JP2000045025A - Production of rolled silicon steel - Google Patents

Production of rolled silicon steel

Info

Publication number
JP2000045025A
JP2000045025A JP11150783A JP15078399A JP2000045025A JP 2000045025 A JP2000045025 A JP 2000045025A JP 11150783 A JP11150783 A JP 11150783A JP 15078399 A JP15078399 A JP 15078399A JP 2000045025 A JP2000045025 A JP 2000045025A
Authority
JP
Japan
Prior art keywords
silicon steel
sintered body
rolling
rolled
enriched
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11150783A
Other languages
Japanese (ja)
Inventor
Osamu Yamashita
治 山下
Akira Makita
顕 槇田
Masao Nomi
正夫 能見
Tsunekazu Saigo
恒和 西郷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP11150783A priority Critical patent/JP2000045025A/en
Publication of JP2000045025A publication Critical patent/JP2000045025A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To produce a silicon steel capable of obtaining an extremely thin sheet excellent in magnetic properties by producing a sintered body having Fe-enriched phases and Si-enriched phases, subjecting this to cold rolling and executing annealing. SOLUTION: A binder is added to silicon steel powder, which is compacted, and debinder and sintering are executed to produce a sintered body having Fe-enriched main phases and Si-enriched solid solution phases. The sintering is executed at a temp. of about 1,000 to 1,150 deg.C in an inert gas atmosphere, in a gaseous hydrogen atmosphere, in a vacuum or the like, and, preferably, the content of oxygen in the sintered body is controlled to about 3000 ppm, the content of carbon to about <=200 ppm, the sheet thickness to about <=5 mm, and the degree of parallelization to about <=0.5 mm. This sintered body stock is cold-rolled and is thereafter annealed, the annealing temp. is controlled to about 1,200 to 1,300 deg.C as to a steel sheet sintered at a low temp. and high in a rolling ratio and is controlled to about 1,150 to 1,250 deg.C as to a steel sheet sintered at a high temp. and low in a rolling ratio, the Fe-enriched phases and Si-enriched phases are perfectly allowed to enter into solid solution, and the average crystal grain size is grown to about 0.5 to 3 mm.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、冷間圧延が困難
なSiの含有量が3〜10wt%の珪素鋼の冷間圧延を可能にす
る圧延珪素鋼の製造方法に係り、予めFeリッチな主相と
Fe‐Si相からなる厚み5mm以下の薄板状の焼結体を作製
し、Feリッチ相の結晶粒の優れた展延性を利用して塑性
変形させることにより、そのまま冷間庄延することを可
能にし、磁気特性の優れた珪素鋼板が得られる圧延珪素
鋼の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a rolled silicon steel capable of cold rolling a silicon steel having a Si content of 3 to 10% by weight, which is difficult to cold-roll, and relates to a method for producing a Fe-rich steel in advance. Prime Minister
Cold-rolling is possible by producing a thin plate-shaped sintered body with a thickness of 5 mm or less composed of Fe-Si phase and plastically deforming by utilizing the excellent ductility of Fe-rich phase crystal grains. And a method for manufacturing a rolled silicon steel from which a silicon steel sheet having excellent magnetic properties can be obtained.

【0002】[0002]

【従来の技術】現在、変圧器や回転機の鉄芯、磁気シー
ルド材、電磁石などの種々用途に広く利用される圧延珪
素鋼板のほとんどは、鋼中のSi含有量3wt%以下の珪素塊
に熱処理、熱間圧延、焼き鈍しの工程を繰り返し施して
製造されている。珪素鋼の透磁率は、Si含有量が6wt%程
度のとき最大となることが知られているが、鋼中にSiを
3wt%以上含有する珪素鋼の圧延は、従来から圧延時のワ
レ発生により困難とされてきた。
2. Description of the Related Art At present, most rolled silicon steel sheets widely used for various purposes such as iron cores of transformers and rotating machines, magnetic shielding materials, electromagnets, etc. are converted into silicon ingots having a Si content of 3 wt% or less in steel. It is manufactured by repeatedly performing steps of heat treatment, hot rolling, and annealing. It is known that the magnetic permeability of silicon steel becomes maximum when the Si content is about 6 wt%.
Rolling of a silicon steel containing 3 wt% or more has been conventionally difficult due to cracking during rolling.

【0003】このため、Mn,Ni等の磁性不純物を添加して溶
解塊の平均結晶粒径を微細化して圧延する方法(K.Narit
a and M.Enokizono : IEEE. Trans. Magn. 14(1978)25
8)も提案されたが、これらの磁性不純物が珪素鋼板の磁
気特性を低下させるという問題があり、汎用されるには
至らなかった。
[0003] For this reason, a method of adding a magnetic impurity such as Mn, Ni or the like to refine the average crystal grain size of a molten mass and performing rolling (K. Narit
a and M. Enokizono: IEEE.Trans.Mag. 14 (1978) 25
8) was also proposed, but there was a problem that these magnetic impurities deteriorate the magnetic properties of the silicon steel sheet, and it was not widely used.

【0004】また、Fe中にSiを3wt%含有する溶解塊を従来工
程で圧延後、CVD(Chemical Vapor Deposition)法により
Siを含浸させて、所望の組成を有する珪素鋼板、例えば
Si含有量0.5wt%の珪素鋼板を作製する方法(V.Takada,.
M.Abe,.S.Masuda and J.Inagaki : J.Appl. Phys. 64(1
988)5367.)も提案、実行されているが、CVD法に多大の
工程を要してコストが高く、その用途は自ずと限定され
ている状況である。
[0004] In addition, a molten mass containing 3 wt% of Si in Fe is rolled in a conventional process, and then is subjected to a CVD (Chemical Vapor Deposition) method.
Impregnated with Si, silicon steel sheet having the desired composition, for example
Method for producing a silicon steel sheet having a Si content of 0.5 wt% (V. Takada,.
M.Abe, .S.Masuda and J.Inagaki: J.Appl.Phys. 64 (1
988) 5367.) Has also been proposed and implemented, but the CVD method requires a large number of steps, is costly, and its use is naturally limited.

【0005】[0005]

【発明が解決しようとする課題】一般に、鋼中に3wt%以
下のSiを含有する珪素鋼の溶解塊は、FeとSiが完全に固
溶した相からなり、圧延による塑性変形は主に各結晶粒
内のすべり変形によって起きている。
Generally, the molten mass of silicon steel containing 3 wt% or less of Si in steel consists of a phase in which Fe and Si are completely dissolved, and the plastic deformation due to rolling mainly depends on each type. It is caused by slip deformation in crystal grains.

【0006】しかしSi含有量が3wt%を超える場合には、Feと
Siが完全に固溶した結晶粒は非常に硬くて脆いために、
熱間圧延、冷間圧延を問わず圧延時にヒビ、ワレが発生
し、圧延自体ほとんど不可能であった。
However, when the Si content exceeds 3 wt%, Fe and
Since the crystal grains in which Si is completely dissolved are very hard and brittle,
Cracks and cracks occurred during rolling regardless of hot rolling or cold rolling, and the rolling itself was almost impossible.

【0007】この発明は、従来不可能であるとされていたSi
含有量が3wt%を超える珪素鋼の圧延を実現することを目
的とし、圧延前の珪素鋼中にFeリッチな相を残存させ、
Feリッチ相の優れた展延性を有効に活用することによ
り、従来のごとく珪素鋼を熱処理、熱間圧延、焼き鈍し
の工程を繰り返すことなく、得られた珪素鋼をそのまま
連続で均一に冷間圧延可能にした、圧延珪素鋼の製造方
法を提供を目的としている。
[0007] The present invention is based on Si
With the aim of realizing the rolling of silicon steel whose content exceeds 3 wt%, a Fe-rich phase remains in the silicon steel before rolling,
By effectively utilizing the excellent ductility of the Fe-rich phase, the resulting silicon steel can be continuously and uniformly cold-rolled without repeating the heat treatment, hot rolling, and annealing processes of silicon steel as before. An object of the present invention is to provide a method for manufacturing rolled silicon steel, which is made possible.

【0008】[0008]

【課題を解決するための手段】発明者らは、Si含有量が
3wt%を超える珪素鋼板の圧延方法に際し、圧延前の珪素
鋼素材に、Feリッチな相を残存させた焼結体を使用し
て、Feリッチな相を有する結晶粒の展延性を利用して塑
性変形させることにより、冷間圧延が可能になると考え
た。
Means for Solving the Problems The inventors have found that the Si content is reduced.
In the rolling method of silicon steel sheet exceeding 3 wt%, in the silicon steel material before rolling, using a sintered body having a Fe-rich phase remaining, utilizing the ductility of crystal grains having a Fe-rich phase We thought that cold rolling would be possible by plastic deformation.

【0009】発明者らは、上記の着想を基に冷間圧延性の良
好な珪素鋼の圧延素材について種々検討した結果、結晶
粒内の組成に着目し、従来の溶融徐冷してFeとSiが完全
に固溶した相の結晶粒と違って、Feリッチな相とSiリッ
チなFe‐Si固溶体相を有する混合相となし、展延性に富
んだFeリッチ相を残存させた焼結珪素鋼板を作製し、こ
れを冷間圧延することにより圧延が可能であり、また特
に該鋼材の板厚を5mm以下とし、さらに平行度を0.5mm以
下とすることによって比較的容易に圧延できることを知
見し、この発明を完成した。
[0009] The inventors of the present invention have conducted various studies on rolled materials of silicon steel having good cold rollability based on the above idea, and have focused on the composition in the crystal grains. Unlike the crystal grains of the phase in which Si is completely dissolved, the sintered silicon has a Fe-rich phase and a mixed phase having a Si-rich Fe-Si solid solution phase, leaving a highly extensible Fe-rich phase. It is possible to roll by producing a steel sheet and cold rolling it, and in particular, it can be relatively easily rolled by setting the plate thickness of the steel material to 5 mm or less and the parallelism to 0.5 mm or less. Thus, the present invention has been completed.

【0010】また、発明者らは、焼結体の製造方法として、
Fe粉末とFe‐Si粉末を所定の割合で配合した混合粉を粉
末冶金的手法で焼結することにより、所望の平均結晶粒
径を有する焼結体を作製可能であり、粉末冶金的手法と
しては、金属射出成形、圧粉成形、スラリー状にして流
し込むスリップキャスト成形等で成形した後、所定の温
度で焼結する方法、またはホットプレスやプラズマ焼結
等の熱間成形法により作製する方法が採用できることを
知見した。
[0010] Further, the present inventors have proposed a method for producing a sintered body,
By sintering a powder mixture of Fe powder and Fe-Si powder at a predetermined ratio by powder metallurgy, it is possible to produce a sintered body with a desired average crystal grain size. Is formed by metal injection molding, compaction molding, slip cast molding in a slurry state, etc., and then sintering at a predetermined temperature, or by hot forming such as hot pressing or plasma sintering It was found that can be adopted.

【0011】さらに、発明者らは、圧延後の焼き鈍しにおい
て、Feリッチ相とSiリッチ相を完全に固溶させること
と、平均結晶粒径を粗大化して保磁力を低下させて磁気
特性の優れた薄板の圧延珪素鋼を作製することを目的
に、予めTi、Al、V等を少量添加しておくと、圧延後の
焼き鈍し時に平均結晶粒径が粗大化しやすくなることを
知見し、この発明を完成した。
[0011] Further, the present inventors have found that in annealing after rolling, the Fe-rich phase and the Si-rich phase are completely dissolved, and the average crystal grain size is coarsened to reduce the coercive force, thereby improving the magnetic properties. In order to produce a rolled thin silicon steel sheet, it was found that if a small amount of Ti, Al, V, etc. were added in advance, the average crystal grain size was likely to become coarse during annealing after rolling, and the present invention Was completed.

【0012】すなわち、この発明は、原料に非磁性金属を少
量添加し、さらにFeリッチな相を有する厚み5mm以下の
焼結珪素鋼の薄板を作製した後、冷間圧延、焼き鈍しを
することにより、非常に薄くて磁気特性にも優れた薄板
が得られる圧延珪素鋼の製造方法である。
[0012] That is, the present invention is to add a small amount of non-magnetic metal to the raw material, further produce a sintered silicon steel sheet having a Fe-rich phase and having a thickness of 5 mm or less, and then perform cold rolling and annealing. This is a method for producing a rolled silicon steel from which a very thin sheet having excellent magnetic properties can be obtained.

【0013】[0013]

【発明の実施の形態】使用原料 この発明において、対象とする珪素鋼の成分としては、
鋼中のSiの含有量が3〜10wt%の所要組成からなることを
特徴とする珪素鋼である。すなわち、従来、Siの含有量
が3wt%以上では圧延できないため、本願発明の対象をSi
が3wt%以上とするが、10wt%を超えると材料の磁束密度
の低下が著しい、よって、3〜10wt%の範囲とする。
BEST MODE FOR CARRYING OUT THE INVENTION Raw materials used In the present invention, the components of the target silicon steel include:
A silicon steel characterized by having a required composition in which the content of Si in the steel is 3 to 10 wt%. That is, conventionally, since rolling cannot be performed at a Si content of 3 wt% or more, the subject of the present invention is Si.
Is 3 wt% or more, but if it exceeds 10 wt%, the magnetic flux density of the material is significantly reduced, and therefore, it is in the range of 3 to 10 wt%.

【0014】この発明において、冷間圧延後の焼き鈍し時に
Feリッチ相とSiリッチ相を完全に固溶させて、結晶粒の
粒成長を促進するために、不純物元素としてTi,Al,Vを
焼結後の含有量が0.01〜1.0wt%となるように添加する
と、磁気特性の良好な圧延珪素鋼板が得られ、添加成
分、添加量は用途に応じて適宜選定するとよい。Ti,Al,
Vの含有量は、0.01wt%未満では粒成長の効果が十分でな
く、1.0wt%を超えると磁気特性が低下するため、0.01〜
1.0wt%の範囲とする。
In the present invention, at the time of annealing after cold rolling,
In order to completely dissolve the Fe-rich phase and the Si-rich phase and promote the growth of crystal grains, the content of Ti, Al, V as an impurity element after sintering should be 0.01 to 1.0 wt%. , A rolled silicon steel sheet having good magnetic properties can be obtained, and the added components and the added amount may be appropriately selected according to the application. Ti, Al,
If the content of V is less than 0.01 wt%, the effect of grain growth is not sufficient, and if it exceeds 1.0 wt%, the magnetic properties deteriorate, so
The range is 1.0 wt%.

【0015】かかる原料としては、所望組成よりも多くのSi
を含有した、脆性破壊しやすい成分のFe‐Si化合物のガ
スアトマイズ粉末、あるいは該成分を有するインゴット
を粗粉砕してジェットミル粉砕した粉末とカーボニル鉄
粉を所定の割合で配合した混合粉末が望ましい。
[0015] As such a raw material, more Si than desired composition
Is preferable, a gas atomized powder of an Fe-Si compound having a brittle fracture-prone component or a mixed powder obtained by blending a powder obtained by roughly pulverizing an ingot having the component into a jet mill and carbonyl iron powder at a predetermined ratio.

【0016】また、使用するFe-Si化合物としては、β 相の
Fe2Si化合物やε 相のFeSi化合物、さらにζ β 相のFe
Si2化合物が脆性破壊しやすいので特に好ましい。
[0016] The Fe-Si compound used is a β phase
Fe 2 Si compound, ε phase FeSi compound, and ζβ phase Fe
Si 2 compounds are particularly preferred because they are susceptible to brittle fracture.

【0017】Fe‐Si化合物中のSi含有量としては、20wt%〜5
1wt%が好ましい。Si含有量がこの範囲を超えると非常に
酸化しやすくなり、後の冷間圧延時にヒビ、ワレを起こ
しやすくなり、また磁気特性の劣化を引き起こす。
[0017] The Si content in the Fe-Si compound is 20 wt% to 5 wt%.
1 wt% is preferred. If the Si content exceeds this range, it becomes very easy to oxidize, cracks and cracks are apt to occur in the subsequent cold rolling, and the magnetic properties deteriorate.

【0018】Fe‐Si化合物粉末の平均粒度が3μm未満では、
粉末自体に多量の酸素を含有し、焼結体が硬くまた脆く
なるので、冷間圧延時にヒビ、ワレが発生しやすくなっ
たり、また磁気特性が劣化したりする。また平均粒度が
100μmを超える場合は、焼結体がポーラスになりやすく
焼結密度が低下するので、これも冷間庄延時のヒビ、ワ
レ発生の原因になる。したがって平均粒度は3〜100μm
が最も望ましい。
When the average particle size of the Fe-Si compound powder is less than 3 μm,
Since the powder itself contains a large amount of oxygen and the sintered body is hard and brittle, cracks and cracks are easily generated during cold rolling, and magnetic properties are deteriorated. The average particle size is
If it exceeds 100 μm, the sintered body tends to be porous and the sintered density is lowered, which also causes cracks and cracks during cold rolling. Therefore the average particle size is 3-100μm
Is most desirable.

【0019】一方、カーボニル鉄粉は市販の3〜10μmの粒径
を有し、できるだけ酸素含有量の少ない粉末が望まし
い。いずれにしてもFe粉とFe‐Si化合物粉の混合粉末の
含有酸素量は、少なければ少ないほど良いが、少なくと
も3000ppm以下が望ましい。
On the other hand, the carbonyl iron powder is preferably a commercially available powder having a particle size of 3 to 10 μm and having as small an oxygen content as possible. In any case, the oxygen content of the mixed powder of the Fe powder and the Fe-Si compound powder is preferably as small as possible, but is preferably at least 3000 ppm or less.

【0020】圧延前の珪素鋼 圧延前の焼結体の作製には、粉末冶金的手法が採用でき
るが、金属射出成形、圧粉成形、スリップキャスト法等
による焼結体あるいはホットプレスやプラズマ焼結等の
熱間成形法による焼結体の作製が適している。具体的に
は、金属射出成形、圧粉成形、スリップキャスト成形
は、珪素鋼粉末にバインダーを添加し成形する方法であ
り、成形後、脱バインダー、焼結を行って作成する方法
である。また、熱間成形法は、炭素金型の中に原料粉末
を入れ、熱間中(1000℃〜1300℃)で圧力をかけて成形と
焼成を同時に行う方法である。
[0020] Silicon steel before rolling [0020] Powder metallurgy can be used to produce a sintered body before rolling. However, a sintered body by metal injection molding, powder compaction, slip casting or the like, or hot pressing or plasma sintering can be used. Production of a sintered body by hot forming such as sintering is suitable. Specifically, metal injection molding, compaction molding, and slip cast molding are methods in which a binder is added to silicon steel powder and molding is performed, and after molding, the binder is removed and sintering is performed. The hot forming method is a method in which a raw material powder is placed in a carbon mold, and pressure and pressure are applied during hot (1000 ° C. to 1300 ° C.) to simultaneously perform forming and firing.

【0021】得られた焼結珪素鋼は、Feリッチな主相とSiリ
ッチなFe‐Si固溶体相を有する混合相であって、展延性
に富んだFeリッチな相が多く生成したものとなる。なお
ここでは、相中のSi量が6.5%を超える場合をSiリッチ、
これを超えない場合をFeリッチと呼ぶ。
[0021] The obtained sintered silicon steel is a mixed phase having a Fe-rich main phase and a Si-rich Fe-Si solid solution phase, in which a large number of Fe-rich phases rich in ductility are formed. . Here, the case where the amount of Si in the phase exceeds 6.5% is Si-rich,
The case not exceeding this is called Fe-rich.

【0022】一般に、Siを多く含有する珪素鋼粉末は、非常
に酸化し易く、また成形用にバインダーを使用すると特
に酸化したり、炭化したりするので、脱バインダーと焼
結時の雰囲気制御は不可欠である。また、酸化や炭化し
た焼結体は硬く、脆くなるので、冷間圧延すると、ヒ
ビ、ワレが発生すると同時に焼き鈍し後の磁気特性も著
しく低下する。このために焼結体中に含まれる酸素量と
炭素量は、それぞれ3000ppmと200ppm以下が望ましい。
In general, silicon steel powder containing a large amount of Si is very easily oxidized, and especially when a binder is used for molding, it is particularly oxidized or carbonized. It is essential. Further, since the oxidized or carbonized sintered body is hard and brittle, when cold-rolled, cracks and cracks are generated, and the magnetic properties after annealing are significantly reduced. For this reason, the amount of oxygen and the amount of carbon contained in the sintered body are desirably 3000 ppm and 200 ppm or less, respectively.

【0023】焼結温度は、混合粉の成分、平均粒度、成形密
度等によって異なるが、一般的には1000℃から1150℃の
温度で不活性ガス雰囲気中、水素ガス雰囲気中、真空中
等成形方法に応じて適宜選定するとよい。しかし、でき
るかぎり焼結時の変形を防止しなければ、冷間圧延時の
ヒビ、ワレ発生の原因になる。
The sintering temperature varies depending on the components of the mixed powder, the average particle size, the molding density, etc., but is generally from 1000 ° C. to 1150 ° C. in an inert gas atmosphere, a hydrogen gas atmosphere, a vacuum or the like. It is good to select appropriately according to. However, if deformation during sintering is not prevented as much as possible, cracks and cracks may occur during cold rolling.

【0024】特に、焼結後に展延性に富んだFeリッチ相を残
存させるために、本来の焼結温度よりやや低い温度で焼
結させることが重要である。焼結時には、できるかぎり
焼結時の変形を防止し、50mm長さに対する平行度を0.5m
m以下に抑えると、冷間圧延時のヒビ、ワレ発生を防止
できる。
In particular, it is important to perform sintering at a temperature slightly lower than the original sintering temperature in order to leave a Fe-rich phase rich in ductility after sintering. During sintering, deformation during sintering is prevented as much as possible, and the parallelism for 50 mm length is 0.5 m
When it is suppressed to m or less, generation of cracks and cracks during cold rolling can be prevented.

【0025】圧延 珪素鋼は、一般の金属と比べて硬くて脆い性質があるた
めに、冷間圧延用のロール径とその周速度は、圧延前の
板厚とその平行度によって変える必要がある。つまり圧
延前の板厚が厚く、平行度が悪ければ、小さいロール径
で、しかも低周速度で圧延することが望ましい。
Rolled silicon steel is hard and brittle compared to general metals, so the roll diameter for cold rolling and its peripheral speed need to be changed depending on the thickness before rolling and its parallelism. . That is, if the sheet thickness before rolling is large and the parallelism is poor, it is desirable to perform rolling at a small roll diameter and at a low peripheral speed.

【0026】しかし、逆に板厚が薄く平行度さえよければ、
この条件はかなり緩和される。特に熱間圧延の場合に
は、珪素鋼は塑性変形しやすくなるので、ロール径と周
速度の条件は、冷間圧延に比べて大幅に緩和される。冷
間圧延前に熱間圧延をすることは有効であるが、最終的
には冷間圧延を行わなければ、薄板の圧延は不可能とな
る。表面層が酸化し磁気特性が劣化するためである。
However, conversely, if the plate thickness is small and parallelism is good,
This condition is considerably relaxed. In particular, in the case of hot rolling, since the silicon steel is easily plastically deformed, the conditions of the roll diameter and the peripheral speed are greatly relaxed as compared with the cold rolling. It is effective to perform hot rolling before cold rolling, but finally, if cold rolling is not performed, rolling of a thin plate becomes impossible. This is because the surface layer is oxidized and the magnetic properties deteriorate.

【0027】この発明において、Feリッチ相を有する珪素鋼
の場合、圧延前の板厚が5mm以下で平行度0.5mm(50mmの
長さに対する)以下の珪素鋼板では、ロール径は80mm以
下で、ロール周速度60mm/sec以下の条件であれば、冷間
圧延の際に焼き鈍し工程を入れずに、ヒビ、ワレが起き
ずに冷間圧延できる。
In the present invention, in the case of a silicon steel having a Fe-rich phase, in a silicon steel sheet having a sheet thickness before rolling of 5 mm or less and a parallelism of 0.5 mm (for a length of 50 mm) or less, the roll diameter is 80 mm or less, Under the condition of a roll peripheral speed of 60 mm / sec or less, cold rolling can be performed without an annealing step in the cold rolling and without cracks and cracks.

【0028】この発明において、圧延前の珪素鋼は、その平
均結晶粒径が300μm以下、板厚を5mm以下であることが
望ましい。焼結体の厚みが5mmを超える場合には、表面
のみに圧延応力(引っ張り応力)がかかり、焼結体の内部
には応力がかからないため、割れが発生するが、5mm以
下の場合には、表面と内部にかかる応力が均一化して圧
延が可能となる。
In the present invention, it is desirable that the silicon steel before rolling has an average crystal grain size of 300 μm or less and a plate thickness of 5 mm or less. If the thickness of the sintered body exceeds 5 mm, rolling stress (tensile stress) is applied only to the surface, and no stress is applied to the inside of the sintered body, so cracks occur, but if the thickness is 5 mm or less, The stress applied to the surface and the inside becomes uniform, and rolling becomes possible.

【0029】この発明において、さらに珪素鋼板の板厚が1m
m以下になれば、ロール径の更に小さいロールで圧延し
た方が、圧延効率と厚み寸法精度が向上し、しかもヒ
ビ、ワレも発生しにくくなる傾向がある。
In the present invention, the thickness of the silicon steel sheet is 1 m
If the diameter is less than m, rolling with a roll having a smaller roll diameter will improve the rolling efficiency and the thickness dimensional accuracy, and also tend to prevent cracks and cracks.

【0030】特に、珪素鋼のFeリッチ相が無くなって完全に
固溶した場合には、ロール径とロール周速度に関係な
く、圧延時にヒビ、ワレが発生する。また珪素鋼中のSi
含有量が10wt%を超える場合には、珪素鋼中にFeリッチ
相を残存させるのが難しくなり、ほとんど固溶するため
に、冷間圧延時に必ずヒビ、ワレが発生する。
[0030] In particular, when the Fe-rich phase of the silicon steel disappears and completely forms a solid solution, cracks and cracks occur during rolling regardless of the roll diameter and the roll peripheral speed. In addition, Si in silicon steel
If the content exceeds 10 wt%, it becomes difficult to leave the Fe-rich phase in the silicon steel, and almost all of the solid solution forms a solid solution, so that cracks and cracks always occur during cold rolling.

【0031】また、上記のこの発明方法で圧延した珪素鋼板
は、圧延後に切断機、打抜機による加工が可能であるた
めに、種々の形状の製品対応が可能である。
The silicon steel sheet rolled by the method of the present invention described above can be processed by a cutting machine or a punching machine after rolling, so that it can be applied to products of various shapes.

【0032】この発明によるFeリッチ相による塑性変形を利
用した圧延珪素鋼板は、通常の(110)面を集合組織とす
る方向性珪素鋼板とは違って、(100)面を集合組織とす
る方向性珪素鋼板の特徴を有する。
[0032] The rolled silicon steel sheet utilizing plastic deformation due to the Fe-rich phase according to the present invention has a direction in which the (100) plane has a texture unlike a normal oriented silicon steel sheet having a (110) plane as a texture. It has the characteristics of a conductive silicon steel sheet.

【0033】焼き鈍し この発明による圧延珪素鋼の焼き鈍しは、圧延完了後の
磁気特性向上のために、Feリッチ相とSiリッチ相を完全
に固溶させると同時に、結晶粒を粗大化させるために行
うものである。すなわち、従来では、圧延珪素鋼板の焼
き鈍しは、圧延時のヒビ、ワレ防止のために、何回か圧
延した後に必ず行われているが、この発明では、磁壁移
動の障害となる結晶粒界を減らし、保磁力を低下させて
透磁率の向上と鉄損の低下を目的に、結晶粒径の粗大化
を狙ったものである。
Annealing The annealing of the rolled silicon steel according to the present invention is performed to completely dissolve the Fe-rich phase and the Si-rich phase and to coarsen the crystal grains in order to improve the magnetic properties after the completion of the rolling. Things. In other words, conventionally, annealing of a rolled silicon steel sheet is always performed after rolling several times in order to prevent cracks and cracks during rolling, but in the present invention, a grain boundary which becomes an obstacle to domain wall movement is formed. It is intended to increase the crystal grain size for the purpose of reducing the coercive force and improving the magnetic permeability and reducing the iron loss.

【0034】この焼き鈍しの温度は、圧延率(=圧延後の板厚
/圧延前の板厚×100(%))と圧延間の焼結体の焼結温度に
よって変わる。焼き鈍しの温度は、非磁性元素の添加物
と添加量によっても影響されるが、低い温度で焼結した
鋼板で圧延率の高い圧延鋼板では、1200〜1300℃が適し
ており、逆に高い温度で焼結した鋼板で圧延率の低い圧
延鋼板では、1150〜1250℃の僅かに低い温度が適してい
る。
[0034] The annealing temperature is determined by the rolling rate (= the thickness of the sheet after rolling).
/ Thickness before rolling x 100 (%)) and the sintering temperature of the sintered body during rolling. Annealing temperature is also affected by the additive and amount of non-magnetic elements, but for a steel sheet sintered at a low temperature and a high rolling rate, 1200 to 1300 ° C is suitable, and conversely, a high temperature A slightly lower temperature of 1150 to 1250 ° C. is suitable for a rolled steel sheet having a low rolling reduction in the steel sheet sintered in the above.

【0035】この焼き鈍し温度が高過ぎると、結晶粒が異常
粒成長しすぎて鋼板が非常に脆くなり、逆に温度が低過
ぎると、Feリッチ相とSiリッチ相が固溶せずに、また結
晶粒も成長しないために、磁気特性が向上しなくなるの
で、上記温度が最適温度である。
[0035] If the annealing temperature is too high, the crystal grains grow excessively and the steel sheet becomes very brittle, and if the temperature is too low, the Fe-rich phase and the Si-rich phase do not form a solid solution, and Since the crystal grains do not grow, the magnetic characteristics do not improve, so the above temperature is the optimum temperature.

【0036】上記温度での焼き鈍しによってFeリッチ相とSi
リッチ相が完全に固溶し、その平均結晶粒径は、約0.5
〜3mmにまで成長させることができる。この焼き鈍しに
よって磁気特性は、通常の溶製材に近い特性が得られる
ことを確認した。
[0036] By annealing at the above temperature, the Fe-rich phase and the Si
The rich phase is completely dissolved, and the average grain size is about 0.5.
Can grow to ~ 3mm. It was confirmed that the magnetic properties obtained by this annealing were similar to those of a normal ingot.

【0037】また、この発明において、圧延後の珪素鋼板
は、切断、打抜等の加工が可能であり、各種用途に応じ
て種々の形状の製品が作製できるので、低コストで高特
性、高寸法精度の珪素鋼板の作製が可能である利点を有
する。
In the present invention, the rolled silicon steel sheet can be cut and punched, and can be manufactured in various shapes according to various applications. This has the advantage that a silicon steel sheet with dimensional accuracy can be manufactured.

【0038】さらに、この発明の圧延珪素鋼板は、(100)面
を集合組織とする方向性珪素鋼板であるために、無方性
珪素鋼板に比べて透磁率と磁束密度が大きいという特徴
も有する。
Further, the rolled silicon steel sheet of the present invention is characterized by having a higher magnetic permeability and a higher magnetic flux density than an anisotropic silicon steel sheet because it is a directional silicon steel sheet having a (100) plane as a texture. .

【0039】[0039]

【実施例】実施例1 焼結珪素鋼の原料粉末として、表1に示すような成分のF
e‐Si化合物になるように高周波溶解してインゴットを
作製した後、粗粉砕、ジェットミル粉砕して表1に示す
ような平均粒度の粉末を作製した。また鉄粉末として表
1に示すような成分と平均粒度のカーボニル鉄粉を使用
した。
EXAMPLES Example 1 As a raw material powder of sintered silicon steel, F having the components shown in Table 1 was used.
An ingot was produced by high-frequency melting so as to become an e-Si compound, then coarsely pulverized and jet-milled to produce a powder having an average particle size as shown in Table 1. Also shown as iron powder
Carbonyl iron powder having the components shown in FIG. 1 and an average particle size was used.

【0040】Fe‐Si化合物粉末とカーポニル鉄粉を表2に示
すような割合で配合した後、Vコーンで混合した。各混
合粉末に表3に示すような添加量でPVA(ポリビニルアル
コール)バインダー、水、可塑剤を添加し、スラリー状
となし、該スラリーを完全密閉型スプレードライヤー装
置により窒素ガスで熱風入口温度100℃、出口温度40℃
に設定して造粒を行った。
[0040] The Fe-Si compound powder and the carponyl iron powder were blended in the ratio shown in Table 2, and then mixed with a V cone. A PVA (polyvinyl alcohol) binder, water, and a plasticizer were added to each of the mixed powders in the amounts shown in Table 3 to form a slurry. ℃, outlet temperature 40 ℃
And granulation was performed.

【0041】平均粒径約100μmの該造粒粉を圧縮プレス機で
圧力2ton/cm2で表3に示すような形状に圧粉成形した
後、真空中と水素中で表4に示すような脱バインダー、
焼結温度で焼結を行って表5に示す寸法の焼結体を得
た。得られた焼結体のFeリッチ相の含有率、残留酸素
量、残留炭素量、平均結晶粒径、相対密度を表5に示
す。このFeリッチ相の含有率は、FeSi化合物の特有の最
大X線回折強度と体心立方構造(bcc)を有する珪素鋼の(1
10)回折強度比で相対評価した。
The granulated powder having an average particle size of about 100 μm was pressed into a shape as shown in Table 3 with a compression press at a pressure of 2 ton / cm 2 , and then, as shown in Table 4 in vacuum and hydrogen. Debinding,
Sintering was performed at the sintering temperature to obtain a sintered body having the dimensions shown in Table 5. Table 5 shows the content of the Fe-rich phase, the amount of residual oxygen, the amount of residual carbon, the average crystal grain size, and the relative density of the obtained sintered body. The content of this Fe-rich phase depends on the specific maximum X-ray diffraction intensity of FeSi compound and (1) of silicon steel having a body-centered cubic structure (bcc).
10) Relative evaluation was made based on the diffraction intensity ratio.

【0042】表5に示す寸法の焼結体をまず60mmφの2段ロー
ルで、ロール周速度60mm/secで圧延率50%まで冷間圧延
した後、さらに20mmφの4段ロールにより同一ロール周
速度で0.10mmまで冷間圧延した。その圧延状態を表6に
示す。表6中の圧延状態で、◎は非常に良好、〇は良
好、△は圧延板の端面にヒビ発生、×は全面にワレ発生
を表す。
[0042] The sintered body having the dimensions shown in Table 5 was first cold-rolled to a rolling reduction of 50% at a roll peripheral speed of 60 mm / sec by a two-stage roll of 60 mmφ, and then further rolled at the same roll peripheral speed by a four-stage roll of 20 mmφ. At 0.10 mm. Table 6 shows the rolling state. In the rolling state in Table 6, ◎ indicates very good, Δ indicates good, Δ indicates occurrence of cracks on the end face of the rolled sheet, and × indicates occurrence of cracks on the entire surface.

【0043】また、圧延後、20mmφ×10mmφ×0.1mmtのリン
グを打ち抜いて表6に示すような焼き鈍し温度で熱処理
をした後、直流磁気特性と周波数5kHzでの鉄損を測定し
た。その結果を表7に示す。磁気特性の比較例として、F
e-6.5Siの溶製材の磁気特性を表7に示す。
Further, after rolling, a ring of 20 mmφ × 10 mmφ × 0.1 mmt was punched out and heat-treated at an annealing temperature as shown in Table 6, and then the DC magnetic characteristics and the iron loss at a frequency of 5 kHz were measured. Table 7 shows the results. As a comparative example of magnetic properties, F
Table 7 shows the magnetic properties of the ingots of e-6.5Si.

【0044】[0044]

【表1】 【table 1】

【0045】[0045]

【表2】 [Table 2]

【0046】[0046]

【表3】 [Table 3]

【0047】[0047]

【表4】 [Table 4]

【0048】[0048]

【表5】 [Table 5]

【0049】[0049]

【表6】 [Table 6]

【0050】[0050]

【表7】 [Table 7]

【0051】[0051]

【発明の効果】この発明によれば、従来から製造困難と
されてきた珪素鋼板を冷間圧延によって製造することが
可能となり、極めて薄い珪素鋼が容易に量産できる。ま
た、透磁率が最もすぐれたSi含有量が6wt%程度溶製材と
同等の優れた磁気特性を有する薄板が得られる。従っ
て、今後トランスやヨーク材等、広範囲にわたってその
用途は飛躍的に拡大する。
According to the present invention, a silicon steel sheet which has been conventionally difficult to manufacture can be manufactured by cold rolling, and an extremely thin silicon steel can be easily mass-produced. Further, a thin plate having excellent magnetic properties equivalent to that of a smelting material having an Si content of about 6 wt%, which has the highest magnetic permeability, can be obtained. Therefore, its applications will be dramatically expanded in a wide range such as transformers and yoke materials in the future.

【0052】また、この発明による圧延珪素鋼板は、圧延後
の切断、打抜等の加工が可能であり、各種用途に応じて
種々の形状の薄板の製品が作製できるので、低コストで
高特性、高寸法精度の珪素鋼薄板の作製が可能である。
The rolled silicon steel sheet according to the present invention can be cut and punched after rolling, and can be made into thin sheets of various shapes according to various uses. In addition, it is possible to produce a silicon steel thin plate with high dimensional accuracy.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) // B22F 3/24 C22C 33/02 L C22C 33/02 H01F 1/16 A (72)発明者 能見 正夫 大阪府三島郡島本町江川2丁目15−17 住 友特殊金属株式会社山崎製作所内 (72)発明者 西郷 恒和 大阪府三島郡島本町江川2丁目15−17 住 友特殊金属株式会社山崎製作所内──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI theme coat ゛ (Reference) // B22F 3/24 C22C 33/02 L C22C 33/02 H01F 1/16 A (72) Inventor Masao Nomi 2-15-17, Egawa, Shimamoto-cho, Mishima-gun, Osaka Prefecture Sumitomo Special Metals Co., Ltd., Yamazaki Works

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 Feリッチな相とSiリッチなFe‐Si固溶体
相を有する焼結体を得る工程、前記焼結体素材を冷間圧
延する工程、前記冷間圧延材を焼き鈍しする工程を含む
圧延珪素鋼の製造方法。
1. A step of obtaining a sintered body having a Fe-rich phase and a Si-rich Fe-Si solid solution phase, a step of cold-rolling the sintered body material, and a step of annealing the cold-rolled material. A method for producing rolled silicon steel.
【請求項2】 焼結体におけるSiの含有量が3〜10wt%で
ある請求項1に記載の圧延珪素鋼の製造方法。
2. The method for producing rolled silicon steel according to claim 1, wherein the content of Si in the sintered body is 3 to 10% by weight.
【請求項3】 焼結体に微量成分としてTi,Al,Vを単独も
しくは複合で0.01〜1.0wt%含有する請求項1または請求
項2に記載の圧延珪素鋼の製造方法。
3. The method for producing a rolled silicon steel according to claim 1, wherein the sintered body contains 0.01 to 1.0 wt% of Ti, Al, V alone or in combination as a minor component.
【請求項4】 焼結体の厚みが5mm以下である請求項1〜
請求項3のいずれかに記載の圧延珪素鋼の製造方法。
4. The sintered body according to claim 1, wherein the thickness of the sintered body is 5 mm or less.
4. A method for producing a rolled silicon steel according to claim 3.
【請求項5】 焼結体は、粉末射出成形、圧粉成形、ス
リップキャスト法により成形して焼結する粉末冶金法、
またはホットプレスやプラズマ焼結等の熱間成形法にて
作製し、焼結体中にFeリッチな相を残存させた焼結体で
ある請求項4に記載の圧延珪素鋼の製造方法。
5. A powder metallurgy method in which the sintered body is molded and sintered by powder injection molding, green compaction, or slip casting,
5. The method for producing a rolled silicon steel according to claim 4, wherein the sintered body is produced by a hot forming method such as hot pressing or plasma sintering, and has a Fe-rich phase remaining in the sintered body.
JP11150783A 1998-05-29 1999-05-28 Production of rolled silicon steel Pending JP2000045025A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11150783A JP2000045025A (en) 1998-05-29 1999-05-28 Production of rolled silicon steel

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP10-165982 1998-05-29
JP16598298 1998-05-29
JP11150783A JP2000045025A (en) 1998-05-29 1999-05-28 Production of rolled silicon steel

Publications (1)

Publication Number Publication Date
JP2000045025A true JP2000045025A (en) 2000-02-15

Family

ID=26480263

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11150783A Pending JP2000045025A (en) 1998-05-29 1999-05-28 Production of rolled silicon steel

Country Status (1)

Country Link
JP (1) JP2000045025A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7435304B2 (en) 2002-11-11 2008-10-14 Posco Coating composition, and method for manufacturing high silicon electrical steel sheet using thereof
JP2010095748A (en) * 2008-10-15 2010-04-30 Babcock Hitachi Kk Thermal spraying powder formed of iron-silicon-based intermetallic compound, method for producing the same, thermal-sprayed coating film formed of thermal spraying powder, and substrate having the thermal-sprayed coating film coated thereon
JP2019019382A (en) * 2017-07-18 2019-02-07 新日鐵住金株式会社 Low alloy steel

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7435304B2 (en) 2002-11-11 2008-10-14 Posco Coating composition, and method for manufacturing high silicon electrical steel sheet using thereof
JP2010095748A (en) * 2008-10-15 2010-04-30 Babcock Hitachi Kk Thermal spraying powder formed of iron-silicon-based intermetallic compound, method for producing the same, thermal-sprayed coating film formed of thermal spraying powder, and substrate having the thermal-sprayed coating film coated thereon
JP2019019382A (en) * 2017-07-18 2019-02-07 新日鐵住金株式会社 Low alloy steel

Similar Documents

Publication Publication Date Title
KR100360533B1 (en) Method for producing high silicon steel, and silicon steel
JP5933535B2 (en) Rare earth magnet manufacturing method
JP5472236B2 (en) Rare earth magnet manufacturing method and rare earth magnet
JP3033127B2 (en) Rare earth magnet alloy with good hot workability
JP2010010673A (en) Soft magnetic powders for magnetic compact, and magnetic compact using the same soft magnetic powders
JP5427664B2 (en) SOFT MAGNETIC POWDER FOR Dust Magnetic Material, Dust Magnetic Material Using the Same, and Manufacturing Method
JP2587872B2 (en) Method for producing soft magnetic sintered body of Fe-Si alloy
JP6691666B2 (en) Method for manufacturing RTB magnet
JP2000045025A (en) Production of rolled silicon steel
JP6691667B2 (en) Method for manufacturing RTB magnet
JP2000144345A (en) Silicon steel, its production, production of rolled silicon steel sheet and electric apparatus provided with the silicon steel
JPH02138706A (en) Anisotropic permanent magnet
JP2000212679A (en) Raw material granular body for iron-silicon base soft magnetic sintered alloy, its production and production of iron-silicon base soft magnetic sintered alloy member
JPS61295342A (en) Manufacture of permanent magnet alloy
JPH0222121B2 (en)
JP2000017336A (en) Production of sendust thin sheet
JP2005008951A (en) Method for manufacturing soft magnetic sintered alloy having structure containing metal nitride in boundary among the alloy particles
JP2000144248A (en) Production of rolled silicon steel sheet
JP2000345240A (en) Production of sendust thin sheet
JPH11343518A (en) Production of rolled silicon steel plate and its stock
JP2000119792A (en) Production of soft magnetic alloy sheet
JPS5823462B2 (en) Fe-Cr-Co spinodal decomposition type sintered magnetic material with high density
JP3054703B2 (en) Manufacturing method of iron-chromium alloy with excellent strength
JPWO2004013873A1 (en) Rare earth-iron-boron magnet manufacturing method
JPH02285605A (en) Manufacture of permanent magnet