JPH03295202A - Hot-worked magnet and manufacture thereof - Google Patents

Hot-worked magnet and manufacture thereof

Info

Publication number
JPH03295202A
JPH03295202A JP2098057A JP9805790A JPH03295202A JP H03295202 A JPH03295202 A JP H03295202A JP 2098057 A JP2098057 A JP 2098057A JP 9805790 A JP9805790 A JP 9805790A JP H03295202 A JPH03295202 A JP H03295202A
Authority
JP
Japan
Prior art keywords
warm
magnet
powder
magnetic
worked
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2098057A
Other languages
Japanese (ja)
Inventor
Minoru Sekiyama
赤山 稔
Shigeo Tanigawa
茂穂 谷川
Masaaki Tokunaga
徳永 雅亮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2098057A priority Critical patent/JPH03295202A/en
Publication of JPH03295202A publication Critical patent/JPH03295202A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0576Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together pressed, e.g. hot working

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

PURPOSE:To obtain the title magnet having no cracks by facilitating the plastic working to be performed thereon, and to obtain uniform orientation to improve magnetic characteristics by a method wherein Al metal powder is mixed in magnetic powder, and a hot plastic working is conducted. CONSTITUTION:The alloy of composition, consisting of Nd 14.5 and FebalCo of 7.56, is arc-fused, it is jetted on a single roll rotating in an Ar atmosphere, and the flake-like thin pieces of indeterminate form are formed. Then, Al metal powder of 0.05 to 5wt.% is added to the crushed magnetic powder, and magnetic powder and the Al powder are mixed by V-type mixer so that they become uniform. The molded body, obtained by molding the above-mentioned mixed powder, is hot-pressed, and a high density molded body is obtained. Then, magnetic anisotropy is given by conducting a hot working of the magnet at 700 deg.C.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は希土類、遷移金属、硼素から実質的になる永久
磁石であって温間加工によって磁気異方性を付与する温
間加工磁石の改良に関し、とくに適量のAIを添加する
ことによって加工性を向上して割れがなく且つ配向性を
向上して良好な磁気特性を有する永久磁石とその製造方
法に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention is an improvement of a warm-worked magnet, which is a permanent magnet consisting essentially of rare earth elements, transition metals, and boron, and which imparts magnetic anisotropy through warm working. In particular, the present invention relates to a permanent magnet that has improved workability, is free from cracks, has improved orientation, and has good magnetic properties by adding an appropriate amount of AI, and a method for manufacturing the same.

[従来の技術] 希土類、遷移金属、硼素から実質的になる永久磁石(以
下R−T−B系永久磁石と呼ぶ)は安価で且つ高磁気特
性を有することで注目を集めている。それは、この合金
系では、正方晶系の結晶構造を持ったR2Tl4Bで表
される優れた磁気特性を有する金属間化合物か発現する
からである。この金属間化合物は、室温ではa軸及びC
軸の格子定数はそれぞれa=0.878nm、c=1.
218nmである。
[Prior Art] Permanent magnets made essentially of rare earth elements, transition metals, and boron (hereinafter referred to as R-T-B permanent magnets) are attracting attention because they are inexpensive and have high magnetic properties. This is because this alloy system develops an intermetallic compound represented by R2Tl4B having a tetragonal crystal structure and having excellent magnetic properties. This intermetallic compound has an a-axis and a C-axis at room temperature.
The lattice constants of the axes are a=0.878 nm, c=1.
It is 218 nm.

この系の磁気異方性磁石の製造法には、従来からの粉末
冶金を踏襲した焼結磁石の製造方法と急冷法による温間
加工磁石の製造方法に大別される。
Methods for manufacturing magnetically anisotropic magnets of this type are broadly divided into methods for manufacturing sintered magnets that follow conventional powder metallurgy and methods for manufacturing warm-worked magnets using a quenching method.

第1のプロセスは、特開昭59−46008号公報及び
同59−64733号公報に記載されているように、R
−T−B系合金を粉砕した後、磁場中で配向させながら
成形を行い、焼結処理及び時効熱処理を経て焼結磁石と
する方法である。
The first process is the R
- After crushing the T-B alloy, it is molded while being oriented in a magnetic field, and then subjected to sintering treatment and aging heat treatment to form a sintered magnet.

第2のプロセスは、例えば特開昭60−100402号
公報に記載されているようにR−T−B系合金の溶湯を
急冷して非晶質と微結晶からなる急冷薄帯を700℃以
上の温度でホットプレスもしくはHIPで高密度化した
圧密体を更に700℃以上の温度で据込み加工を施し圧
縮方向に異方性を付与した温間加工磁石を得る方法であ
る。
In the second process, for example, as described in JP-A-60-100402, a molten RTB alloy is rapidly cooled to form a quenched ribbon consisting of amorphous and microcrystalline materials at temperatures above 700°C. In this method, a compacted body densified by hot pressing or HIP at a temperature of 700° C. is further subjected to upsetting at a temperature of 700° C. or higher to obtain a warm-worked magnet with anisotropy in the direction of compression.

[発明が解決しようとする問題点] 第1のプロセスで得られる焼結磁石では、エネルギー積
が35〜40 MG−Oeの高い磁気特性が得られるが
、磁場の中で成形するという面倒な工程が必須であり磁
石の形状に制約を受ける。
[Problems to be Solved by the Invention] The sintered magnet obtained by the first process has high magnetic properties with an energy product of 35 to 40 MG-Oe, but it requires the troublesome process of molding in a magnetic field. is essential and is restricted by the shape of the magnet.

一方、第2のプロセスによれば、温間で塑性加工を施す
ことにより磁気異方性化は可能で、磁気異方性は塑性流
動と直角な方向(結晶粒の配向性)に密接な相関関係が
ある。この温間加工磁石の磁気特性は高いところでは4
0MG−Oe以上のエネルギー積が得られるか、塑性流
動が不均一であるために磁気特性が大きくばらつくとい
う問題点がある。また、不均一変形は塑性加工における
被加工物のバルジ現象(端縁部が樽形に変形する。)に
よって端縁部に大きなりラックを生じてしまう。これら
は、温間加工の際の磁粉間の摩擦によるもので、このた
め著しい不均一変形が生じるものである。このことは、
製品としての磁石を得ようとする場合には大きな問題点
となる。
On the other hand, according to the second process, it is possible to create magnetic anisotropy by applying warm plastic working, and magnetic anisotropy is closely correlated with the direction perpendicular to plastic flow (orientation of crystal grains). There is a relationship. The magnetic properties of this warm-processed magnet are 4
There are problems in that either an energy product of 0 MG-Oe or more is obtained or the magnetic properties vary widely due to non-uniform plastic flow. In addition, non-uniform deformation causes a large rack at the edge due to the bulge phenomenon (the edge deforms into a barrel shape) of the workpiece during plastic working. These are caused by friction between magnetic particles during warm working, which causes significant non-uniform deformation. This means that
This poses a major problem when trying to obtain a magnet as a product.

本発明は、上記従来からの問題点に鑑みてなされたもの
で、R−T−B系の温間加工磁石において塑性加工を容
易にして割れのないものを得るとともに、均一な配向を
得て磁気特性が良好なものを提供することを目的とする
The present invention has been made in view of the above-mentioned conventional problems, and it is possible to easily plastically work an R-T-B type warm-worked magnet without cracking, and to obtain a uniform orientation. The purpose is to provide a product with good magnetic properties.

[問題点を解決するための手段] 本発明は上記の目的を達成するために、下記のような技
術的手段を用いた。すなわち、R−T−B系合金(Rは
Yを含む1種または2種以上の希土類元素、Tは遷移金
属、Bは硼素)の溶湯を超急冷凝固して薄帯または薄片
を得て、粉砕して磁性粉末を得た後、600℃〜800
℃での温間加工により磁気異方性を付与し最終工程終了
後の異方性磁石の平均結晶粒径が0.02〜0.5μm
に制御した温間加工磁石の製造方法において、前記磁性
粉末にAlの金属粉末及び金属チップを混合することを
特徴とする温間加工磁石の製造方法である。
[Means for Solving the Problems] In order to achieve the above object, the present invention uses the following technical means. That is, a molten R-T-B alloy (R is one or more rare earth elements including Y, T is a transition metal, and B is boron) is ultra-rapidly solidified to obtain a ribbon or flake. After pulverizing to obtain magnetic powder, 600°C to 800°C
Magnetic anisotropy is imparted by warm working at ℃, and the average crystal grain size of the anisotropic magnet after the final step is 0.02 to 0.5 μm.
This method of manufacturing a warm-worked magnet is characterized in that the magnetic powder is mixed with Al metal powder and metal chips.

本発明の温間加工磁石の製造方法において、Alの添加
量は磁性粉末に対して0.05〜5wt%に設定するこ
とが望ましい。この添加量が0.05wt% 未満であ
ると充分な添加効果がみられず、温間加工磁石の塑性変
形を均一にすることが出来ない場合があり、5 w t
%を超えると、単位体積当りの磁性粉末の量が減少して
充分な磁気特性が得られない場合がある。
In the method for manufacturing a warm-worked magnet of the present invention, it is desirable that the amount of Al added is set to 0.05 to 5 wt% based on the magnetic powder. If the amount added is less than 0.05 wt%, a sufficient addition effect will not be observed, and it may not be possible to make the plastic deformation of the warm-worked magnet uniform.
%, the amount of magnetic powder per unit volume may decrease and sufficient magnetic properties may not be obtained.

本発明において、平均結晶粒径は超急冷法による磁石の
特徴として微細である。平均結晶粒径が0.02μm未
満の超微細結晶を工業的に安定して得ることは現時点で
の技術では困難であり、また平均結晶粒径が0.5μm
を越えると、保磁力iHcが低下して好ましくない。
In the present invention, the average crystal grain size is fine as a characteristic of the magnet produced by the ultra-quenching method. It is difficult to industrially stably obtain ultrafine crystals with an average crystal grain size of less than 0.02 μm using current technology;
If it exceeds this, the coercive force iHc decreases, which is not preferable.

また、塑性加工を施す温度としては、60o℃〜SOO
℃が好ましく、さらには670℃〜800℃が最も望ま
しい。
In addition, the temperature at which plastic working is performed is 60oC to SOO
C is preferred, and most preferably 670 to 800C.

つまり、600℃以下では塑性変形に重要なRリッチな
液相がフレーク内部の結晶粒界に発生しないため磁石に
磁気異方性を付与することが出来ず、また加工時の変形
抵抗も高く割れも多数発生する。600℃以上では、R
リッチな液相が発生するために初めて磁気異方性化が可
能となる。
In other words, at temperatures below 600°C, the R-rich liquid phase, which is important for plastic deformation, does not occur at the grain boundaries inside the flakes, making it impossible to impart magnetic anisotropy to the magnet, and the deformation resistance during processing is high, leading to cracking. also occur in large numbers. At temperatures above 600°C, R
Magnetic anisotropy becomes possible only when a rich liquid phase is generated.

また、Alの融点は670℃であるため、加工温度が6
70℃以上では、フレーク界面に存在する溶融状態のA
lの潤滑効果により不均一な塑性流動が改善されるため
に結晶粒の配向を顕著に向上させ、その結果良好な磁気
特性が得られ、また変形抵抗は低下して加工性が向上す
る。
Also, since the melting point of Al is 670°C, the processing temperature is 670°C.
At temperatures above 70°C, the molten A existing at the flake interface
The lubricating effect of l improves the non-uniform plastic flow, thereby significantly improving the orientation of crystal grains, resulting in good magnetic properties, as well as lower deformation resistance and improved workability.

ここで結晶粒の配向度はXN1回折によって測定するこ
とができる。即ち、先ず等方性の試料においてデイフラ
クトメータで各回折面のX線回折強度を測定し、ついで
異方性化させた温間加工磁石から切り出した試料を測定
し、その回折強度を等方性試料の強度で規格化する。規
格化した値を各回折面が0面となす角度についてプロッ
トし、ガウス分布で近似して、その角度分散で結晶配向
性を評価できる。
Here, the degree of orientation of crystal grains can be measured by XN1 diffraction. That is, first, the X-ray diffraction intensity of each diffraction surface is measured using a diffractometer on an isotropic sample, then a sample cut from an anisotropic warm-processed magnet is measured, and the diffraction intensity is measured on an isotropic sample. Standardize by the strength of the sample. The normalized values are plotted with respect to the angle that each diffraction plane makes with the zero plane, approximated by a Gaussian distribution, and the crystal orientation can be evaluated based on the angular dispersion.

従来の温間加工磁石での角度分散は磁石表面において3
0度以上であり、結晶の配向が不十分であり満足する磁
気特性が得られなかったが、本発明ではこの角度分散は
30度未満となり良好な結晶配向性が得られ、高磁気特
性を実現することが可能となった。
The angular dispersion in conventional warm worked magnets is 3 on the magnet surface.
However, in the present invention, this angular dispersion is less than 30 degrees, good crystal orientation is obtained, and high magnetic properties are achieved. It became possible to do so.

また、800℃以上になると急速な結晶粒成長が生じる
ため、磁石の平均結晶粒径は0.5μmを越え、保磁力
は急激に低下してしまい、また割れも多数発生するので
、磁気特性と加工性の両面から好ましくない。
Furthermore, at temperatures above 800°C, rapid crystal grain growth occurs, causing the average crystal grain size of the magnet to exceed 0.5 μm, the coercive force to drop rapidly, and many cracks to occur, resulting in poor magnetic properties. It is unfavorable from both the viewpoint of workability.

[作用] 以上のように構成した本発明による磁石において、磁性
粉末にAlの金属粉末を混合して温間で塑性加工が行わ
れるので、溶融状態のAlが潤滑剤として作用し、その
ために塑性流動が改善されて、均一な塑性変形となり磁
石の磁気特性か向上し被加工性も良好となる。
[Function] In the magnet according to the present invention configured as described above, since the magnetic powder is mixed with Al metal powder and warm plastic working is performed, the molten Al acts as a lubricant, and therefore the plasticity is reduced. The flow is improved, resulting in uniform plastic deformation, improving the magnetic properties of the magnet and improving workability.

[実施例コ 以下実施例により本発明を具体的に説明する。[Example code] The present invention will be specifically explained below using Examples.

(実施例1) N d 14.5 F e bal Co 7.568
6なる組成の合金をアーク溶解にて作製した。本合金を
Ar雰囲気中で周速が30m/秒で回転する単ロール上
に噴出して約30μmの厚さを持った不定形のフレーク
状薄片を作製した。X線回折の結果、非晶質と結晶質の
混合物であることが分かった。ついで、フレーク状の薄
片を500μm以下に粉砕した磁性粉末を作製した。こ
の磁性粉末に、Alの金属粉末を0.5wt%添加した
もの(本発明)と無添加のもの(比較例)を、それぞれ
V型混合機により磁性粉末とAl粉末とが一様になるよ
うに混合した。これらの混合粉末を成形圧6トン/Cm
2で金型成形をして密度が約5.7g/ccで直径28
mm、高さ46mmの成形体を作製した。
(Example 1) N d 14.5 Fe bal Co 7.568
An alloy having a composition of 6 was produced by arc melting. This alloy was jetted onto a single roll rotating at a circumferential speed of 30 m/sec in an Ar atmosphere to produce irregular flake-like flakes with a thickness of about 30 μm. As a result of X-ray diffraction, it was found to be a mixture of amorphous and crystalline materials. Next, magnetic powder was prepared by pulverizing the flakes to a size of 500 μm or less. This magnetic powder was mixed with 0.5 wt% of Al metal powder (invention) and with no additive (comparative example), using a V-type mixer so that the magnetic powder and Al powder were uniform. mixed with. These mixed powders were molded under a pressure of 6 tons/Cm.
2, the density is about 5.7g/cc and the diameter is 28.
A molded body with a height of 46 mm and a height of 46 mm was produced.

得られた成形体を700℃,2t−ン/cm2てホット
プレスし、密度が約7.6g/ccと高密度の直径30
mm、高さ30mmの成形体を得た。
The obtained molded body was hot pressed at 700°C and 2 tons/cm2, and the diameter was 30 mm with a high density of about 7.6 g/cc.
A molded body with a height of 30 mm and a height of 30 mm was obtained.

更に700′Cて加工率(据込み前と据込み後の高さの
減少率)75%まで磁石に温間加工を施して磁気異方性
を付与した。
Further, the magnet was subjected to warm working at 700'C to a working rate (height reduction rate before upsetting and after upsetting) of 75% to impart magnetic anisotropy.

この磁石から切り出した試料をEP〜IAで分析したと
ころ、Ndリッチな結晶粒界相にAlが含まれているこ
とが分かった。
When a sample cut from this magnet was analyzed by EP-IA, it was found that Al was contained in the Nd-rich grain boundary phase.

また、加工後の磁石から測定試料を切り出し磁気特性と
結晶配向性を示す角度の分散値を測定した。磁気特性と
角度の分散値を第1表に示す。ここで角度の分散値は数
値が小さいほど結晶の配向度が高くなることを示す。
In addition, a measurement sample was cut out from the processed magnet and the magnetic properties and angular dispersion values indicating crystal orientation were measured. Table 1 shows the magnetic properties and angular dispersion values. Here, the smaller the angular dispersion value, the higher the degree of crystal orientation.

第1表 第1表より明らかなようにAlの添加により温間加工時
の塑性流動性が改善されて結晶の配向性が良好となり、
磁気特性が顕著に向上することが分かる。
As is clear from Table 1, the addition of Al improves the plastic fluidity during warm working and improves crystal orientation.
It can be seen that the magnetic properties are significantly improved.

(実施例2) 実施例1と同様の合金組成の磁性粉末に、Alの金属粉
末を0wt%、0.03wt%、  0. 05wt%
、O,1wt%、1,0wt%、3,0wt%、5.0
wt%、8,0wt%の8段階に分けて添加し、それぞ
れ■型混合機により磁性粉とAl粉末とが一様になるよ
うに混合した。これらの混合粉末を成形圧6トン/ c
 m2で金型成形をして密度が約5.7g/ccで直径
28.mmt高さ46mmの成形体を作製した。得られ
た成形体を700℃、2トン/cm2でホットプレスし
、密度が約7.6g/ccと高密度の直径30mm、高
さ30mmの成形体を得た。
(Example 2) Al metal powder was added to magnetic powder having the same alloy composition as in Example 1 at 0 wt %, 0.03 wt %, and 0.0 wt %. 05wt%
, O,1wt%, 1,0wt%, 3,0wt%, 5.0
The powder was added in eight steps of wt% and 8.0 wt%, and the magnetic powder and Al powder were mixed uniformly using a type mixer. These mixed powders are molded under a pressure of 6 tons/c.
M2 is molded with a density of approximately 5.7 g/cc and a diameter of 28. A molded body having a mmt height of 46 mm was produced. The obtained molded body was hot pressed at 700° C. and 2 tons/cm 2 to obtain a molded body having a high density of about 7.6 g/cc and a diameter of 30 mm and a height of 30 mm.

更に700℃で加工率(据込み前と据込み後の高さの減
少率)75%まで磁石に温間加工を施して磁気異方性を
付与し、加工後の磁石から測定試料を切り出し磁気特性
と結晶配向性を示す角度の分散値を測定した。磁気特性
と角度の分散値の測定結果を表2に示す。
Furthermore, the magnet is warm-processed at 700°C to a processing rate of 75% (height reduction rate before and after upsetting) to impart magnetic anisotropy, and a measurement sample is cut out from the processed magnet and magnetically The angular dispersion value, which indicates the properties and crystal orientation, was measured. Table 2 shows the measurement results of magnetic properties and angular dispersion values.

(以下余白) 表2 1.0         12.0   18.7  
34.1    213.0        12.0
   18.9  34.0    215、O11,
919,033,421 8、Ol   10.5   18.5  25.0 
  24表2よりAlの添加量が0.05wt%未満で
は磁気特性に変化はみられないが、添加量が0.05〜
5wt%では、とくに4π1rが向上し良好な磁気特性
が得られ、Al添加による効果が認められた。また、添
加量が5 w t%以上になると単位体積当りの磁気特
性を担う磁性合金の占める割合が減少するために4πI
rは著しく低下した。
(Left below) Table 2 1.0 12.0 18.7
34.1 213.0 12.0
18.9 34.0 215, O11,
919,033,421 8, Ol 10.5 18.5 25.0
24 Table 2 shows that there is no change in the magnetic properties when the amount of Al added is less than 0.05 wt%, but when the amount added is 0.05 to
At 5 wt%, 4π1r was particularly improved and good magnetic properties were obtained, and the effect of Al addition was recognized. In addition, when the amount added exceeds 5 wt%, the proportion of the magnetic alloy responsible for the magnetic properties per unit volume decreases, so the 4πI
r decreased significantly.

(実施例3) 実施例1と同様の温間加工方法により、据込み加工温度
を550°C,600℃,700℃、800℃、850
℃の5段階に変化させ、据込み加工を行った。”加工時
の変形抵抗と加工率との関係を記録紙より算出し、まと
めた結果を表3に示す。ここで加工時に磁石に割れが発
生したものにはX印とし、それ以外のものについては加
工率30%の時の変形抵抗(ton/cm2)とした。
(Example 3) Using the same warm processing method as in Example 1, the upsetting processing temperatures were set to 550°C, 600°C, 700°C, 800°C, and 850°C.
The upsetting process was performed by changing the temperature in 5 steps. ``The relationship between deformation resistance during machining and machining rate was calculated from recording paper, and the summarized results are shown in Table 3. Here, the magnets in which cracks occurred during machining are marked with an X, and the others are marked with an X. is the deformation resistance (ton/cm2) at a processing rate of 30%.

表3 加工温度 (℃)0 580      × 600    ’2.03 700   .1.13 750    1 、10 50 × Al添加量(w℃%) 0.5   1.0  3.O X    X    × 2.00  1.98  1.95 0.97  0.88  0.85 0.99  0.98  0.89 5.0 × 1.90 0.81 0.84 × × 加工温度550℃では変形抵抗かなり大きく磁石に割れ
が発生した。一方850℃においても変形抵抗は著しく
増大し磁石に多数の割れが発生した。
Table 3 Processing temperature (°C) 0 580 × 600 '2.03 700. 1.13 750 1, 10 50 × Al addition amount (w°C%) 0.5 1.0 3. O X In this case, the deformation resistance was quite large and cracks occurred in the magnet. On the other hand, even at 850°C, the deformation resistance increased significantly and many cracks occurred in the magnet.

従って、本発明に係わる温間加工は約り00℃〜約80
0℃が好ましい。
Therefore, the warm processing according to the present invention ranges from about 00°C to about 80°C.
0°C is preferred.

[発明の効果コ 本発明によれば、温間加工磁石において従来不十分であ
った成形性が改善されると同時に磁気特性が著しく向上
した異方性磁石が得られる。
[Effects of the Invention] According to the present invention, it is possible to obtain an anisotropic magnet in which the formability, which has conventionally been insufficient in warm-worked magnets, is improved, and at the same time, the magnetic properties are significantly improved.

Claims (4)

【特許請求の範囲】[Claims] (1)遷移金属Tを主成分とし、イットリウムを含む希
土類元素R及び硼素Bを含有するR−T−B系合金であ
って、磁気的異方性を有する平均結晶粒径が0.02〜
0.5μmの微細な結晶粒を有する温間加工磁石におい
て、結晶粒界相がAlを含むR(希土類元素)リッチ相
からなり、磁気的な異方性が温間または熱間での塑性加
工により付与されることを特徴とする温間加工磁石。
(1) An R-T-B alloy whose main component is a transition metal T, a rare earth element R including yttrium, and boron B, and has an average crystal grain size of 0.02 to 0.02 or more with magnetic anisotropy.
In a warm-worked magnet with fine crystal grains of 0.5 μm, the grain boundary phase is composed of an R (rare earth element) rich phase containing Al, and the magnetic anisotropy is suitable for warm or hot plastic working. A warm-processed magnet characterized by being given by.
(2)遷移金属Tを主成分とし、イットリウムを含む希
土類元素R及び硼素Bを含有するR−T−B系合金であ
って、磁気的異方性を有する平均結晶粒径が0.02〜
0.5μmの微細な結晶粒を有する温間加工磁石におい
て、X線回折による結晶のC軸からの結晶配向の角度分
散が磁石表面おいて30度未満であることを特徴とする
温間加工磁石。
(2) An R-T-B alloy containing the transition metal T as a main component, a rare earth element R including yttrium, and boron B, and having an average crystal grain size of 0.02 to 0.02 or more with magnetic anisotropy.
A warm worked magnet having fine crystal grains of 0.5 μm, characterized in that the angular dispersion of the crystal orientation from the C axis of the crystal as determined by X-ray diffraction is less than 30 degrees at the magnet surface. .
(3)遷移金属Tを主成分とし、イットリウムを含む希
土類元素R及び硼素Bを含有するR−T−B系合金の溶
湯を急冷凝固して薄体または粉体を得て、それを温間加
工により磁気異方性を付与させる温間加工磁石の製造方
法において、磁性粉末にAlの金属粉末及び金属チップ
を0.05〜5wt%混合分散して、温間で塑性加工を
施し異方性を付与することを特徴とする温間加工磁石の
製造方法。
(3) A molten R-T-B alloy containing transition metal T as a main component, rare earth element R including yttrium, and boron B is rapidly solidified to obtain a thin body or powder, which is then warm-processed. In a method for manufacturing a warm-worked magnet that imparts magnetic anisotropy through processing, 0.05 to 5 wt% of Al metal powder and metal chips are mixed and dispersed in magnetic powder, and warm plastic working is performed to create anisotropy. A method for manufacturing a warm-processed magnet, characterized by imparting the following properties.
(4)前記温間加工が600℃〜800℃の温度で行う
ことを特徴とする特許請求項第2項記載の温間加工磁石
の製造方法。
(4) The method for manufacturing a warm-worked magnet according to claim 2, wherein the warm-work is performed at a temperature of 600°C to 800°C.
JP2098057A 1990-04-13 1990-04-13 Hot-worked magnet and manufacture thereof Pending JPH03295202A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2098057A JPH03295202A (en) 1990-04-13 1990-04-13 Hot-worked magnet and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2098057A JPH03295202A (en) 1990-04-13 1990-04-13 Hot-worked magnet and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH03295202A true JPH03295202A (en) 1991-12-26

Family

ID=14209666

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2098057A Pending JPH03295202A (en) 1990-04-13 1990-04-13 Hot-worked magnet and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH03295202A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010113371A1 (en) * 2009-03-31 2010-10-07 昭和電工株式会社 Alloy material for r-t-b-type rare-earth permanent magnet, process for production of r-t-b-type rare-earth permanent magnet, and motor
JP2018107446A (en) * 2016-12-27 2018-07-05 有研稀土新材料股▲フン▼有限公司 Rare earth permanent magnet material and manufacturing method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010113371A1 (en) * 2009-03-31 2010-10-07 昭和電工株式会社 Alloy material for r-t-b-type rare-earth permanent magnet, process for production of r-t-b-type rare-earth permanent magnet, and motor
JP2011021269A (en) * 2009-03-31 2011-02-03 Showa Denko Kk Alloy material for r-t-b-based rare-earth permanent magnet, method for manufacturing r-t-b-based rare-earth permanent magnet, and motor
JP2018107446A (en) * 2016-12-27 2018-07-05 有研稀土新材料股▲フン▼有限公司 Rare earth permanent magnet material and manufacturing method thereof

Similar Documents

Publication Publication Date Title
EP0239031B2 (en) Method of manufacturing magnetic powder for a magnetically anisotropic bond magnet
US5009706A (en) Rare-earth antisotropic powders and magnets and their manufacturing processes
JPH07307211A (en) Hot press magnet formed of anisotropic powder
JPH06346101A (en) Magnetically anisotropic powder and its production
JP2731150B2 (en) Magnetic anisotropic bonded magnet, magnetic anisotropic magnetic powder used therefor, method for producing the same, and magnetic anisotropic powder magnet
JPH11329810A (en) Magnetic alloy and anisotropic magnet using alloy thereof
JP3047239B2 (en) Warm-worked magnet and manufacturing method thereof
JPH01100242A (en) Permanent magnetic material
JPH03295202A (en) Hot-worked magnet and manufacture thereof
JP3135120B2 (en) Manufacturing method of warm-worked magnet
US5211766A (en) Anisotropic neodymium-iron-boron permanent magnets formed at reduced hot working temperatures
JPS63178505A (en) Anisotropic r-fe-b-m system permanent magnet
JP3037917B2 (en) Radial anisotropic bonded magnet
US4952251A (en) Magnetically anisotropic hotworked magnet and method of producing same
JPS6386502A (en) Rare earth magnet and manufacture thereof
JPH03295203A (en) Hot-worked magnet and manufacture thereof
JP2823076B2 (en) Warm magnet
JPS6329908A (en) Manufacture of r-fe-b rare earth magnet
JPH05152119A (en) Hot-worked rare earth element-iron-carbon magnet
JP2660917B2 (en) Rare earth magnet manufacturing method
JPH01239901A (en) Rare-earth magnet and its manufacture
CA2023924A1 (en) Alloying low-level additives into hot-worked nd-fe-b magnets
JPS63196014A (en) Magnetically anisotropic magnet and manufacture thereof
JPH023210A (en) Permanent magnet
CN116543993A (en) R-T-B sintered magnet and application thereof