JPH02138706A - Anisotropic permanent magnet - Google Patents

Anisotropic permanent magnet

Info

Publication number
JPH02138706A
JPH02138706A JP63292634A JP29263488A JPH02138706A JP H02138706 A JPH02138706 A JP H02138706A JP 63292634 A JP63292634 A JP 63292634A JP 29263488 A JP29263488 A JP 29263488A JP H02138706 A JPH02138706 A JP H02138706A
Authority
JP
Japan
Prior art keywords
anisotropic
permanent magnet
anisotropic direction
magnetic flux
flux density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63292634A
Other languages
Japanese (ja)
Inventor
Shinichiro Yahagi
慎一郎 矢萩
Yutaka Yoshida
裕 吉田
Norio Yoshikawa
紀夫 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP63292634A priority Critical patent/JPH02138706A/en
Publication of JPH02138706A publication Critical patent/JPH02138706A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To obtain a permanent magnet having excellent residual magnetic flux density and coercive force by a method wherein a rare earth-iron alloy, having R, Fe and B as the fundamental composition, is used as a base material, the length ratio of crystal grain in anisotropic direction and anti-anisotropic direction is limited within the prescribed range by conducting a heat treatment, and anisotropy rate is increased above a prescribed value. CONSTITUTION:The base material of the title permanent magnet is indicated by the formula R1-alpha-beta-gamma{Fe (Ni, Mn, Co)}alphaXbetaMgamma, Adelta. R expressed a rare-earth element, X expresses B, C and the like, M expresses Ti, Zr and the like, and A expresses Ru, Rh and the like. X is the element which contributes improvement in magnetic characteristics, and the magnetic characteristics are improved by forming a boride and the like by adding M. A is Pt group and increases corrosion-resisting property. Fe (Ni, Mn, Co) improves residual magnetic flux density Br and coercive force IHc. 0.6<=alpha<=0.85, 0<beta<0.15, 0<=gamma<=0.05, and 0<=gamma<=0.02 are used. A rolling processing is conducted at 500 to 1100 deg.C, and when the length ratio of crystal grain in anisotropic direction and anti-anisotropic direction is selected as 0.7 to 1.2, and also the prescribed anisotropy rate is selected as 50% or above, a high Br can be compatible with a high IHc.

Description

【発明の詳細な説明】[Detailed description of the invention] 【発明の目的】[Purpose of the invention]

(産業上の利用分野) この発明は、各種電気製品や自動車などの構成部品とし
て利用され、とくに残留磁束密度(B r)と保磁力(
tl(c)の両方の磁気特性に優れている異方化された
異方性永久磁石に関するものである。 (従来の技術) 近年、従来のアルニコ系磁石や希土類−コバルト系磁石
よりもさらにBi磁気特性優れている磁石として、R,
Fe、Bを基本成分とする希土類−鉄系の永久磁石が開
発され、磁気特性のより一層の向上と相まってその用途
および使用量がさらに拡大されるようになってきている
。 このような希土類−鉄系の永久磁石の製造方法において
は、希土類−鉄系の永久磁石合金の粉末を磁場中プレス
成形して焼結する方法(焼結法。 粉末冶金法)や、希土類−鉄系合金の粉末をホットプレ
スや熱間等静水圧成形などにより仮成形したのち、ある
いは前記粉末のまま、前方押出しや後方押出しなどの塑
性変形を加えて製造する方法(塑性変形法)があった。 そして、後者の塑性変形法において、希土類−鉄系の合
金を500〜1100″Cの温度で熱間において塑性変
形させると、圧縮歪を受けた方向に結晶C軸が整列し、
その方向における磁気特性が高いいわゆる異方性永久磁
石が得られることが知られている。 (発明が解決しようとする課題) しかしながら、このような塑性変形によって異方化され
た永久磁石を得る場合に、塑性変形の際の加工率を高め
れば高めるほど、圧縮方向における残留磁束密度(Br
)が増大して異方化が進行するが、逆に保磁力(tHc
)が低下してしまうという課題があった。 (発明の目的) この発明は、このような従来の課題にかんがみてなされ
たもので、異方性方向の残留磁束密度(B r)の値を
増大させて異方性の度合を高めるようにしたときでも、
保磁力(!Hc)についても大きな値のものとすること
が可能であり、高残留磁束密度と高保磁力との両立が可
能である異方性永久磁石を提供することを目的としてい
る。
(Industrial Application Field) This invention is used as a component of various electrical products and automobiles, and is particularly applicable to residual magnetic flux density (Br) and coercive force (
The present invention relates to an anisotropic permanent magnet that is excellent in both magnetic properties of tl (c). (Prior art) In recent years, R,
Rare earth-iron permanent magnets containing Fe and B as basic components have been developed, and as their magnetic properties have further improved, their applications and amounts have been further expanded. Methods for producing such rare earth-iron permanent magnets include a method in which rare earth-iron permanent magnet alloy powder is press-molded in a magnetic field and sintered (sintering method; powder metallurgy method); There is a manufacturing method (plastic deformation method) in which iron-based alloy powder is temporarily formed by hot pressing or hot isostatic pressing, or the powder is subjected to plastic deformation such as forward extrusion or backward extrusion. Ta. In the latter plastic deformation method, when a rare earth-iron alloy is hot plastically deformed at a temperature of 500 to 1100''C, the crystal C-axis is aligned in the direction of compressive strain.
It is known that so-called anisotropic permanent magnets having high magnetic properties in that direction can be obtained. (Problem to be Solved by the Invention) However, when obtaining a permanent magnet anisotropically formed by such plastic deformation, the higher the processing rate during plastic deformation, the higher the residual magnetic flux density in the compression direction (Br
) increases and anisotropy progresses, but on the other hand, the coercive force (tHc
) was a problem. (Object of the Invention) This invention has been made in view of the above-mentioned conventional problems. Even when I did,
It is an object of the present invention to provide an anisotropic permanent magnet that can have a large coercive force (!Hc) and can achieve both high residual magnetic flux density and high coercive force.

【発明の構成】[Structure of the invention]

(課題を解決するための手段) この発明に係る異方性永久磁石は、R,Fe。 Bを基本成分とする希土類−鉄系合金を素材とし、熱間
加工によって磁気的に異方化された永久磁石であって、
異方性方向の結晶粒の長さと反異方性方向の結晶粒の長
さとの比が1.2〜0.7の範囲にあり、次式 で表わされる異方化率(%以上である構成としたことを
特徴としており、このような異方性永久磁石の構成を上
述した従来の課題を解決するための手段としている。 この発明に係る異方性永久磁石は、R,Fe。 Bを基本成分とする希土類−鉄系合金を素材としており
、より具体的には。 R1−o−β−7−δ(Fe(Ni9Mn、C0))。 XβMyA 5で表わされ、Rが希土類元素のうち(7
)1種または2種以上、XがB、C,N、Si 。 Pのうちの1種または2種以上1MがTiZr、)If
、V、Nb、Ta、Cr、Mo、W。 Au、Cu、Zn、Ga、In、T、Qのうちの1種ま
たは2種以上、AがRu、Rh、Pd。 Os 、 I r 、 Ptのうちの1種または2種以
上であるものを用いることがより望ましい。 上記のうち、Fe (Ni 、Mn、Co)は。 残留磁束密度(B r)を向上させるのに有効な元素群
であり、Feのうちの一部、より望ましくは原子比で0
.10以下のFeをNi。 M n 、 COで置換することが可能であり、Ni。 Mnの適量添加によって保磁力(BHC。 IHC)を向上させ、COの適量添加によってキュリー
点を上昇させて耐熱性を向上させることが可能であって
、良好な最大エネルギー積((BH)max)を得るた
めには0.60≦α≦0.85とすることがより望まし
い。 また、X元素は磁気特性の向上に寄与する元素であり、
M元素を添加した場合にこれらの一部と結合して硼化物
、炭化物、窒化物、珪化物。 燐化物などを形成することにより磁気特性を向上させる
ことが可能であって、0くβ≦0.15゜0≦γ≦0.
05とすることがとくに望ましい。 さらに、A元素である白金族元素群は耐食性を向上させ
るのに寄与するので、必要に応じてO≦δ≦0.02の
範囲で添加するのもよい。 この発明に係る異方性永久磁石は、上述したより望まし
い組成のものが素材として用いられ、この磁石素材に熱
間加工を加えることによって磁気、的に異方化されたも
のであり、熱間加工される磁石素材は粉末であってもよ
く、また鋳造体(インゴット)であってもよい。 これらのうち、粉末からなる合金素材を熱間加工するこ
とによって磁気的に異方化させる場合には、この粉末と
して、例えば、希土類−鉄系合金の溶湯を、スパークエ
ロージョン法、ガスアトマイズ法、真空アトマイズ法、
遠心アトマイズ法。 回転電極法などによって急冷して粉体としたものが用い
られ、また、希土類−鉄系合金の溶湯を高速回転する冷
却用ドラムの内壁にノズルを通して噴射して急冷凝固さ
せる遠心急冷法や、合金の溶湯を回転ドラムの外壁に噴
射して凝固させる片ロール(単ロール)法や、合金の溶
湯を相互に接触して高速回転する2個のドラムの接触面
に噴射して急冷凝固させる双ロール法などによって薄帯
としたのち、この薄帯を粉砕して粉末としたものが用い
られる。 そして、このような粉末からなる希土類−鉄系合金素材
や鋳造体からなる希土類−鉄系合金素材に対して熱間加
工を加えるに際しては、例えば、圧延加工、押出し加工
、ホットプレス、熱間等静水圧加工、アプセット加工な
どが用いられ、温度を例えば500〜1100°C程度
に高めた状態で行われる。この場合、合金素材に対する
加工温度が低すぎると加工時に割れが入るようになるの
で好ましくなく、加工温度が高すぎると結晶粒が粗大化
して磁気特性に悪影響を及ぼすので好ましくない。 そして、この発明に係る異方性永久磁石においては、異
方性方向の結晶粒の長さと反異方性方向の結晶粒の長さ
との比が1.2〜0.7の範囲にあり、次式 %式%(2) で表わされる異方化率(%以上となっているものである
。 この場合、異方性方向の結晶粒の長さと反異方性方向の
結晶粒の長さとの比が小さすぎると、残留磁束密度(B
 r)が増大して異方化の度合は大きくなるものの保磁
力(xHc)が低下して十分な菌磁力が得られなくなる
ので好ましくなく、反対にL記比が大きすぎると残留磁
束密度(Br)が低下して満足のできる異方化が得られ
ないとともにこの場合にも十分な保磁力が得られないの
で、好ましくは上記した比は1.2〜0.7の範囲、な
いしは1.0−0.7の範囲とするのがよい。 また、異方化率が小さすぎると、十分なる異方性が得ら
れず、異方性方向の残留磁束密度(B r)が低い値と
なってしまうので、十分な異方性が得られるように異方
化率は50%以上とするのがよい。 そして、希土類−鉄系合金の粉末を素材とする場合には
、その平均結晶粒径が0.5pm以下のものとすること
がより望ましく、これによって磁気特性のより一層の向
上をはかることができるようになる。 (発明の作用) この発明に係る異方性永久磁石は、熱間加工によって磁
気的に異方化された異方性方向の結晶粒の長さと反異方
性方向の結晶粒の長さとの比が1.2〜0.7の範囲に
あり、次式 %式%(2) で表わされる異方化率(%以上となっているものである
から、異方化率の向上によって異方性方向の残留磁束密
度(Br)の値が大きなものになっているとともに、反
異方性方向の結晶粒の長さに対する異方性方向の結晶粒
の長さを規制していることから、異方性方向の保磁力(
IHC)の値も大きなものになっており、高残留磁束密
度と高保磁力とが両立した磁気特性の優れた異方性永久
磁石となっている。 (実施例) 裏庭■」 高周波誘導炉によって、30.5重量%Nd−5,0重
量%Co−0,9重量%B−0,1重量%A立−残部F
eよりなる組成の希土類−鉄系合金を溶製し、この合金
溶湯をアルゴン雰囲気中において単ロール法により超急
冷してリボン状の薄帯とした。 次に、リボン状の薄帯を粉砕して粉末とし、その後68
0〜750 ”0の範囲でホットプレスを行い、さらに
700〜800℃の範囲でアップセット加工を行うこと
によって第1表に示す各種の異方性永久磁石を作製した
。 次いで、各異方性永久磁石の磁気特性を調べたところ、
同じく第1表に示す結果であった。 第1表に示したように、異方性方向の結晶粒の長さと反
異方性方向の結晶粒の長さとの比が1.2〜0.7の範
囲にあり、かつまた異方化率(%以上である発明例1,
2,3.4の永久磁石では、異方性方向の残留磁束密度
(Br)が11KG以上であると同時に保磁力(!Hc
)も10KOe以上と高い値となっており、高残留磁束
密度と高保磁力とが両立した異方性永久磁石となってい
る。 これに対して平均結晶粒径が0.6μmであり、異方化
率(Br/ΣBr)(%未満である比較例1の永久磁石
では、異方性方向の残留磁束密度(Br)が小さな値と
なっていて十分な異方性が得られていない、また、異方
性方向の結晶粒の長さと反異方性方向の結晶粒の長さと
の比が0.7より小さい比較例2,3.4の永久磁石で
は、異方性方向の残留磁束密度(Br)は大きな値を示
しているものの保磁力(IHC>;4・ニク)なり小さ
い値となっていた。 実施例2 高周波誘導炉によって、36.0重量%Pr−5,0重
量%Co−0,5重量%B−4,0重量%Cu−1,0
重量%Zr−残部Feよりなる組成の希土類−鉄系合金
を溶製し、この合金溶湯をアルゴン雰囲気中において水
冷銅製鋳型に鋳込んだ。 次いで、鋳造によって得たインゴットを切断して研削す
ることによって、直径20 m m +厚さ13mmの
加工素材を作製し、この加工素材に700〜800℃の
範囲でアプセット加工を行うことによって第2表に示す
各種の異方性永久磁石を作製した。 次いで、各異方性永久磁石の磁気特性を調べたところ、
同じく第2表に示す結果であった。 第2表に示したように、異方性方向の結晶粒の長さと反
異方性方向の結晶粒の長さとの比が1.2〜0.7の範
囲にあり、異方化率(%以上である発明例5,6の永久
磁石では、異方性方向の残留磁束密度(B r)がII
KG以上であると同時に保磁力(wHc)も13KOe
以上とかなり高い値となっており、高残留磁束密度と高
保磁力とが両立した異方性永久磁石となっている。 これに対して、異方性方向の結晶粒の長さと反異方性方
向の結晶粒の長さとの比が0.7より小さい比較例5,
6の永久磁石では、異方性方向の残留磁束密度(B r
)は大きな値を示しているものの保磁力(IHC)が小
さな値となっていた。
(Means for Solving the Problems) An anisotropic permanent magnet according to the present invention is made of R, Fe. A permanent magnet made of a rare earth-iron alloy containing B as a basic component and magnetically anisotropically made by hot working,
The ratio of the length of the crystal grains in the anisotropic direction to the length of the crystal grains in the anti-anisotropic direction is in the range of 1.2 to 0.7, and the anisotropy rate (% or more) expressed by the following formula is The structure of the anisotropic permanent magnet is a means for solving the above-mentioned conventional problems.The anisotropic permanent magnet according to the present invention is made of R, Fe. The material is a rare earth-iron alloy having as a basic component, more specifically: Of (7)
) One or more kinds, X is B, C, N, Si. 1M of one or more of P is TiZr, )If
, V, Nb, Ta, Cr, Mo, W. One or more of Au, Cu, Zn, Ga, In, T, and Q, and A is Ru, Rh, and Pd. It is more desirable to use one or more of Os, Ir, and Pt. Among the above, Fe (Ni, Mn, Co). It is an element group effective for improving the residual magnetic flux density (Br), and it is preferable that a part of Fe, more preferably 0 in atomic ratio
.. 10 or less Fe to Ni. It is possible to substitute M n , CO and Ni. Coercive force (BHC, IHC) can be improved by adding an appropriate amount of Mn, and heat resistance can be improved by increasing the Curie point by adding an appropriate amount of CO, and a good maximum energy product ((BH) max) can be achieved. In order to obtain 0.60≦α≦0.85, it is more desirable. In addition, the X element is an element that contributes to improving magnetic properties,
When M element is added, it combines with some of these elements to form borides, carbides, nitrides, and silicides. It is possible to improve the magnetic properties by forming phosphides, etc.
It is particularly desirable to set the value to 05. Furthermore, since the platinum group element group which is element A contributes to improving corrosion resistance, it may be added as necessary in the range of O≦δ≦0.02. The anisotropic permanent magnet according to the present invention uses the above-mentioned more desirable composition as a material, and is made magnetically anisotropic by applying hot processing to this magnet material. The magnet material to be processed may be a powder or a cast body (ingot). Among these, when an alloy material made of powder is magnetically anisotropic by hot working, for example, molten rare earth-iron alloy can be used as the powder by spark erosion method, gas atomization method, vacuum method, etc. atomization method,
Centrifugal atomization method. The powder is rapidly cooled using a rotating electrode method, etc., and the centrifugal quenching method, in which molten rare earth-iron alloy is injected through a nozzle onto the inner wall of a rapidly rotating cooling drum to rapidly solidify it, is used. One roll method involves injecting molten metal onto the outer wall of a rotating drum to solidify it, and the twin roll method involves injecting molten alloy onto the contact surfaces of two drums that rotate at high speed and rapidly solidify them. After forming a thin ribbon using a method such as a method, the thin ribbon is crushed into powder. When applying hot working to such a rare earth-iron alloy material made of powder or a rare earth-iron alloy material made of a cast body, for example, rolling processing, extrusion processing, hot pressing, hot processing, etc. Hydrostatic pressure processing, upset processing, etc. are used, and the processing is carried out at an elevated temperature of, for example, about 500 to 1100°C. In this case, if the processing temperature for the alloy material is too low, cracks will occur during processing, which is undesirable, and if the processing temperature is too high, the crystal grains will become coarse, which will adversely affect the magnetic properties, which is not preferable. In the anisotropic permanent magnet according to the present invention, the ratio of the length of the crystal grains in the anisotropic direction to the length of the crystal grains in the anti-anisotropic direction is in the range of 1.2 to 0.7, The anisotropy rate expressed by the following formula % formula % (2) is greater than or equal to %. In this case, the length of the crystal grains in the anisotropic direction and the length of the crystal grains in the anti-anisotropic direction are If the ratio is too small, the residual magnetic flux density (B
Although r) increases and the degree of anisotropy increases, the coercive force (xHc) decreases and sufficient bacteriomagnetic force cannot be obtained, which is undesirable.On the other hand, if the L ratio is too large, the residual magnetic flux density (Br ) decreases, making it impossible to obtain satisfactory anisotropy and, in this case, as well, sufficient coercive force cannot be obtained. Therefore, the above-mentioned ratio is preferably in the range of 1.2 to 0.7, or 1.0. It is preferable to set it in the range of -0.7. In addition, if the anisotropy rate is too small, sufficient anisotropy will not be obtained and the residual magnetic flux density (Br) in the anisotropic direction will be a low value, so sufficient anisotropy cannot be obtained. Thus, the anisotropy rate is preferably 50% or more. When the raw material is rare earth-iron alloy powder, it is more desirable that the average crystal grain size is 0.5 pm or less, which can further improve the magnetic properties. It becomes like this. (Function of the invention) The anisotropic permanent magnet according to the present invention has the length of the crystal grains in the anisotropic direction and the length of the crystal grains in the anti-anisotropic direction, which are magnetically anisotropically made by hot working. The ratio is in the range of 1.2 to 0.7, and the anisotropy rate (%) expressed by the following formula % formula (2) or higher is obtained. The residual magnetic flux density (Br) in the anisotropic direction has a large value, and the length of the crystal grains in the anisotropic direction is regulated relative to the length of the crystal grains in the anti-anisotropic direction. Coercive force in the anisotropic direction (
The IHC) value is also large, making it an anisotropic permanent magnet with excellent magnetic properties that have both high residual magnetic flux density and high coercive force. (Example) Backyard■'' 30.5% by weight Nd - 5.0% by weight Co - 0.9% by weight B - 0.1% by weight A - balance F
A rare earth-iron alloy having a composition of E was melted, and the molten alloy was ultra-quenched by a single roll method in an argon atmosphere to form a ribbon-like thin strip. Next, the ribbon-like thin strip is crushed into powder, and then 68
Various anisotropic permanent magnets shown in Table 1 were produced by hot pressing in the range of 0 to 750"0 and further performing upset processing in the range of 700 to 800 °C. When we investigated the magnetic properties of permanent magnets, we found that
The results are also shown in Table 1. As shown in Table 1, the ratio of the grain length in the anisotropic direction to the grain length in the anti-anisotropic direction is in the range of 1.2 to 0.7, and the anisotropic Invention example 1 which is more than % (%)
For permanent magnets No. 2 and 3.4, the residual magnetic flux density (Br) in the anisotropic direction is 11 KG or more, and at the same time the coercive force (!Hc
) also has a high value of 10 KOe or more, making it an anisotropic permanent magnet that has both high residual magnetic flux density and high coercive force. On the other hand, in the permanent magnet of Comparative Example 1 in which the average crystal grain size is 0.6 μm and the anisotropy ratio (Br/ΣBr) is less than (%), the residual magnetic flux density (Br) in the anisotropic direction is small. Comparative Example 2 where the ratio of the crystal grain length in the anisotropic direction to the crystal grain length in the anti-anisotropic direction is less than 0.7. , 3.4, the residual magnetic flux density (Br) in the anisotropic direction showed a large value, but the coercive force (IHC>4.nik) was a small value.Example 2 High Frequency By induction furnace, 36.0 wt% Pr-5,0 wt% Co-0,5 wt% B-4,0 wt% Cu-1,0
A rare earth-iron alloy having a composition of Zr by weight and balance Fe was produced, and the molten alloy was cast into a water-cooled copper mold in an argon atmosphere. Next, by cutting and grinding the ingot obtained by casting, a processed material with a diameter of 20 mm and a thickness of 13 mm is produced, and the processed material is subjected to upset processing at a temperature of 700 to 800°C. Various anisotropic permanent magnets shown in the table were manufactured. Next, we investigated the magnetic properties of each anisotropic permanent magnet, and found that
The results are also shown in Table 2. As shown in Table 2, the ratio of the grain length in the anisotropic direction to the grain length in the anti-anisotropic direction is in the range of 1.2 to 0.7, and the anisotropy rate ( % or more, the residual magnetic flux density (Br) in the anisotropic direction is II
KG or more and at the same time coercive force (wHc) is 13KOe
These values are quite high, making it an anisotropic permanent magnet that has both high residual magnetic flux density and high coercive force. On the other hand, Comparative Example 5, in which the ratio of the length of the crystal grain in the anisotropic direction to the length of the crystal grain in the anti-anisotropic direction is smaller than 0.7,
In the permanent magnet No. 6, the residual magnetic flux density in the anisotropic direction (B r
) had a large value, but the coercive force (IHC) had a small value.

【発明の効果】【Effect of the invention】

この発明に係る異方性永久磁石は、R,Fe。 Bを基本成分とする希土類−鉄系合金を素材とし、熱間
加工によって磁気的に異方化された永久磁石であって、
異方性方向の結晶粒の長さと反異方性方向の結晶粒の長
さとの比が1.2〜0.7の範囲にあり、次式 で表わされる異方化率(%以上であるものになっている
ことから、異方性方向の残留磁束密度(Br)が大きな
値を有している同時に保磁力(lHc)も大きな値を有
しており、塑性変形すなわち熱間加工によって磁気的に
異方化された永久磁石において高残留磁束密度と高保磁
率とが両立したものであり、温度変化に対して安定した
磁気特性を示す永久磁石であるという著しく優れた効果
がもたらされる。 特許出願人  大同特殊鋼株式会社
The anisotropic permanent magnet according to the present invention is made of R, Fe. A permanent magnet made of a rare earth-iron alloy containing B as a basic component and magnetically anisotropically made by hot working,
The ratio of the length of the crystal grains in the anisotropic direction to the length of the crystal grains in the anti-anisotropic direction is in the range of 1.2 to 0.7, and the anisotropy rate (% or more) expressed by the following formula is Because of this, the residual magnetic flux density (Br) in the anisotropic direction has a large value, and at the same time the coercive force (lHc) also has a large value. This is a permanent magnet that is anisotropically anisotropic and has both high residual magnetic flux density and high coercivity, and has the remarkable effect of being a permanent magnet that exhibits stable magnetic properties against temperature changes.Patent Applicant Daido Steel Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] (1)R,Fe,Bを基本成分とする希土 類−鉄系合金を素材とし、熱間加工によって磁気的に異
方化された永久磁石であって、異方性方向の結晶粒の長
さと反異方性方向の結晶粒の長さとの比が1.2〜0.
7の範囲にあり、次式 異方化率(%)=異方性方向の残留磁束密度/直交する
三方向の残留磁束密度の和×100で表わされる異方化
率が50%以上であることを特徴とする異方性永久磁石
(1) A permanent magnet made of a rare earth-iron alloy whose basic components are R, Fe, and B, and magnetically anisotropically made by hot working, with the length of crystal grains in the anisotropic direction The ratio of the grain length in the anti-anisotropic direction is 1.2 to 0.
7, and the anisotropy rate expressed by the following formula: anisotropy rate (%) = residual magnetic flux density in the anisotropic direction / sum of residual magnetic flux densities in three orthogonal directions x 100 is 50% or more. An anisotropic permanent magnet characterized by:
JP63292634A 1988-11-18 1988-11-18 Anisotropic permanent magnet Pending JPH02138706A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63292634A JPH02138706A (en) 1988-11-18 1988-11-18 Anisotropic permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63292634A JPH02138706A (en) 1988-11-18 1988-11-18 Anisotropic permanent magnet

Publications (1)

Publication Number Publication Date
JPH02138706A true JPH02138706A (en) 1990-05-28

Family

ID=17784330

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63292634A Pending JPH02138706A (en) 1988-11-18 1988-11-18 Anisotropic permanent magnet

Country Status (1)

Country Link
JP (1) JPH02138706A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0522177A1 (en) * 1991-01-28 1993-01-13 Mitsubishi Materials Corporation Anisotropic Rare Earth Magnet
JP2005064096A (en) * 2003-08-08 2005-03-10 Neomax Co Ltd Process for producing rare earth quench magnet alloy and quenching equipment
US10090103B2 (en) 2014-10-09 2018-10-02 Toyota Jidosha Kabushiki Kaisha Method for manufacturing rare-earth magnets
US10438742B2 (en) 2014-08-28 2019-10-08 Toyota Jidosha Kabushiki Kaisha Manufacturing method of rare-earth magnet

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0522177A1 (en) * 1991-01-28 1993-01-13 Mitsubishi Materials Corporation Anisotropic Rare Earth Magnet
EP0522177B1 (en) * 1991-01-28 1995-07-12 Mitsubishi Materials Corporation Anisotropic Rare Earth Magnet
JP2005064096A (en) * 2003-08-08 2005-03-10 Neomax Co Ltd Process for producing rare earth quench magnet alloy and quenching equipment
JP4506123B2 (en) * 2003-08-08 2010-07-21 日立金属株式会社 Rare earth quenching magnet alloy manufacturing method and quenching apparatus
US10438742B2 (en) 2014-08-28 2019-10-08 Toyota Jidosha Kabushiki Kaisha Manufacturing method of rare-earth magnet
US10090103B2 (en) 2014-10-09 2018-10-02 Toyota Jidosha Kabushiki Kaisha Method for manufacturing rare-earth magnets

Similar Documents

Publication Publication Date Title
KR100360533B1 (en) Method for producing high silicon steel, and silicon steel
WO2012036294A1 (en) Method for producing rare-earth magnet
WO2010113482A1 (en) Nanocomposite bulk magnet and process for producing same
JP3033127B2 (en) Rare earth magnet alloy with good hot workability
WO1988006797A1 (en) Rare earth element-iron base permanent magnet and process for its production
JPH044387B2 (en)
JP4700578B2 (en) Method for producing high resistance rare earth permanent magnet
JP4121039B2 (en) Thin plate magnet with fine crystal structure
JPH0831385B2 (en) Method for manufacturing anisotropic rare earth permanent magnet
JPH02138706A (en) Anisotropic permanent magnet
JPH0831386B2 (en) Method for manufacturing anisotropic rare earth permanent magnet
JPH01100242A (en) Permanent magnetic material
JPS63178505A (en) Anisotropic r-fe-b-m system permanent magnet
JP2745042B2 (en) Rare earth-iron-boron alloy thin plate, alloy powder and method for producing permanent magnet
JPH0146574B2 (en)
JPH02208902A (en) Hot-worked magnet and manufacture thereof
JPS62284002A (en) Magnetic alloy powder consisting of rare earth element
JP2000144345A (en) Silicon steel, its production, production of rolled silicon steel sheet and electric apparatus provided with the silicon steel
JPS59219453A (en) Permanent magnet material and its production
JP2579787B2 (en) Manufacturing method of permanent magnet
JP2000045025A (en) Production of rolled silicon steel
JPH11297518A (en) Pare-earth magnet material
JP2580066B2 (en) Anisotropic permanent magnet
JPH02285605A (en) Manufacture of permanent magnet
JPS6321804A (en) Manufacture of permanent magnet of rare-earth iron