JP2639609B2 - Alloy ingot for permanent magnet and method for producing the same - Google Patents

Alloy ingot for permanent magnet and method for producing the same

Info

Publication number
JP2639609B2
JP2639609B2 JP4028656A JP2865692A JP2639609B2 JP 2639609 B2 JP2639609 B2 JP 2639609B2 JP 4028656 A JP4028656 A JP 4028656A JP 2865692 A JP2865692 A JP 2865692A JP 2639609 B2 JP2639609 B2 JP 2639609B2
Authority
JP
Japan
Prior art keywords
alloy ingot
alloy
permanent magnet
rare earth
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4028656A
Other languages
Japanese (ja)
Other versions
JPH05222488A (en
Inventor
山本  和彦
裕一 三宅
力 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Santoku Corp
Original Assignee
Santoku Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP4028656A priority Critical patent/JP2639609B2/en
Application filed by Santoku Corp filed Critical Santoku Corp
Priority to AT93102276T priority patent/ATE167239T1/en
Priority to US08/017,043 priority patent/US5383978A/en
Priority to DE69318998T priority patent/DE69318998T2/en
Priority to EP93102276A priority patent/EP0556751B1/en
Priority to KR1019930002058A priority patent/KR0131333B1/en
Publication of JPH05222488A publication Critical patent/JPH05222488A/en
Priority to US08/626,157 priority patent/US5630885A/en
Priority to US08/636,905 priority patent/US5656100A/en
Priority to US08/636,772 priority patent/US5674327A/en
Application granted granted Critical
Publication of JP2639609B2 publication Critical patent/JP2639609B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、磁石特性に優れた結晶
組織を有する希土類金属−鉄−ボロン系永久磁石用合金
鋳塊及びその製造法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rare earth metal-iron-boron-based permanent magnet alloy ingot having a crystal structure excellent in magnet properties and a method for producing the same.

【0002】[0002]

【従来の技術】従来、永久磁石用合金鋳塊は、溶融した
合金を金型に鋳造する金型鋳造法により製造されている
のが一般的である。しかし該金型鋳造法により合金溶融
物を凝固させる場合、合金溶融物の抜熱過程において、
抜熱初期では鋳型伝熱律速であるが、凝固が進行する
と、鋳型−凝固相間及び凝固相における伝熱が抜熱律速
となり、金型冷却能を向上させても鋳塊内部と鋳型近傍
の鋳塊では、冷却条件が異なり、特に鋳塊厚が厚いほど
このような現象が生じる。このように鋳塊の内部と表面
付近での冷却条件の相違が大きい場合には、特に磁石組
成における高残留磁束密度側の鋳造組織に、初晶γ−F
eが多く存在し、このため鋳塊の中央部に粒径10〜1
00μmのα−Feが残存し、同時に主相を取り巻く希
土類金属に富んだ相の大きさも大きくなる。
2. Description of the Related Art Conventionally, alloy ingots for permanent magnets are generally manufactured by a mold casting method of casting a molten alloy into a mold. However, when the alloy melt is solidified by the die casting method, during the heat removal process of the alloy melt,
Heat transfer is limited in the early stage of heat removal, but as solidification progresses, heat transfer between the mold and solidification phase and in the solidification phase becomes heat removal rate. Ingots have different cooling conditions, and such a phenomenon occurs particularly as the thickness of the ingot increases. As described above, when the difference in cooling conditions between the inside and the surface of the ingot is large, the primary crystal γ-F
e is present in a large amount, so that a grain size of 10 to 1
The α-Fe of 00 μm remains, and at the same time, the size of the rare earth metal-rich phase surrounding the main phase also increases.

【0003】一方、磁石製造工程における粉砕過程にお
いては、通常鋳塊が数ミクロンまで微粉砕されるが、前
記金型鋳造法で得られる鋳塊の場合には、粉砕が困難な
粒径の大きいα−Fe及び希土類金属に富んだ大きい相
を含有するので、粉砕後の粉末粒度分布が不均一とな
り、磁性の配向性及び焼結性に悪影響を及ぼし、最終的
に得られる永久磁石の磁気特性が低下するという欠点が
ある。
On the other hand, in the pulverization process in the magnet manufacturing process, the ingot is usually finely pulverized to several microns, but in the case of the ingot obtained by the die casting method, the particle size is large, which is difficult to pulverize. Since it contains a large phase rich in α-Fe and rare earth metals, the powder particle size distribution after pulverization becomes non-uniform, adversely affects the magnetic orientation and sinterability, and the magnetic properties of the finally obtained permanent magnet Is reduced.

【0004】また前記金型鋳造法により得られる鋳塊組
織中に、短軸方向0.1〜50μm、長軸方向0.1〜
100μmの結晶粒径を有する結晶が存在することが知
られているが、該結晶の含有率は、僅かであって、磁石
特性に良好な影響を及ぼすには至っていない。
[0004] Further, in the ingot structure obtained by the die casting method, 0.1 to 50 μm in the short axis direction and 0.1 to 50 μm in the long axis direction.
It is known that there is a crystal having a crystal grain size of 100 μm, but the content of the crystal is so small that it does not sufficiently affect the magnet properties.

【0005】更にまた、希土類金属元素、コバルト及び
必要に応じて、鉄、銅、ジルコニウムを添加し、ルツボ
中で溶解させた後、双ロール、単ロール、双ベルト等を
組み合わせたストリップキャスティング法等で0.01
〜5mmの厚さとなるように凝固させる希土類金属磁石
用合金の製造法が提案されている。
[0005] Furthermore, after adding a rare earth metal element, cobalt and, if necessary, iron, copper and zirconium, and dissolving them in a crucible, a strip casting method combining a twin roll, a single roll, a twin belt, etc. At 0.01
There has been proposed a method for producing an alloy for a rare earth metal magnet which is solidified so as to have a thickness of about 5 mm.

【0006】該方法では、金型鋳造法に比して組成の均
一な鋳塊が得られるが、原料成分が、希土類金属元素、
コバルト及び必要に応じて、鉄、銅、ジルコニウムを組
み合わせた成分であるために、前記ストリップキャステ
ィング法による磁石性能の向上が充分に得られない等の
問題がある。
According to this method, an ingot having a uniform composition can be obtained as compared with the die casting method, but the raw material components are rare earth metal elements,
Since the component is a combination of cobalt and, if necessary, iron, copper and zirconium, there is a problem that the magnet performance cannot be sufficiently improved by the strip casting method.

【0007】[0007]

【発明が解決しようとする課題】本発明の目的は、永久
磁石合金の特性に最も良い影響を与える結晶組織を有す
る永久磁石用合金鋳塊及びその製造法を提供することに
ある。
SUMMARY OF THE INVENTION An object of the present invention is to provide an alloy ingot for permanent magnets having a crystal structure that has the best influence on the properties of the permanent magnet alloy, and a method for producing the same.

【0008】[0008]

【課題を解決するための手段】本発明によれば、希土類
金属−鉄−ボロン系合金溶融物をストリップキャスティ
ング法で冷却凝固することによって直接得られる合金鋳
塊であって、短軸方向0.1〜50μm、長軸方向10
〜100μmの結晶粒径を有する結晶を90容量%以上
含有する希土類金属−鉄−ボロン系永久磁石合金鋳塊又
は該合金の主相結晶粒内に、包晶核である粒径10μm
未満のα−Fe及び/又はγ−Feが微細分散されてな
る永久磁石用合金鋳塊が提供される。
According to the present invention, a rare earth element is provided.
Strip cast metal-iron-boron alloy melt
Alloy castings directly obtained by cooling and solidifying by the casting method
Lump, short axis direction 0.1-50 μm, long axis direction 10
A rare earth metal-iron-boron-based permanent magnet alloy ingot containing 90% by volume or more of a crystal having a crystal grain size of 100 to 100 µm or a main phase crystal grain of the alloy has a grain size of 10 µm as a peritectic nucleus.
The present invention provides a permanent magnet alloy ingot in which less than α-Fe and / or γ-Fe is finely dispersed.

【0009】また本発明によれば、希土類金属−鉄−ボ
ロン系合金溶融物をストリップキャスティング法で冷却
凝固させて直接得られる前記永久磁石用合金鋳塊を製造
するにあたり、該合金溶融物を、タンディッシュを介し
て連続的にロールに供給することによって冷却速度10
〜500℃/秒、過冷度10〜500℃の冷却条件下で
均一に凝固させることを特徴とする永久磁石用合金鋳塊
の製造法が提供される。
Further, according to the present invention, when manufacturing the alloy ingot for a permanent magnet directly obtained by cooling and solidifying a rare earth metal-iron-boron alloy melt by a strip casting method , Through the tundish
Cooling rate 10 by continuously supplying the roll Te
The present invention provides a method for producing an alloy ingot for permanent magnets, which is uniformly solidified under cooling conditions of from about 500 ° C./sec to a degree of supercooling of from 10 to 500 ° C.

【0010】以下本発明を更に詳細に説明する。Hereinafter, the present invention will be described in more detail.

【0011】本発明の永久磁石用合金鋳塊は、希土類金
属−鉄−ボロン系合金溶融物をストリップキャスティン
グ法で冷却凝固することによって直接得られる合金鋳
塊、即ち、単にストリップキャスティング法で冷却凝固
して得たものであり、熱間塑性加工等の熱処理等を施し
ていない合金鋳塊であって、短軸方向0.1〜50μ
m、長軸方向10〜100μmの結晶粒径を有する結晶
を90容量%以上、好ましくは98容量%以上含有する
希土類金属−鉄−ボロン系の合金鋳塊であって、特に、
主相結晶粒内に包晶核として通常含有されるα−Fe及
び/又はγ−Feが全く含有されていないのが好まし
く、また該α−Fe及び/又はγ−Feを含有する場合
には、該α−Fe及び/又はγ−Feの粒径が10μm
未満であり、且つ微細分散されているのが好ましい。こ
の際前記特定の結晶粒径を有する結晶の含有割合が、9
0容量%未満の場合には、得られる合金鋳塊に優れた磁
石特性を付与できない。また短軸方向及び長軸方向の長
さが前記範囲外である場合、若しくは該α−Fe及び/
又はγ−Feの粒径が10μm以上であり、且つ微細分
散されていない場合には、永久磁石製造工程における粉
砕の際に、粒度分布が不均一になるので好ましくない。
また永久磁石用合金鋳塊の厚さは、0.05〜15mm
の範囲であるのが好ましい。厚さが15mmを超える場
合には、所望の結晶組織とするための後述する製造法が
困難となるので好ましくない。
The alloy ingot for permanent magnet of the present invention is made of rare earth metal.
Strip-castin alloy-iron-boron alloy melt
Alloy casting obtained directly by cooling and solidification by the solidification method
Lump, ie, cooling and solidification by simply strip casting
It is obtained by heat treatment such as hot plastic working.
Alloy ingot, not in the short axis direction 0.1-50μ
m, a rare earth metal-iron-boron based alloy ingot containing at least 90% by volume, preferably at least 98% by volume of crystals having a crystal grain size of 10 to 100 μm in the major axis direction,
It is preferable that α-Fe and / or γ-Fe usually contained as peritectic nuclei are not contained in the main phase crystal grains at all, and when the α-Fe and / or γ-Fe is contained, The particle size of the α-Fe and / or γ-Fe is 10 μm
It is preferable that the ratio is less than and the particles are finely dispersed. At this time, the content ratio of the crystal having the specific crystal grain size is 9
If it is less than 0% by volume, excellent magnet properties cannot be imparted to the obtained alloy ingot. When the lengths in the short axis direction and the long axis direction are out of the above range, or when the α-Fe and / or
If the particle size of γ-Fe is 10 μm or more and the particles are not finely dispersed, the particle size distribution is not uniform during the pulverization in the permanent magnet manufacturing process, which is not preferable.
The thickness of the alloy ingot for permanent magnet is 0.05 to 15 mm.
Is preferably within the range. If the thickness exceeds 15 mm, it is not preferable because a later-described manufacturing method for obtaining a desired crystal structure becomes difficult.

【0012】本発明の永久磁石用合金鋳塊を形成する原
料成分は、希土類金属−鉄−ボロン系であれば特に限定
されるものではなく、通常製造の際に不可避的に含まれ
る他の不純物成分を含んでいても良い。また希土類金属
は、単体でも混合物であっても良い。該希土類金属と、
ボロンと、鉄との配合割合は、通常永久磁石用合金鋳塊
の配合割合と同様で良く、好ましくは重量比で、25〜
40:0.5〜2.0:残量であるのが好ましい。
The raw material component forming the alloy ingot for permanent magnet of the present invention is not particularly limited as long as it is a rare earth metal-iron-boron system, and other impurities which are unavoidably contained in normal production. Components may be included. The rare earth metal may be a simple substance or a mixture. Said rare earth metal;
The compounding ratio of boron and iron may be the same as the compounding ratio of the alloy ingot for permanent magnets, and is preferably 25 to 25 by weight.
40: 0.5 to 2.0: preferably the remaining amount.

【0013】本発明の製造方法では、前記永久磁石用合
金鋳塊を得るために、希土類金属−鉄−ボロン系合金溶
融物を、冷却速度10〜500℃/秒、好ましくは10
0〜500℃/秒、過冷度10〜500℃、好ましくは
200〜500℃の冷却条件下で均一に凝固させること
を特徴とする。
In the production method of the present invention, the rare earth metal-iron-boron alloy melt is cooled at a cooling rate of 10 to 500 ° C./sec, preferably 10
It is characterized by being uniformly solidified under cooling conditions of 0 to 500 ° C / sec and a degree of supercooling of 10 to 500 ° C, preferably 200 to 500 ° C.

【0014】この際過冷度とは、(合金の融点)−(合
金溶融物の実際の温度)の値である。冷却速度及び過冷
度が前記必須範囲外の場合には、所望の組織を有する合
金鋳塊が得られない。
At this time, the degree of supercooling is a value of (melting point of alloy)-(actual temperature of alloy melt) . If the cooling rate and the degree of subcooling are out of the essential ranges, an alloy ingot having a desired structure cannot be obtained.

【0015】本発明の製造方法を更に具体的に説明する
と、例えば真空溶融法、高周波溶融法等により、好まし
くはるつぼ等を用いて、不活性ガス雰囲気下、希土類金
属−鉄−ボロン系合金を溶融物とした後、該溶融物を、
例えば、単ロール、双ロール又は円板上等において、前
記条件下、好ましくは連続的に凝固させる等のストリッ
プキャスティング法を用いた方法等により、所望の結晶
組織を有する永久磁石用合金鋳塊を得ることができる。
即ち、ストリップキャスティング法等で凝固させる場合
には、合金鋳塊の厚さを、好ましくは0.05〜15m
mの範囲となるように、鋳造温度及び注湯速度等を適宜
選択し、前記条件下処理するのが最も容易な方法であ
る。
The production method of the present invention will be described in more detail. For example, a rare earth metal-iron-boron alloy is formed under an inert gas atmosphere by a vacuum melting method, a high frequency melting method or the like, preferably using a crucible or the like. After the melt, the melt is
For example, on a single roll, twin rolls, a disk, or the like, under the above conditions, preferably by a method using a strip casting method such as continuous solidification, etc., an alloy ingot for permanent magnet having a desired crystal structure is produced. Obtainable.
That is, when solidifying by a strip casting method or the like, the thickness of the alloy ingot is preferably 0.05 to 15 m.
It is the easiest method to appropriately select the casting temperature and the pouring rate so as to be within the range of m, and carry out the treatment under the above conditions.

【0016】本発明の永久磁石用合金鋳塊は、通常の粉
砕、混合、微粉砕、磁場プレス及び焼結工程等により、
永久磁石とすることができる。
[0016] The alloy ingot for permanent magnet of the present invention is subjected to ordinary pulverization, mixing, fine pulverization, magnetic field pressing and sintering steps, etc.
It can be a permanent magnet.

【0017】[0017]

【発明の効果】本発明の永久磁石用合金鋳塊は、短軸方
向0.1〜50μm、長軸方向10〜100μmの結晶
粒径を有する結晶を特定量含有し、また希土類金属−鉄
−ボロン系組成であるので、粉砕性、焼結性等に優れて
いる。従って、磁石特性の極めて優れた永久磁石用原料
として有用である。また本発明の製造方法では、特定の
冷却速度及び特定の過冷度にて、均一性に優れた組成及
び組織を有する永久磁石合金鋳塊を容易に得ることがで
きる。
The alloy ingot for permanent magnets of the present invention contains a specific amount of crystals having a crystal grain size of 0.1 to 50 μm in the short axis direction and 10 to 100 μm in the long axis direction. Since it is a boron-based composition, it has excellent pulverizability, sinterability, and the like. Therefore, it is useful as a raw material for permanent magnets having extremely excellent magnet properties. Further, according to the production method of the present invention, a permanent magnet alloy ingot having a composition and a structure excellent in uniformity can be easily obtained at a specific cooling rate and a specific degree of supercooling.

【0018】[0018]

【実施例】以下本発明を実施例及び比較例により更に詳
細に説明するが、本発明はこれらに限定されるものでは
ない。
The present invention will be described in more detail with reference to examples and comparative examples, but the present invention is not limited to these examples.

【0019】[0019]

【実施例1】ネオジム14原子%、ボロン6原子%、鉄
80原子%からなる各金属元素を配合した合金を、アル
ゴンガス雰囲気中で、アルミナるつぼを使用して高周波
溶融法により溶融物とした。次いで、得られた溶融物の
温度を1350℃に保持した後、図1に示す装置を用い
て以下の方法に従って永久磁石用合金鋳塊を得た。得ら
れた合金鋳塊を化学分析した結果を表1に示す。
EXAMPLE 1 An alloy containing 14 atomic% of neodymium, 6 atomic% of boron and 80 atomic% of iron was made into a molten material by a high frequency melting method using an alumina crucible in an argon gas atmosphere. . Next, after maintaining the temperature of the obtained melt at 1350 ° C., an alloy ingot for permanent magnet was obtained according to the following method using the apparatus shown in FIG. Table 1 shows the results of chemical analysis of the obtained alloy ingot.

【0020】図1は、単ロールを用いたストリップキャ
スト法により永久磁石用合金鋳塊を製造するための概略
図であって、1は前記高周波溶融法により溶融した溶融
物の入ったるつぼである。1350℃に保持された溶融
物2を、タンディッシュ3上に連続的に流し込み、次い
で約1m/sで回転するロール4上において、冷却速度
500℃/秒、過冷度200℃の冷却条件となるように
急冷凝固させ、ロール4の回転方向に連続的に溶融物2
を落下させて、厚さ0.2〜0.4mmの合金鋳塊5を
製造した。
FIG. 1 is a schematic view for producing an alloy ingot for a permanent magnet by a strip casting method using a single roll, and 1 is a crucible containing a melt melted by the high frequency melting method. . The melt 2 kept at 1350 ° C. is continuously poured onto a tundish 3 and then cooled on a roll 4 rotating at about 1 m / s at a cooling rate of 500 ° C./sec and a supercooling degree of 200 ° C. Quenched and solidified so that the melt 2 is continuously formed in the rotation direction of the roll 4.
Was dropped to produce an alloy ingot 5 having a thickness of 0.2 to 0.4 mm.

【0021】次に得られた永久磁石用合金鋳塊を、25
0〜24メッシュに粉砕し、アルコール中において、更
に3μm程度まで微粉砕した。次いで得られた微粉末
を、150MPa、2400KAm~1の条件下、磁場プ
レスした後、1040℃にて2時間焼結し、10×10
×15mmの永久磁石を得た。得られた永久磁石の磁石
特性を表2に示す。
Next, the obtained alloy ingot for permanent magnet was
It was pulverized to 0 to 24 mesh and further pulverized in alcohol to about 3 μm. Next, the obtained fine powder was magnetically pressed under the conditions of 150 MPa and 2400 KAm ~ 1 , and then sintered at 1040 ° C. for 2 hours to obtain a 10 × 10
A permanent magnet of × 15 mm was obtained. Table 2 shows the magnet properties of the obtained permanent magnet.

【0022】[0022]

【比較例1】実施例1で製造した合金溶融物を、高周波
溶融法により溶解し、金型鋳造法により厚さ25mmの
永久磁石用合金鋳塊を得た。得られた合金鋳塊を実施例
1と同様に分析し、更に永久磁石を製造した。合金鋳塊
の分析結果を表1に、磁石特性を表2に示す。
Comparative Example 1 The alloy melt produced in Example 1 was melted by a high-frequency melting method to obtain a 25-mm-thick alloy ingot for permanent magnets by a die casting method. The obtained alloy ingot was analyzed in the same manner as in Example 1, and a permanent magnet was manufactured. Table 1 shows the analysis results of the alloy ingot and Table 2 shows the magnet characteristics.

【0023】[0023]

【実施例2】ネオジム11.6原子%、プラセオジム
3.4原子%、ボロン6原子%、鉄79原子%からなる
各金属元素を配合した合金を用いた以外は、実施例1と
同様に永久磁石用合金鋳塊を製造し、得られた合金鋳塊
を実施例1と同様に分析し、更に永久磁石を製造した。
合金鋳塊の分析結果を表1に、磁石特性を表2に示す。
Example 2 Permanent material was prepared in the same manner as in Example 1 except that an alloy containing 11.6 atomic% of neodymium, 3.4 atomic% of praseodymium, 6 atomic% of boron, and 79 atomic% of iron was used. An alloy ingot for a magnet was manufactured, and the obtained alloy ingot was analyzed in the same manner as in Example 1, and a permanent magnet was further manufactured.
Table 1 shows the analysis results of the alloy ingot and Table 2 shows the magnet characteristics.

【0024】[0024]

【表1】 [Table 1]

【0025】[0025]

【表2】 [Table 2]

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は、実施例1で用いたストリップキャスト
法により永久磁石用合金鋳塊を製造する際の概略図であ
る。
FIG. 1 is a schematic view when producing an alloy ingot for a permanent magnet by a strip casting method used in Example 1.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平2−263404(JP,A) 特開 平4−28458(JP,A) 特公 昭60−32712(JP,B2) ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-2-263404 (JP, A) JP-A-4-28458 (JP, A) JP-B-60-32712 (JP, B2)

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 希土類金属−鉄−ボロン系合金溶融物を
ストリップキャスティング法で冷却凝固することによっ
て直接得られる合金鋳塊であって、短軸方向0.1〜5
0μm、長軸方向10〜100μmの結晶粒径を有する
結晶を90容量%以上含有する希土類金属−鉄−ボロン
系永久磁石合金鋳塊。
1. A method for producing a rare earth metal-iron-boron alloy melt.
Cooling and solidification by strip casting method
Alloy ingot obtained directly in the short axis direction of 0.1 to 5
A rare earth metal-iron-boron-based permanent magnet alloy ingot containing 90% by volume or more of a crystal having a crystal grain size of 0 μm and a major axis direction of 10 to 100 μm.
【請求項2】 前記合金鋳塊の主相結晶粒内に、包晶核
である粒径10μm未満のα−Fe及び/又はγ−Fe
が微細分散されていることを特徴とする請求項1記載の
永久磁石用合金鋳塊。
2. α-Fe and / or γ-Fe having a grain size of less than 10 μm, which are peritectic nuclei, in the main phase crystal grains of the alloy ingot.
The alloy ingot for permanent magnets according to claim 1, wherein is dispersed finely.
【請求項3】 希土類金属−鉄−ボロン系合金溶融物を
ストリップキャスティング法で冷却凝固させて直接得ら
れる請求項1記載の永久磁石用合金鋳塊を製造するにあ
たり、該合金溶融物を、タンディッシュを介して連続的
にロールに供給することによって冷却速度10〜500
℃/秒、過冷度10〜500℃の冷却条件下で均一に凝
固させることを特徴とする永久磁石用合金鋳塊の製造
法。
3. A method of directly obtaining a rare earth metal-iron-boron alloy melt by cooling and solidifying it by a strip casting method .
In producing the alloy ingot for permanent magnet according to claim 1, the alloy melt is continuously passed through a tundish.
The cooling rate is 10 to 500
A method for producing an alloy ingot for permanent magnets, wherein the alloy is solidified uniformly under cooling conditions of 10 ° C / sec and a degree of supercooling of 10 to 500 ° C.
JP4028656A 1992-02-15 1992-02-15 Alloy ingot for permanent magnet and method for producing the same Expired - Lifetime JP2639609B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP4028656A JP2639609B2 (en) 1992-02-15 1992-02-15 Alloy ingot for permanent magnet and method for producing the same
US08/017,043 US5383978A (en) 1992-02-15 1993-02-12 Alloy ingot for permanent magnet, anisotropic powders for permanent magnet, method for producing same and permanent magnet
DE69318998T DE69318998T2 (en) 1992-02-15 1993-02-12 Alloy block for a permanent magnet, anisotropic powder for a permanent magnet, process for producing such a magnet and permanent magnet
EP93102276A EP0556751B1 (en) 1992-02-15 1993-02-12 Alloy ingot for permanent magnet, anisotropic powders for permanent magnet, method for producing same and permanent magnet
AT93102276T ATE167239T1 (en) 1992-02-15 1993-02-12 ALLOY BLOCK FOR A PERMANENT MAGNET, ANISOTROPIC POWDER FOR A PERMANENT MAGNET, METHOD FOR PRODUCING THE SAME AND PERMANENT MAGNET
KR1019930002058A KR0131333B1 (en) 1992-02-15 1993-02-15 Alloy ingot for permanent magnet, antisotropic powders for permanent magnet, method for producing same and permanent magnet
US08/626,157 US5630885A (en) 1992-02-15 1996-04-04 Alloy ingot for permanent magnet, anisotropic powders for permanent magnet, method for producing same and permanent magnet
US08/636,905 US5656100A (en) 1992-02-15 1996-04-18 Alloy ingot for permanent magnet, anisotropic powders for permanent magnet, method for producing same and permanent magnet
US08/636,772 US5674327A (en) 1992-02-15 1996-04-19 Alloy ingot for permanent magnet, anisotropic powders for permanent magnet, method for producing same and permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4028656A JP2639609B2 (en) 1992-02-15 1992-02-15 Alloy ingot for permanent magnet and method for producing the same

Publications (2)

Publication Number Publication Date
JPH05222488A JPH05222488A (en) 1993-08-31
JP2639609B2 true JP2639609B2 (en) 1997-08-13

Family

ID=12254551

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4028656A Expired - Lifetime JP2639609B2 (en) 1992-02-15 1992-02-15 Alloy ingot for permanent magnet and method for producing the same

Country Status (1)

Country Link
JP (1) JP2639609B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012002531A1 (en) 2010-07-02 2012-01-05 株式会社三徳 Method for producing alloy cast slab for rare earth sintered magnet

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW446690B (en) 1998-06-22 2001-07-21 Showa Denko Kk Refractories for casting a rare-earth alloy, their production method, and method for casting an rare-earth alloy
AU2001282578A1 (en) 2000-08-31 2002-03-13 Showa Denko K K Centrifugal casting method, centrifugal casting apparatus, and cast alloy produced by same
AU2002358316A1 (en) 2001-12-18 2003-06-30 Showa Denko K.K. Alloy flake for rare earth magnet, production method thereof, alloy powder for rare earth sintered magnet, rare earth sintered magnet, alloy powder for bonded magnet and bonded magnet
US7722726B2 (en) 2004-03-31 2010-05-25 Santoku Corporation Process for producing alloy slab for rare-earth sintered magnet, alloy slab for rare-earth sintered magnet and rare-earth sintered magnet
EP1738377B1 (en) 2004-04-07 2012-10-03 Showa Denko K.K. Alloy lump for r-t-b type sintered magnet, producing method thereof, and magnet
US20060165550A1 (en) 2005-01-25 2006-07-27 Tdk Corporation Raw material alloy for R-T-B system sintered magnet, R-T-B system sintered magnet and production method thereof
JP4832856B2 (en) * 2005-10-31 2011-12-07 昭和電工株式会社 Method for producing RTB-based alloy and RTB-based alloy flakes, fine powder for RTB-based rare earth permanent magnet, RTB-based rare earth permanent magnet
US7846273B2 (en) 2005-10-31 2010-12-07 Showa Denko K.K. R-T-B type alloy, production method of R-T-B type alloy flake, fine powder for R-T-B type rare earth permanent magnet, and R-T-B type rare earth permanent magnet
JP5047491B2 (en) * 2005-11-24 2012-10-10 三菱電機株式会社 Rare earth-iron-boron magnet alloy, manufacturing method and manufacturing apparatus thereof
US7958929B2 (en) 2006-04-07 2011-06-14 Showa Denko K.K. Apparatus for producing alloy and rare earth element alloy
CN101256859B (en) * 2007-04-16 2011-01-26 有研稀土新材料股份有限公司 Rare-earth alloy casting slice and method of producing the same
JP4219390B1 (en) 2007-09-25 2009-02-04 昭和電工株式会社 Alloy production equipment
WO2009075351A1 (en) 2007-12-13 2009-06-18 Showa Denko K.K. R-t-b alloy, process for production of r-t-b alloy, fine powder for r-t-b rare earth permanent magnets, and r-t-b rare earth permanent magnets

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6032712A (en) * 1983-08-02 1985-02-19 Eisai Co Ltd Composition containing coq10
JPH02263404A (en) * 1989-04-04 1990-10-26 Hitachi Metals Ltd Rare earth group iron base permanent magnet
JP3025693B2 (en) * 1990-05-24 2000-03-27 ティーディーケイ株式会社 Manufacturing method of permanent magnet material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012002531A1 (en) 2010-07-02 2012-01-05 株式会社三徳 Method for producing alloy cast slab for rare earth sintered magnet
US9862030B2 (en) 2010-07-02 2018-01-09 Santoku Corporation Method for producing alloy cast slab for rare earth sintered magnet

Also Published As

Publication number Publication date
JPH05222488A (en) 1993-08-31

Similar Documents

Publication Publication Date Title
KR0131333B1 (en) Alloy ingot for permanent magnet, antisotropic powders for permanent magnet, method for producing same and permanent magnet
EP1187147B1 (en) Rare-earth alloy, rare-earth sintered magnet, and methods of manufacturing
JPH0553853B2 (en)
JP2639609B2 (en) Alloy ingot for permanent magnet and method for producing the same
JP2002536539A (en) Rare earth permanent magnet alloy and its manufacturing method
JP4389427B2 (en) Sintered magnet using alloy powder for rare earth-iron-boron magnet
JPH09111383A (en) Permanent magnet alloy and its production
KR0151244B1 (en) Permanent magnet
US5690752A (en) Permanent magnet containing rare earth metal, boron and iron
JP3505261B2 (en) Sm-Co permanent magnet material, permanent magnet and method for producing the same
EP1263003B1 (en) Preparation of a rare earth magnet alloy powder for a bonded magnet and rare earth bonded magnet therewith
JP3299630B2 (en) Manufacturing method of permanent magnet
JP3278431B2 (en) Rare earth metal-iron-boron anisotropic permanent magnet powder
JP3455552B2 (en) Method for producing rare earth metal-iron binary alloy ingot for permanent magnet
JP3548568B2 (en) Method for producing rare earth metal-iron based permanent magnet alloy containing nitrogen atom
JP3213638B2 (en) Method for producing powder for rare earth metal-iron-boron based anisotropic permanent magnet
JP3726888B2 (en) Rare earth alloy and manufacturing method thereof, and manufacturing method of rare earth sintered magnet
JP4574820B2 (en) Method for producing magnet powder for rare earth bonded magnet
JP2660917B2 (en) Rare earth magnet manufacturing method
JP2002083728A (en) Method of manufacturing rare earth permanent magnet
JPH01706A (en) Rare earth magnet manufacturing method
JPH0533076A (en) Rare earth permanent magnet alloy and its production
JPH07110966B2 (en) Manufacturing method of rare earth magnet alloy particles
JPH1154307A (en) Manufacture of magnet alloy thin strip and resin binding bonded magnet
JPS62262403A (en) Manufacture of rare earth permanent magnet

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090502

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100502

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100502

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110502

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110502

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120502

Year of fee payment: 15

EXPY Cancellation because of completion of term