JP2002083705A - Anisotropic rare earth sintered magnet and its manufacturing method - Google Patents

Anisotropic rare earth sintered magnet and its manufacturing method

Info

Publication number
JP2002083705A
JP2002083705A JP2000272667A JP2000272667A JP2002083705A JP 2002083705 A JP2002083705 A JP 2002083705A JP 2000272667 A JP2000272667 A JP 2000272667A JP 2000272667 A JP2000272667 A JP 2000272667A JP 2002083705 A JP2002083705 A JP 2002083705A
Authority
JP
Japan
Prior art keywords
alloy
weight
rare earth
sintered magnet
magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000272667A
Other languages
Japanese (ja)
Inventor
Kazuaki Sakaki
一晃 榊
Hajime Nakamura
中村  元
Koji Sato
孝治 佐藤
Takehisa Minowa
武久 美濃輪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2000272667A priority Critical patent/JP2002083705A/en
Priority to DE60140783T priority patent/DE60140783D1/en
Priority to EP05023912A priority patent/EP1626418A3/en
Priority to EP01307596A priority patent/EP1187147B1/en
Priority to US09/948,914 priority patent/US6773517B2/en
Publication of JP2002083705A publication Critical patent/JP2002083705A/en
Priority to US10/864,427 priority patent/US7211157B2/en
Priority to US11/591,547 priority patent/US20070051431A1/en
Priority to US12/044,101 priority patent/US7691323B2/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/0555Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together
    • H01F1/0557Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together sintered

Abstract

PROBLEM TO BE SOLVED: To manufacture an Sm2Co17-based sintered magnet which has superior magnetic characteristics and optimum temperature range of sintering and solution treatment which is wider than that of the conventional one. SOLUTION: Sm2Co17-based permanent magnet alloy is composed of R (where R is Sm or at least two kinds of rare earth elements containing Sm of at least 50 wt.%) of 20-30 wt.%, 10-45 wt.% Fe, 1-10 wt.% Cu, 0.5-5 wt.% Zr, 0.01-1.0 wt.% Ti, residue Co and unavoidable impurities. In crystal texture of the alloy, TbCu7 type crystal structure of at least 50 vol.% is contained. The alloy is ground, molded, sintered, solved and then aged, and an anisotropic rare earth sintered magnet, where (BH)max is at least 25 MGOe, is obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、SmCo17
焼結磁石及びその製造方法に関する。
The present invention relates to a Sm 2 Co 17 based sintered magnet and a method for producing the same.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】従来、
SmCo17系永久磁石における焼結磁石の製造方法
は、組成調整した合金鋳魂を1〜10μmに微粉砕し、
磁場中において加圧成形した後、アルゴン雰囲気中で1
100〜1300℃、通常1200℃程度において、1
〜5時間の条件で焼結、溶体化する。次いで、700〜
900℃、通常800℃程度の温度において約10時間
程度保持し、−1.0℃/分の降温速度で400℃以下
まで徐冷する時効処理を施すのが一般的である。通常工
程において、焼結、溶体化処理は、設定温度に対し±3
℃という最適温度範囲があり、厳密な制御が必要とな
る。これは、焼結、溶体化処理の際、多種の構成相が存
在することで、部分による結晶粒の成長、相変化の熱処
理温度によるばらつきが生じるためであり、そして、高
特性SmCo17系焼結磁石になるにつれ、その温度
制御は厳密となる傾向にある。その最適温度範囲を保持
し、かつ、良好な磁気特性を得るためには、できるだけ
偏析のない均一な合金組織が不可欠となる。
2. Description of the Related Art
The method for producing a sintered magnet in a Sm 2 Co 17- based permanent magnet is as follows.
After pressure molding in a magnetic field, the
At 100-1300 ° C, usually around 1200 ° C, 1
Sinter and solution under conditions of ~ 5 hours. Then 700 ~
It is a general practice to carry out an aging treatment in which the temperature is maintained at 900 ° C., usually about 800 ° C. for about 10 hours, and gradually cooled to 400 ° C. or less at a temperature lowering rate of −1.0 ° C./min. In the normal process, sintering and solution treatment are ± 3
There is an optimum temperature range of ° C, and strict control is required. This is because, during sintering and solution treatment, the presence of various types of constituent phases causes the growth of crystal grains due to portions and the variation of the phase change due to the heat treatment temperature, and the high characteristic Sm 2 Co 17 As the system sintered magnet becomes, the temperature control tends to be strict. In order to maintain the optimum temperature range and obtain good magnetic properties, a uniform alloy structure with as little segregation as possible is indispensable.

【0003】均一な組織を持つSmCo17系磁石合
金を得るための鋳造法としては、そのマクロ組織が柱状
結晶となるように、箱形等の鋳型に合金溶湯を鋳造する
方法が採用されている。ここで、柱状結晶を得るために
は、合金溶湯の冷却速度をある程度速めなければならな
いが、箱形の鋳型を用いた鋳造法では、インゴット中央
部分において、柱状結晶が生成する冷却速度より遅くな
る傾向にあり、組織の粗大化そして等軸晶が発生するこ
ととなる。インゴットの厚みを薄くすること等の方法に
よりこの問題は解消できるが、効率的な生産性が低下す
る。このことから、ある程度の厚みのインゴットを製造
することになり、組織の粗大化そして等軸晶が生じる場
合が多い。組織の粗大化そして等軸晶の発生が、インゴ
ットの偏析となり、焼結、溶体化の後の磁石組織にも悪
影響を及ぼし、良好な磁気特性が得られない原因とな
る。
As a casting method for obtaining a Sm 2 Co 17- based magnet alloy having a uniform structure, a method of casting a molten alloy in a box-shaped mold or the like so that the macro structure becomes a columnar crystal is adopted. ing. Here, in order to obtain columnar crystals, the cooling rate of the molten alloy must be increased to some extent, but in the casting method using a box-shaped mold, in the center of the ingot, the cooling rate is lower than the cooling rate at which the columnar crystals are generated. This tends to cause coarsening of the structure and generation of equiaxed crystals. Although this problem can be solved by a method such as reducing the thickness of the ingot, efficient productivity is reduced. For this reason, an ingot having a certain thickness is produced, and the structure is coarsened and an equiaxed crystal is often generated. The coarsening of the structure and the generation of equiaxed crystals result in the segregation of the ingot, which has a bad influence on the magnet structure after sintering and solution treatment, and causes no good magnetic properties to be obtained.

【0004】この問題を解決する方法として、単ロール
による鋳造法(ストリップキャスティング法)が提案さ
れている(特開平8−260083号公報)。この方法
により製造されたインゴットの組織は、微細結晶構造を
有し、マクロ組織においては、均一であるとされてい
る。しかし、通常、鋳造後のSmCo17系永久磁石
合金の構成相は、箱型鋳型により鋳造されたインゴット
であっても、ストリップキャスティング法により製造さ
れたインゴットであっても何等変わらず、TbZn
17相、ThNi17相、1−7相、1−5相、2−
7相、1−3相等であり、ストリップキャスティング法
により鋳造したインゴットを用いて焼結磁石を製造して
も、箱型鋳型で鋳造されたインゴットを原料として用い
た場合と同様に、焼結、溶体化処理に、±3℃という最
適温度範囲があり、厳密な制御が必要となる。
As a method for solving this problem, a casting method using a single roll (strip casting method) has been proposed (JP-A-8-260083). The structure of the ingot manufactured by this method has a fine crystal structure and is considered to be uniform in the macro structure. However, the constituent phase of the Sm 2 Co 17- based permanent magnet alloy after casting is usually the same regardless of whether it is an ingot cast by a box mold or an ingot manufactured by a strip casting method. 2 Zn
17 phase, Th 2 Ni 17 phase, 1-7 phase, 1-5 phase, 2-phase
Even if a sintered magnet is manufactured using an ingot cast by a strip casting method, the sintered magnet is manufactured in the same manner as in the case of using an ingot cast in a box mold as a raw material. The solution treatment has an optimum temperature range of ± 3 ° C. and requires strict control.

【0005】また、微細な結晶構造を持つインゴットを
原料として用いて焼結磁石を製造したところ、箱型鋳型
で鋳造されたインゴットを原料として用いた焼結磁石に
比べ、保磁力は向上するものの、残留磁束密度、最大エ
ネルギー積、角形は、むしろ低下することが確認されて
いる(特開平9−111383号公報)。微細な結晶構
造を有するインゴットは、箱型鋳型で鋳造されたインゴ
ットに比べ、平均結晶粒径が非常に小さい。そのため、
それぞれのインゴットを焼結磁石を製造する工程上、平
均微粉末粒径5μmに微粉砕すると、微細な結晶構造を
有するインゴットは、平均結晶粒径と平均微粉末粒径の
値が近くなってしまい、微粉砕粒子が単結晶でなくな
り、多結晶の微粉砕粒子の割合が増えることとなる。こ
のことから、磁場中成形した際の配向度も低くなってし
まうため、結果的に、熱処理後の焼結磁石の配向度が低
くなり、残留磁束密度、最大エネルギー積の低下につな
がると考えられている。以上のことより、SmCo
17系焼結磁石において、ストリップキャスティング法
により鋳造されたインゴットは、原料インゴットとして
用いられていない。
[0005] When a sintered magnet is manufactured using an ingot having a fine crystal structure as a raw material, the coercive force is improved as compared with a sintered magnet using an ingot cast with a box-shaped mold as a raw material. It has been confirmed that the residual magnetic flux density, the maximum energy product, and the square shape are rather reduced (Japanese Patent Application Laid-Open No. 9-111383). An ingot having a fine crystal structure has a much smaller average crystal grain size than an ingot cast with a box mold. for that reason,
When each ingot is finely pulverized to an average fine powder particle size of 5 μm in the process of manufacturing a sintered magnet, the ingot having a fine crystal structure has a value close to the average crystal particle size and the average fine powder particle size. In addition, the finely pulverized particles are no longer single crystals, and the proportion of the polycrystalline finely pulverized particles increases. From this, it is considered that the degree of orientation during molding in a magnetic field also decreases, and as a result, the degree of orientation of the sintered magnet after heat treatment decreases, leading to a decrease in residual magnetic flux density and maximum energy product. ing. From the above, Sm 2 Co
In the 17 series sintered magnet, the ingot cast by the strip casting method is not used as a raw material ingot.

【0006】本発明は、上記問題を解決したもので、優
れた磁気特性を有し、また焼結、溶体化の最適温度範囲
が広く、このため熱処理条件を緩和し得て、生産性が向
上した希土類焼結磁石及びその製造方法を提供すること
を目的とする。
The present invention solves the above problems, has excellent magnetic properties, and has a wide optimum temperature range for sintering and solution treatment. Therefore, heat treatment conditions can be relaxed and productivity can be improved. It is an object of the present invention to provide a rare earth sintered magnet and a method for manufacturing the same.

【0007】[0007]

【課題を解決するための手段及び発明の実施の形態】本
発明者は、上記目的を達成するため、SmCo17
焼結磁石において、合金組織と磁気特性の関係を検討し
たところ、SmCo17系焼結用インゴットの構成相
の50容量%以上をTbCu結晶構造(以下、1−7
相と称する)にすることで、従来の鋳造インゴットを用
いて焼結磁石を製造した場合より、また、その他の構成
相を主相とした場合よりも、優れた磁気特性を得られる
ことが見出された。このことは、SmCo17系磁石
合金中の1−7相が、他の相(2−17、1−5、2−
7、1−3相等)に比べ、磁場中成形の際の配向性が良
好であることを示しており、SmCo17系磁石合金
中の1−7相が占める割合が、多くなるほど良好な磁気
特性を得ることが出来る。また、構成相の50容量%以
上を1−7相が占めることで、焼結、溶体化処理の際、
部分による結晶粒の成長、相変化の熱処理温度によるば
らつきが生じることがなく、厳密に制御しなければいけ
なかった熱処理等の最適温度条件を緩和できることも見
出された。また、この場合、前記合金中の平均結晶粒径
を20〜300μmとすることにより、更に優れた磁気
特性を与えることができることも見出された。
Means for Solving the Problems and Embodiments of the Invention In order to achieve the above object, the present inventor studied the relationship between the alloy structure and the magnetic properties of the Sm 2 Co 17 based sintered magnet. 50% by volume or more of the constituent phase of the 2 Co 17- based sintering ingot is used in a TbCu 7 crystal structure (hereinafter, 1-7).
Phase)), superior magnetic properties can be obtained compared to a case where a sintered magnet is manufactured using a conventional cast ingot and a case where the other constituent phases are used as a main phase. Was issued. This means that the 1-7 phase in the Sm 2 Co 17- based magnet alloy is replaced by another phase (2-17, 1-5, 2-
7,1-3 phase etc.), indicating that the orientation during molding in a magnetic field is better, and the higher the proportion of the 1-7 phase in the Sm 2 Co 17- based magnet alloy, the better. Magnetic properties can be obtained. In addition, when 50% by volume or more of the constituent phases is occupied by the 1-7 phase, sintering and solution treatment are performed.
It was also found that the optimum temperature conditions for heat treatment and the like, which had to be strictly controlled, could be relaxed without causing crystal grain growth and phase change due to the heat treatment temperature due to the portions. In this case, it was also found that by setting the average crystal grain size in the alloy to 20 to 300 μm, more excellent magnetic properties can be provided.

【0008】従って、本発明は、R(但し、RはSm又
はSmを50重量%以上含む2種以上の希土類元素)2
0〜30重量%、Fe10〜45重量%、Cu1〜10
重量%、Zr0.5〜5重量%、Ti0.01〜1.0
重量%、残部Co及び不可避的不純物からなるSm
17系永久磁石合金であって、合金中の結晶組織にT
bCu型結晶構造を50容量%以上含有し、該合金を
粉砕、成形、焼結、溶体化、更に時効することにより得
られる、(BH)maxが25MGOe以上であること
を特徴とする異方性希土類焼結磁石、及び、R(但し、
RはSm又はSmを50重量%以上含む2種以上の希土
類元素)20〜30重量%、Fe10〜45重量%、C
u1〜10重量%、Zr0.5〜5重量%、Ti0.0
1〜1.0重量%、残部Co及び不可避的不純物からな
るSmCo17系永久磁石合金を1100℃〜125
0℃で0.5〜20時間熱処理し、合金中の結晶組織に
TbCu型結晶構造を50容量%以上含有させ、該合
金を粉砕、成形、焼結、溶体化、更に時効することを特
徴とする(BH)maxが25MGOe以上の異方性希
土類焼結磁石の製造方法を提供する。この場合、合金中
の平均結晶粒径が20〜300μmであることが好まし
い。
Accordingly, the present invention provides a method for preparing R (where R is Sm or two or more rare earth elements containing 50% by weight or more of Sm) 2
0 to 30% by weight, Fe 10 to 45% by weight, Cu 1 to 10
Wt%, Zr 0.5-5 wt%, Ti 0.01-1.0
Sm 2 C consisting of% by weight, balance Co and inevitable impurities
o 17 type permanent magnet alloy, wherein the crystal structure in the alloy is T
(BH) max is at least 25 MGOe obtained by pulverizing, forming, sintering, solutionizing and further aging the alloy containing at least 50 volume% of a bCu 7 type crystal structure. Rare earth sintered magnet and R (however,
R is Sm or two or more rare earth elements containing 50% by weight or more of Sm) 20 to 30% by weight, Fe 10 to 45% by weight, C
u1-10% by weight, Zr0.5-5% by weight, Ti0.0
An Sm 2 Co 17- based permanent magnet alloy consisting of 1 to 1.0% by weight, the balance Co and inevitable impurities is 1100 ° C. to 125 ° C.
Heat treated at 0 ° C. for 0.5 to 20 hours to contain TbCu 7 type crystal structure at 50% by volume or more in the crystal structure of the alloy, and pulverize, form, sinter, solutionize, and further age the alloy. To provide a method for producing an anisotropic rare earth sintered magnet having a (BH) max of 25 MGOe or more. In this case, the average crystal grain size in the alloy is preferably 20 to 300 μm.

【0009】本発明は、従来の箱型鋳型により鋳造され
たインゴットのように、中央部分において組織の粗大化
そして等軸晶の発生により生じる組成の偏析等の問題に
よる焼結磁石の磁気特性の劣化を解決するものであり、
更に、厳密に制御しなければいけなかった焼結、溶体化
処理等の最適温度条件を緩和することができ、生産性を
向上することができる。また、平均結晶粒径を20〜3
00μmとすることにより、微粉砕することで、微粉が
多結晶となり、磁場中成形した際の配向度も低くなり、
結果的に、熱処理後の焼結磁石の配向度も低く、残留磁
束密度、最大エネルギー積が低下するということなく、
優れた磁気特性を持つSmCo17系焼結磁石を製造
することができる。
According to the present invention, the magnetic properties of a sintered magnet due to problems such as coarsening of the structure in the central portion and segregation of the composition caused by the generation of equiaxed crystals, such as an ingot cast by a conventional box mold, are disclosed. To solve the deterioration,
Furthermore, the optimum temperature conditions, such as sintering and solution treatment, which had to be strictly controlled can be relaxed, and productivity can be improved. Further, the average crystal grain size is 20 to 3
By setting it to 00 μm, the fine powder becomes polycrystalline by pulverization, and the degree of orientation when molded in a magnetic field is reduced,
As a result, the degree of orientation of the sintered magnet after heat treatment is also low, and the residual magnetic flux density and the maximum energy product do not decrease,
An Sm 2 Co 17 sintered magnet having excellent magnetic properties can be manufactured.

【0010】以下、本発明につき更に詳しく説明する。
本発明は、微細結晶を持つSmCo17系焼結磁石鋳
造合金に最適な熱処理を施すことにより、前記合金が構
成相の50容量%以上のTbCu型結晶構造を含有
し、更に、そのSmCo17系磁石合金を用い、微粉
砕し、磁場中で成形し、焼結、溶体化、次いで、時効処
理することにより得られるSm−Co系焼結磁石であ
る。
Hereinafter, the present invention will be described in more detail.
The present invention provides an Sm 2 Co 17- based sintered magnet casting alloy having fine crystals by performing an optimal heat treatment so that the alloy contains a TbCu 7- type crystal structure of 50% by volume or more of the constituent phase, This is a Sm-Co-based sintered magnet obtained by pulverizing a Sm 2 Co 17- based magnet alloy, molding in a magnetic field, sintering, solutionizing, and then aging.

【0011】本発明におけるSmCo17系永久磁石
合金組成は、R(但し、RはSm又はSmを50重量%
以上含む2種以上の希土類元素)20〜30重量%、F
e10〜45重量%、Cu1〜10重量%、Zr0.5
〜5重量%、Ti0.01〜1.0重量%、残部Co及
び不可避的不純物からなる。前記Sm以外の希土類金属
としては、特に限定されるものではなく、Nd、Co、
Pr、Gdなどを挙げることができる。希土類元素中の
Smの含有量が50重量%未満の場合や、希土類元素量
が20重量%未満、30重量%を超える場合は、有効な
磁気特性を持つことはできない。
In the present invention, the composition of the Sm 2 Co 17 permanent magnet alloy is R (where R is Sm or 50% by weight of Sm).
Two or more rare earth elements including the above) 20 to 30% by weight, F
e 10 to 45% by weight, Cu 1 to 10% by weight, Zr 0.5
-5% by weight, 0.01-1.0% by weight of Ti, balance Co and unavoidable impurities. The rare earth metal other than Sm is not particularly limited, and Nd, Co,
Pr, Gd and the like can be mentioned. When the content of Sm in the rare earth element is less than 50% by weight, or when the amount of the rare earth element is less than 20% by weight or more than 30% by weight, it is impossible to have effective magnetic properties.

【0012】本発明のSmCo17系焼結磁石インゴ
ットは、上記組成範囲の原料を非酸化雰囲気中におい
て、高周波溶解により溶融し、鋳造する。この鋳造は、
例えば、鋳型鋳造法、ストリップキャスティング法、ガ
スアトマイズ法、メルトスパン法等により行うことがで
きる。本発明では、インゴットを非酸化性雰囲気中にお
いて、熱処理を施すことにより、合金が構成相の50%
容量以上の1−7相を含有する。前記構成相中の1−7
相は、好ましくは65容量%以上であり、50容量%未
満では本発明の効果が得られない。前記熱処理温度は、
好ましくは1100℃〜1250℃であり、1100℃
未満では、インゴット中の構成相の50%以上を1−7
相にすることは難しく、しかも長時間の熱処理が必要に
なるため効率的でない。1250℃を超える温度では、
インゴットが融点に達してしまい、インゴットの構成相
として2−17相、1−7相、1−5相、2−7相、1
−3相等が見られるため、インゴット中の構成相の50
容量%以上を1−7相にすることができない。
The Sm 2 Co 17- based sintered magnet ingot of the present invention is obtained by melting a raw material having the above composition range in a non-oxidizing atmosphere by high frequency melting and casting. This casting
For example, it can be performed by a mold casting method, a strip casting method, a gas atomizing method, a melt spun method, or the like. In the present invention, the ingot is subjected to a heat treatment in a non-oxidizing atmosphere so that the alloy has 50% of the constituent phase.
Contains more than 1-7 phases by volume. 1-7 in the constituent phase
The phase is preferably at least 65% by volume, and if less than 50% by volume, the effects of the present invention cannot be obtained. The heat treatment temperature is
It is preferably 1100 ° C to 1250 ° C, and 1100 ° C
If it is less than 50% or more of the constituent phases in the ingot, 1-7
It is difficult to form a phase and it is not efficient because a long heat treatment is required. At temperatures above 1250 ° C,
The ingot reached its melting point, and the constituent phases of the ingot were 2-17 phase, 1-7 phase, 1-5 phase, 2-7 phase, 1 phase.
-3 phase etc., 50% of the constituent phases in the ingot
% Or more cannot be 1-7 phase.

【0013】また、上記合金の平均結晶粒径は20〜3
00μm、より好ましくは50〜300μm、更に好ま
しくは100〜300μmとすることが好ましい。
The average crystal grain size of the above alloy is 20-3.
It is preferably set to 00 μm, more preferably 50 to 300 μm, and still more preferably 100 to 300 μm.

【0014】前記熱処理時間は、好ましくは0.5〜2
0時間であり、0.5時間未満の場合、構成相にばらつ
きが生じ、また、20時間を越えて熱処理を施すと、熱
処理炉のリークによる合金の劣化、更に、インゴット中
のSmが蒸発する等のことで良好な磁気特性が得られな
い。また、微細結晶を有しないインゴットは、相間距離
が長いため、熱処理により、相変化が起こりにくい。た
とえ、長時間、あるいは、高温の熱処理を施したとして
も、インゴット中の1−7相を50容量%以上にするこ
とは難しい。
The heat treatment time is preferably 0.5 to 2 hours.
0 hours and less than 0.5 hours, the constituent phases vary, and if the heat treatment is performed for more than 20 hours, the alloy deteriorates due to the leak of the heat treatment furnace, and further, Sm in the ingot evaporates. Therefore, good magnetic characteristics cannot be obtained. In addition, ingots having no fine crystals have a long inter-phase distance, so that a phase change hardly occurs by heat treatment. Even if the heat treatment is performed for a long time or at a high temperature, it is difficult to reduce the 1-7 phase in the ingot to 50% by volume or more.

【0015】また、前記平均結晶粒径が20μm未満の
場合、先に述べたように、インゴット中の平均結晶粒径
と焼結磁石製造工程における微細粒径とが近い値になる
ため、微粉粒子が、多結晶となり、磁石の配向度を乱
し、残留磁束密度、最大エネルギー積の劣化を招く場合
があり、300μmを超える平均結晶粒径を得るには、
長時間、あるいは、高温での熱処理が必要となり、合金
組織の劣化、あるいは、組織の均一性が損なわれる等の
原因により焼結磁石の磁気特性に悪影響を与えるおそれ
がある。
When the average crystal grain size is less than 20 μm, as described above, the average crystal grain size in the ingot and the fine grain size in the sintered magnet manufacturing process are close to each other. However, it becomes polycrystalline, disturbs the degree of orientation of the magnet, the residual magnetic flux density, the deterioration of the maximum energy product may be caused, and to obtain an average crystal grain size exceeding 300 μm,
Long-term or high-temperature heat treatment is required, which may adversely affect the magnetic properties of the sintered magnet due to deterioration of the alloy structure or loss of uniformity of the structure.

【0016】次に、前記SmCo17系焼結磁石合金
を粗粉砕し、平均粒径1〜10μm、好ましくは、約5
μmに微粉砕する。この粗粉砕は、例えば、不活性ガス
雰囲気中で、ジョークラッシャー、ブラウンミル、ピン
ミル、水素吸蔵等により行うことができる。また、前記
微粉砕は、アルコール、ヘキサン等を溶媒に用いた湿式
ボールミル、不活性ガス雰囲気中による乾式ボールミ
ル、不活性ガス気流によるジェットミル等により行うこ
とができる。
Next, the Sm 2 Co 17 sintered magnet alloy is coarsely pulverized, and has an average particle size of 1 to 10 μm, preferably about 5 μm.
Pulverize to μm. This coarse pulverization can be performed, for example, in an inert gas atmosphere by a jaw crusher, a brown mill, a pin mill, hydrogen storage, or the like. The pulverization can be performed by a wet ball mill using alcohol, hexane or the like as a solvent, a dry ball mill in an inert gas atmosphere, a jet mill by an inert gas stream, or the like.

【0017】更に、前記微粉砕粉を、好ましくは10k
Oe以上の磁場を印加することが可能な磁場中プレス機
等により、好ましくは500kg/cm以上2000
kg/cm未満の圧力により圧縮成形する。続いて、
得られた圧縮成形体を、熱処理炉により、アルゴンなど
の非酸化性雰囲気ガス中で、1100℃〜1300℃、
好ましくは1150℃〜1250℃において、0.5〜
5時間、焼結、溶体化し、終了後、急冷を行う。続い
て、700℃〜900℃、好ましくは、750℃〜85
0℃の温度で、5〜40時間の時効処理を行う。
Further, the finely pulverized powder is preferably
With a press machine in a magnetic field capable of applying a magnetic field of Oe or more, preferably 500 kg / cm 2 or more and 2000
Compression molding with a pressure of less than kg / cm 2 . continue,
The obtained compression-molded body is heated at 1100 ° C. to 1300 ° C. in a non-oxidizing atmosphere gas such as argon by a heat treatment furnace.
Preferably at 1150 ° C to 1250 ° C, 0.5 to
Sinter and solution for 5 hours, then quench after completion. Subsequently, 700 ° C to 900 ° C, preferably 750 ° C to 85 ° C
Aging treatment is performed at a temperature of 0 ° C. for 5 to 40 hours.

【0018】以上のようにして得られる異方性希土類焼
結磁石は、(BH)maxが25MGOe以上のもので
あり、良好な磁性特性を与えるものである。
The anisotropic rare earth sintered magnet obtained as described above has a (BH) max of 25 MGOe or more, and gives good magnetic properties.

【0019】[0019]

【実施例】次に、実施例及び比較例を挙げて本発明を具
体的に説明するが、本発明はこれらの実施例に限定され
るものではない。
EXAMPLES Next, the present invention will be described specifically with reference to examples and comparative examples, but the present invention is not limited to these examples.

【0020】[実施例1]SmCo17系磁石合金
は、Sm:25.5重量%、Fe:15.0重量%、C
u:5.0重量%、Zr:2.5重量%、Ti:0.1
重量%、残部Coの組成になるように配合し、アルゴン
ガス雰囲気中で、アルミナルツボを使用して高周波溶解
炉で溶解し、ストリップキャスティング法(水冷単ロー
ルを使用し、1.5m/sのロール周速度、冷却速度−
2000℃/s)で鋳造することにより作製した。次
に、前記Sm−Co系磁石合金を、熱処理炉を用い、ア
ルゴン雰囲気中で、1180℃、2時間の熱処理を行
い、終了後、急冷した。ここで得られたSmCo17
系磁石合金をX線回折(Cu−Kα)により構成相の同
定、及び構成相中の1−7相の割合の測定を行い、更
に、偏光顕微鏡により組織観察し、平均結晶粒径の測定
を行った。なお、1−7相の割合は、X線回折により得
られたThZn17型結晶構造のピーク強度とTbC
型結晶構造のピーク強度の比較により決定した。こ
こで、平均結晶粒径とは体積を球に換算したときの粒径
である(以後、平均結晶粒径はこの方法により得たもの
とする)。
[Example 1] Sm 2 Co 17- based magnet alloy was composed of 25.5% by weight of Sm, 15.0% by weight of Fe,
u: 5.0% by weight, Zr: 2.5% by weight, Ti: 0.1
% By weight, with the balance being Co, melted in a high frequency melting furnace using an alumina crucible in an argon gas atmosphere, and strip cast (using a water-cooled single roll, 1.5 m / s Roll peripheral speed, cooling speed-
(2000 ° C./s). Next, the Sm-Co-based magnet alloy was subjected to a heat treatment at 1180 ° C. for 2 hours in an argon atmosphere using a heat treatment furnace. Sm 2 Co 17 obtained here
The system magnet alloy is identified for its constituent phases by X-ray diffraction (Cu-Kα), and the ratio of 1-7 phases in the constituent phases is measured. Further, the structure is observed with a polarizing microscope, and the average crystal grain size is measured. went. The ratio of the 1-7 phase is determined by comparing the peak intensity of the Th 2 Zn 17 type crystal structure obtained by X-ray diffraction with the TbC
It was determined by comparison of the peak intensities of u 7 type crystal structure. Here, the average crystal grain size is a particle size when the volume is converted into a sphere (hereinafter, the average crystal grain size is obtained by this method).

【0021】次に、前記Sm−Co系磁石合金を、ジョ
ークラッシャー、ブラウンミルで約500μm以下に粗
粉砕後、窒素気流によるジェットミルにより平均粒径約
5μmに微粉砕を行った。得られた微粉砕粉を、磁場中
プレス機により15kOeの磁場中にて1.5t/cm
の圧力で成形した。得られた成形体を熱処理炉を用
い、アルゴン雰囲気中で、1200℃で2時間焼結した
後、アルゴン雰囲気中、1180℃、1時間溶体化処理
を行った。溶体化処理終了後、急冷し、得られたそれぞ
れの焼結体を、アルゴン雰囲気中、800℃、10時間
保持し、400℃まで−1.0℃/分の降温速度で徐冷
を行い、焼結磁石を作製した。得られた焼結磁石につ
き、B−Hトレーサーにより磁気特性の測定を行った。
Next, the Sm-Co magnet alloy was roughly pulverized to about 500 μm or less by a jaw crusher or a brown mill, and then finely pulverized to an average particle size of about 5 μm by a jet mill using a nitrogen stream. The obtained finely pulverized powder was 1.5 t / cm in a magnetic field of 15 kOe by a press machine in a magnetic field.
Molded at a pressure of 2 . The obtained compact was sintered in an argon atmosphere at 1200 ° C. for 2 hours using a heat treatment furnace, and then subjected to a solution treatment at 1180 ° C. for 1 hour in an argon atmosphere. After the solution treatment, the mixture was rapidly cooled, and each of the obtained sintered bodies was kept in an argon atmosphere at 800 ° C. for 10 hours, and gradually cooled to 400 ° C. at a temperature lowering rate of −1.0 ° C./min. A sintered magnet was produced. The magnetic properties of the obtained sintered magnet were measured with a BH tracer.

【0022】[実施例2]実施例1と同じ組成となるよ
うに、アルゴンガス雰囲気中で、アルミナルツボを使用
して高周波溶解炉で溶解し、得られるSmCo17
磁石合金の厚さが3mmとなるように銅製箱型鋳型に鋳
造した。次に、得られたSmCo17系磁石合金を実
施例1と同様に熱処理を行い、終了後、急冷した。ここ
で得られたSmCo17系磁石合金につき、実施例1
と同様にX線回折(Cu−Kα)により構成相の同定、
及び、1−7相の割合の測定を行い、更に、偏光顕微鏡
により組織観察し、平均結晶粒径の測定を行った。
Example 2 Thickness of Sm 2 Co 17- based magnet alloy obtained by melting in a high-frequency melting furnace using an alumina crucible in an argon gas atmosphere so as to have the same composition as in Example 1. Was cast into a copper box mold so that the diameter was 3 mm. Next, the obtained Sm 2 Co 17- based magnet alloy was subjected to a heat treatment in the same manner as in Example 1, and after completion, was rapidly cooled. The Sm 2 Co 17- based magnet alloy obtained here was used in Example 1
Identification of constituent phases by X-ray diffraction (Cu-Kα)
And the ratio of 1-7 phase was measured, and further, the structure was observed with a polarizing microscope, and the average crystal grain size was measured.

【0023】得られた前記SmCo17系磁石合金
を、実施例1と同様な製造方法で、粗粉砕、微粉砕、磁
場中成形、焼結、溶体化、次いで、時効処理を行い、焼
結磁石を作製した。得られた焼結磁石につき、実施例1
と同様に磁気特性の測定を行った。
The obtained Sm 2 Co 17- based magnet alloy was subjected to coarse pulverization, fine pulverization, molding in a magnetic field, sintering, solution treatment, and then aging treatment in the same production method as in Example 1, A magnet was produced. Example 1 was obtained for the obtained sintered magnet.
The magnetic properties were measured in the same manner as described above.

【0024】[比較例1]実施例1と同じ組成の合金
を、同様な鋳造方法で作製した。但し、鋳造後の熱処理
は行わなかった。ここで得られたSmCo17系磁石
合金につき、実施例1と同様にX線回折(Cu−Kα)
により構成相の同定、及び、1−7相の割合の測定を行
い、更に、偏光顕微鏡により組織観察し、平均結晶粒径
の測定を行った。
Comparative Example 1 An alloy having the same composition as in Example 1 was produced by a similar casting method. However, heat treatment after casting was not performed. The obtained Sm 2 Co 17- based magnet alloy was subjected to X-ray diffraction (Cu-Kα) in the same manner as in Example 1.
To identify the constituent phases, and to measure the ratio of the 1-7 phase. Further, the structure was observed with a polarizing microscope, and the average crystal grain size was measured.

【0025】得られた前記SmCo17系磁石合金
を、実施例1と同様な製造方法で、粗粉砕、微粉砕、磁
場中成形、焼結、溶体化、次いで、時効処理を行い、焼
結磁石を作製した。得られた焼結磁石につき、実施例1
と同様に磁気特性の測定を行った。
The obtained Sm 2 Co 17- based magnet alloy was subjected to coarse pulverization, fine pulverization, compaction in a magnetic field, sintering, solution treatment, and then aging treatment in the same production method as in Example 1. A magnet was produced. Example 1 was obtained for the obtained sintered magnet.
The magnetic properties were measured in the same manner as described above.

【0026】[比較例2]実施例1と同じ組成となるよ
うに、アルゴンガス雰囲気中で、アルミナルツボを使用
して高周波溶解炉で溶解し、得られるSmCo17
磁石合金の厚さが15mmとなるように銅製箱型鋳型に
鋳造した。但し、鋳造後の熱処理は行わなかった。ここ
で得られたSmCo17系磁石合金につき、実施例1
と同様にX線回折(Cu−Kα)により構成相の同定、
及び、1−7相の割合の測定を行い、更に、偏光顕微鏡
により組織観察し、平均結晶粒径の測定を行った。
Comparative Example 2 Thickness of Sm 2 Co 17- based magnet alloy obtained by melting in a high-frequency melting furnace using an alumina crucible in an argon gas atmosphere so as to have the same composition as in Example 1. Was cast to a copper box-type mold so that the diameter was 15 mm. However, heat treatment after casting was not performed. The Sm 2 Co 17- based magnet alloy obtained here was used in Example 1
Identification of constituent phases by X-ray diffraction (Cu-Kα)
And the ratio of 1-7 phase was measured, and further, the structure was observed with a polarizing microscope, and the average crystal grain size was measured.

【0027】得られた前記SmCo17系磁石合金
を、実施例1と同様な製造方法で、粗粉砕、微粉砕、磁
場中成形、焼結、溶体化、次いで、時効処理を行い、焼
結磁石を作製した。得られた焼結磁石につき、実施例1
と同様に磁気特性の測定を行った。
The obtained Sm 2 Co 17- based magnet alloy was subjected to coarse pulverization, fine pulverization, compacting in a magnetic field, sintering, solution treatment, and then aging treatment in the same production method as in Example 1, followed by aging. A magnet was produced. Example 1 was obtained for the obtained sintered magnet.
The magnetic properties were measured in the same manner as described above.

【0028】表1に実施例1〜2及び比較例1〜2の合
金中の1−7相の割合、合金の平均粒径、及び得られた
焼結磁石の磁気特性を示す。これから、磁石合金中の1
−7相の割合が多い実施例1及び2は、比較例1及び2
より、残留磁束密度、最大エネルギー積において優れて
いることは明らかである。また、図に上記実施例、比較
例のX線回折像、偏光像写真を示す。
Table 1 shows the proportions of the 1-7 phase in the alloys of Examples 1 and 2 and Comparative Examples 1 and 2, the average particle size of the alloys, and the magnetic properties of the obtained sintered magnets. From now on, one of the magnet alloys
Examples 1 and 2 having a large proportion of −7 phase are Comparative Examples 1 and 2.
It is clear that the residual magnetic flux density and the maximum energy product are excellent. In addition, the figure shows an X-ray diffraction image and a polarization image photograph of the above Examples and Comparative Examples.

【0029】[0029]

【表1】 [Table 1]

【0030】[0030]

【発明の効果】本発明のSmCo17系焼結磁石は、
優れた磁気特性を持ち、更に、従来に比べ、焼結、溶体
化の広い最適温度範囲をもって製造できる。
According to the present invention, the Sm 2 Co 17 based sintered magnet is
It has excellent magnetic properties and can be manufactured with a wider optimum temperature range of sintering and solution heat than conventional.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1におけるSmCo17系磁石合金の
X線回折像である。
FIG. 1 is an X-ray diffraction image of a Sm 2 Co 17- based magnet alloy in Example 1.

【図2】実施例2におけるSmCo17系磁石合金の
X線回折像である。
FIG. 2 is an X-ray diffraction image of a Sm 2 Co 17- based magnet alloy in Example 2.

【図3】比較例1におけるSmCo17系磁石合金の
X線回折像である。
FIG. 3 is an X-ray diffraction image of a Sm 2 Co 17- based magnet alloy in Comparative Example 1.

【図4】比較例2におけるSmCo17系磁石合金の
X線回折像である。
FIG. 4 is an X-ray diffraction image of a Sm 2 Co 17- based magnet alloy in Comparative Example 2.

【図5】実施例1における磁石材料の偏光顕微鏡による
偏光像写真である。
FIG. 5 is a polarization image photograph of a magnet material of Example 1 taken by a polarization microscope.

【図6】実施例2における磁石材料の偏光顕微鏡による
偏光像写真である。
FIG. 6 is a polarization image photograph of a magnet material in Example 2 taken by a polarization microscope.

【図7】比較例1における磁石材料の偏光顕微鏡による
偏光像写真である。
FIG. 7 is a polarization image photograph of a magnet material of Comparative Example 1 taken by a polarization microscope.

【図8】比較例2における磁石材料の偏光顕微鏡による
偏光像写真である。
FIG. 8 is a polarization image photograph of a magnet material in Comparative Example 2 taken by a polarization microscope.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) // C22C 19/07 H01F 1/04 B (72)発明者 佐藤 孝治 福井県武生市北府2−1−5 信越化学工 業株式会社磁性材料研究所内 (72)発明者 美濃輪 武久 福井県武生市北府2−1−5 信越化学工 業株式会社磁性材料研究所内 Fターム(参考) 4K018 AA11 BA05 BB06 CA04 FA09 KA45 5E040 AA08 AA19 BD01 CA01 HB11 NN01 NN06 NN14 NN18 5E062 CD04 CG05 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) // C22C 19/07 H01F 1/04 B (72) Inventor Koji Sato 2-1 Kitafu, Takefu-shi, Fukui 5 Shin-Etsu Chemical Co., Ltd. Magnetic Materials Research Laboratory (72) Inventor Takehisa Minowa 2-1-5 Kitafu, Takefu-shi, Fukui Prefecture Shin-Etsu Chemical Co., Ltd. Magnetic Materials Research Laboratory F-term (reference) 4K018 AA11 BA05 BB06 CA04 FA09 KA45 5E040 AA08 AA19 BD01 CA01 HB11 NN01 NN06 NN14 NN18 5E062 CD04 CG05

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 R(但し、RはSm又はSmを50重量
%以上含む2種以上の希土類元素)20〜30重量%、
Fe10〜45重量%、Cu1〜10重量%、Zr0.
5〜5重量%、Ti0.01〜1.0重量%、残部Co
及び不可避的不純物からなるSmCo17系永久磁石
合金であって、合金中の結晶組織にTbCu型結晶構
造を50容量%以上含有し、該合金を粉砕、成形、焼
結、溶体化、更に時効することにより得られる、(B
H)maxが25MGOe以上であることを特徴とする
異方性希土類焼結磁石。
1. 20 to 30% by weight of R (where R is Sm or two or more rare earth elements containing 50% by weight or more of Sm)
Fe10 to 45% by weight, Cu1 to 10% by weight, Zr0.
5-5% by weight, Ti 0.01-1.0% by weight, balance Co
Sm 2 Co 17- based permanent magnet alloy comprising unavoidable impurities and containing at least 50% by volume of a TbCu 7 type crystal structure in a crystal structure of the alloy, and pulverizing, molding, sintering, solutionizing, Further obtained by aging, (B
H) An anisotropic rare earth sintered magnet, wherein max is 25 MGOe or more.
【請求項2】 合金中の平均結晶粒径が20〜300μ
mであることを特徴とする請求項1記載の異方性希土類
焼結磁石。
2. An alloy having an average crystal grain size of 20 to 300 μm.
2. The anisotropic rare earth sintered magnet according to claim 1, wherein m is m.
【請求項3】 R(但し、RはSm又はSmを50重量
%以上含む2種以上の希土類元素)20〜30重量%、
Fe10〜45重量%、Cu1〜10重量%、Zr0.
5〜5重量%、Ti0.01〜1.0重量%、残部Co
及び不可避的不純物からなるSmCo17系永久磁石
合金を1100℃〜1250℃で0.5〜20時間熱処
理し、合金中の結晶組織にTbCu型結晶構造を50
容量%以上含有させ、該合金を粉砕、成形、焼結、溶体
化、更に時効することを特徴とする(BH)maxが2
5MGOe以上の異方性希土類焼結磁石の製造方法。
3. 20 to 30% by weight of R (where R is Sm or two or more rare earth elements containing 50% by weight or more of Sm)
Fe10 to 45% by weight, Cu1 to 10% by weight, Zr0.
5-5% by weight, Ti 0.01-1.0% by weight, balance Co
And an Sm 2 Co 17- based permanent magnet alloy comprising unavoidable impurities is heat-treated at 1100 ° C. to 1250 ° C. for 0.5 to 20 hours, and a TbCu 7- type crystal structure is added to the crystal structure of the alloy by 50%.
(BH) max is 2 characterized in that the alloy is pulverized, molded, sintered, solution-treated and further aged.
A method for producing an anisotropic rare earth sintered magnet of 5 MGOe or more.
JP2000272667A 2000-09-08 2000-09-08 Anisotropic rare earth sintered magnet and its manufacturing method Pending JP2002083705A (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2000272667A JP2002083705A (en) 2000-09-08 2000-09-08 Anisotropic rare earth sintered magnet and its manufacturing method
DE60140783T DE60140783D1 (en) 2000-09-08 2001-09-07 Rare earth alloy, rare earth sintered magnet and manufacturing process
EP05023912A EP1626418A3 (en) 2000-09-08 2001-09-07 Rare-earth alloy, rare-earth sintered magnet, and methods of manufacturing
EP01307596A EP1187147B1 (en) 2000-09-08 2001-09-07 Rare-earth alloy, rare-earth sintered magnet, and methods of manufacturing
US09/948,914 US6773517B2 (en) 2000-09-08 2001-09-10 Rare-earth alloy, rate-earth sintered magnet, and methods of manufacturing
US10/864,427 US7211157B2 (en) 2000-09-08 2004-06-10 Rare-earth alloy, rare-earth sintered magnet, and methods of manufacturing
US11/591,547 US20070051431A1 (en) 2000-09-08 2006-11-02 Rare-earth alloy, rare-earth sintered magnet, and methods of manufacturing
US12/044,101 US7691323B2 (en) 2000-09-08 2008-03-07 Rare-earth alloy, rare-earth sintered magnet, and methods of manufacturing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000272667A JP2002083705A (en) 2000-09-08 2000-09-08 Anisotropic rare earth sintered magnet and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2002083705A true JP2002083705A (en) 2002-03-22

Family

ID=18758741

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000272667A Pending JP2002083705A (en) 2000-09-08 2000-09-08 Anisotropic rare earth sintered magnet and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2002083705A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010058555A1 (en) * 2008-11-19 2010-05-27 株式会社 東芝 Permanent magnet and method for manufacturing same, and motor and generator employing same
US9607760B2 (en) 2012-12-07 2017-03-28 Samsung Electronics Co., Ltd. Apparatus for rapidly solidifying liquid in magnetic field and anisotropic rare earth permanent magnet
US9774219B2 (en) 2009-08-06 2017-09-26 Kabushiki Kaisha Toshiba Permanent magnet, motor and electric generator
CN110993235A (en) * 2019-12-26 2020-04-10 福建省长汀卓尔科技股份有限公司 High-iron low-copper samarium-cobalt permanent magnet material and preparation method thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010058555A1 (en) * 2008-11-19 2010-05-27 株式会社 東芝 Permanent magnet and method for manufacturing same, and motor and generator employing same
JP2010121167A (en) * 2008-11-19 2010-06-03 Toshiba Corp Permanent magnet, permanent magnet motor with the use of the same, and generator
US9087631B2 (en) 2008-11-19 2015-07-21 Kabushiki Kaisha Toshiba Permanent magnet and method of manufacturing the same, and motor and power generator using the same
US9774219B2 (en) 2009-08-06 2017-09-26 Kabushiki Kaisha Toshiba Permanent magnet, motor and electric generator
US9607760B2 (en) 2012-12-07 2017-03-28 Samsung Electronics Co., Ltd. Apparatus for rapidly solidifying liquid in magnetic field and anisotropic rare earth permanent magnet
CN110993235A (en) * 2019-12-26 2020-04-10 福建省长汀卓尔科技股份有限公司 High-iron low-copper samarium-cobalt permanent magnet material and preparation method thereof

Similar Documents

Publication Publication Date Title
EP1187147B1 (en) Rare-earth alloy, rare-earth sintered magnet, and methods of manufacturing
US5963774A (en) Method for producing cast alloy and magnet
JP6951481B2 (en) Samarium cobalt magnet and its manufacturing method
JP3505261B2 (en) Sm-Co permanent magnet material, permanent magnet and method for producing the same
JP2002083707A (en) Method for manufacturing rare earth sintered magnet
EP1263003B1 (en) Preparation of a rare earth magnet alloy powder for a bonded magnet and rare earth bonded magnet therewith
JP2002083705A (en) Anisotropic rare earth sintered magnet and its manufacturing method
JPS6348805A (en) Manufacture of rare-earth magnet
JP2002083727A (en) Method of manufacturing sintered rare earth magnet
JP4680357B2 (en) Rare earth permanent magnet manufacturing method
JP3726888B2 (en) Rare earth alloy and manufacturing method thereof, and manufacturing method of rare earth sintered magnet
JPH058562B2 (en)
JP7192069B1 (en) permanent magnets and devices
JPH0582319A (en) Permanent magnet
JPH0475303B2 (en)
JP3755902B2 (en) Magnet powder for anisotropic bonded magnet and method for producing anisotropic bonded magnet
JP4574820B2 (en) Method for producing magnet powder for rare earth bonded magnet
JP4133315B2 (en) Rare earth magnet manufacturing method, rare earth magnet raw material alloy and powder
JPH04240703A (en) Manufacture of permanent magnet
JPH0477066B2 (en)
JPH01706A (en) Rare earth magnet manufacturing method
JPH0812815B2 (en) Rare earth magnet manufacturing method
JPH01146308A (en) Manufacture of rare-earth magnet
JPH03226345A (en) Ingot for manufacturing magnetic powder having excellent magnetic anisotropy and manufacture thereof
JPH0418704A (en) Manufacture of permanent magnet

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050601

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050727

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20051005