JP3135120B2 - Manufacturing method of warm-worked magnet - Google Patents

Manufacturing method of warm-worked magnet

Info

Publication number
JP3135120B2
JP3135120B2 JP01030164A JP3016489A JP3135120B2 JP 3135120 B2 JP3135120 B2 JP 3135120B2 JP 01030164 A JP01030164 A JP 01030164A JP 3016489 A JP3016489 A JP 3016489A JP 3135120 B2 JP3135120 B2 JP 3135120B2
Authority
JP
Japan
Prior art keywords
warm
magnet
worked
carbide
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP01030164A
Other languages
Japanese (ja)
Other versions
JPH02208902A (en
Inventor
克典 岩崎
茂穂 谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP01030164A priority Critical patent/JP3135120B2/en
Publication of JPH02208902A publication Critical patent/JPH02208902A/en
Application granted granted Critical
Publication of JP3135120B2 publication Critical patent/JP3135120B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0576Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together pressed, e.g. hot working

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、希土類元素R、遷移金属Tおよび硼素Bか
ら実質的になる温間加工磁石の製造方法の改良に関す
る。
Description: TECHNICAL FIELD The present invention relates to an improvement in a method for producing a warm-worked magnet substantially consisting of a rare earth element R, a transition metal T, and boron B.

[従来の技術] 希土類元素R、遷移金属Tおよび硼素Bから実質的に
なる永久磁石(以下、R−T−B系永久磁石と呼ぶ。)
は正方晶系の結晶構造を持つR2T14Bで表される金属間化
合物が高い飽和磁化と結晶磁気異方性を有し、従来の希
土類コバルト磁石より安価でかつ高い永久磁石特性を発
現することから注目を集めている。この金属間化合物
は、室温で正方形の一辺が0.878nmでありかつその面に
垂直なC軸方向の格子定数が1.218nmである。然して、
この系の磁石の工業的な製造方法は焼結法と超急冷法に
大別される。焼結法とは、一般には粉末冶金法とも呼ば
れる製造方法であり、インゴットを粉砕して得られた平
均粒径2〜4μmの磁石微粉末を冷間で磁場を印加しつ
つ成形し、所望の磁気異方性を付与した後、1000℃以上
で焼結することによりち密化した永久磁石体を得る方法
である。一方、超急冷法とは所望組成の合金溶湯をメル
トスピニング法やガスアトマイズ法等により超急冷し、
得られた粉末又は薄帯を600〜1000℃で温間加工により
ち密化し異方性の付与を行う方法である。磁気異方性は
温間の塑性加工により結晶軸を所望の方向に揃えること
により付与される。
[Prior Art] A permanent magnet substantially consisting of a rare earth element R, a transition metal T and boron B (hereinafter referred to as an RTB-based permanent magnet).
Has a crystal magnetic anisotropy and the intermetallic compound is high saturation magnetization, represented by R 2 T 14 B having a tetragonal crystal structure, inexpensive and exhibit high permanent magnet properties than conventional rare earth cobalt magnets Attention is drawn from doing. This intermetallic compound has a square of 0.878 nm on one side at room temperature and a lattice constant of 1.218 nm in the C-axis direction perpendicular to the plane. However,
Industrial manufacturing methods of this type of magnet are roughly classified into a sintering method and a super-quenching method. The sintering method is a manufacturing method generally called a powder metallurgy method, in which a magnet fine powder having an average particle diameter of 2 to 4 μm obtained by pulverizing an ingot is molded while applying a magnetic field in a cold manner, and a desired shape is formed. This is a method of obtaining a dense permanent magnet by sintering at 1000 ° C. or higher after imparting magnetic anisotropy. On the other hand, the ultra-quenching method is to rapidly quench a molten alloy having a desired composition by a melt spinning method, a gas atomizing method, or the like,
In this method, the obtained powder or ribbon is densified by warm working at 600 to 1000 ° C. to impart anisotropy. Magnetic anisotropy is provided by aligning crystal axes in a desired direction by warm plastic working.

焼結磁石の場合は、磁石内に炭素粉末あるいはTi,Zr,
Hf等の炭化物形成成分粉末を含有し、金属炭化物を形成
させることによって、焼結時の結晶粒成長を抑制できる
とともに密度を高める発明が知られている(特開昭63−
98105号公報参照)。この発明では炭素粉末の潤滑作用
については言及していない。
In the case of a sintered magnet, carbon powder or Ti, Zr,
An invention is known which contains a carbide-forming component powder such as Hf to form a metal carbide, thereby suppressing the growth of crystal grains during sintering and increasing the density (Japanese Patent Application Laid-Open No. 63-163).
No. 98105). This invention does not mention the lubricating action of carbon powder.

しかし、焼結磁石において磁気異方性のものを得よう
とする場合は磁場中成形という面倒な工程が必要であり
形状に制約を受ける。
However, when trying to obtain a magnetically anisotropic sintered magnet, a complicated step of molding in a magnetic field is required, and the shape is restricted.

従って、磁場中成形が不要な急冷磁石、とりわけR−
T−B系の溶湯を超急冷法によって凝固し、得られた薄
帯又は薄片を粉砕し、次いでホットプレス(高温処理)
し、次いで温間で塑性加工して磁気異方性を付与した永
久磁石(以下、温間加工磁石と呼ぶ。)が注目されてい
る(特開昭60−100402号公報参照)。超急冷法で得られ
る薄帯又は薄片は微細結晶粒からなっている。従って、
超急冷法によって得られる薄帯又は薄片が厚さが30μm
程度でありかつ一辺の長さが500μm以下の不定形板状
をしているものの、焼結磁石(例えば特公昭61−34242
号公報参照)の1〜90μmと比べてその内部の平均結晶
粒径が0.02〜0.5μmと微細であり、この系の磁石の単
磁区臨界粒径(0.3μm)に近く本質的に優れた磁気特
性が得られるからでもある。
Therefore, quenching magnets that do not require molding in a magnetic field, especially R-
The TB melt is solidified by a super-quenching method, and the obtained ribbon or flake is pulverized and then hot-pressed (high-temperature treatment)
Then, a permanent magnet (hereinafter referred to as a warm-worked magnet) which has been subjected to plastic working in a warm state to impart magnetic anisotropy (hereinafter, referred to as a warm-worked magnet) has attracted attention (see Japanese Patent Application Laid-Open No. 60-100402). The ribbon or flake obtained by the rapid quenching method is composed of fine crystal grains. Therefore,
The thickness of the ribbon or flake obtained by the rapid quenching method is 30μm
Although it is in the form of an irregular plate having a length of about 500 μm or less and a sintered magnet (for example, JP-B-61-34242)
The average crystal grain size inside is as fine as 0.02 to 0.5 μm as compared with 1 to 90 μm of the magnet described in Japanese Unexamined Patent Application Publication No. 2000-209, and is essentially superior to the single-domain critical particle size (0.3 μm) of the magnet of this system. This is because characteristics can be obtained.

温間加工磁石では塑性流動と直角な方向の磁気的配列
状態との密接な相関が重要である。塑性流動を被加工物
の全体に均一に充分行わせることが磁気特性に関係する
配向度の向上に必要である。又、不均一変形、例えば塑
性加工における被加工物のバルジ現象(端縁部が樽型に
変形する。)によって端縁部に大きなクラックを生じて
しまう。このことは実用上大きな問題である。
For warm-worked magnets, the close correlation between plastic flow and the state of magnetic alignment in the direction perpendicular to the direction is important. It is necessary to uniformly and sufficiently perform plastic flow on the entire workpiece to improve the degree of orientation related to magnetic properties. In addition, large cracks occur at the edges due to non-uniform deformation, for example, a bulge phenomenon (the edges are deformed into a barrel shape) of the workpiece in plastic working. This is a serious problem in practical use.

ここで、温間加工の際に印加される加工力の大部分は
塑性仕事に使われるが、一部摩擦仕事として浪費され
る。このことは前記のバルジ現象の発生要因にもなって
いる。
Here, most of the working force applied at the time of warm working is used for plastic work, but is partially wasted as friction work. This is also a cause of the bulge phenomenon.

従って、温間加工性を向上させ、かつクラックのない
温間加工磁石を得るために、特開昭60−100402号公報に
は温間据込み加工に用いるダイス表面に黒鉛を外部潤滑
剤としてライニングした例が記載されている。なお、こ
の公報には磁石体内部への作用効果に関する言及はな
い。
Therefore, in order to improve the warm workability and obtain a hot-worked magnet without cracks, Japanese Patent Application Laid-Open No. 60-100402 discloses a lining using graphite as an external lubricant on the surface of a die used for warm upsetting. Examples are given. In this publication, there is no mention of the effect on the inside of the magnet body.

[発明が解決しようとする課題] 上記従来発明において、超急冷法で得られる厚さ30μ
m程度でありかつ一辺の長さが500μm以下の不定形板
状をした薄片には、ダイスに塗布された黒鉛が一部は付
着するにしてもほとんど付着せず、ましてや内部の無数
の微細結晶粒が添加剤に覆われるわけではない。
[Problem to be Solved by the Invention] In the above conventional invention, a thickness of 30 μ
The graphite applied to the dies hardly adheres to the flakes, which are about m in length and have a side length of 500 μm or less, even if some of the graphite adheres to the dies. The grains are not covered by the additives.

なお、焼結磁石に炭素粉末あるいはTi,Zr,Hf等の炭化
物形成成分粉末を添加する場合、添加する粉末形状、混
合方法を工夫することによって個々の磁性粉末間に比較
的分散されやすいことが予測される。これは焼結磁石の
場合には使用される磁性粉末が合金鋳塊(インゴット)
を粉砕して得られた比較的球体に近い形状をしているた
めと考えられる。
In addition, when carbon powder or carbide forming component powder such as Ti, Zr, Hf is added to the sintered magnet, the powder can be relatively easily dispersed among the individual magnetic powders by devising the powder shape and mixing method to be added. is expected. This is because in the case of a sintered magnet, the magnetic powder used is an alloy ingot (ingot).
This is considered to be due to a relatively spherical shape obtained by pulverizing the powder.

しかし、室温で成形が行われる粉末冶金法による焼結
磁石と異なり、温間加工磁石の場合は通常600〜850℃の
温間で据込み加工を施すため、個々の薄片間に添加した
添加剤の役割りが基本的に異なるものと考えられるが、
従来の発明では何らその点が検討されていない。
However, unlike sintered magnets manufactured by powder metallurgy, which are molded at room temperature, warm-worked magnets are usually upset at 600 to 850 ° C, so additives added between individual flakes Is thought to be fundamentally different,
No consideration has been given to this point in the conventional invention.

更に外部潤滑剤をダイス表面に塗布する従来の技術は
温間加工磁石に特有の作用効果を付与するものではな
く、ダイス表面と被加工材表面間の摩擦係数を若干低下
するという通常の金属加工における潤滑剤以上の効果を
発揮するものではない。事実、それによって温間加工性
が顕著に向上し、割れを抑えられ、かつ配向性を高めら
れ磁気特性が向上することは報告されていない。
In addition, the conventional technique of applying an external lubricant to the die surface does not give a special working effect to the warm-worked magnet, but rather reduces the coefficient of friction between the die surface and the workpiece surface by the usual metal processing. Does not exhibit the effect more than that of the lubricant. In fact, it has not been reported that warm workability is remarkably improved, cracks are suppressed, and the orientation is improved to improve magnetic properties.

従って、本発明の目的は、温間加工性が改善されて配
向度を高められ、かつ割れを抑えられ、磁気特性を向上
することができる温間加工磁石の製造方法を提供するこ
とである。
Accordingly, an object of the present invention is to provide a method for manufacturing a warm-worked magnet that can improve the warm-workability, increase the degree of orientation, suppress cracks, and improve the magnetic properties.

[課題を解決するための手段] 上記課題を解決した本発明のR2T14Bを主相とする温間
加工磁石の製造方法は、R−T−B系合金(Rはイット
リウムを含む希土類元素の1種又は2種以上であり、T
は鉄を主体とする遷移金属であり、Bは硼素である)の
溶湯を超急冷し、得られた薄帯又は薄片を粉砕し、次い
で得られた粉砕粉に対し希土類炭化物を0.001〜5重量
%添加し混合後、次いで得られた混合粉を成形して高密
度化し、次いで塑性変形することにより磁気異方性を付
与することを特徴とする。
[Means for Solving the Problems] The method for manufacturing a warm-worked magnet having R 2 T 14 B as a main phase according to the present invention which has solved the above-mentioned problems includes an RTB-based alloy (R is a rare earth element containing yttrium). One or more of the elements,
Is a transition metal mainly composed of iron, and B is boron). The molten metal is rapidly quenched, and the obtained ribbon or flake is pulverized. Then, 0.001 to 5 weight of rare earth carbide is added to the obtained pulverized powder. %, And after mixing, the resulting mixed powder is formed into a high density, and then plastically deformed to impart magnetic anisotropy.

RがNd,Ce,Pr,Tb,Dyの1種又は2種以上である場合が
好ましい。
It is preferred that R is one or more of Nd, Ce, Pr, Tb, and Dy.

従来の温間加工磁石の常識では炭素や酸素等を残留さ
せる添加剤を添加することは磁気特性に有害であると信
じられてきた。しかし、本発明者らは固定概念に捉われ
ない発想から、炭素を単位で添加するのではなく希土類
元素の炭化物を適量添加することによって、温間加工性
と磁気特性の両方を顕著に向上できるという効果を見出
した。
It has been believed in the common sense of conventional warm-worked magnets that the addition of additives that leave carbon, oxygen and the like is harmful to magnetic properties. However, the present inventors are not bound by the fixed concept, by adding an appropriate amount of a rare earth element carbide instead of adding carbon in units, it is possible to significantly improve both warm workability and magnetic properties. I found the effect.

本発明による温間加工磁石の加工温度は680〜800℃が
適当である。つまり680℃未満では塑性変形に必要なNd
リッチ相が発生しにくく、割れが多数発生するからであ
る。希土類炭化物の添加量の増加とともに温間加工温度
は若干高温側に推移するが800℃までは磁気特性をさほ
ど低下させず容易に加工することができる。800℃を超
えると結晶粒の粗大化により著しく磁気特性が低下し、
又割れも多数発生する。
The working temperature of the warm-worked magnet according to the present invention is suitably from 680 to 800 ° C. In other words, below 680 ° C, Nd required for plastic deformation
This is because a rich phase hardly occurs and many cracks occur. With the increase in the amount of rare earth carbide added, the warm working temperature shifts to a slightly higher temperature side, but up to 800 ° C., it is possible to easily work without significantly lowering the magnetic properties. When the temperature exceeds 800 ° C, the magnetic properties are significantly reduced due to the coarsening of crystal grains,
Many cracks also occur.

本発明において、希土類炭化物の添加量が0.001重量
%未満では高温処理中の残留炭素成分が少なすぎて結晶
粒の配向度と磁気特性の両方を向上する本発明の効果を
得られず、5重量%を超える場合は磁気特性が低下して
好ましくない。希土類炭化物を所定量添加してなる本発
明による温間加工磁石は単に炭素を添加したものでは得
られない独特の粒界組織を呈する。第1図にNd炭化物を
0.5wt%添加してなる温間加工磁石の結晶粒の模式図を
示す。第2図はNd炭化物を添加しない場合のものであ
る。第1図および第2図は据込み方向から見た図であ
る。本発明による温間加工磁石の結晶粒は据込み方向に
対し垂直方向に薄く均一に変形し、据込み方向から見た
場合は結晶粒界がハッキリと見えることがわかる。主相
を取り囲む希土類リッチ(富化)相からなる結晶粒界に
炭化物の濃縮が認められることから、添加した希土類炭
化物が結晶粒界に濃縮することによって磁気特性の向上
に寄与をしていると思われる。
In the present invention, if the added amount of the rare earth carbide is less than 0.001% by weight, the residual carbon component during the high-temperature treatment is too small, and the effect of the present invention for improving both the degree of orientation of the crystal grains and the magnetic properties cannot be obtained. %, The magnetic properties are undesirably deteriorated. The warm-worked magnet according to the present invention to which a predetermined amount of rare earth carbide is added exhibits a unique grain boundary structure that cannot be obtained by simply adding carbon. Fig. 1 shows Nd carbide
FIG. 3 shows a schematic diagram of crystal grains of a warm-worked magnet to which 0.5 wt% is added. FIG. 2 shows the case where Nd carbide is not added. 1 and 2 are views as seen from the upsetting direction. It can be seen that the crystal grains of the warm-worked magnet according to the present invention are thin and uniformly deformed in the direction perpendicular to the upsetting direction, and that the crystal grain boundaries appear clearly when viewed from the upsetting direction. Concentration of carbides is observed at the crystal grain boundaries composed of the rare earth-rich (enriched) phase surrounding the main phase. Therefore, it is concluded that the added rare earth carbides contribute to the improvement of magnetic properties by enrichment at the crystal grain boundaries. Seem.

本発明による温間加工磁石の炭素含有量が0.8重量%
を超えると磁気特性が低下し、又酸素含有量が0.8重量
%を超えると被加工物の変形抵抗が著しく大きくなり温
間加工性が悪化して好ましくない。
The carbon content of the warm-worked magnet according to the invention is 0.8% by weight
When the oxygen content exceeds 0.8% by weight, and when the oxygen content exceeds 0.8% by weight, the deformation resistance of the workpiece is remarkably increased, and the warm workability is deteriorated.

本発明による温間加工磁石は遷移金属Tを主成分と
し、イットリウムを含む希土類元素Rおよび硼素Bを必
須成分として含有する。組成範囲は特開昭60−100402号
公報で公知の温間加工磁石に準ずる。但し、本発明で遷
移金属Tとは鉄を主体とし、一部Co,Ni,Ru,Rh,Pd,Os,I
r,Ptの狭義の遷移金属のみならず、原子番号21〜29,39
〜47,72〜79,89以上の元素を全て含む広義の遷移金属を
いう。
The warm-worked magnet according to the present invention contains a transition metal T as a main component and a rare earth element R containing yttrium and boron B as essential components. The composition range conforms to that of a warm-worked magnet known in JP-A-60-100402. However, in the present invention, the transition metal T is mainly composed of iron, and is partially Co, Ni, Ru, Rh, Pd, Os, I
r, not only transition metals in the narrow sense of Pt, but also atomic numbers 21 to 29, 39
A transition metal in a broad sense including all elements of 〜47,72 to 79,89 or more.

又、Gaの添加は本発明者らが既に発表したように温間
加工磁石において保磁力を顕著に向上する効果があるた
め、必要に応じて添加すると効果的である。更に、公知
の添加元素を目的に応じて添加することも本発明の効果
を逸脱するものではい。
In addition, since the addition of Ga has an effect of remarkably improving the coercive force in a warm-worked magnet as already announced by the present inventors, it is effective to add Ga as needed. Furthermore, addition of a known additive element according to the purpose does not depart from the effects of the present invention.

希土類元素RはNd,Prを主体とし、コスト低減の目的
でCe,シジム等による一部置換、温度特性を改善する目
的でDy,Tb等による一部置換をできることは言うまでも
ない。
It is needless to say that the rare earth element R is mainly composed of Nd and Pr, and can be partially substituted with Ce, Sidium or the like for cost reduction, and partially substituted with Dy or Tb for the purpose of improving temperature characteristics.

本発明による温間加工磁石の平均結晶粒径は超急冷法
による磁石の特徴として微細である。平均結晶粒径が0.
02μm未満の温間加工磁石を工業的に安定して得ること
は現時点の技術では困難であり、平均結晶粒径が0.5μ
mを超える場合は保磁力が低下して好ましくない。平均
結晶粒径の測定は顕微鏡写真における切断法による。即
ち、顕微鏡写真に任意に直線を引いたとき線分を切断す
る結晶粒の数で線分長さを除した値を結晶粒径とし、少
なくとも20個以上の結晶粒について求めた平均値を平均
結晶粒径とする。ここで注意すべきことは本発明による
温間加工磁石では結晶粒のC軸に垂直な面において扁平
形状を呈し、C軸を含む面で切断するときは扁平板の厚
み方向となる。従って、前述の平均結晶粒径はC軸に垂
直な面上の測定値をいう。
The average grain size of the warm-worked magnet according to the present invention is minute as a feature of the magnet by the ultra-quenching method. Average grain size is 0.
It is difficult with current technology to obtain a warm-worked magnet of less than 02 μm in an industrially stable manner, and the average crystal grain size is 0.5 μm.
If it exceeds m, the coercive force is undesirably reduced. The average crystal grain size is measured by a cutting method in a micrograph. That is, the value obtained by dividing the length of the line segment by the number of crystal grains that cut the line segment when a straight line is arbitrarily drawn in the micrograph is defined as the crystal grain size, and the average value obtained for at least 20 or more crystal grains is averaged. The crystal grain size is used. It should be noted here that the warm-worked magnet according to the present invention has a flat shape in a plane perpendicular to the C-axis of the crystal grain, and when cut along a plane including the C-axis, the thickness is in the thickness direction of the flat plate. Therefore, the above-mentioned average crystal grain size refers to a measured value on a plane perpendicular to the C axis.

又本発明による温間加工磁石の磁性発現の要はR2T14B
型金属間化合物の正方晶結晶である。この結晶は室温で
正方晶の一辺が0.878nmでありかつその面に垂直なC軸
方向の格子定数が1.218nm付近である。更に温間加工磁
石はこれら結晶粒の集合体が塑性流動方向に対し垂直方
向に磁気異方性を発生する特異な性質を積極的に利用し
たものである。本発明による温間加工磁石では希土類炭
化物が内部潤滑剤として作用するので温間加工性が向上
し、従来の温間加工磁石よりも加工率を高くとることが
できる。従って、本発明による温間加工磁石では結晶粒
が大きく変形し、配向した結晶粒の集合体における結晶
軸のC軸に垂直な方向の平均結晶粒径(c)とC軸方向
の平均結晶粒径(a)との比:c/aを2以上とすることが
できる。本発明者らの実験によるとc/a値が2以上であ
ると残留磁束密度が8kG以上のものを得られるので産業
上の利用性が高い。
In addition, the key to the magnetic expression of the warm-worked magnet according to the present invention is R 2 T 14 B
It is a tetragonal crystal of a type intermetallic compound. At room temperature, one side of the tetragonal crystal is 0.878 nm, and the lattice constant in the C-axis direction perpendicular to the plane is around 1.218 nm. Further, the warm-worked magnet positively utilizes the unique property that an aggregate of these crystal grains generates magnetic anisotropy in a direction perpendicular to the plastic flow direction. In the warm-worked magnet according to the present invention, the rare-earth carbide acts as an internal lubricant, so that the warm-workability is improved, and the working ratio can be higher than that of the conventional warm-worked magnet. Therefore, in the warm-worked magnet according to the present invention, the crystal grains are greatly deformed, and the average crystal grain size (c) in the direction perpendicular to the C axis of the crystal axis in the aggregate of oriented crystal grains and the average crystal grain in the C axis direction The ratio c / a to the diameter (a) can be 2 or more. According to experiments by the present inventors, if the c / a value is 2 or more, a magnetic flux density of 8 kG or more can be obtained, so that industrial applicability is high.

又本発明における希土類炭化物の添加により、結晶粒
界に炭化物が濃縮し、温間加工においてその濃縮による
潤滑効果により結晶粒の配向度が顕著に向上し磁気特性
を向上することができる。配向度はX線回折によって測
定することができる。即ち、まず等方性の試料において
ディフラクトメータで各回折面のX線回折強度を測定
し、次いで異方性化した温間加工磁石から切り出した試
料の各回折面のX線回折強度を測定し、測定したX線回
折強度を等方性試料のX線回折強度で規格化する。次い
で、規格化した値を各回折面がC面となす角度について
プロットし、ガウス分布で近似し、その分散程度で結晶
配向性を評価することができる。本発明による温間加工
磁石は角度分散値が30゜未満という良好な配向度を有す
る。従来の温間加工磁石の角度分散値は30゜以上であ
り、配向度(磁気特性)が低かった。
Further, the addition of the rare earth carbide in the present invention causes the carbide to concentrate at the crystal grain boundaries, and the degree of orientation of the crystal grains is remarkably improved due to the lubrication effect by the concentration during warm working, so that the magnetic properties can be improved. The degree of orientation can be measured by X-ray diffraction. That is, first, the X-ray diffraction intensity of each diffraction surface of an isotropic sample is measured by a diffractometer, and then the X-ray diffraction intensity of each diffraction surface of a sample cut out from a warmed anisotropic magnet is measured. Then, the measured X-ray diffraction intensity is normalized by the X-ray diffraction intensity of the isotropic sample. Next, the normalized value is plotted with respect to the angle between each diffraction plane and the C plane, approximated by a Gaussian distribution, and the crystal orientation can be evaluated based on the degree of dispersion. The warm-worked magnet according to the present invention has a good degree of orientation with an angular dispersion value of less than 30 °. The conventional warm-worked magnet has an angular dispersion value of 30 ° or more, and has a low degree of orientation (magnetic properties).

本発明では温間の塑性加工を必須に行う。温間の塑性
加工の手段として押出し、スエージング、圧延、スピニ
ング又は据込み加工等が用いられる。特に据込み加工が
異方性付与の効率が良い。これは応力分布と歪速度を優
れた温間加工磁石を得るように選べるからである。本発
明を適用すると、温間加工時の塑性変形が従来よりも均
一になるので任意断面における歪分布を従来よりも均一
にすることができる。従来の温間加工磁石は歪分布が不
均一であり、又クラックが多く入りそのままでは実用に
供することができなかった。特に周縁のバルジ部分のク
ラックは後工程での切削加工を必須とし産業上の利用性
を下げるものであった。歪分布を測定する方法はX線応
力測定法、硬度分布測定法等による。
In the present invention, warm plastic working is essentially performed. Extrusion, swaging, rolling, spinning, upsetting or the like is used as a means of warm plastic working. In particular, upsetting is effective in providing anisotropy. This is because the stress distribution and the strain rate can be selected so as to obtain a warm-worked magnet having excellent properties. When the present invention is applied, plastic deformation during warm working becomes more uniform than before, so that strain distribution in an arbitrary cross section can be made more uniform than before. Conventional warm-worked magnets have a non-uniform strain distribution and many cracks cannot be put to practical use. In particular, cracks in the peripheral bulge portion are required to be cut in a post-process, thereby reducing industrial applicability. The strain distribution is measured by an X-ray stress measurement method, a hardness distribution measurement method, or the like.

又本発明は温間加工磁石のみならず、超急冷によって
得られた薄片等を単にホットプレスしただけの圧密磁石
においても、その圧縮性を顕著に向上する効果がある。
ホットプレスの場合には、本発明で用いる温間加工法、
主として据込み加工のように特定方向の塑性流動を発生
しない等方的な変形ではあるが、所定量の希土類炭化物
を添加することにより圧縮性が向上し、磁気特性を高め
ることができる。
The present invention has the effect of remarkably improving the compressibility of not only warm-worked magnets but also compacted magnets obtained by simply hot pressing flakes or the like obtained by ultra-quenching.
In the case of hot pressing, the warm working method used in the present invention,
Although it is an isotropic deformation that does not generate plastic flow in a specific direction as in the upsetting work, compressibility is improved by adding a predetermined amount of rare earth carbide, and magnetic properties can be improved.

又本発明による温間加工磁石を粉砕して磁性粉とし、
樹脂や低融点金属等のバインダと混練してボンド磁石に
することができる。平均結晶粒径が1〜90μm程度の焼
結磁石に比べて、本発明による温間加工磁石の平均結晶
粒径は0.02〜0.5μmと1〜2桁微細であり、粉砕によ
る磁気特性の劣化が実質的にないからである。
Also, the warm-worked magnet according to the present invention is pulverized into magnetic powder,
It can be kneaded with a binder such as a resin or a low melting point metal to form a bonded magnet. Compared to a sintered magnet having an average crystal grain size of about 1 to 90 μm, the average crystal grain size of the warm-worked magnet according to the present invention is 0.02 to 0.5 μm, which is one to two orders of magnitude smaller, and the deterioration of the magnetic properties due to grinding is reduced. This is because there is not substantially.

[実施例] 以下、実施例によって本発明を具体的に説明する。[Examples] Hereinafter, the present invention will be specifically described with reference to Examples.

(実施例1) Nd(Fe0.12Co0.10.07Ga0.015.4なる組成の合金を
アーク溶解し、次いでAr雰囲気中で周速が30m/秒で回転
する単ロール上に射出して約30μmの厚さを持った不定
形のフレーク状薄片を作製した。X線回折の結果、非晶
質と結晶質の混合物であることがわかった。次いで、フ
レーク状の薄片を500μm以下に粉砕し得られた磁性粉
末にNd炭化物を段階的に添加、混合したものと、無添加
のものを各々、成形圧6トン/cm2で磁場を印加せずに所
定の金型を用いて成形し密度が5.7g/ccで直径28mm,高さ
47mmの成形体を作製した。
(Example 1) Nd (Fe 0.12 Co 0.1 B 0.07 Ga 0.01) 5.4 comprising the alloy of the composition to arc melting, and then injection to about 30μm on a single roll peripheral speed in an Ar atmosphere is rotated at 30 m / sec Amorphous flake-like flakes having a thickness were prepared. As a result of X-ray diffraction, it was found that the mixture was an amorphous and crystalline mixture. Next, a magnetic field was applied at a molding pressure of 6 tons / cm 2 to each of the magnetic powder obtained by pulverizing the flake-shaped flakes to 500 μm or less and adding and mixing Nd carbide to the obtained magnetic powder at a molding pressure of 6 tons / cm 2. Without using the specified mold, the density is 5.7g / cc, diameter 28mm, height
A 47 mm molded body was produced.

得られた成形体を740℃,2トン/cm2でホットプレス
し、密度が7.4g/ccと高密度であり直径30mm,高さ30mmの
ホットプレス体を得た。次いでホットプレス体を更に74
0℃で圧縮比(据込み前の高さ30mmを据込み後の高さ7.5
mmで除した値)が4となるように据込み加工によって温
間加工して磁気異方性を付与した。得られた温間加工磁
石の磁気特性を測定後、同磁石内に残留する炭素含有量
と酸素含有量を分析した。
The obtained molded body was hot-pressed at 740 ° C. and 2 ton / cm 2 to obtain a hot-pressed body having a high density of 7.4 g / cc, a diameter of 30 mm and a height of 30 mm. Next, the hot pressed body is further
Compression ratio at 0 ° C (30mm height before upsetting, 7.5% height after upsetting)
The magnetic anisotropy was imparted by warm working by upsetting so that the value (value divided by mm) was 4. After measuring the magnetic properties of the obtained warm-worked magnet, the carbon content and oxygen content remaining in the magnet were analyzed.

Ndの炭化物の各投入量に対する残留炭素含有量、酸素
含有量および磁気特性を第3図に示す。第3図から、Nd
の炭化物の投入量とともに残留炭素含有量は直線的に増
加し、更に無添加の場合に比べてわずか0.01wt%のNdの
炭化物の添加により磁気特性が顕著に向上することがわ
かる。磁気特性のうち特に4πlrが向上し、(BH)max
は無添加の場合に比べて8MGOeも向上する。
FIG. 3 shows the residual carbon content, the oxygen content, and the magnetic properties with respect to the respective Nd carbide input amounts. From Fig. 3, Nd
It can be seen that the residual carbon content increases linearly with the amount of carbide added, and that the magnetic properties are significantly improved by the addition of only 0.01 wt% of Nd carbide as compared to the case where no carbide is added. Among the magnetic properties, 4πlr is particularly improved, and (BH) max
Improves 8MGOe compared to the case where no additive is added.

(実施例2) 実施例1と同様の温間加工方法により、据込み加工温
度を600℃,680℃,740℃,800℃,850℃の5段階に変化さ
せ、それぞれの温間加工温度でNdの炭化物の投入量毎に
据込み加工を行った。温間加工時の記録紙より変形抵抗
(圧縮公称応力)と歪の関係を算出し、まとめた結果を
第1表に示す。ここで、圧縮比4まで加工した後温間加
工磁石の周縁部の割れ発生数が14を超えるものは×印と
し、それ以外のものについては歪が0.3(圧縮比約1.4
3)のときの公称応力(トン/cm2)とした。温間加工温
度600℃ではいずれも割れが多数発生し中には座屈する
ものもあった。一方850℃においても応力が著しく増大
し多数の割れが発生した。従って、本発明に係わる温間
加工温度は680〜800℃が好ましい。
(Example 2) By the same warm working method as in Example 1, the upsetting working temperature was changed to five stages of 600 ° C, 680 ° C, 740 ° C, 800 ° C, and 850 ° C. Upsetting was performed for each Nd carbide charge. The relationship between deformation resistance (compressive nominal stress) and strain was calculated from the recording paper during warm working, and the results are summarized in Table 1. Here, after processing to a compression ratio of 4, the number of occurrences of cracks in the peripheral portion of the warm-worked magnet exceeding 14 is marked with a cross, and for the other, the strain is 0.3 (compression ratio of about 1.4).
The nominal stress (ton / cm 2 ) at the time of 3) was used. At the hot working temperature of 600 ° C, many cracks occurred and some of them buckled. On the other hand, even at 850 ° C, the stress increased remarkably and many cracks occurred. Therefore, the warm working temperature according to the present invention is preferably 680 to 800 ° C.

全体的な傾向としてはNdの炭化物の投入量とともに最
適な温間加工温度が高温側に推移した。第1表中の太枠
で囲んだ温間加工磁石については前記圧縮比まで加工し
た最終温間加工磁石の周縁部の割れ発生箇所が4以下と
いう良好な加工性を示した。
As a general trend, the optimal warming temperature shifted to the higher temperature side with the amount of Nd carbide input. The warm-worked magnets surrounded by the thick frames in Table 1 exhibited good workability in which the number of cracks at the peripheral portion of the final warm-worked magnet processed to the compression ratio was 4 or less.

(実施例3) Nd(Fe0.830.07Ga0.015.7なる組成の合金をアー
ク溶解し、次いでAr雰囲気中で周速30m/秒で回転する単
ロール上に射出して約30μmの厚さを持った不定形のフ
レーク状薄片を作製した。
Example 3 An alloy having a composition of Nd (Fe 0.83 B 0.07 Ga 0.01 ) 5.7 was melted by arc, and then injected on a single roll rotating at a peripheral speed of 30 m / sec in an Ar atmosphere to obtain a thickness of about 30 μm. An amorphous flake-like flake was prepared.

次いで上記薄片を500μm以下に粉砕し得られた磁性
粉末にNdの炭化物を0.5wt%添加したもの(本発明)
と、無添加のもの(比較例)を各々成形圧6トン/cm2
所定の金型を用いて成形し密度が5.7g/ccで直径28mm,高
さ47mmの成形体を作製した。得られた成形体を720℃で
ホットプレスしち密化した後、圧縮比が4となるように
据込み加工によって温間加工し磁気異方性を付与した。
Next, a magnetic powder obtained by pulverizing the flake to 500 μm or less and adding 0.5 wt% of Nd carbide (the present invention)
And a sample to which no additive was added (Comparative Example) were each molded at a molding pressure of 6 ton / cm 2 using a predetermined mold to produce a molded body having a density of 5.7 g / cc, a diameter of 28 mm and a height of 47 mm. The obtained compact was hot-pressed at 720 ° C. and densified, and then warm-worked by upsetting to give a compression ratio of 4, thereby imparting magnetic anisotropy.

得られた温間加工磁石の磁気特性と磁石各部から切り
だした試料の結晶配向度をX線回折により測定し結晶の
C軸からの結晶配向の分散の深さ方向および径方向の分
布を比較した。磁気特性を第3表に、又本発明によるも
のの結晶配向分布を第4図に、比較例のものの結晶配向
分布を第5図に示す。第4図並びに第5図は温間加工磁
石の据込み方向を含む面で切断した断面における結晶配
向を示す図である。
The magnetic properties of the obtained warm-worked magnet and the degree of crystal orientation of the sample cut from each part of the magnet are measured by X-ray diffraction, and the distribution of the crystal orientation from the C axis of the crystal in the depth direction and the radial direction are compared. did. Table 3 shows the magnetic properties, FIG. 4 shows the crystal orientation distribution of the device according to the present invention, and FIG. 5 shows the crystal orientation distribution of the comparative example. FIG. 4 and FIG. 5 are views showing the crystal orientation in a cross section cut along a plane including the upsetting direction of the warm-worked magnet.

第4図並びに第5図中の円錐体は結晶の配向の角度分
散を概念的に図示したものであり、傍らに記載した数値
は角度分散値である。即ち、配向方向のC軸からのズレ
の角度の統計学的な分散である。ここで、角度分散値が
例えば18度の場合は、18度の立体角の中に試料内の全結
晶粒のC軸が存在することを示し、この数値が小さいほ
ど結晶の配向度が高いことを示す。
The cones in FIGS. 4 and 5 conceptually show the angular dispersion of the orientation of the crystal, and the numerical values described besides are the angular dispersion values. That is, it is a statistical dispersion of the angle of the deviation from the C axis in the alignment direction. Here, when the angular dispersion value is, for example, 18 degrees, it indicates that the C axis of all the crystal grains in the sample exists within the solid angle of 18 degrees, and the smaller the numerical value, the higher the degree of crystal orientation. Is shown.

第3表、第4図および第5図より明らかなようにNdの
炭化物の添加により塑性加工時の流動性が大幅に改善さ
れ、結晶配向度が改善されて磁気特性が顕著に向上する
ことがわかる。
As is clear from Table 3, FIG. 4 and FIG. 5, the addition of Nd carbide significantly improves the fluidity during plastic working, improves the degree of crystal orientation, and significantly improves the magnetic properties. Understand.

(実施例5) 実施例1と同様の方法で、Nd炭化物の添加量を1.0wt
%に固定して、圧縮比を段階的に変え、そのときの結晶
粒径と磁気特性の関係を調べた。加工時の歪速度は0.00
1(1/秒)とした。
(Example 5) In the same manner as in Example 1, the addition amount of Nd carbide was set to 1.0 wt.
%, And the compression ratio was changed stepwise, and the relationship between the crystal grain size and the magnetic characteristics at that time was examined. The strain rate during processing is 0.00
1 (1 / second).

結果は、c/a値が2以上のときに残留磁束密度が8kG以
上になった。なお、圧縮比とは据込み加工前の試料の高
さh0を据込み加工後の試料の高さhで除した値である。
圧縮比1とは温間加工を開始する前の状態を示す。
As a result, when the c / a value was 2 or more, the residual magnetic flux density became 8 kG or more. The compression ratio is a value obtained by dividing the height h 0 of the sample before the upsetting by the height h of the sample after the upsetting.
The compression ratio 1 indicates a state before starting the warm working.

本発明によれば、1つの温間加工磁石における残留磁
束密度のばらつきを5%以下に抑えることができる。
ADVANTAGE OF THE INVENTION According to this invention, the dispersion | variation of the residual magnetic flux density in one warm working magnet can be suppressed to 5% or less.

なお、以上の実施例は温間加工磁石の場合を示した
が、圧密磁石についても本発明の効果はある。
Although the above embodiment has been described with reference to the case of a warm-worked magnet, the effects of the present invention are also applicable to a compacted magnet.

[発明の効果] 本発明によれば、温間加工性が改善されて配向度を高
められ、かつ割れを抑えられ、磁気特性を高められる温
間加工磁石の製造方法を提供することができる。
[Effects of the Invention] According to the present invention, it is possible to provide a method for manufacturing a warm-worked magnet in which warm workability is improved, the degree of orientation is increased, cracks are suppressed, and magnetic properties are improved.

【図面の簡単な説明】[Brief description of the drawings]

第1図は、本発明による温間加工磁石の金属組織の顕微
鏡写真の模式図であり、第2図は従来の温間加工磁石の
顕微鏡写真の模式図であり、第3図は本発明による温間
加工磁石の一実施例におけるNd炭化物の添加量と酸素含
有量、炭素含有量および磁気特性の関係を示す図であ
り、第4図は本発明による温間加工磁石の断面における
結晶配向度の分布を示す図であり、第5図は比較例の温
間加工磁石の断面における結晶配向度の分布を示す図で
ある。
FIG. 1 is a schematic view of a micrograph of a metal structure of a warm-worked magnet according to the present invention, FIG. 2 is a schematic view of a micrograph of a conventional warm-worked magnet, and FIG. FIG. 4 is a diagram showing the relationship between the added amount of Nd carbide and the oxygen content, carbon content and magnetic properties in one embodiment of the warm-worked magnet, and FIG. 4 shows the degree of crystal orientation in the cross section of the warm-worked magnet according to the present invention. FIG. 5 is a diagram showing a distribution of the degree of crystal orientation in a cross section of the warm-worked magnet of the comparative example.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】R−T−B系合金(Rはイットリウムを含
む希土類元素の1種又は2種以上であり、Tは鉄を主体
とする遷移金属であり、Bは硼素である)の溶湯を超急
冷し、得られた薄帯又は薄片を粉砕し、次いで得られた
粉砕粉に対し希土類炭化物を0.001〜5重量%添加し混
合後、次いで得られた混合粉を成形して高密度化し、次
いで塑性変形することにより磁気異方性を付与すること
を特徴とするR2T14Bを主相とする温間加工磁石の製造方
法。
1. A molten metal of an RTB-based alloy (R is one or more rare earth elements including yttrium, T is a transition metal mainly composed of iron, and B is boron). Is rapidly quenched, and the obtained ribbon or flake is pulverized. Then, 0.001 to 5% by weight of rare earth carbide is added to and mixed with the obtained pulverized powder, and then the obtained mixed powder is molded and densified. And a method of producing a warm-worked magnet having R 2 T 14 B as a main phase, wherein magnetic deformation is imparted by plastic deformation.
【請求項2】RがNd,Ce,Pr,Tb,Dyの1種又は2種以上で
ある請求項1に記載の温間加工磁石の製造方法。
2. The method according to claim 1, wherein R is one or more of Nd, Ce, Pr, Tb, and Dy.
JP01030164A 1989-02-09 1989-02-09 Manufacturing method of warm-worked magnet Expired - Lifetime JP3135120B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01030164A JP3135120B2 (en) 1989-02-09 1989-02-09 Manufacturing method of warm-worked magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01030164A JP3135120B2 (en) 1989-02-09 1989-02-09 Manufacturing method of warm-worked magnet

Publications (2)

Publication Number Publication Date
JPH02208902A JPH02208902A (en) 1990-08-20
JP3135120B2 true JP3135120B2 (en) 2001-02-13

Family

ID=12296115

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01030164A Expired - Lifetime JP3135120B2 (en) 1989-02-09 1989-02-09 Manufacturing method of warm-worked magnet

Country Status (1)

Country Link
JP (1) JP3135120B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103918041B (en) 2011-11-14 2017-02-22 丰田自动车株式会社 Rare-earth magnet and process for producing same
JP5640954B2 (en) * 2011-11-14 2014-12-17 トヨタ自動車株式会社 Rare earth magnet manufacturing method
JP5742813B2 (en) 2012-01-26 2015-07-01 トヨタ自動車株式会社 Rare earth magnet manufacturing method
JP5790617B2 (en) 2012-10-18 2015-10-07 トヨタ自動車株式会社 Rare earth magnet manufacturing method
CN105518809B (en) 2013-06-05 2018-11-20 丰田自动车株式会社 Rare-earth magnet and its manufacturing method
JP6003920B2 (en) 2014-02-12 2016-10-05 トヨタ自動車株式会社 Rare earth magnet manufacturing method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2731150B2 (en) * 1986-10-14 1998-03-25 日立金属株式会社 Magnetic anisotropic bonded magnet, magnetic anisotropic magnetic powder used therefor, method for producing the same, and magnetic anisotropic powder magnet

Also Published As

Publication number Publication date
JPH02208902A (en) 1990-08-20

Similar Documents

Publication Publication Date Title
US5085715A (en) Magnetically anisotropic bond magnet, magnetic powder for the magnet and manufacturing method of the powder
US5565043A (en) Rare earth cast alloy permanent magnets and methods of preparation
US9761358B2 (en) Method for producing rare earth magnets, and rare earth magnets
JP4389427B2 (en) Sintered magnet using alloy powder for rare earth-iron-boron magnet
US5009706A (en) Rare-earth antisotropic powders and magnets and their manufacturing processes
JP2727507B2 (en) Permanent magnet and manufacturing method thereof
CN110942879B (en) Magnetic particles, magnetic particle molded body, and method for producing same
JP3135120B2 (en) Manufacturing method of warm-worked magnet
JPH01219143A (en) Sintered permanent magnet material and its production
US6136099A (en) Rare earth-iron series permanent magnets and method of preparation
JP2731150B2 (en) Magnetic anisotropic bonded magnet, magnetic anisotropic magnetic powder used therefor, method for producing the same, and magnetic anisotropic powder magnet
JP3047239B2 (en) Warm-worked magnet and manufacturing method thereof
JP4483630B2 (en) Manufacturing method of rare earth sintered magnet
JPH01100242A (en) Permanent magnetic material
JPS63178505A (en) Anisotropic r-fe-b-m system permanent magnet
US5211766A (en) Anisotropic neodymium-iron-boron permanent magnets formed at reduced hot working temperatures
JP2823076B2 (en) Warm magnet
JP3037917B2 (en) Radial anisotropic bonded magnet
JP7409285B2 (en) Rare earth magnet and its manufacturing method
EP3919644A1 (en) Rare earth magnet and production method thereof
JPH02138706A (en) Anisotropic permanent magnet
JP2581179B2 (en) Method for producing rare earth-B-Fe sintered magnet with excellent corrosion resistance
JPH11297518A (en) Pare-earth magnet material
JPH05152119A (en) Hot-worked rare earth element-iron-carbon magnet
JP2023136838A (en) rare earth magnet

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071201

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081201

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091201

Year of fee payment: 9

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091201

Year of fee payment: 9