JPH01706A - Rare earth magnet manufacturing method - Google Patents

Rare earth magnet manufacturing method

Info

Publication number
JPH01706A
JPH01706A JP62-154492A JP15449287A JPH01706A JP H01706 A JPH01706 A JP H01706A JP 15449287 A JP15449287 A JP 15449287A JP H01706 A JPH01706 A JP H01706A
Authority
JP
Japan
Prior art keywords
rare earth
alloy
phase
magnet
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62-154492A
Other languages
Japanese (ja)
Other versions
JPH0812815B2 (en
JPS64706A (en
Inventor
忠邦 佐藤
Original Assignee
株式会社トーキン
Filing date
Publication date
Application filed by 株式会社トーキン filed Critical 株式会社トーキン
Priority to JP62154492A priority Critical patent/JPH0812815B2/en
Priority claimed from JP62154492A external-priority patent/JPH0812815B2/en
Publication of JPH01706A publication Critical patent/JPH01706A/en
Publication of JPS64706A publication Critical patent/JPS64706A/en
Publication of JPH0812815B2 publication Critical patent/JPH0812815B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、 NdFe−B系永久磁石を代表とする希土
類金属(田と遷移金属(力とホウ素(B)とを主成分と
して形成されるR2T14B系金属間化合物磁石だ関し
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a permanent magnet made of rare earth metals (represented by NdFe-B permanent magnets) and transition metals (transition metals) and boron (B) as main components. R2T14B intermetallic compound magnet.

特に極めて高い磁石特性である(BH)max50M−
G・08以上を有する高性能磁石の製造方法に関するも
のである。
In particular, extremely high magnetic properties (BH) max 50M-
The present invention relates to a method for manufacturing a high-performance magnet having a G.08 or higher.

〔従来の技術〕[Conventional technology]

R−Fe−B系磁石の製造方法については、二つの方法
に大別される。ひとつは、溶解している合金を超急冷し
た後、粉砕した磁石粉末を成形して製造される液体急冷
型磁石である。一方は、溶解して得られた磁石合金のイ
ンゴットを微粉砕し、磁場中で成形した後、焼結して製
造される焼結型磁石である。本発明は、焼結型磁石に関
係している。
Methods for manufacturing R-Fe-B magnets are roughly divided into two methods. One type is a liquid quenched magnet, which is manufactured by ultra-quenching a molten alloy and then molding pulverized magnet powder. One is a sintered magnet, which is manufactured by finely pulverizing an ingot of a magnetic alloy obtained by melting, shaping it in a magnetic field, and then sintering it. The present invention relates to sintered magnets.

一般に2本系磁石の粉末冶金法だよる製造工程は原料合
金の溶解、粉砕、磁場中配向、圧縮成形。
Generally, the manufacturing process for two-piece magnets using the powder metallurgy method involves melting, crushing, orienting the raw material alloy in a magnetic field, and compression molding.

焼結9時効の順に進められる。溶解はアーク、高周波等
の真空または不活性雰囲気中で通常行なわれ、水冷銅鋳
型等に鋳込み、原料インゴットを得ている。粉砕は、粗
粉砕と微粉砕にわけられ、粗粉砕はソヨークラッシャー
、鉄乳鉢、ディスクミルやロールミル等で行なわれる。
The process proceeds in the order of sintering, 9 aging. Melting is usually performed in a vacuum or inert atmosphere using arc, high frequency, etc., and the raw material ingot is obtained by casting into a water-cooled copper mold or the like. Grinding is divided into coarse grinding and fine grinding, and coarse grinding is performed using a soyota crusher, an iron mortar, a disc mill, a roll mill, etc.

微粉砕は、バールミル、振動ミル、ジェットミル等で行
われる。
Fine pulverization is performed using a burr mill, vibration mill, jet mill, etc.

磁場中配向及び勇縮成形は金型を用いて同時に行なわれ
るのが通例であり、ここで大きな磁気異方性を示す結晶
のC軸方向が揃えられる。すなわち。
Orientation in a magnetic field and compression molding are usually performed simultaneously using a mold, in which the C-axis directions of the crystals exhibiting large magnetic anisotropy are aligned. Namely.

結晶の0面をよシ高度に配向することにより高性能な異
方性焼結磁石が実現できる。焼結は2通常1000℃〜
1150℃の範囲で、不活性雰囲気中で行なわれる。時
効はIHCの向上に寄与し、必要によって施され2通常
600℃近傍の温度で行なわれている。
High-performance anisotropic sintered magnets can be realized by highly oriented the zero plane of the crystal. Sintering 2 Usually from 1000℃
It is carried out in an inert atmosphere at a temperature in the range of 1150°C. Aging contributes to the improvement of IHC and is performed as needed2, usually at a temperature around 600°C.

本系磁石を高性能化するには、 Brを増加させること
が必須の条件となる。Brは主にR値を減少させること
と、結晶粒のC面配向度を向上させることにより達成さ
れる。
Increasing Br is an essential condition for improving the performance of this system magnet. Br is achieved mainly by reducing the R value and improving the degree of C-plane orientation of crystal grains.

これまで使用されている原料インゴットは1通常10間
以上の厚さで鋳込まれていた。
The raw material ingots used so far have been cast to a thickness of usually 10 mm or more.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところが、上述の製法では、インゴットの組成中Rが約
35wt%以下になるとR2Fe 14 B相(主相)
中にFe相が析出するようにな9Rの減少とともにその
増加が顕著となる傾向を示している。このFe相の析出
は、焼結体の結晶配向度を低下させる要因となり、析出
量の増加とともて異方性が低下する傾向となり+Brの
向上は潜在的な4π■8の増加に比べ極めて小さくなっ
ていた。
However, in the above manufacturing method, when the R content in the ingot composition is about 35 wt% or less, the R2Fe 14 B phase (main phase)
There is a tendency for the Fe phase to precipitate inside, and as 9R decreases, its increase becomes remarkable. This precipitation of Fe phase is a factor that reduces the degree of crystal orientation of the sintered body, and as the amount of precipitation increases, the anisotropy tends to decrease, and the improvement in +Br is extremely large compared to the potential increase in 4π■8. It was getting smaller.

また、原料中のR値が減少すると、成形体の焼結性が低
下し、所要の焼結密度(d)を得るには焼結温度を上昇
させる必要が生じてくる。
Furthermore, when the R value in the raw material decreases, the sinterability of the compact decreases, and it becomes necessary to increase the sintering temperature in order to obtain the required sintered density (d).

しかしながら、焼結温度の上昇によシ、焼結体の結晶粒
は成長するので、 !Hcの低下が少ない範囲に限定す
る必要が生ずる。つまシ、R値を低下することによシ、
好適な焼結範囲はしだい【狭くなり、工業的には不利益
な方向に進行していくという欠点がある。
However, as the sintering temperature increases, the crystal grains of the sintered body grow! It becomes necessary to limit the range to a range where the decrease in Hc is small. By reducing the R value,
The disadvantage is that the suitable sintering range gradually becomes narrower, progressing in a direction that is industrially disadvantageous.

そこで1本発明の技術的課題は、上記欠点に鑑み、焼結
体の結晶配向度を低下させる要因となるR2T14B相
中へのF’e相の析出を防止すると共に。
In view of the above drawbacks, one technical object of the present invention is to prevent the precipitation of the F'e phase in the R2T14B phase, which is a factor that reduces the degree of crystal orientation of a sintered body.

焼結体の結晶粒の成長を抑止すべく焼結性を向上させた
希土類磁石の製造方法を提供することである。
It is an object of the present invention to provide a method for manufacturing a rare earth magnet in which sinterability is improved to suppress the growth of crystal grains in a sintered body.

〔問題点を解決するための手段〕[Means for solving problems]

本発明によれば、 Nd、Fe、Bを主成分として含有
するR2T14B系磁石(ここで、Rはイツトリウム及
び希土類元素、では遷移金属を表わす)を粉末冶金法に
よって製造する方法において、Rが28.5〜33.5
 wt%、Bが0.85〜1.35 wt%、残部Tな
る結晶化した液体急冷合金を出発原料として使用し、こ
れを粉砕、磁場中成形、焼結することにより、 (BH
)  50M−G・00以上の磁石特性を得るaX ことを特徴とする希土類磁石の製造方法が得られる。
According to the present invention, in a method for manufacturing an R2T14B magnet containing Nd, Fe, and B as main components (herein, R represents yttrium and rare earth elements, in which case transition metal is used) by a powder metallurgy method, R is 28 .5-33.5
By using a crystallized liquid quenched alloy containing 0.85 to 1.35 wt% B and the balance T as a starting material, pulverizing it, forming it in a magnetic field, and sintering it, (BH
) A method for manufacturing a rare earth magnet is obtained, which is characterized in that aX obtains magnetic properties of 50 M-G·00 or more.

即ち1本発明者は1種々実験を重ねた結果、これらの工
程中で、原料合金の冷却速度を向上させた。ある組成範
囲のR−T−B系合金を使用することにより、 Fe相
が析出しないために高配向の焼結体が得られ、しかも、
焼結性が向上するので、広い焼結温度範囲で(BH) 
  50M−G・00以上の達成さaX れることを発見した。すなわち、原料合金の作製方法と
は、液体急冷法により適度に結晶化した急冷合金を得る
ものである。この場合の金属組織は。
That is, as a result of various experiments, the inventor of the present invention improved the cooling rate of the raw material alloy during these steps. By using an R-T-B alloy with a certain composition range, a highly oriented sintered body can be obtained because the Fe phase does not precipitate.
Because sinterability is improved, it can be used in a wide sintering temperature range (BH)
I discovered that it is possible to achieve more than 50M-G.00. That is, the method for producing the raw material alloy is to obtain a suitably crystallized rapidly solidified alloy by a liquid quenching method. The metal structure in this case is.

柱状に成長した微細な主相粒子をNdrich相が囲ん
だ状態となっておp 、 Fe相の析出は認められない
The Ndrich phase surrounds the fine main phase particles that have grown in a columnar shape, and no Fe phase is observed to precipitate.

この場合、主相結晶の短軸方向は約3〜10μmが。In this case, the minor axis direction of the main phase crystal is about 3 to 10 μm.

焼結性と焼結体の配向度を考慮した湯合、好適な領域と
なる。これを片ロール法にて液体急冷合金を作製する場
合、厚さが約1瓢〜3mmの薄帯(薄片、薄板)とな9
2両ロール法にて作製する場合は約5Wrm程度の厚さ
までは同等の効果が示される。
This is a suitable range for melting, taking into consideration the sinterability and degree of orientation of the sintered body. When a liquid quenched alloy is produced using the single roll method, it becomes a thin strip (thin piece, thin plate) with a thickness of about 1 to 3 mm.
When fabricated by the two-roll method, the same effect is shown up to a thickness of about 5 Wrm.

また1合金の組成は4πIBK関係しているので。Also, the composition of alloy 1 is related to 4πIBK.

高磁石特性を得る場合には限定される必要があり。If high magnetic properties are to be obtained, it must be limited.

yHcとの関係を含めて、(BH)max50M−G−
00以上の得られる組成領域は、Rが28.5〜33.
5 wt%。
Including the relationship with yHc, (BH)max50M-G-
The composition range where R is 28.5 to 33.00 or more is obtained.
5 wt%.

Bが0.85〜1.35 wt%、残部Tの範囲に制限
される必要がある。
B needs to be limited to a range of 0.85 to 1.35 wt% and the balance T.

本発明は、簡便にして、従来容易に得られなかった(B
H)m、x50M−G・00以上の極めて高い磁石特性
が達成できるものであり工業上非常に有益である。
The present invention is simple and has not been easily obtained in the past (B
H) m, x50M-G.00 or higher, which is an extremely high magnetic property that can be achieved, and is very useful industrially.

以下糸日 〔実施例〕 本発明の実施例だついて説明する。Below is Itohichi 〔Example〕 An embodiment of the present invention will be described.

実施例1 純度97wt%のNd (残部はCe、Prを主体とす
る希土類元素)、フェロボロン(B純分約20 wt%
)及び電解鉄を使用し、希土類元素(8)が30. O
wt%。
Example 1 Nd with a purity of 97 wt% (the remainder is a rare earth element mainly consisting of Ce and Pr), ferroboron (B purity about 20 wt%)
) and electrolytic iron, the rare earth element (8) is 30. O
wt%.

Bが1. Owt%、残部Feとなるように、アルゴン
雰囲気中で、高周波加熱により溶解し+ Cu製両面水
冷鋳型を使用し、厚さ約10調の合金インゴットを得た
B is 1. The alloy was melted by high-frequency heating in an argon atmosphere so that the remaining content was Fe, and a double-sided water-cooled mold made of Cu was used to obtain an alloy ingot with a thickness of about 10 mm.

次に、このインゴットを使用してr Ar雰囲気中で高
周波加熱により再溶解した後1周速度が約2m / s
ecのCu製ロールに噴射し1片ロール法によシ。
Next, this ingot is used to remelt by high frequency heating in an r Ar atmosphere, and after that, the one round speed is about 2 m/s.
Spray onto EC Cu roll and use one-piece roll method.

幅約1oan、厚さ約1.0μmの液体急冷合金薄帯を
得た。
A liquid quenched alloy ribbon having a width of about 1 oan and a thickness of about 1.0 μm was obtained.

これらインゴットと液体急冷合金薄帯内部の冷却面に平
行な面の金属組織を写真に示す。インゴットは粗大化し
た主相結晶とその中に析出したFe相粒子及び主相粒子
間に偏在するNdrich相結晶粒からなっている。液
体急冷合金は、柱状だ成長した微細な主相結晶と、それ
を取り囲んでいるNdrich粒界相からなっており、
低融点のNdrich相の分散性が良く、結晶配向を低
下させる要因となるFe相の析出も見られない。
The photographs show the metallographic structures of these ingots and the plane parallel to the cooling surface inside the liquid-quenched alloy ribbon. The ingot consists of coarse main phase crystals, Fe phase particles precipitated therein, and Ndrich phase crystal grains unevenly distributed between the main phase particles. The liquid quenched alloy consists of fine main phase crystals that have grown into columnar shapes and a Ndrich grain boundary phase that surrounds them.
The Ndrich phase with a low melting point has good dispersibility, and no precipitation of Fe phase, which causes a decrease in crystal orientation, is observed.

次に、これらインゴットと液体急冷合金を原料として焼
結磁石を作製した。それぞれ原料合金を粗粉砕した後、
ボールミルを用いて、平均粒径約2.5μm【微粉砕し
た。次に、この粉末を約25 koeの磁界中、 2 
ton/cm2の圧力で成形した。この成形体を、10
00℃、1020℃、1040℃、1060℃。
Next, sintered magnets were produced using these ingots and liquid quenched alloy as raw materials. After coarsely pulverizing each raw material alloy,
It was pulverized using a ball mill to have an average particle size of about 2.5 μm. Next, this powder is placed in a magnetic field of about 25 koe,
It was molded at a pressure of ton/cm2. 10 pieces of this molded body
00℃, 1020℃, 1040℃, 1060℃.

1080℃、1100℃の各温度でそnぞれ真空中1時
間保持した後、 Ar91時間保持し、急冷した。
After holding each temperature in vacuum for 1 hour at 1080°C and 1100°C, it was held in Ar for 91 hours and rapidly cooled.

これら焼結体を660℃で3時間時効した。These sintered bodies were aged at 660°C for 3 hours.

この焼結体に、約30 koeの磁界を印加して。A magnetic field of approximately 30 koe was applied to this sintered body.

磁石特性を測定した。その結果を第1図に示す。The magnetic properties were measured. The results are shown in FIG.

液体急冷原料を使用した方が、焼結性が向上し。Using liquid quenched raw materials improves sinterability.

焼結密度(d)に関して、焼結温度は約50℃低下して
いる。
Regarding the sintered density (d), the sintering temperature is reduced by about 50°C.

また、 Brは著しく高い値を示し、 IHcも高い傾
向となるため+ (BH)ma xは顕著に向上してい
る。
Furthermore, Br shows a significantly high value, and IHc also tends to be high, so +(BH)max is significantly improved.

X線回折により、焼結体の結晶配向度を測定した結果、
液体急冷原料を使用した方が、 Nd2Fe14B結晶
のC面が明らかに高度に配向していた。
As a result of measuring the degree of crystal orientation of the sintered body by X-ray diffraction,
When the liquid quenched raw material was used, the C-plane of the Nd2Fe14B crystal was clearly more highly oriented.

実施例2 実施例1と同様にして、Rを28.0.29.0゜30
.0.31.0.32.0,33.0,34.0wt%
に変化し、Bが1.Q wt%、残部Feのインゴット
を得た後、 Cu製ロールを使用して厚さ約1舅の液体
急冷合金薄帯を得た。これらインゴットと液体急冷合金
を原料として使用し、焼結磁石を作製した。
Example 2 Same as Example 1, R was set to 28.0.29.0°30
.. 0.31.0.32.0, 33.0, 34.0wt%
B changes to 1. After obtaining an ingot with Q wt% and the balance being Fe, a liquid quenched alloy ribbon with a thickness of about 1 inch was obtained using a Cu roll. Sintered magnets were produced using these ingots and liquid quenched alloy as raw materials.

ただし、焼結体の時効は550℃〜700℃の間で25
℃ずつそれぞれ変化し、3時間保持している。
However, the aging of the sintered body is 25°C between 550°C and 700°C.
Each temperature was changed by ℃ and held for 3 hours.

以上の中で、各組成の試料について最も高い磁石特性(
(BH)maX)を示した値を第2図に示す。
Among the above, the highest magnetic properties (
(BH)maX) is shown in FIG.

(BH)   50 M−G・Oe以上の値は、Rが2
8.5〜aX 33.5wt%の範囲で得られている。
(BH) For values of 50 M-G・Oe or more, R is 2
It was obtained in the range of 8.5 to aX 33.5 wt%.

実施例3 実施例2と同様にして、Rが3 Q、 Q wt%、B
を0.8.0.9 、1.0 、1.1 、1.2.1
.3 、1.4wt%変化し、残部がFeなる組成を有
する焼結磁石特性を、インゴットと液体急冷合金を原料
として使用した場合について、比較シタ。
Example 3 In the same manner as in Example 2, R is 3 Q, Q wt%, B
0.8.0.9, 1.0, 1.1, 1.2.1
.. 3. Comparison of the characteristics of a sintered magnet with a composition of 1.4 wt% and the balance being Fe when ingots and liquid quenched alloys are used as raw materials.

その結果を第3図に示す。(BH)  50 M−G−
OeaX 以上の値は、Bが0.85〜1.35 wt%の範囲で
得らnている。
The results are shown in FIG. (BH) 50 M-G-
Values equal to or higher than OeaX are obtained when B is in the range of 0.85 to 1.35 wt%.

実施例4 純度99%以上のPr及びNdとフェロボロン。Example 4 Pr, Nd and ferroboron with a purity of 99% or more.

電解鉄を使用して、(Nd[18・P r O,2)と
してのRが31、0 wt%、Bが1. Owt%、残
部Feとなるように。
Using electrolytic iron, R as (Nd[18·P r O,2) was 31.0 wt% and B was 1.0 wt%. Owt%, balance Fe.

実施例1と同様にして、インゴットを得た。An ingot was obtained in the same manner as in Example 1.

次に実施例1と同様にして9周速度が約1”l/see
のCu製ロールを使用して、厚み力;約2ranの液体
急冷合金薄帯を得た。これら、インゴットと急冷合金薄
帯を原料として使用し、実施例2と同様にして、粗粉砕
、微粉砕、磁場中成形、焼結1時効した後、磁石特性を
測定した。各原料における試料の中で、最も高い(BH
)   を示した値を第1表にmaX 示す。
Next, in the same manner as in Example 1, the circumferential speed of 9 was approximately 1"l/see.
A liquid quenched alloy ribbon having a thickness of approximately 2 ran was obtained using a Cu roll of 1. Using these ingots and rapidly solidified alloy ribbons as raw materials, they were subjected to coarse pulverization, fine pulverization, compaction in a magnetic field, sintering and 1 aging in the same manner as in Example 2, and then their magnetic properties were measured. Among the samples for each raw material, the highest (BH
) is shown in Table 1 as maX.

以下依日 第  1  表 液体急冷合金を原料として使用した焼結磁石の方が著し
く高い磁石特性を示しく BH)max 50M−G−
Oeを大幅に越えた値となっている。
Table 1 below shows that sintered magnets using liquid quenched alloys as raw materials exhibit significantly higher magnetic properties.BH) max 50M-G-
This value significantly exceeds Oe.

実施例5 純度97 wt%以上のNd及びDyとフェロゼロン。Example 5 Nd and Dy and ferrozeron with a purity of 97 wt% or more.

五屑鉄及び電解コバルトを使用して’ (Nd(197
・Dy0.03)としてのRが31.0 wt%、Bが
1.0 wt%。
'(Nd(197) using scrap iron and electrolytic cobalt
・R as Dy0.03) is 31.0 wt% and B is 1.0 wt%.

(Fe、。・Col11o)が残部となるように、実施
例1と同様にして、インゴットを得た。
An ingot was obtained in the same manner as in Example 1 so that (Fe, .Col11o) was the remainder.

次に実施例4と同様にして、液体急冷合金薄帯を得た。Next, in the same manner as in Example 4, a liquid quenched alloy ribbon was obtained.

これら、インゴットと急冷合金薄帯を原料として使用し
、実施例2・と同様にして、粗粉砕。
These ingots and rapidly solidified alloy ribbons were used as raw materials and coarsely ground in the same manner as in Example 2.

微粉砕、磁湯中成形、焼結1時効した後、磁石特性を測
定した。各原料における試料の中で、最も高い(BH)
maxを示した値を第2表に示す。
After pulverization, molding in porcelain hot water, sintering and aging for 1 time, magnetic properties were measured. The highest (BH) among the samples for each raw material
The values indicating max are shown in Table 2.

第  2  表 液体急冷合金を原料として使用した焼結磁石の方が著し
く高い磁石特性を示し、(BH)  50M−G・Oe
aX を人溜に越えた値となっている。
Table 2 Sintered magnets using liquid quenched alloy as raw material showed significantly higher magnetic properties, (BH) 50M-G・Oe
The value exceeds that of aX.

〔発明の効果〕〔Effect of the invention〕

以上の実施例で示されたように、Rが28.5〜33、
5 wt%、Bが0.85〜1.35 wt%、残部T
なる結晶化した液体急冷合金を原料として使用し。
As shown in the above examples, R is 28.5 to 33,
5 wt%, B 0.85 to 1.35 wt%, balance T
A crystallized liquid quenched alloy is used as a raw material.

これを粉砕、磁場中成形、焼結1時効することにより 
、 (BH)maxsoM−G−oe以上の磁石特性が
得らnでいる。
By pulverizing this, forming it in a magnetic field, sintering it and aging it for 1 time,
, (BH)maxsoM-G-oe or higher magnetic properties can be obtained at n.

以上の実施例では片ロール法による液体急冷合金の製造
についてのみ述べたが双ロール法によっても同様の効果
が得られるものである。
In the above embodiments, only the manufacture of liquid quenched alloys by the single roll method has been described, but the same effect can be obtained by the twin roll method.

また、Nd−Fe−B系、Nd−Pr−Fe−B系、N
d−Dy−Fe・C0−B系についてのみ述べたが14
πI 5(Br )の減少が顕著でない程度に他の元素
で置換しても(BH)   50M−G・00以上の磁
石特性が得られることmax は容易に推察できる。(理論的にはBrが14.15 
kG以上あnばよい。)
Also, Nd-Fe-B system, Nd-Pr-Fe-B system, Nd-Fe-B system,
Although only the d-Dy-Fe/C0-B system was mentioned14
It can be easily inferred that magnetic properties of (BH) 50M-G·00 or more can be obtained even if the substitution is made with other elements to the extent that the decrease in πI 5 (Br ) is not significant. (Theoretically, Br is 14.15
It should be at least kG. )

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例1における焼結温度と焼結体の密度(d
)と磁石特性(B r 、 工He + (BH)mB
z )の関係を示したものであり1図中○印(実線)は
液体急冷合金を原料として使用した試料、Δ印(破線)
はインが、トを原料として使用試料について示している
。 第2図は、実施例2における希土類元素組成値@)と磁
石特性(Br、 I IHC+ (BH)max)の関
係を示したものである。 第3図は、実施例3におけるB組成値と磁石特性(Br
、 rHc* (BH)  )の関係を示したものであ
る。 max 第4図(a) 、 (b)は実施例1において使用した
焼結磁石用原料合金内部(冷却面に対し平行な面)の金
属組織であり。 (a)は、インゴットで灰色結晶は主相(Nd2Fe1
4B相)、灰色結晶中の樹枝状結晶はFe相、黒色結晶
はNdrich相であり。 (b)は、液体急冷合金で灰色結晶は主相(Nd2F0
14B相)、黒色結晶はNdrich相である。 第1図 焼結温度(C) 第2図 R(wt、%) 第3図 B(Wぜム) 第4図
Figure 1 shows the sintering temperature and density (d) of the sintered body in Example 1.
) and magnetic properties (Br, He + (BH) mB
In Figure 1, the ○ mark (solid line) indicates the sample using liquid quenched alloy as the raw material, and the Δ mark (dashed line) indicates the relationship between
The figure shows a sample using In and T as raw materials. FIG. 2 shows the relationship between the rare earth element composition value @) and the magnet properties (Br, IHC+ (BH)max) in Example 2. Figure 3 shows the B composition value and magnetic properties (Br
, rHc* (BH) ). max Figures 4(a) and 4(b) show the metal structure inside the sintered magnet raw material alloy (plane parallel to the cooling surface) used in Example 1. (a) is an ingot, and the gray crystals are the main phase (Nd2Fe1
4B phase), the dendrites in the gray crystals are Fe phase, and the black crystals are Ndrich phase. (b) is a liquid rapidly solidified alloy, and the gray crystals are the main phase (Nd2F0
14B phase), the black crystals are Ndrich phase. Figure 1 Sintering temperature (C) Figure 2 R (wt, %) Figure 3 B (Wzem) Figure 4

Claims (1)

【特許請求の範囲】[Claims] 1.Nd,Fe,Bを主成分として含有するR_2T_
1_4B系磁石(ここで,Rはイットリウム及び希土類
元素,Tは遷移金属を表わす)を粉末冶金法によって製
造する方法において, Rが28.5〜33.5wt%,Bが0.85〜1.3
5wt%,残部Tなる結晶化した液体急冷合金を出発 原料として使用し,これを粉砕,磁場中成形,焼結する
ことにより,(BH)_m_a_x50M・G・Oe以
上の磁石特性を得ることを特徴とする希土類磁石の製造
方法。
1. R_2T_ containing Nd, Fe, and B as main components
In a method for producing a 1_4B magnet (where R represents yttrium and a rare earth element, and T represents a transition metal) by a powder metallurgy method, R is 28.5 to 33.5 wt%, B is 0.85 to 1. 3
A crystallized liquid quenched alloy of 5 wt% and the balance T is used as a starting material, and by pulverizing, forming in a magnetic field, and sintering, magnetic properties of (BH)_m_a_x50M・G・Oe or more are obtained. A method for manufacturing a rare earth magnet.
JP62154492A 1987-06-23 1987-06-23 Rare earth magnet manufacturing method Expired - Fee Related JPH0812815B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62154492A JPH0812815B2 (en) 1987-06-23 1987-06-23 Rare earth magnet manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62154492A JPH0812815B2 (en) 1987-06-23 1987-06-23 Rare earth magnet manufacturing method

Publications (3)

Publication Number Publication Date
JPH01706A true JPH01706A (en) 1989-01-05
JPS64706A JPS64706A (en) 1989-01-05
JPH0812815B2 JPH0812815B2 (en) 1996-02-07

Family

ID=15585428

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62154492A Expired - Fee Related JPH0812815B2 (en) 1987-06-23 1987-06-23 Rare earth magnet manufacturing method

Country Status (1)

Country Link
JP (1) JPH0812815B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4878733A (en) * 1983-05-24 1989-11-07 Olin Corporation Optical fiber communication cable having a high strength, drawn copper alloy tube
DE69707185T2 (en) * 1996-04-10 2002-06-27 Showa Denko K.K., Tokio/Tokyo Cast alloy for the manufacture of permanent magnets with rare earths and process for the production of this alloy and these permanent magnets

Similar Documents

Publication Publication Date Title
EP1187147B1 (en) Rare-earth alloy, rare-earth sintered magnet, and methods of manufacturing
JP3267133B2 (en) Alloy for rare earth magnet, method for producing the same, and method for producing permanent magnet
JP4389427B2 (en) Sintered magnet using alloy powder for rare earth-iron-boron magnet
US5930582A (en) Rare earth-iron-boron permanent magnet and method for the preparation thereof
JPH0140483B2 (en)
US5690752A (en) Permanent magnet containing rare earth metal, boron and iron
EP0632471A2 (en) Permanent magnet containing rare earth metal, boron and iron
JP3505261B2 (en) Sm-Co permanent magnet material, permanent magnet and method for producing the same
JP2665590B2 (en) Rare earth-iron-boron based alloy thin plate for magnetic anisotropic sintered permanent magnet raw material, alloy powder for magnetic anisotropic sintered permanent magnet raw material, and magnetic anisotropic sintered permanent magnet
JP2002356717A (en) Method for producing alloy for rare earth bond magnet, and rare earth bond magnet composition
JPS6348805A (en) Manufacture of rare-earth magnet
JP3299630B2 (en) Manufacturing method of permanent magnet
JPH01706A (en) Rare earth magnet manufacturing method
JP2587617B2 (en) Manufacturing method of rare earth permanent magnet
JPH0812815B2 (en) Rare earth magnet manufacturing method
JP4680357B2 (en) Rare earth permanent magnet manufacturing method
JP3953768B2 (en) R-Fe-B-C magnet alloy slab with excellent corrosion resistance
JP2660917B2 (en) Rare earth magnet manufacturing method
JP3755902B2 (en) Magnet powder for anisotropic bonded magnet and method for producing anisotropic bonded magnet
JP4574820B2 (en) Method for producing magnet powder for rare earth bonded magnet
JP3536943B2 (en) Alloy for rare earth magnet and method for producing the same
JPH0920954A (en) Slab for r-fe-b-c magnet alloy excellent in corrosion resistance and its production
JPH0533076A (en) Rare earth permanent magnet alloy and its production
JP3256413B2 (en) Slab for R-Fe-BC magnet alloy having excellent corrosion resistance and method for producing the same
JPH0477066B2 (en)