JPWO2004013873A1 - Rare earth-iron-boron magnet manufacturing method - Google Patents

Rare earth-iron-boron magnet manufacturing method Download PDF

Info

Publication number
JPWO2004013873A1
JPWO2004013873A1 JP2004525837A JP2004525837A JPWO2004013873A1 JP WO2004013873 A1 JPWO2004013873 A1 JP WO2004013873A1 JP 2004525837 A JP2004525837 A JP 2004525837A JP 2004525837 A JP2004525837 A JP 2004525837A JP WO2004013873 A1 JPWO2004013873 A1 JP WO2004013873A1
Authority
JP
Japan
Prior art keywords
plastic deformation
raw material
alloy
manufacturing
material alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004525837A
Other languages
Japanese (ja)
Inventor
山本 和彦
山本  和彦
村上 亮
亮 村上
章利 福家
章利 福家
阿部 浩史
浩史 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Santoku Corp
Original Assignee
Santoku Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Santoku Corp filed Critical Santoku Corp
Publication of JPWO2004013873A1 publication Critical patent/JPWO2004013873A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C23/00Extruding metal; Impact extrusion
    • B21C23/001Extruding metal; Impact extrusion to improve the material properties, e.g. lateral extrusion
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0433Nickel- or cobalt-based alloys
    • C22C1/0441Alloys based on intermetallic compounds of the type rare earth - Co, Ni
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy

Abstract

従来、磁石合金の製造には採用されていない剪断塑性変形を利用することで、工程の煩雑さがなく、歩留まり良く磁石特性に優れた希土類−鉄−ボロン系の永久磁石又はボンド磁石を容易に得ることができる永久磁石の製造方法である。本発明の製造方法は、Yを含む希土類金属元素の少なくとも1種からなるRを11.3〜16.5原子%と、ボロン4.7〜7.4原子%と、鉄を含む残部Mとからなる組成を有する磁石原料合金を準備する工程(A)と、前記磁石原料合金を剪断塑性変形する工程(B)とを含む。By utilizing shear plastic deformation, which has not been employed in the manufacture of conventional magnet alloys, rare earth-iron-boron permanent magnets or bonded magnets that do not have complicated processes and that have good yield and excellent magnetic properties can be easily obtained. This is a method for producing a permanent magnet. In the production method of the present invention, R consisting of at least one rare earth metal element containing Y is 11.3-16.5 atomic%, boron 4.7-7.4 atomic%, and the balance M containing iron, (A) which prepares the magnet raw material alloy which has the composition which consists of, and the process (B) which carries out the shear plastic deformation of the said magnet raw material alloy.

Description

本発明は、希土類金属、鉄及びボロンを必須成分とする希土類−鉄−ボロン系の永久磁石又はボンド磁石等の磁石の製造方法に関する。  The present invention relates to a method for producing a magnet such as a rare earth-iron-boron permanent magnet or a bonded magnet containing rare earth metal, iron and boron as essential components.

現在、高特性の希土類−鉄−ボロン系永久磁石は、ハードディスクドライブのヘッドを駆動させるVCM用、あるいは小型高性能のモーター、MRIの磁界発生用磁石、自動車のパワーステアリング用モーターの磁石等に広く利用されている。また、今後、飛躍的に増加が見込める各種ロボット、電気自動車等への応用が考えられている。
希土類−鉄−ボロン系永久磁石は、主に焼結法で製造されている。該焼結法は、原料を真空溶解法にて溶解、鋳造、粉砕して得た磁石原料合金を、磁場成形、焼結、時効処理を行って製造する方法である。該方法では、異方化率の高い磁石を得るために、1つ1つの粉末が結晶粒界を持たないように粉砕して磁界中で配向させる。高い保磁力を得るためには、焼結後の結晶粒径をできるだけ小さくすることが理想である。SW理論(ストーナーウォルファース理論)によると、単磁区粒径まで結晶粒径を小さくすることが理想的とされており、一般には粉砕工程において、400℃程度で水素化し、インゴット内部に多数のクラックを発生させた後、ジェットミルにより約3〜5μmまで微粉砕することが行われている。粉砕後の磁場成形は、磁場中で磁化容易軸を一方向へ配向させながら成形することにより行われる。該成形性の向上のためには、通常、界面活性剤が広く利用されている。焼結は、成型体をおよそ1000〜1100℃で加熱することにより行われ、必要により時効処理が施され、最終的に磁石が製造される。
このような焼結法においては、上述の通り粉砕工程において結晶粒径を小さくするほど高い保磁力を得るのに有効であるにも関わらず、含有される希土類金属の酸化又は発火を最小限とするため、非酸化性雰囲気に制御した環境で平均粒怪3〜5μm程度に粉砕しているに過ぎない。このような酸化防止を行ってもある程度の酸化は避けられないのが現状で、焼結時に合金成分の酸化物が生じる。また、上記成形時に利用した界面活性剤からのカーボン成分の混入が生じ、焼結時に合金成分の炭化物が生じる。これら酸化物及び炭化物は、非磁性相であり、磁気的には全く機能しないのでなるべく少ない方が理想的である。しかしながら一般的な焼結法を採用した場合、酸素が1500ppm以上、炭素が300ppm程度含有される。
加えて、焼結法においては、焼結による収縮率を見込んで成形体を調製するものの、最終的には機械加工を要し、特に形状の小さいものや薄いものでは、歩留まりが低下する。また、焼結法は、全体として工程が長いため、製品の品質安定化が困難で、歩留まりが低くなる。
一方、前記焼結法の問題点を回避するために、モールド法により鋳造した鋳塊の磁石原料合金、もしくはメルトスパン等の超急冷条件で鋳造したアモルファス又は微細結晶粒からなる鋳片を粉砕した磁石原料合金を、熱間加工で圧延、あるいは押出しする等、焼結工程を経ずに磁石を製造する方法が試みられている。
このような方法では、熱間加工を行うことにより特定の方向に結晶軸を配向させ、異方化して磁気特性を向上させる。しかしながら、圧延、押出しによる加工では、結晶粒は微細化せず保持力が十分に向上しない。圧延加工では主相結晶粒の結晶軸を配向させるため、Rの添加量を大きくする必要があり、結果、非磁性相が増加することとなる。また、加工時液相となったR−rich相が外部にもれだす等加工が困難で、工業生産に不向きである。押出し加工では、主相結晶粒の結晶軸が十分に配向せず、十分な磁気特性が得られない。更にこれら一般的な熱間加工では加工前と加工後とで形状が異なるため複数回の加工が困難で加工後の形状に制約がある。
以上の理由より、上記熱間加工を採用する方法は、大型ラジアルリング磁石等の特殊な磁石の生産にのみ利用されているのが実状である。
ところで、上記熱間加工とは異なる金属の加工法も提案されている。例えば、Segalらは、材料の断面減少を伴わない側方押し出し(ECAP(equal−channel−angular−Pressing(ECAE(equal−channel−angular−extrusion)法ともいう))によって剪断変形を与え、断面積を減少させずに大きなひずみを材料中に蓄積させることを提案している。また、同様の方法により300℃以上の温度を加えながらアルミニウム合金、マグネシウム合金を加工することで結晶粒の微細化を行うことも知られている(特開平9−137244号公報)。
しかし、これらの加工法は、結晶粒の微細化による機械的強度向上のための加工法であって、磁石合金への適用や、磁石合金へ適用することによる作用については何ら示唆されていない。
Currently, high-performance rare earth-iron-boron permanent magnets are widely used for VCM for driving hard disk drive heads, small high-performance motors, MRI magnetic field generating magnets, automobile power steering motor magnets, etc. It's being used. In the future, application to various robots, electric vehicles and the like that are expected to increase dramatically is considered.
Rare earth-iron-boron permanent magnets are mainly manufactured by a sintering method. The sintering method is a method of manufacturing a magnetic material alloy obtained by melting, casting, and pulverizing a raw material by a vacuum melting method, by performing magnetic field forming, sintering, and aging treatment. In this method, in order to obtain a magnet with a high degree of anisotropy, each powder is pulverized so as not to have a crystal grain boundary and oriented in a magnetic field. In order to obtain a high coercive force, it is ideal to make the crystal grain size after sintering as small as possible. According to SW theory (Stoner-Wolfers theory), it is ideal to reduce the crystal grain size to a single domain grain size. Generally, in the pulverization process, hydrogenation occurs at about 400 ° C, and many cracks are formed inside the ingot. After being generated, it is finely pulverized to about 3 to 5 μm by a jet mill. The magnetic field shaping after pulverization is performed by shaping the magnetically easy axis in one direction in a magnetic field. In order to improve the moldability, surfactants are generally widely used. Sintering is performed by heating the molded body at approximately 1000 to 1100 ° C., and if necessary, an aging treatment is performed to finally produce a magnet.
In such a sintering method, although it is effective to obtain a high coercive force as the crystal grain size is reduced in the pulverization step as described above, oxidation or ignition of the contained rare earth metal is minimized. Therefore, it is only pulverized to an average grain size of about 3 to 5 μm in an environment controlled to a non-oxidizing atmosphere. Even if such oxidation prevention is performed, a certain degree of oxidation is unavoidable, and an oxide of an alloy component is generated during sintering. Further, mixing of the carbon component from the surfactant used at the time of molding occurs, and carbide of the alloy component is generated at the time of sintering. These oxides and carbides are non-magnetic phases and do not function magnetically at all. However, when a general sintering method is employed, oxygen is contained at 1500 ppm or more and carbon is contained at about 300 ppm.
In addition, in the sintering method, a compact is prepared in anticipation of the shrinkage rate due to sintering, but finally requires machining, and the yield is lowered particularly when the shape is small or thin. In addition, since the sintering process has a long process as a whole, it is difficult to stabilize the quality of the product and the yield is lowered.
On the other hand, in order to avoid the problems of the sintering method, a magnet obtained by pulverizing an ingot magnet raw material alloy cast by a molding method, or a slab made of amorphous or fine crystal grains cast under ultra-rapid cooling conditions such as melt span Attempts have been made to produce magnets without undergoing a sintering process, such as rolling or extruding raw material alloys by hot working.
In such a method, hot working is performed to orient the crystal axis in a specific direction and make it anisotropic to improve the magnetic properties. However, in the processing by rolling and extrusion, the crystal grains are not refined and the holding power is not sufficiently improved. In the rolling process, the crystal axis of the main phase crystal grains is oriented, so it is necessary to increase the addition amount of R, and as a result, the nonmagnetic phase increases. In addition, the R-rich phase that has become a liquid phase during processing is difficult to process, such as leakage to the outside, and is unsuitable for industrial production. In the extrusion process, the crystal axes of the main phase crystal grains are not sufficiently oriented, and sufficient magnetic properties cannot be obtained. Further, in these general hot workings, the shapes before and after the machining are different, so that the machining after a plurality of times is difficult and the shape after the machining is limited.
For the above reasons, the method of adopting the hot working is actually used only for the production of special magnets such as large radial ring magnets.
Incidentally, a metal processing method different from the hot processing has been proposed. For example, Segal et al. Gave a shear deformation by lateral extrusion (ECAP (equal-channel-angular-pressing) (also referred to as ECAE (equal-channel-angular-extension) method)) without cross-sectional area reduction. It has been proposed to accumulate large strains in the material without reducing the amount of crystal grains and to refine crystal grains by processing aluminum alloys and magnesium alloys while applying a temperature of 300 ° C. or higher by the same method. It is also known to do this (Japanese Patent Laid-Open No. 9-137244).
However, these processing methods are processing methods for improving mechanical strength by refining crystal grains, and there is no suggestion of application to a magnet alloy or action by applying to a magnet alloy.

本発明の目的は、従来、磁石合金の製造には採用されていない剪断塑性変形を利用することで、工程の煩雑さがなく、歩留まり良く磁石特性に優れた希土類−鉄−ボロン系の永久磁石又はボンド磁石を容易に得ることができる磁石の製造方法を提供することにある。
本発明者は、上記課題を解決するために希土類−鉄−ボロン系の磁石原料合金の加工技術と得られる永久磁石の磁気特性の関連について鋭意検討した結果、磁石原料合金を剪断塑性変形するというシンプルな工程を行うことにより、従来の焼結法、若しくは圧延法、押出し法等の熱間加工よりも、効率的に結晶粒の微細化、特定方向への結晶軸の高度な配向を行うことができ、優れた磁気特性を有する永久磁石やボンド磁石が容易に得られることを見出し本発明を完成した。
本発明によれば、イットリウムを含む希土類金属元素の少なくとも1種からなるRを11.3〜16.5原子%と、ボロン4.7〜7.4原子%と、鉄を含む残部Mとからなる組成を有する磁石原料合金を準備する工程(A)と、前記磁石原料合金を剪断塑性変形する工程(B)とを含む希土類−鉄−ボロン系永久磁石の製造方法が提供される。
SUMMARY OF THE INVENTION An object of the present invention is to use rare earth-iron-boron permanent magnets that do not have a complicated process by using shear plastic deformation that has not been conventionally used in the manufacture of magnet alloys, and that have good yield and excellent magnet characteristics. Alternatively, it is an object of the present invention to provide a magnet manufacturing method capable of easily obtaining a bonded magnet.
In order to solve the above-mentioned problems, the present inventor has intensively studied the relation between the processing technology of the rare earth-iron-boron magnet raw material alloy and the magnetic properties of the obtained permanent magnet, and as a result, the magnetic raw material alloy is shear plastically deformed. By performing a simple process, the crystal grain refinement and high-level orientation of the crystal axis in a specific direction can be performed more efficiently than conventional hot processing such as sintering, rolling, or extrusion. The present invention was completed by finding that permanent magnets and bonded magnets having excellent magnetic properties can be easily obtained.
According to the present invention, R consisting of at least one rare earth metal element containing yttrium is 11.3 to 16.5 atomic%, boron 4.7 to 7.4 atomic%, and the balance M containing iron. There is provided a method for producing a rare earth-iron-boron permanent magnet comprising a step (A) of preparing a magnet raw material alloy having a composition and a step (B) of shearing plastic deformation of the magnet raw material alloy.

図1は、実施例において行った剪断塑性変形を説明するための説明概略図である。
図2は、比較例1〜6において行った塑性変形を説明するための説明概略図である。
図3は、比較例7〜12において行った別の塑性変形を説明するための説明概略図である。
発明の好ましい実施の態様
以下、本発明を更に詳細に説明する。
本発明の希土類−鉄−ボロン系磁石の製造方法では、まず、イットリウムを含む希土類金属元素の少なくとも1種からなるRを11.3〜16.5原子%と、ボロン4.7〜7.4原子%と、鉄を含む残部Mとからなる組成を有する磁石原料合金(以下、原料合金(a)という)を準備する工程(A)を行う。
前記原料合金(a)を構成するRは、イットリウムを含む希土類金属元素であれば特に限定されないが、ランタン、セリウム、プラセオジム、ネオジム、イットリウム、ジスプロシウム又はこれらの2種以上の混合物等が好ましく挙げられる。Rの含有割合が11.3原子%未満では、合金の緻密化に必要な液相量が不足して磁気特性が低下し、16.5原子%を超えると、合金内部のR−rich相の割合が高くなり耐食性が低下し、更に、必然的に主相の体積割合が少なくなるため残留磁束密度Brが低下する。
前記原料合金(a)を構成するボロンの含有割合が4.7原子%未満では、主相の割合が減少し、残留磁束密度Brが低下し、7.4原子%を超えると、B−rich相の割合が増加して磁気特性及び耐食性が共に低下する。
前記鉄を含む残部Mにおいて鉄の含有割合は、原料合金(a)中に好ましくは60原子%以上、特に好ましくは70〜84原子%である。
残部Mは、鉄以外に、例えば、遷移金属元素、珪素及び炭素からなる群より選択される少なくとも1種を含んでいても良く、更には酸素、窒素等の工業生産における不可避不純分を含んでいても良い。
前記鉄以外の遷移金属元素としては、例えば、チタン、ニッケル、バナジウム、コバルト、アルミニウム、クロム、マンガン、ジルコニウム、ハフニウム、ニオブ、マグネシウム、銅、錫、タングステン、モリブデン、タンタル、ルテニウム、ロジウム、パラジウム、レニウム、オスミウム、イリジウム、白金、ガリウム又はこれらの2種以上が挙げられる。特に残部Mが、チタン、ニッケル、バナジウム、クロム、マンガン、ジルコニウム、ハフニウム、ニオブ、モリブデン、タンタル、タングステン、ルテニウム、ロジウム、パラジウム、レニウム、オスミウム、イリジウム及び白金の少なくとも1種を含む場合、後述の剪断塑性変形を行った際、これら元素の析出物を起点とし、再結晶を誘起し、微細化を促進させる。これら再結晶を誘起し、微細化を促進させる元素を含む場合の含有割合は、原料合金(a)中に0.005〜1.00原子%が好ましい。0.005原子%未満では析出量が少なく、効果が十分でなく、1.00原子%を超えると磁気特性に悪影響を与えるので好ましくない。
前記原料合金(a)としては、例えば、モールド法により鋳造した鋳塊、メルトスパン等の超急冷条件で鋳造したアモルファス又は微細結晶粒からなる薄帯又はストリップキャスティング法により鋳造した板状結晶組織を有する薄帯、又はこれらを粉砕した粉末、これらを圧密化した圧密体等が挙げられる。
本発明の製造方法では、次に、前記原料合金(a)を剪断塑性変形する工程(B)を行う。
工程(B)において剪断塑性変形とは、原料合金(a)に対して一定の剪断面に沿って強力なひずみを加えるように0°を越え180°未満の角度に曲がった形状の通路を通して原料合金(a)を押出し変形することを意味する。以後、原料合金(a)を剪断塑性変形した合金で磁化前の合金を剪断塑性変形合金ということがある。例えば、図1に示すような変形加工が挙げられる。ここで剪断塑性変形には、原料合金(a)を押出す進行方向に向かって断面積が小さくなるような加工も含まれる。しかし、加工前後で断面積が極端に小さくなる場合、金型壁面からの圧縮応力が増大し、剪断力による上述の効果が十分に得られない場合があるので、好ましくは加工前後の断面積が同じであるよう剪断塑性変形することが好ましい。このような剪断塑性変形する方法は、例えば、Segalらが提案するECAP法(ECAE法ともいう)等が挙げられる。剪断塑性変形を施すことにより、200%以上、好ましくは10000%以上の伸びに相当するひずみ量の大きな剪断塑性変形を原料合金(a)に加えることができる。また、図1のような曲がった通路を用いる場合、その角度は60〜120°が好ましい。該角度が60°未満では変形抵抗が大きく、加工が困難となる場合があり、120°を超えるとひずみ量が小さくなり上述の効果が十分得られない傾向にあるので好ましくない。
前記剪断塑性変形により、剪断面において、結晶粒の微細化が生じ、更に特定結晶面に対しすべりが発生するので、特定方向への結晶軸の高度な配向が生じる。その結果、高保磁力で異方化率の高い希土類−鉄−ボロン系磁石を得ることができる。
前記剪断塑性変形は、原料合金(a)を、通常500〜1200℃、好ましくは800〜1150℃、更に好ましくは850〜1100℃の温度域に保持して行うことができる。該温度が500℃未満では、変形抵抗が大きく均一な変形が困難となり合金に破断又は割れが発生し易いので好ましくなく、1200℃を超えると液体となり加工不能となってしまう恐れがあるので好ましくない。結晶軸の配向及び結晶粒の微細化は、前記温度が低温である程著しくなるが、変形抵抗が大きくなり、加工性が悪くなることから、これら二つの要素の兼ね合いから最適温度を適宜決定することができる。
前記剪断塑性変形は、複数回行うことができる。剪断塑性変形により結晶軸の配向が上がるが、剪断方向を一定として変形を繰り返すことで、更に結晶軸の配向を高くすることができる。また、剪断塑性変形は、工程(A)における磁石原料合金を鋳造により調製した後、該鋳造に続いて、鋳造雰囲気内で連続して行うことが好ましい。例えば、非酸化性雰囲気下、モールド法により鋳造した合金が室温まで冷却される前に剪断塑性変形を行う。このように工程(A)から工程(B)を連続的に行うことにより、効率が向上し、大気との接触を最も低減でき、鋳造した原料合金(a)の冷却後の残余熱を利用して剪断塑性変形を行うことができ、再度加熱に要するエネルギーの低減が可能になる。また、メルトスパン等の超急冷条件で鋳造したアモルファス又は微細結晶粒からなる薄帯、ストリップキャスティング法により鋳造した板状結晶組織を有する薄帯又はそれらの粉末等を用いる場合、工程(B)の前に合金薄帯又は合金粉末を圧縮し、圧密化(一体化)しておく工程(A−1)を行ってもよい。工程(A−1)において、圧密化は、前記薄帯又は粉末を好ましくは600〜1000℃に加熱しながら、50〜200MPaの圧力で圧縮する方法等により行うことができる。このような工程(A−1)の実施により、工程(B)で原料合金(a)に均一なひずみを与えることができる。
前記工程(B)では、必要に応じて、剪断塑性変形前の磁石原料合金、及び剪断塑性変形後の剪断塑性変形合金の少なくとも一方を熱処理することができる。要するに、該熱処理は、剪断塑性変形の前又は後、若しくは前後両方で行うことができる。該熱処理は各々独立に磁石原料合金及び剪断塑性変形合金の少なくとも一方を500〜1150℃、特に500〜1000℃で加熱することにより行うことができ、各熱処理時間は0.5〜10時間が好ましい。剪断塑性変形の前に熱処理を行って磁石原料合金の組織を均一化しておくことで、剪断塑性変形して得られる剪断塑性変形合金の結晶粒がより均一に微細化し、かつ結晶軸を配向させることが可能となる。また、剪断塑性変形の後に熱処理を行うことにより、得られる剪断塑性変形合金のひずみを緩和させ、かつ保磁力を向上させることができる。工程(B)により得られる剪断塑性変形合金は、公知の方法等により磁場を印可することにより所望の永久磁石とすることができる。
本発明の製造方法では、工程(B)で得られた剪断塑性変形した剪断塑性変形合金を粉砕する工程(C)と、得られた粉末をバインダーにより固化してボンド磁石を得る工程(D)とを更に行うことができる。
前記工程(C)は、例えば、剪断塑性変形した剪断塑性変形合金を室温から600℃の温度範囲で水素化し、合金に微細なマイクロクラックを多数導入し、その後脱水素を行う水素粉砕及び機械粉砕等を適宜行うことにより実施でき、高い保磁力を保った粉末を得ることができる。
前記工程(D)においては、工程(C)で調製した粉末を、ボンド磁石を製造する公知の方法に従ってバインダーと混練し、成形することによりボンド磁石を得ることができる。使用するバインダーとしては、ボンド磁石の種類に応じて適宜選択でき、例えば、熱可塑性樹脂、熱硬化樹脂の他、金属、合金を用いることもできる。前述の成形時、又は成形後に公知の方法により磁場を印可することにより所望の永久磁石とすることができる。
本発明の希土類−鉄−ボロン系磁石の製造方法は、焼結法や圧延、押出し等の熱間加工ではない、剪断塑性変形により加工を行うので、シンプルな工程により高磁気特性の永久磁石やボンド磁石を容易に得ることができる。
FIG. 1 is an explanatory schematic diagram for explaining shear plastic deformation performed in the examples.
FIG. 2 is an explanatory schematic diagram for explaining plastic deformation performed in Comparative Examples 1 to 6.
FIG. 3 is an explanatory schematic diagram for explaining another plastic deformation performed in Comparative Examples 7-12.
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in more detail.
In the method for producing a rare earth-iron-boron magnet of the present invention, first, R composed of at least one rare earth metal element containing yttrium is 11.3 to 16.5 atomic%, and boron is 4.7 to 7.4. The step (A) of preparing a magnet raw material alloy (hereinafter referred to as a raw material alloy (a)) having a composition composed of atomic% and the balance M containing iron is performed.
R constituting the raw material alloy (a) is not particularly limited as long as it is a rare earth metal element containing yttrium, but preferred examples include lanthanum, cerium, praseodymium, neodymium, yttrium, dysprosium, or a mixture of two or more thereof. . When the content ratio of R is less than 11.3 atomic%, the amount of liquid phase necessary for densification of the alloy is insufficient and the magnetic properties deteriorate. When it exceeds 16.5 atomic%, the R-rich phase in the alloy is reduced. The ratio increases and the corrosion resistance decreases, and further, the volume ratio of the main phase inevitably decreases, so the residual magnetic flux density Br decreases.
When the content ratio of boron constituting the raw material alloy (a) is less than 4.7 atomic%, the ratio of the main phase decreases, the residual magnetic flux density Br decreases, and when it exceeds 7.4 atomic%, B-rich The proportion of phases increases and both magnetic properties and corrosion resistance decrease.
The iron content in the balance M containing iron is preferably 60 atomic% or more, particularly preferably 70 to 84 atomic% in the raw material alloy (a).
The balance M may contain, for example, at least one selected from the group consisting of transition metal elements, silicon, and carbon in addition to iron, and further includes inevitable impurities in industrial production such as oxygen and nitrogen. May be.
Examples of the transition metal element other than iron include titanium, nickel, vanadium, cobalt, aluminum, chromium, manganese, zirconium, hafnium, niobium, magnesium, copper, tin, tungsten, molybdenum, tantalum, ruthenium, rhodium, palladium, Examples include rhenium, osmium, iridium, platinum, gallium, or two or more of these. In particular, when the balance M includes at least one of titanium, nickel, vanadium, chromium, manganese, zirconium, hafnium, niobium, molybdenum, tantalum, tungsten, ruthenium, rhodium, palladium, rhenium, osmium, iridium and platinum, When shear plastic deformation is performed, starting from precipitates of these elements, recrystallization is induced, and refinement is promoted. As for the content rate in the case of including the element which induces these recrystallization and promotes refinement | miniaturization, 0.005-1.00 atomic% is preferable in a raw material alloy (a). If it is less than 0.005 atomic%, the amount of precipitation is small and the effect is not sufficient, and if it exceeds 1.00 atomic%, the magnetic properties are adversely affected.
The raw material alloy (a) has, for example, an ingot cast by a mold method, a thin ribbon made of amorphous or fine crystal grains cast under ultra-rapid cooling conditions such as melt span, or a plate-like crystal structure cast by a strip casting method. Examples thereof include thin ribbons, powders obtained by pulverizing them, and compacts obtained by compacting them.
In the production method of the present invention, next, the step (B) of shear plastic deformation of the raw material alloy (a) is performed.
In the step (B), the shear plastic deformation means that the raw material alloy (a) is a raw material that passes through a path bent at an angle of more than 0 ° and less than 180 ° so as to apply a strong strain along a certain shear plane. It means that the alloy (a) is extruded and deformed. Hereinafter, the alloy obtained by shear plastic deformation of the raw material alloy (a) and the pre-magnetization alloy may be referred to as shear plastic deformation alloy. For example, a deformation process as shown in FIG. Here, the shear plastic deformation includes processing in which the cross-sectional area becomes smaller in the traveling direction in which the raw material alloy (a) is extruded. However, when the cross-sectional area becomes extremely small before and after processing, the compressive stress from the mold wall surface increases, and the above-mentioned effect due to shearing force may not be sufficiently obtained. It is preferred to shear plastically deform to be the same. Examples of such a shear plastic deformation method include an ECAP method (also referred to as ECAE method) proposed by Segal et al. By applying shear plastic deformation, a large shear plastic deformation corresponding to an elongation of 200% or more, preferably 10,000% or more can be applied to the raw material alloy (a). Moreover, when using the curved channel | path like FIG. 1, the angle is preferable 60-120 degrees. If the angle is less than 60 °, the deformation resistance may be large and processing may be difficult. If the angle exceeds 120 °, the amount of strain tends to be small and the above effects tend not to be obtained.
The shear plastic deformation causes refinement of crystal grains on the shear plane, and further slipping with respect to the specific crystal plane, so that the crystal axis is highly oriented in a specific direction. As a result, a rare earth-iron-boron magnet having a high coercive force and a high anisotropic ratio can be obtained.
The shear plastic deformation can be performed by maintaining the raw material alloy (a) in a temperature range of usually 500 to 1200 ° C, preferably 800 to 1150 ° C, more preferably 850 to 1100 ° C. If the temperature is less than 500 ° C., the deformation resistance is large and uniform deformation is difficult, and the alloy is liable to break or crack. This is not preferable because it may become liquid and unworkable. . The crystal axis orientation and crystal grain refinement become more significant as the temperature is lower, but the deformation resistance increases and the workability deteriorates. Therefore, the optimum temperature is appropriately determined based on the balance between these two factors. be able to.
The shear plastic deformation can be performed a plurality of times. Although the orientation of the crystal axes is increased by shear plastic deformation, the orientation of the crystal axes can be further increased by repeating the deformation with the shear direction being constant. The shear plastic deformation is preferably performed continuously in a casting atmosphere after the casting of the magnet raw material alloy in the step (A) after the casting. For example, shear plastic deformation is performed before the alloy cast by the molding method is cooled to room temperature in a non-oxidizing atmosphere. Thus, by continuously performing the steps (A) to (B), the efficiency is improved, the contact with the atmosphere can be reduced most, and the residual heat after cooling of the cast raw material alloy (a) is utilized. Thus, shear plastic deformation can be performed, and energy required for heating can be reduced again. When using a ribbon made of amorphous or fine crystal grains cast under ultra-rapid cooling conditions such as melt span, a ribbon having a plate-like crystal structure cast by a strip casting method, or a powder thereof, before step (B) The step (A-1) of compressing and compacting (integrating) the alloy ribbon or alloy powder may be performed. In the step (A-1), the consolidation can be performed by a method of compressing the ribbon or powder at a pressure of 50 to 200 MPa while preferably heating to 600 to 1000 ° C. By carrying out such a step (A-1), uniform strain can be applied to the raw material alloy (a) in the step (B).
In the step (B), if necessary, at least one of the magnet raw material alloy before shear plastic deformation and the shear plastic deformation alloy after shear plastic deformation can be heat-treated. In short, the heat treatment can be performed before or after the shear plastic deformation, or both before and after. The heat treatment can be performed independently by heating at least one of the magnet raw material alloy and the shear plastic deformation alloy at 500 to 1150 ° C., particularly 500 to 1000 ° C., and each heat treatment time is preferably 0.5 to 10 hours. . By performing a heat treatment before the shear plastic deformation to make the structure of the magnet raw material alloy uniform, the crystal grains of the shear plastic deformation alloy obtained by shear plastic deformation become more uniform and the crystal axes are oriented. It becomes possible. Moreover, by performing heat treatment after the shear plastic deformation, the strain of the obtained shear plastic deformation alloy can be relaxed and the coercive force can be improved. The shear plastic deformation alloy obtained by the step (B) can be made into a desired permanent magnet by applying a magnetic field by a known method or the like.
In the production method of the present invention, the step (C) of pulverizing the shear plastic deformation alloy obtained by the step (B) and the step of solidifying the obtained powder with a binder (D) And can be further performed.
The step (C) is, for example, hydrogen pulverization and mechanical pulverization in which a shear plastic deformation alloy that has undergone shear plastic deformation is hydrogenated in a temperature range of room temperature to 600 ° C., a number of fine microcracks are introduced into the alloy, and then dehydrogenation is performed. Etc. can be carried out as appropriate, and a powder having a high coercive force can be obtained.
In the step (D), the powder prepared in the step (C) can be kneaded with a binder according to a known method for producing a bonded magnet and molded to obtain a bonded magnet. As a binder to be used, it can select suitably according to the kind of bond magnet, For example, a metal and an alloy other than a thermoplastic resin and a thermosetting resin can also be used. A desired permanent magnet can be obtained by applying a magnetic field by a known method at the time of molding or after molding.
The manufacturing method of the rare earth-iron-boron magnet of the present invention is not a hot process such as a sintering method, rolling, or extrusion, but is performed by shear plastic deformation. A bonded magnet can be obtained easily.

以下、実施例及び比較例により本発明を更に詳細に説明するが、本発明はこれらに限定されない。  Hereinafter, although an example and a comparative example explain the present invention still in detail, the present invention is not limited to these.

合金組成が表1に示す組成(A)となるように、希土類金属、鉄、フェロボロンを原料とし、アルゴンガス雰囲気中、アルミナるつぼを使用して高周波加熱により溶解し、溶湯が均一になったところで、銅製の水冷単ロール上に注湯するストリップキャスティング法により鋳片を作製した。得られた鋳片の厚さ、長軸粒径及び短軸粒径を測定した。鋳片の厚さはマイクロメーターにより50枚の鋳片の厚さを測定し平均値を求めた。長軸粒径及び短軸粒径は、鋳片の厚さ方向断面を光学顕微鏡により観察し、無作為に選んだ50個の主相結晶粒の長軸粒径及び短軸粒径の平均値である。結果を表2に示す。
次いで、得られた鋳片をφ30のダイスに入れ、100MPaの成形圧で900℃、2時間ホットプレスして圧密化した。得られた圧密体10を図1に示すようにプレス11によりダイス13に供給し等断面積剪断塑性変形を行った。図1において、剪断塑性変形前後の圧密体10の断面積は共にφ30で、圧密体10の進行方向は剪断塑性変形前後で90°曲がっている。この時、コンテナは600℃に予備加熱した。剪断方向を一定として同様の剪断塑性変形を4回繰り返した。引き続き、得られた剪断塑性変形合金を550℃で2時間熱処理を行った。得られた剪断塑性変形合金を、直流式試料マグネトメーターを用いて25kOeの印加磁場で磁化して永久磁石とし、磁気特性を測定した。結果を表3に示す。
When the alloy composition is the composition (A) shown in Table 1, using rare earth metals, iron, and ferroboron as raw materials and melting by high frequency heating using an alumina crucible in an argon gas atmosphere, the molten metal becomes uniform. A slab was produced by a strip casting method of pouring on a copper water-cooled single roll. The thickness, major axis grain size and minor axis grain size of the obtained slab were measured. The thickness of the slab was determined by measuring the thickness of 50 slabs with a micrometer and calculating the average value. The major axis grain and minor axis grain size are average values of major axis axis and minor axis grain size of 50 main phase grains randomly selected by observing a cross section in the thickness direction of the slab with an optical microscope. It is. The results are shown in Table 2.
Subsequently, the obtained slab was put into a φ30 die and compacted by hot pressing at a molding pressure of 100 MPa at 900 ° C. for 2 hours. The obtained compacted body 10 was supplied to a die 13 by a press 11 as shown in FIG. In FIG. 1, the cross-sectional areas of the compact 10 before and after the shear plastic deformation are both φ30, and the traveling direction of the compact 10 is bent 90 ° before and after the shear plastic deformation. At this time, the container was preheated to 600 ° C. The same shear plastic deformation was repeated four times with the shear direction kept constant. Subsequently, the obtained shear plastic deformation alloy was heat-treated at 550 ° C. for 2 hours. The obtained shear plastic deformation alloy was magnetized with an applied magnetic field of 25 kOe using a DC sample magnetometer to form a permanent magnet, and the magnetic properties were measured. The results are shown in Table 3.

実施例2〜6Examples 2-6

合金組成を表1に示す組成(B)〜(F)に変更した以外は、実施例1と同様の方法でそれぞれ剪断塑性変形合金を製造した。得られた各剪断塑性変形合金について実施例1と同様に磁化して永久磁石とし、磁気特性を測定した。結果を表3に示す。  Shear plastic deformation alloys were produced in the same manner as in Example 1 except that the alloy composition was changed to the compositions (B) to (F) shown in Table 1. About each obtained shear plastic deformation alloy, it magnetized like Example 1 and it was set as the permanent magnet, and the magnetic characteristic was measured. The results are shown in Table 3.

合金組成が表1に示す組成(C)となるよう原料を配合、溶解し、φ30の銅製のモールドにより磁石原料合金を作製した。得られた磁石原料合金を1100℃、20時間熱処理して均質化した。熱処理を行った磁石原料合金についてEPMAの組成像による断面組織観察を行い、各結晶粒の円相当径を測定した。無作為に20個の結晶粒について円相当径の測定を行い平均結晶粒径を求めたところ142μmであった。均質化を行った磁石原料合金を実施例1と同様の方法で剪断塑性変形及び熱処理を行って剪断塑性変形合金を製造した。得られた剪断塑性変形合金について実施例1と同様に磁化して永久磁石とし、磁気特性の測定を行った。結果を表3に示す。  The raw materials were blended and dissolved so that the alloy composition became the composition (C) shown in Table 1, and a magnet raw material alloy was produced by a φ30 copper mold. The obtained magnet raw material alloy was homogenized by heat treatment at 1100 ° C. for 20 hours. The heat-treated magnet raw material alloy was subjected to cross-sectional structure observation by EPMA composition image, and the equivalent circle diameter of each crystal grain was measured. The average equivalent crystal grain size was determined by measuring the equivalent circle diameter of 20 crystal grains at random and found to be 142 μm. The homogenized magnet raw material alloy was subjected to shear plastic deformation and heat treatment in the same manner as in Example 1 to produce a shear plastic deformation alloy. The obtained shear plastic deformation alloy was magnetized in the same manner as in Example 1 to obtain a permanent magnet, and the magnetic properties were measured. The results are shown in Table 3.

合金組成が表1に示す組成(C)となるよう原料を配合、溶解し、銅製の水冷単ロールを用いるメルトスパン法により鋳片を作製した。得られた鋳片をX線回折装置により測定したところアモルファスであった。次いで、50枚の鋳片の厚さをマイクロメーターにより測定し、平均値を求めたところ35μmであった。得られた鋳片を実施例1と同様の方法で剪断塑性変形合金を製造した。得られた剪断塑性変形合金について実施例1と同様に磁化して永久磁石とし、磁気特性を測定した。結果を表3に示す。  The raw materials were blended and dissolved so that the alloy composition became the composition (C) shown in Table 1, and a slab was produced by a melt span method using a copper water-cooled single roll. When the obtained slab was measured with an X-ray diffractometer, it was amorphous. Next, the thickness of 50 slabs was measured with a micrometer, and the average value was determined to be 35 μm. A shear plastic deformation alloy was produced from the obtained slab in the same manner as in Example 1. The obtained shear plastic deformation alloy was magnetized in the same manner as in Example 1 to obtain a permanent magnet, and the magnetic properties were measured. The results are shown in Table 3.

剪断塑性変形を2回とした以外は実施例1と同様の方法で剪断塑性変形合金を製造した。得られた剪断塑性変形合金について実施例1と同様に磁化して永久磁石とし、磁気特性を測定した。結果を表3に示す。
比較例1〜6
表1に示す組成(A)〜(F)の合金溶湯を用いて、実施例1と同様に合金鋳片の圧密体10を製造した。得られた圧密体10を図2に示すようにプレス21を用い、押出し比7で設計したφ15のダイス23により塑性変形を行った。この時、コンテナは600℃に予備加熱した。得られた塑性変形合金を実施例1と同様に磁化して永久磁石とし、磁気特性の測定を行った。結果を表3に示す。
比較例7〜12
表1に示す組成(A)〜(F)の合金溶湯を用いて、実施例1と同様に合金鋳片の圧密体10を製造した。得られた圧密体10を図3に示すように、プレス31により1軸圧縮して加工率80%の塑性変形を行った。得られた塑性変形合金を実施例1と同様に磁化して永久磁石とし、磁気特性の測定を行った。結果を表1に示す。

Figure 2004013873
Figure 2004013873
Figure 2004013873
A shear plastic deformation alloy was produced in the same manner as in Example 1 except that the shear plastic deformation was performed twice. The obtained shear plastic deformation alloy was magnetized in the same manner as in Example 1 to obtain a permanent magnet, and the magnetic properties were measured. The results are shown in Table 3.
Comparative Examples 1-6
Using a molten alloy having compositions (A) to (F) shown in Table 1, an alloy cast compact 10 was manufactured in the same manner as in Example 1. The obtained compacted body 10 was plastically deformed using a press 21 as shown in FIG. 2 and a φ23 die 23 designed with an extrusion ratio of 7. At this time, the container was preheated to 600 ° C. The obtained plastic deformation alloy was magnetized in the same manner as in Example 1 to obtain a permanent magnet, and the magnetic properties were measured. The results are shown in Table 3.
Comparative Examples 7-12
Using a molten alloy having compositions (A) to (F) shown in Table 1, an alloy cast compact 10 was manufactured in the same manner as in Example 1. As shown in FIG. 3, the obtained compacted body 10 was uniaxially compressed by a press 31 and plastically deformed at a processing rate of 80%. The obtained plastic deformation alloy was magnetized in the same manner as in Example 1 to obtain a permanent magnet, and the magnetic properties were measured. The results are shown in Table 1.
Figure 2004013873
Figure 2004013873
Figure 2004013873

Claims (12)

イットリウムを含む希土類金属元素の少なくとも1種からなるRを11.3〜16.5原子%と、ボロン4.7〜7.4原子%と、鉄を含む残部Mとからなる組成を有する磁石原料合金を準備する工程(A)と、前記磁石原料合金を剪断塑性変形する工程(B)とを含む希土類−鉄−ボロン系永久磁石の製造方法。Magnet raw material having a composition comprising 11.3% to 16.5 atomic% of R consisting of at least one rare earth metal element including yttrium, 4.7 to 7.4 atomic% of boron, and the balance M including iron A method for producing a rare earth-iron-boron permanent magnet comprising a step (A) of preparing an alloy and a step (B) of shearing plastic deformation of the magnet raw material alloy. 工程(B)の剪断塑性変形を、ECAP法により行う請求の範囲1の製造方法。The manufacturing method of Claim 1 which performs the shear plastic deformation of a process (B) by ECAP method. 工程(B)の剪断塑性変形を、磁石原料合金が500〜1200℃の温度域に保持される条件で行う請求の範囲1の製造方法。The manufacturing method of Claim 1 which performs the shear plastic deformation of a process (B) on the conditions by which a magnet raw material alloy is hold | maintained at the temperature range of 500-1200 degreeC. 工程(A)において、磁石原料合金の準備を、鋳造により磁石原料合金を調製することにより行い、該鋳造に続いて工程(B)を連続的に行う請求の範囲1の製造方法。The manufacturing method according to claim 1, wherein in the step (A), the magnet raw material alloy is prepared by preparing a magnet raw material alloy by casting, and the step (B) is continuously performed following the casting. 工程(B)が、剪断塑性変形前の磁石原料合金、及び剪断塑性変形後の剪断塑性変形合金の少なくとも一方を熱処理する工程を含む請求の範囲1の製造方法。The manufacturing method according to claim 1, wherein the step (B) includes a step of heat-treating at least one of the magnet raw material alloy before shear plastic deformation and the shear plastic deformation alloy after shear plastic deformation. 前記熱処理を、磁石原料合金及び剪断塑性変形合金の少なくとも一方を500〜1150℃で加熱して行う請求の範囲5の製造方法。The manufacturing method according to claim 5, wherein the heat treatment is performed by heating at least one of a magnet raw material alloy and a shear plastic deformation alloy at 500 to 1150C. 工程(A)の後、工程(B)の前に、磁石原料合金を圧密化する工程(A−1)を含む請求の範囲1の製造方法。The manufacturing method of Claim 1 including the process (A-1) of compacting a magnet raw material alloy after a process (A) and before a process (B). 工程(A−1)の圧密化が、磁石原料合金を600〜1000℃に加熱しながら、50〜200MPaで加圧して行われる請求の範囲7の製造方法。The manufacturing method according to claim 7, wherein the consolidation in the step (A-1) is performed by pressurizing at 50 to 200 MPa while heating the magnet raw material alloy to 600 to 1000 ° C. 工程(B)において、剪断塑性変形を複数回繰り返す請求の範囲1の製造方法。The manufacturing method according to claim 1, wherein in the step (B), the shear plastic deformation is repeated a plurality of times. 工程(A)で準備する磁石原料合金において、残部Mが、チタン、ニッケル、バナジウム、クロム、マンガン、ジルコニウム、ハフニウム、ニオブ、モリブデン、タンタル、タングステン、ルテニウム、ロジウム、パラジウム、レニウム、オスミウム、イリジウム及び白金からなる群より選択される少なくとも1種の遷移金属を含む請求の範囲1の製造方法。In the magnet raw material alloy prepared in the step (A), the balance M is titanium, nickel, vanadium, chromium, manganese, zirconium, hafnium, niobium, molybdenum, tantalum, tungsten, ruthenium, rhodium, palladium, rhenium, osmium, iridium and The manufacturing method of Claim 1 containing the at least 1 sort (s) of transition metal selected from the group which consists of platinum. 工程(A)で準備する磁石原料合金が、チタン、ニッケル、バナジウム、クロム、マンガン、ジルコニウム、ハフニウム、ニオブ、モリブデン、タンタル、タングステン、ルテニウム、ロジウム、パラジウム、レニウム、オスミウム、イリジウム及び白金からなる群より選択される少なくとも1種の遷移金属を、0.005〜1.00原子%含む請求の範囲1の製造方法。The magnet raw material alloy prepared in step (A) is made of titanium, nickel, vanadium, chromium, manganese, zirconium, hafnium, niobium, molybdenum, tantalum, tungsten, ruthenium, rhodium, palladium, rhenium, osmium, iridium and platinum. The production method according to claim 1, comprising 0.005 to 1.00 atomic% of at least one transition metal selected from the group consisting of more than one kind. 工程(B)で得られた剪断塑性変形合金を粉砕する工程(C)と、得られた粉末をバインダーにより固化してボンド磁石を得る工程(D)とを含む請求の範囲1の製造方法。The manufacturing method of Claim 1 including the process (C) which grind | pulverizes the shear plastic deformation alloy obtained at the process (B), and the process (D) which solidifies the obtained powder with a binder and obtains a bonded magnet.
JP2004525837A 2002-08-05 2003-08-05 Rare earth-iron-boron magnet manufacturing method Pending JPWO2004013873A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2002227327 2002-08-05
JP2002227327 2002-08-05
PCT/JP2003/009916 WO2004013873A1 (en) 2002-08-05 2003-08-05 Process for producing rare earth-iron-boron magnet

Publications (1)

Publication Number Publication Date
JPWO2004013873A1 true JPWO2004013873A1 (en) 2006-09-21

Family

ID=31492209

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004525837A Pending JPWO2004013873A1 (en) 2002-08-05 2003-08-05 Rare earth-iron-boron magnet manufacturing method

Country Status (3)

Country Link
JP (1) JPWO2004013873A1 (en)
AU (1) AU2003254806A1 (en)
WO (1) WO2004013873A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015123463A (en) * 2013-12-26 2015-07-06 トヨタ自動車株式会社 Forward extrusion forging device and forward extrusion forging method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6463852B2 (en) * 2015-05-20 2019-02-06 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツングRobert Bosch Gmbh Mold and method for forming permanent magnet with preform, and thermal deformation system
CN106011514B (en) * 2016-06-21 2017-12-12 山东建筑大学 The method that the isochannel repeated extruding in 45 ° of turnings prepares superhigh intensity titanium matrix composite

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3654466B2 (en) * 1995-09-14 2005-06-02 健司 東 Aluminum alloy extrusion process and high strength and toughness aluminum alloy material obtained thereby
JP3037917B2 (en) * 1997-09-17 2000-05-08 日立金属株式会社 Radial anisotropic bonded magnet
JP3845696B2 (en) * 2000-02-25 2006-11-15 独立行政法人物質・材料研究機構 Method for producing ultrafine-grained ferritic steel
JP3892640B2 (en) * 2000-03-14 2007-03-14 独立行政法人科学技術振興機構 Method for continuous shear deformation processing of metal plate and apparatus for the method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015123463A (en) * 2013-12-26 2015-07-06 トヨタ自動車株式会社 Forward extrusion forging device and forward extrusion forging method

Also Published As

Publication number Publication date
AU2003254806A1 (en) 2004-02-23
WO2004013873A1 (en) 2004-02-12

Similar Documents

Publication Publication Date Title
JP5532745B2 (en) Magnetic anisotropic magnet and manufacturing method thereof
JP2017157832A (en) R-t-b based permanent magnet
JP2017157833A (en) R-t-b based permanent magnet
JP2017157834A (en) R-t-b based permanent magnet
JP6447380B2 (en) SmFeN-based metal bond magnet compact with high specific resistance
JP5708242B2 (en) Rare earth magnet manufacturing method
US5352302A (en) Method of producing a rare-earth permanent magnet
JP7167665B2 (en) Rare earth magnet and manufacturing method thereof
CN1649046A (en) Forming method in magnetic field, and method for producing rare-earth sintered magnet
JPS62202506A (en) Permanent magnet and manufacture thereof
KR101813427B1 (en) Method of manufacturing rare earth magnet
JP6691666B2 (en) Method for manufacturing RTB magnet
JP4449900B2 (en) Method for producing rare earth alloy powder and method for producing rare earth sintered magnet
JPWO2004013873A1 (en) Rare earth-iron-boron magnet manufacturing method
JP6691667B2 (en) Method for manufacturing RTB magnet
JP4238999B2 (en) Manufacturing method of rare earth sintered magnet
JP3135120B2 (en) Manufacturing method of warm-worked magnet
JPH0680608B2 (en) Rare earth magnet manufacturing method
EP2099039A1 (en) Material for magnetic anisotropic magnet
US20190311851A1 (en) Method of producing nd-fe-b magnet
KR20160041790A (en) Method for manufacturing rare-earth magnets
JP2007254813A (en) Method for producing rare earth sintered magnet and die for molding used therefor
JPWO2004013872A1 (en) Permanent magnet and method for manufacturing the same
JP3383448B2 (en) Method for producing R-Fe-B permanent magnet material
Koper et al. Improving the properties of permanent magnets: a study of patents, patent applications and other literature