same manner as in Example 2, and further grinding and magnetization treatment were performed to obtain a bonded permanent magnet. . The magnetic characteristics of the obtained bonded permanent magnet were measured in the same manner as in Example 1. The results are shown in Table 7.

【0044】[0044]

【比較例3】実施例2と同様な組成の金属混合物を、比
較例1と同様に金型鋳造法で鋳造し、40mm厚さの鋳
塊を得た。得られた鋳塊について、実施例1と同様に柱
状晶粒の形状と樹枝状のデンドライト一次アーム間隔と
を測定し、またX線配向度f値を算出した。その結果を
表6に示す。次いで前記鋳塊を、温度1150℃、16
時間で溶体化処理し、次に865℃、8時間時効処理を
行った以外は実施例3と同様にボンド永久磁石を得た。
得られたボンド永久磁石について実施例1と同様に磁気
特性を測定した。結果を表7に示す。
Comparative Example 3 A metal mixture having the same composition as in Example 2 was cast by a die casting method in the same manner as in Comparative Example 1 to obtain a 40 mm thick ingot. With respect to the obtained ingot, the shape of columnar crystal grains and the spacing between dendrite primary arms were measured in the same manner as in Example 1, and the X-ray orientation degree f value was calculated. The results are shown in Table 6. Then, the ingot is heated to a temperature of 1150 ° C., 16
A bond permanent magnet was obtained in the same manner as in Example 3 except that the solution treatment was performed for 8 hours and then the aging treatment was performed at 865 ° C. for 8 hours.
The magnetic characteristics of the obtained bonded permanent magnet were measured in the same manner as in Example 1. The results are shown in Table 7.

【0045】[0045]

【表6】 [Table 6]

【0046】[0046]

【表7】 [Table 7]

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1で調製した帯状鋳塊のデンドライト一
次アーム間隔を測定するための走査型電子顕微鏡写真で
ある。
FIG. 1 is a scanning electron micrograph for measuring a dendrite primary arm interval of a strip ingot prepared in Example 1.

【図2】実施例1で調製した帯状鋳塊の柱状晶粒形状を
測定するための走査型電子顕微鏡写真である。
2 is a scanning electron micrograph for measuring the columnar grain shape of the strip-shaped ingot prepared in Example 1. FIG.

【図3】実施例1及び比較例1の時効処理と磁石特性と
の関係を示すグラフである。
FIG. 3 is a graph showing the relationship between aging treatment and magnet characteristics in Example 1 and Comparative Example 1.

【図4】実施例2及び比較例2の時効処理と磁石特性と
の関係を示すグラフである。
FIG. 4 is a graph showing the relationship between aging treatment and magnet characteristics in Example 2 and Comparative Example 2.

【図5】実施例2及び比較例2の時効処理と磁石特性と
の関係を示すグラフである。
FIG. 5 is a graph showing the relationship between aging treatment and magnet characteristics in Example 2 and Comparative Example 2.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平6−128703(JP,A) 特開 平4−371555(JP,A) 特開 平4−308054(JP,A) 特開 平5−295489(JP,A) 特開 平3−247729(JP,A) (58)調査した分野(Int.Cl.7,DB名) C22C 19/07 H01F 1/04 - 1/08 ─────────────────────────────────────────────────── ─── Continuation of the front page (56) Reference JP-A-6-128703 (JP, A) JP-A-4-371555 (JP, A) JP-A-4-308054 (JP, A) JP-A-5- 295489 (JP, A) JP-A-3-247729 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) C22C 19/07 H01F 1/04-1/08

Claims (7)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 サマリウム(Sm)50重量%以上を含
む希土類金属20〜30重量%、鉄(Fe)10〜25
重量%、銅(Cu)2〜7重量%、ジルコニウム(Z
r)0.5〜4重量%及びコバルト(Co)残量からな
る合金組成を主成分とする永久磁石材料であって、この
材料が短軸長さ10〜200μm、長軸長さ50〜50
0μmの柱状晶粒を結晶組織中に90容量%以上含有
し、この柱状晶粒のサブ組織である樹枝状のデンドライ
ト一次アームの間隔が0.5〜20μmである結晶を8
0容量%以上含み、且つ下記数式1に従うX線配向度f
値がf≧80であることを特徴とするSm−Co系永久
磁石材料。 【数1】
1. A rare earth metal containing samarium (Sm) in an amount of 50% by weight or more, 20 to 30% by weight, and iron (Fe), 10 to 25.
% By weight, 2 to 7% by weight of copper (Cu), zirconium (Z
r) A permanent magnet material whose main component is an alloy composition consisting of 0.5 to 4% by weight and the balance of cobalt (Co), and the material has a minor axis length of 10 to 200 μm and a major axis length of 50 to 50.
A crystal having a grain structure of 0 μm in an amount of 90% by volume or more in the crystal structure and having a dendrite primary arm which is a substructure of the columnar grain and has an interval of 0.5 to 20 μm.
X-ray orientation degree f that includes 0% by volume or more and is in accordance with the following mathematical formula 1
A Sm—Co based permanent magnet material having a value of f ≧ 80. [Equation 1]
【請求項2】 前記永久磁石材料が、更にチタン(T
i)、ビスマス(Bi)、ニオブ(Nb)、クロム(Cr)、
タングステン(W)、アルミニウム(Al)、ゲルマニウム
(Ge)、ケイ素(Si)、ニッケル(Ni)、バナジウム
(V)、タンタル(Ta)、モリブデン(Mo)、マンガン
(Mn)、アンチモン(Sb)、スズ(Sn)又はこれらの混
合物を3重量%以下含有することを特徴とする請求項1
記載のSm−Co系永久磁石材料。
2. The permanent magnet material further comprises titanium (T
i), bismuth (Bi), niobium (Nb), chromium (Cr),
Tungsten (W), Aluminum (Al), Germanium
(Ge), silicon (Si), nickel (Ni), vanadium
(V), tantalum (Ta), molybdenum (Mo), manganese
(Mn), antimony (Sb), tin (Sn) or a mixture thereof is contained in an amount of 3% by weight or less.
The Sm-Co based permanent magnet material described.
【請求項3】 請求項1記載のSm−Co系永久磁石材
料の製造法であって、サマリウム(Sm)50重量%以
上を含む希土類金属20〜30重量%、鉄(Fe)10
〜25重量%、銅(Cu)2〜7重量%、ジルコニウム
(Zr)0.5〜4重量%及びコバルト(Co)残量か
らなる合金組成を主成分とする合金溶融物を、単ロール
法により過冷度10〜500℃、冷却速度500℃/秒
を超え、10000℃/秒以下の冷却条件下で、厚さ
0.1〜0.7mmの帯状に均一に凝固させて鋳造する
ことを特徴とするSm−Co系永久磁石材料の製造法。
3. The method for producing an Sm—Co based permanent magnet material according to claim 1, wherein the rare earth metal containing 50% by weight or more of samarium (Sm) is 20 to 30% by weight, and the iron (Fe) is 10.
˜25% by weight, copper (Cu) 2 to 7% by weight, zirconium (Zr) 0.5 to 4% by weight, and cobalt (Co) balance as the main component of the alloy melt, and the single roll method is used. By supercooling degree of 10 to 500 ° C. and cooling rate of more than 500 ° C./sec and 10,000 ° C./sec or less, it is possible to uniformly solidify and cast into a strip of 0.1 to 0.7 mm in thickness. A method for producing a characteristic Sm-Co based permanent magnet material.
【請求項4】 請求項1記載のSm−Co系永久磁石材
料を原料として得たSm−Co系焼結永久磁石。
4. A Sm—Co based sintered permanent magnet obtained by using the Sm—Co based permanent magnet material according to claim 1 as a raw material.
【請求項5】 請求項4記載のSm−Co系焼結永久磁
石の製造法であって、請求項1記載のSm−Co系永久
磁石材料を微粉砕した後、磁場中で圧縮成形し、非酸化
性雰囲気中において1000〜1250℃で1〜2時間
焼結し、次いで800〜900℃の温度範囲から設定温
度を選択し、該設定温度±5℃に制御して5〜10時間
時効処理することを特徴とするSm−Co系焼結永久磁
石の製造法。
5. A method for producing a Sm—Co based sintered permanent magnet according to claim 4, wherein the Sm—Co based permanent magnet material according to claim 1 is pulverized and then compression molded in a magnetic field. Sintering at 1000 to 1250 ° C. for 1 to 2 hours in a non-oxidizing atmosphere, then select a set temperature from a temperature range of 800 to 900 ° C., control at the set temperature ± 5 ° C., and perform aging treatment for 5 to 10 hours. A method for producing an Sm-Co based sintered permanent magnet, comprising:
【請求項6】 請求項1記載のSm−Co系永久磁石材
料と、1〜3容量%の樹脂とを原料として得たSm−C
o系ボンド永久磁石。
6. An Sm-C obtained by using, as a raw material, the Sm-Co based permanent magnet material according to claim 1 and a resin of 1 to 3% by volume.
o type bond permanent magnet.
【請求項7】 請求項記載のSm−Co系ボンド永久
磁石の製造法であって、請求項1記載のSm−Co系永
久磁石材料を、非酸化性雰囲気中において1000〜1
200℃で0.1〜5時間加熱溶体化処理した後、80
0〜900℃の温度範囲から設定温度を選択し、該設定
温度±5℃に制御して5〜10時間時効処理を行ない、
次いで粉砕して粒径10〜30μmの磁石粉を得、該磁
石粉と、1〜3容量%の樹脂とを混合混練し、磁場中で
成形することを特徴とするSm−Co系ボンド永久磁石
の製造法。
7. A method for producing Sm-Co based bonded permanent magnet according to claim 6, the Sm-Co based permanent magnet material according to claim 1, in a non-oxidizing atmosphere 1000-1
After heat solution treatment at 200 ° C. for 0.1 to 5 hours, 80
Select a set temperature from a temperature range of 0 to 900 ° C., control the set temperature to ± 5 ° C., and perform aging treatment for 5 to 10 hours,
Then, the powder is pulverized to obtain a magnet powder having a particle size of 10 to 30 μm, and the magnet powder and a resin of 1 to 3% by volume are mixed and kneaded, and the mixture is molded in a magnetic field. Manufacturing method.
JP08457295A 1995-03-17 1995-03-17 Sm-Co permanent magnet material, permanent magnet and method for producing the same Expired - Lifetime JP3505261B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08457295A JP3505261B2 (en) 1995-03-17 1995-03-17 Sm-Co permanent magnet material, permanent magnet and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08457295A JP3505261B2 (en) 1995-03-17 1995-03-17 Sm-Co permanent magnet material, permanent magnet and method for producing the same

Publications (2)

Publication Number Publication Date
JPH08260083A JPH08260083A (en) 1996-10-08
JP3505261B2 true JP3505261B2 (en) 2004-03-08

Family

ID=13834393

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08457295A Expired - Lifetime JP3505261B2 (en) 1995-03-17 1995-03-17 Sm-Co permanent magnet material, permanent magnet and method for producing the same

Country Status (1)

Country Link
JP (1) JP3505261B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7879567B2 (en) 2004-10-05 2011-02-01 Asahi Kasei Pharma Corporation Method for stabilizing coenzyme and composition therefor

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1187147B1 (en) 2000-09-08 2009-12-16 Shin-Etsu Chemical Co., Ltd. Rare-earth alloy, rare-earth sintered magnet, and methods of manufacturing
JP4680357B2 (en) * 2000-09-08 2011-05-11 株式会社三徳 Rare earth permanent magnet manufacturing method
JP4574820B2 (en) * 2000-09-08 2010-11-04 株式会社三徳 Method for producing magnet powder for rare earth bonded magnet
JP2002356717A (en) 2001-05-29 2002-12-13 Shin Etsu Chem Co Ltd Method for producing alloy for rare earth bond magnet, and rare earth bond magnet composition
US7338566B2 (en) 2001-11-09 2008-03-04 Santoku Corporation Alloy for sm-co based magnet, method for production thereof, sintered magnet and bonded magnet
CN106536781B (en) 2014-07-23 2018-04-13 株式会社Ihi The manufacture method of Ni alloy parts
US11440091B2 (en) 2018-01-22 2022-09-13 Nichia Corporation Methods of producing bonded magnet and compound for bonded magnets
EP3675143B1 (en) 2018-12-28 2024-02-14 Nichia Corporation Method of preparing bonded magnet
CN109909465B (en) * 2018-12-28 2020-10-27 北京航空航天大学 Method for inhibiting high-temperature ordering of high-iron-concentration samarium-cobalt alloy
CN115194111B (en) * 2022-07-21 2024-04-30 武汉大西洋连铸设备工程有限责任公司 Semi-continuous casting vertical casting process and equipment for large round billets to extra-large round billets

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7879567B2 (en) 2004-10-05 2011-02-01 Asahi Kasei Pharma Corporation Method for stabilizing coenzyme and composition therefor

Also Published As

Publication number Publication date
JPH08260083A (en) 1996-10-08

Similar Documents

Publication Publication Date Title
EP1187147B1 (en) Rare-earth alloy, rare-earth sintered magnet, and methods of manufacturing
EP0886284B1 (en) Cast alloy used for production of rare earth magnet and method for producing cast alloy and magnet
CA1269029A (en) Permanent magnet manufacture from very low coercivity crystalline rare earth-transition metal-boron alloy
JP3267133B2 (en) Alloy for rare earth magnet, method for producing the same, and method for producing permanent magnet
JP4389427B2 (en) Sintered magnet using alloy powder for rare earth-iron-boron magnet
JP3505261B2 (en) Sm-Co permanent magnet material, permanent magnet and method for producing the same
EP0632471B1 (en) Process of preparing a permanent magnet containing rare earth metal, boron and iron
JP2639609B2 (en) Alloy ingot for permanent magnet and method for producing the same
JP2004111481A (en) Rare earth sintered magnet and its manufacturing method
US5690752A (en) Permanent magnet containing rare earth metal, boron and iron
EP1632299B1 (en) Method for producing rare earth based alloy powder and method for producing rare earth based sintered magnet
JP4238999B2 (en) Manufacturing method of rare earth sintered magnet
EP1263003B1 (en) Preparation of a rare earth magnet alloy powder for a bonded magnet and rare earth bonded magnet therewith
US7338566B2 (en) Alloy for sm-co based magnet, method for production thereof, sintered magnet and bonded magnet
JP3299630B2 (en) Manufacturing method of permanent magnet
JPS6373502A (en) Manufacture of rare earth magnet
JP2660917B2 (en) Rare earth magnet manufacturing method
JP3763774B2 (en) Quenched alloy for iron-based rare earth alloy magnet and method for producing iron-based rare earth alloy magnet
JP2002083705A (en) Anisotropic rare earth sintered magnet and its manufacturing method
JPH0582319A (en) Permanent magnet
JP4133315B2 (en) Rare earth magnet manufacturing method, rare earth magnet raw material alloy and powder
JP3529551B2 (en) Manufacturing method of rare earth sintered magnet
JPH01706A (en) Rare earth magnet manufacturing method
JPH0812815B2 (en) Rare earth magnet manufacturing method
JPH0533076A (en) Rare earth permanent magnet alloy and its production

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20031125

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20031215

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081219

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091219

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091219

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101219

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121219

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121219

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131219

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term