JP2015123463A - Forward extrusion forging device and forward extrusion forging method - Google Patents

Forward extrusion forging device and forward extrusion forging method Download PDF

Info

Publication number
JP2015123463A
JP2015123463A JP2013268874A JP2013268874A JP2015123463A JP 2015123463 A JP2015123463 A JP 2015123463A JP 2013268874 A JP2013268874 A JP 2013268874A JP 2013268874 A JP2013268874 A JP 2013268874A JP 2015123463 A JP2015123463 A JP 2015123463A
Authority
JP
Japan
Prior art keywords
region
length
forward extrusion
die
extrusion forging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013268874A
Other languages
Japanese (ja)
Inventor
哲也 庄司
Tetsuya Shoji
哲也 庄司
大輔 一期崎
Daisuke Ichikizaki
大輔 一期崎
大 小淵
Masaru Kobuchi
大 小淵
田中 雅浩
Masahiro Tanaka
雅浩 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2013268874A priority Critical patent/JP2015123463A/en
Priority to PCT/IB2014/002794 priority patent/WO2015097517A1/en
Publication of JP2015123463A publication Critical patent/JP2015123463A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/20Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces by extruding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/17Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces by forging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/048Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by pulverising a quenched ribbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Forging (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a forward extrusion forging device which can manufacture a rare earth magnet excellent in a magnetic property without causing a rise of a manufacturing cost due to a simple shape of a hollow part of a die, and a forward extrusion forging method.SOLUTION: A die 1 constituting a forward extrusion forging device 10 is formed of a first region 2 in which a punch 6 slides, a bent part 3, and a second region 4. The punch 6 slides in the first region 2, and a work W is extruded to the second region 4, and forged. Shapes of the first region 2 and the second region 4 which are orthogonal to each other in an extrusion direction are rectangular, and when two sides constituting a rectangular cross section of the first region 2 are set as a first side 2a (length t1) and a second side 2b (length t2), and a side corresponding to the first side 2a out of the two sides constituting a rectangular cross section of the second region 4 is set as a third side 4a (length t3), and when a side corresponding to the second side 2b is set as a fourth side 4b (length t4), at least either of t3>t1 and t4>t2 is satisfied.

Description

本発明は、前方押出し鍛造装置と前方押出し鍛造方法に関するものである。   The present invention relates to a forward extrusion forging device and a forward extrusion forging method.

熱間鍛造加工には、大きく2つの加工形態がある。その一つの加工方法は、ダイスに収容物を収容し、中空を有する押出しパンチで収容物を加圧してその厚みを減じながら押出しパンチの中空に収容物の一部を押出して成形体を製造する加工方法であり、いわゆる後方押出し加工(パンチの押出し方向と逆の方向に収容物を押出しながら成形体を製造する方法)によるものである。一方、他の一つの加工方法は、中空を有するダイスに収容物を収容し、中空を具備しないパンチで収容物を加圧して収容物の厚みを減じながらダイスの中空から収容物の一部を押出して成形体を製造する加工方法であり、いわゆる前方押出し加工(パンチの押出し方向に収容物を押出しながら成形体を製造する方法)によるものである。   There are two major forms of hot forging. One of the processing methods is to house the contents in a die, press the contents with an extrusion punch having a hollow, and reduce the thickness to extrude a part of the contents into the hollow of the extrusion punch to produce a molded body. This is a processing method, which is based on a so-called backward extrusion process (a method of manufacturing a molded body while extruding the contained material in a direction opposite to the extrusion direction of the punch). On the other hand, another processing method is to store the contents in a hollow die and press the contents with a punch that does not have a hollow to reduce the thickness of the contents while removing a part of the contents from the hollow of the die. This is a processing method for producing a molded body by extrusion, and is based on a so-called forward extrusion process (a method for producing a molded body while extruding the contained material in the extrusion direction of the punch).

ところで、ランタノイド等の希土類元素を用いた希土類磁石は永久磁石とも称され、その用途は、ハードディスクやMRIを構成するモータのほか、ハイブリッド車や電気自動車等の駆動用モータなどに用いられている。   By the way, rare earth magnets using rare earth elements such as lanthanoids are also called permanent magnets, and their uses are used in motors for driving hard disks and MRI, as well as in driving motors for hybrid vehicles and electric vehicles.

この希土類磁石の磁石性能の指標として残留磁化(残留磁束密度)と保磁力を挙げることができるが、モータの小型化や高電流密度化による発熱量の増大に対し、使用される希土類磁石にも耐熱性に対する要求は一層高まっており、高温使用下で磁石の磁気特性を如何に保持できるかが当該技術分野での重要な研究課題の一つとなっている。   Residual magnetization (residual magnetic flux density) and coercive force can be cited as indicators of the magnet performance of this rare earth magnet. However, in response to increased heat generation due to miniaturization of motors and higher current density, rare earth magnets used also The demand for heat resistance is further increasing, and how to maintain the magnetic properties of the magnet under high temperature use is one of the important research subjects in the technical field.

希土類磁石としては、組織を構成する結晶粒(主相)のスケールが3〜5μm程度の一般的な焼結磁石のほか、結晶粒を50nm〜300nm程度のナノスケールに微細化したナノ結晶磁石があるが、中でも、上記する結晶粒の微細化を図りながら高価な重希土類元素の添加量を低減したり、重希土類元素の添加を無くすことのできるナノ結晶磁石が現在注目されている。   As rare earth magnets, in addition to general sintered magnets with a crystal grain (main phase) scale of 3 to 5 μm constituting the structure, nanocrystal magnets with crystal grains refined to a nanoscale of about 50 nm to 300 nm are available. Among them, nanocrystal magnets that can reduce the amount of expensive heavy rare earth elements added or eliminate the addition of heavy rare earth elements while miniaturizing the crystal grains described above are currently attracting attention.

希土類磁石の製造方法の一例を概説すると、たとえばNd-Fe-B系の金属溶湯を急冷凝固して得られた微粉末を加圧成形しながら希土類磁石前駆体(焼結体)とし、この焼結体に磁気的異方性を付与するべく熱間塑性加工を施して希土類磁石(配向磁石)を製造する方法が一般に適用されている。   An example of a method for producing a rare earth magnet is outlined below. For example, a fine powder obtained by rapid solidification of a Nd-Fe-B metal melt is pressed into a rare earth magnet precursor (sintered body). In general, a method of producing a rare earth magnet (orientated magnet) by performing hot plastic working to give magnetic anisotropy to a bonded body is applied.

この熱間塑性加工において、上記する前方押出し加工や後方押出し加工が適用されている。より具体的には、後方押出し加工においては、ダイスに焼結体を収容し、中空を有する押出しパンチで押出して加圧し、押出し方向と逆の方向に焼結体を押出しながら希土類磁石を製造する。一方、前方押出し加工においては、ダイスに収容された焼結体を中空を具備しないパンチで加圧し、ダイスの中空から焼結体の一部を押出して希土類磁石を製造する。そして、いずれの押出し加工方法を適用した場合でも、パンチにて加圧されてできた希土類磁石において、このパンチによる加圧方向と垂直な方向に異方性が生じてくる。   In this hot plastic working, the above-described forward extrusion and backward extrusion are applied. More specifically, in the backward extrusion process, a sintered body is accommodated in a die, extruded and pressurized by an extrusion punch having a hollow, and a rare earth magnet is manufactured while extruding the sintered body in a direction opposite to the extrusion direction. . On the other hand, in the forward extrusion process, the sintered body accommodated in the die is pressed with a punch that does not have a hollow, and a part of the sintered body is extruded from the hollow of the die to produce a rare earth magnet. In any of the extrusion methods, anisotropy occurs in the direction perpendicular to the pressing direction of the punch in the rare earth magnet formed by pressing with the punch.

このように複数種類の押出し加工方法が存在する中で、前方押出し加工方法を取り上げてその従来の加工方法における課題を説明する。   Thus, in the presence of a plurality of types of extrusion methods, the forward extrusion method is taken up and problems in the conventional processing method are described.

従来の前方押出し加工装置は、その構成要素であるダイスが一つの押出し方向に延びる中空を有しており、この中空に収容された焼結体がパンチにて一方向に押し出されることで鍛造されるようになっている。またこの前方押出し加工の変形例として、押出し方向が途中で直角に転換し、しかも断面寸法の変化がない中空内をワークが押し出されてせん断変形を与える加工方法があり、これを一般に、E-CAP法と称している。   A conventional forward extrusion processing apparatus has a hollow, in which a die as a component thereof extends in one extrusion direction, and the sintered body accommodated in the hollow is forged by being extruded in one direction by a punch. It has become so. Further, as a modification of this forward extrusion process, there is a processing method in which the extrusion direction changes to a right angle in the middle and the workpiece is extruded through a hollow where there is no change in the cross-sectional dimension to give a shear deformation. This is called the CAP method.

一方、特許文献1には、ダイスの中空に収容された焼結体をパンチにて一方向に押し出すことで鍛造する前方押出し加工装置の開示があるが、ここで開示される中空の断面形状は、直交する一方の断面幅(Y方向の断面幅)が広がり、他方の断面幅(X方向の断面幅)は逆に曲線的に絞られて狭くなる形状を呈している。すなわち、中空の断面寸法が途中で変化する装置である。   On the other hand, in Patent Document 1, there is a disclosure of a front extrusion processing apparatus forging by extruding a sintered body accommodated in the hollow of a die in one direction with a punch, but the hollow cross-sectional shape disclosed here is The cross-sectional width of one perpendicular (cross-sectional width in the Y direction) is widened, and the other cross-sectional width (cross-sectional width in the X direction) is constricted in a curved manner. That is, it is an apparatus in which the hollow cross-sectional dimension changes midway.

このように特許文献1で開示される前方押出し加工装置のダイスの開口断面は、その中空断面の一部が曲線的に絞られて狭くなる複雑な形状を呈していることから、装置の製作が困難であり、装置製作コストが嵩むことは理解に易い。また、初期の焼結体の厚さに対して前方押出し加工後の希土類磁石の厚さが変化するに際し、中空の断面が3次元的に複雑な形状ゆえに焼結体の厚さの変化も3次元的に複雑に変化することから、焼結体から希土類磁石へ変化する際の厚みの変化や加工率などの設計が極めて難しい。   Thus, since the opening cross section of the die of the forward extrusion processing apparatus disclosed in Patent Document 1 has a complicated shape in which a part of the hollow cross section is narrowed by a curve, the apparatus can be manufactured. It is difficult and it is easy to understand that the device manufacturing cost is high. Further, when the thickness of the rare earth magnet after forward extrusion changes with respect to the initial thickness of the sintered body, the change in the thickness of the sintered body is also 3 because the hollow cross section has a three-dimensionally complicated shape. Since it changes in a dimensional complexity, it is extremely difficult to design changes in thickness and processing rate when changing from a sintered body to a rare earth magnet.

特開2008−91867号公報JP 2008-91867 A

本発明は上記する問題に鑑みてなされたものであり、ダイスに開設された中空がシンプルな断面形状を有し、よって製作コストが高価なものとならず、かつ磁気特性に優れた希土類磁石を製造することのできる前方押出し鍛造装置とこの鍛造装置を使用してなる前方押出し鍛造方法を提供することを目的とする。   The present invention has been made in view of the above problems, and a hollow formed in a die has a simple cross-sectional shape, so that a manufacturing cost does not become expensive and a rare earth magnet excellent in magnetic properties is obtained. An object is to provide a forward extrusion forging device that can be manufactured and a forward extrusion forging method using the forging device.

前記目的を達成すべく、本発明による前方押出し鍛造装置は、中空を有して屈曲するダイスと、ダイス内を摺動するパンチとから構成される前方押出し鍛造装置であって、ダイスは、パンチが摺動する第1の領域と、屈曲部を介して第1の領域よりも押出し方向前方に位置する第2の領域とから構成され、第1の領域内にワークが収容され、該第1の領域内でパンチが摺動してワークが第2の領域に押出されて鍛造されるようになっており、第1の領域と第2の領域の押出し方向に直交する断面の形状はともに矩形であり、第1の領域の前記断面の矩形を構成する直交する2辺をそれぞれ第1の辺(長さt1)、第2の辺(長さt2)とし、第2の領域の前記断面の矩形を構成する直交する2辺のうち、第1の辺に対応する辺を第3の辺(長さt3)、第2の辺に対応する辺を第4の辺(長さt4)とした際に、
t3>t1、t4>t2の少なくとも一方を満たしているものである。
In order to achieve the above object, a forward extrusion forging device according to the present invention is a forward extrusion forging device comprising a die having a hollow and bending, and a punch sliding in the die, wherein the die is a punch. And a second region located in the forward direction of the first region with respect to the first region via the bent portion, and the work is accommodated in the first region, the first region The punch slides in the area of, and the workpiece is extruded into the second area and forged, and the shape of the cross section perpendicular to the extrusion direction of the first area and the second area is both rectangular. And two orthogonal sides constituting the rectangle of the cross section of the first region are defined as a first side (length t1) and a second side (length t2), respectively, and the cross section of the second region Of the two orthogonal sides constituting the rectangle, the side corresponding to the first side is the third side (length t3). Upon the side corresponding to the second side and the fourth side (length t4),
It satisfies at least one of t3> t1 and t4> t2.

本発明の前方押出し鍛造装置は、主として2つの特徴を有している。第1の特徴点は、従来の装置と異なり、その構成要素であるダイスが屈曲していることであり、パンチが摺動する第1の領域と、屈曲部を介して第1の領域よりも押出し方向前方に位置する第2の領域とからダイスが構成されている点である。また、第2の特徴点は、ダイスの第1の領域、第2の領域の断面形状がともにシンプルな矩形であることに加えて、第1の領域の矩形断面を構成する直交する2辺を第1の辺(長さt1)および第2の辺(長さt2)とし、第2の領域の矩形断面を構成する直交する2辺を第3の辺(長さt3)および第4の辺(長さt4)とした際に、t3>t1、t4>t2の少なくとも一方を満たしている点である。このような2つの特徴構成を備えたダイスを構成要素とする鍛造装置によれば、ダイスに開設された開口の断面形状がシンプルな矩形であることから装置製作コストが高騰することはない。さらに、ダイス内に収容されるワークが希土類磁石前駆体となる焼結体の場合には、開口の屈曲部を通過する過程で焼結体にはせん断力が付与されてせん断歪みが導入され、屈曲部より押出し方向前方にあるダイスの第2の領域では、第1の領域に比して少なくとも一部が相対的に広がっていることで押し出された焼結体の各結晶は高い配向度を有して揃うこととなる。そのため、磁気特性、中でも残留磁化の高い希土類磁石を製造することができる。   The forward extrusion forging device of the present invention has mainly two features. The first feature point is that, unlike the conventional apparatus, a die which is a component thereof is bent, and the first region where the punch slides, and the first region via the bent portion. This is a point in which a die is formed from the second region located forward in the extrusion direction. In addition to the fact that the cross-sectional shapes of the first area and the second area of the dice are both simple rectangles, the second feature point is that two orthogonal sides constituting the rectangular cross section of the first area are defined. The first side (length t1) and the second side (length t2), and the two orthogonal sides constituting the rectangular cross section of the second region are the third side (length t3) and the fourth side. (Length t4) is that at least one of t3> t1 and t4> t2 is satisfied. According to the forging device having a die having two features as described above as a constituent element, the manufacturing cost of the device does not increase because the sectional shape of the opening formed in the die is a simple rectangle. Furthermore, in the case of a sintered body in which the work housed in the die is a rare earth magnet precursor, a shearing force is applied to the sintered body in the process of passing through the bent portion of the opening, and shear strain is introduced, In the second region of the die, which is ahead of the bent portion in the extrusion direction, each crystal of the sintered body extruded by having at least a portion relatively expanded as compared with the first region has a high degree of orientation. It will have and have. Therefore, it is possible to manufacture a rare earth magnet having high magnetic properties, particularly high remanent magnetization.

本明細書において「断面が矩形」とは、第1の領域、第2の領域の押出し方向に直交する断面の形状が長方形の他、正方形も含む意味である。   In this specification, “the cross section is rectangular” means that the shape of the cross section perpendicular to the extrusion direction of the first region and the second region is not only rectangular but also square.

また、「t3>t1、t4>t2の少なくとも一方を満たしている」とは、t3>t1でt4>t2の形態、t3>t1でt4=t2の形態、t3>t1でt4<t2の形態を包含する意味である。すなわち、対応する第3、第1の辺の長さの大小関係がt3>t1を満たす場合には、他の対応する第4、第2の辺の長さの大小関係が逆にt4<t2の関係となってもよい。   Also, “t3> t1, t4> t2 is satisfied” means that t3> t1 and t4> t2, t3> t1 and t4 = t2, t3> t1 and t4 <t2 It is a meaning including. That is, if the corresponding size relationship between the lengths of the third and first sides satisfies t3> t1, the size relationship between the other corresponding lengths of the fourth and second sides is t4 <t2. The relationship may be

たとえば、ダイスの第2の領域の水平方向に延びる辺を第3の辺、これに直交して鉛直方向に延びる辺を第4の辺とした際に、第3の辺の長さt3がこれに対応する第1の領域の第1の辺の長さt1より長く(t3>t1)、かつ、第2の辺の長さt2と第4の辺の長さt4が同じ(t4=t2)場合は、第1の領域から第2の領域に前方押出しされた焼結体の高さ方向の長さ(すなわち厚み)は変化せず、幅方向のみ長さt1から長さt3に変化する。このため、屈曲部でせん断力を受けてせん断歪みが導入されて第2の領域に移行した焼結体を構成する扁平状の結晶は第2の領域の断面内において水平方向に並び、したがって各結晶は鉛直方向に配向が揃った状態となる。この実施の形態の場合には、前方押出し加工によって焼結体から希土類磁石が製造される際に、焼結体と希土類磁石の厚さは変化せず、幅のみが変化して結晶配向が揃うことから、製品設計に必要なパラメータが少なくなり、製品設計が容易となることから好ましい。   For example, when the side extending in the horizontal direction of the second region of the die is the third side and the side orthogonal to this and extending in the vertical direction is the fourth side, the length t3 of the third side is Is longer than the length t1 of the first side of the first region corresponding to (t3> t1), and the length t2 of the second side is the same as the length t4 of the fourth side (t4 = t2). In this case, the length in the height direction (that is, the thickness) of the sintered body extruded forward from the first region to the second region does not change, and changes from the length t1 to the length t3 only in the width direction. For this reason, the flat crystals constituting the sintered body that has received shearing force at the bent portion and introduced shear strain and moved to the second region are aligned in the horizontal direction in the cross section of the second region, and therefore The crystals are aligned in the vertical direction. In the case of this embodiment, when a rare earth magnet is produced from a sintered body by forward extrusion, the thickness of the sintered body and the rare earth magnet does not change, only the width changes and the crystal orientation is aligned. Therefore, it is preferable because the parameters required for product design are reduced and the product design is facilitated.

また、ダイスの「屈曲」に関し、第1の領域における押出し方向に対する第2の領域における押出し方向は0度より大きく、180度未満の範囲を包含するものであるが、好ましくは90度以下であり、望ましくは10〜30度でたとえば20度程度がよい。   Regarding the “bending” of the die, the extruding direction in the second region with respect to the extruding direction in the first region includes a range of greater than 0 degrees and less than 180 degrees, but is preferably 90 degrees or less. Preferably, it is 10 to 30 degrees, for example, about 20 degrees.

第1の領域内をパンチが摺動して第1の領域内に収容されたワークを押し出すに当たり、この押出しはモータやシリンダ機構等のアクチュエータのほか、手動による形態であってもよい。   When the punch slides in the first area and pushes out the work housed in the first area, the pushing may be in the form of a manual as well as an actuator such as a motor or a cylinder mechanism.

また、本発明による前方押出し鍛造装置の好ましい実施の形態は、第2の領域において長さが相対的に長くなる辺に対応する第1の領域の辺が、第1の領域の途中位置から屈曲部にかけて漸増しているものである。   Further, in a preferred embodiment of the forward extrusion forging device according to the present invention, the side of the first region corresponding to the side having a relatively long length in the second region is bent from the middle position of the first region. It gradually increases over the part.

ワークが焼結体の場合において、たとえば第1の領域の第1の辺から第2の領域の第3の辺にかけて屈曲部を介して急激に長さt1から長さt3に長くなった際に、屈曲部にてせん断力を受けた焼結体の各結晶の配向が所望に揃うことが実際には難しくなることが想定される。   In the case where the workpiece is a sintered body, for example, when the length suddenly increases from the length t1 to the length t3 through the bent portion from the first side of the first region to the third side of the second region. It is assumed that it is actually difficult for the crystals of the sintered body that has received a shearing force at the bent portion to have the desired crystal orientation.

そこで、たとえば第2の辺と第4の辺の長さt2、t4が変化せず、第1の辺から第3の辺の長さのみが変化する場合を例示した場合に、第1の領域の途中位置から第1の辺が屈曲部にかけて漸増し、屈曲部にて第3の辺の長さt3と同じ長さとなるようにダイスを設計しておく。このことにより、第1の領域から第2の領域に焼結体が移行した際に、焼結体は第1の領域の途中から徐々に第1の辺に沿う方向で幅が広がり、屈曲部にてせん断力を受けてせん断歪みが導入され、第3の辺の長さt3を既に備えた状態で焼結体が第2の領域に移行することにより、各結晶の配向がスムーズに実行されることになる。   Therefore, for example, when the lengths t2 and t4 of the second side and the fourth side do not change and only the length of the third side changes from the first side, the first region is illustrated. The die is designed so that the first side gradually increases from the middle position to the bent portion, and becomes the same length as the length t3 of the third side at the bent portion. As a result, when the sintered body moves from the first region to the second region, the width of the sintered body gradually increases in the direction along the first side from the middle of the first region, and the bent portion The shearing strain is introduced by receiving the shearing force at, and the sintered body moves to the second region with the third side length t3 already provided, so that the orientation of each crystal is executed smoothly. Will be.

仮に、t3>t1、t4>t2の場合には、第1の領域において、第1の辺、第2の辺ともに屈曲部に向かって漸増する形態となる。また、仮に、t3>t1でt4<t2の場合には、第1の領域において、第1の辺は屈曲部に向かって漸増し、第2の辺は屈曲部に向かって漸減する形態となる。   If t3> t1 and t4> t2, in the first region, both the first side and the second side gradually increase toward the bent portion. Further, if t3> t1 and t4 <t2, in the first region, the first side gradually increases toward the bent portion, and the second side gradually decreases toward the bent portion. .

また、本発明は前方押出し鍛造方法にも及ぶものであり、この鍛造方法は、前方押出し鍛造装置を使用して鍛造品を製造する前方押出し鍛造方法であって、中空を有して屈曲するダイスと、ダイス内を摺動するパンチとからなる前方押出し鍛造装置であり、ダイスは、パンチが摺動する第1の領域と、屈曲部を介して第1の領域よりも押出し方向前方に位置する第2の領域とから構成され、第1の領域内にワークが収容され、該第1の領域内でパンチが摺動してワークが第2の領域に押出されて鍛造されるようになっており、第1の領域と第2の領域の押出し方向に直交する断面の形状はともに矩形であり、第1の領域の前記断面の矩形を構成する直交する2辺をそれぞれ第1の辺(長さt1)、第2の辺(長さt2)とし、第2の領域の前記断面の矩形を構成する直交する2辺のうち、第1の辺に対応する辺を第3の辺(長さt3)、第2の辺に対応する辺を第4の辺(長さt4)とした際に、t3>t1、t4>t2の少なくとも一方を満たしている前方押出し鍛造装置を用意する第1のステップ、ワークをダイスに収容し、パンチを摺動させてワークを鍛造して鍛造品を製造する第2のステップからなるものである。   The present invention also extends to a forward extrusion forging method. This forging method is a forward extrusion forging method for producing a forged product using a forward extrusion forging device, and is a die that has a hollow and is bent. And a forward extrusion forging device comprising a punch that slides in the die, and the die is positioned forward in the extrusion direction from the first region through the bent portion and the first region in which the punch slides. The second region, the workpiece is accommodated in the first region, the punch slides in the first region, the workpiece is extruded into the second region and forged. In addition, the shape of the cross section orthogonal to the extrusion direction of the first region and the second region is both a rectangle, and two orthogonal sides constituting the rectangle of the cross section of the first region are respectively the first side (long T1), the second side (length t2), and the cross section of the second region Of the two orthogonal sides constituting the rectangle, the side corresponding to the first side is the third side (length t3), and the side corresponding to the second side is the fourth side (length t4). The first step of preparing a forward extrusion forging device satisfying at least one of t3> t1 and t4> t2, when the work is housed in a die, the punch is slid to forge the work It consists of the 2nd step which manufactures.

本発明の前方押出し鍛造方法は、既述する前方押出し鍛造装置を使用した鍛造方法であり、屈曲部を備え、屈曲前後の断面形状がともに矩形であり、t3>t1、t4>t2の少なくとも一方を満たしているダイスを備えた前方押出し鍛造装置を使用して押出し鍛造をおこなうことにより、ワークが希土類磁石前駆体の焼結体の場合には、高い配向度に起因して磁気特性に優れた希土類磁石を製造することができる。   The forward extrusion forging method of the present invention is a forging method using the forward extrusion forging device described above, has a bent portion, has a rectangular cross-sectional shape before and after bending, and is at least one of t3> t1 and t4> t2. Extrusion forging using a forward extrusion forging machine equipped with a die that satisfies the requirements, and when the workpiece is a sintered body of a rare earth magnet precursor, it has excellent magnetic properties due to a high degree of orientation Rare earth magnets can be manufactured.

ここで、本発明の鍛造方法が製造対象とする希土類磁石には、組織を構成する主相(結晶)の粒径が200nm以下程度のナノ結晶磁石は勿論のこと、粒径が300nm以上のもの、さらには粒径が1μm以上の焼結磁石や樹脂バインダーで結晶粒が結合されたボンド磁石などが包含される。中でも、最終的に製造される希土類磁石の主相の平均最大寸法(平均最大粒径)が300〜400nm程度かそれ以下となるように熱間塑性加工前の段階の磁粉の主相の寸法が調整されているのが望ましい。   Here, the rare earth magnet to be manufactured by the forging method of the present invention includes not only nanocrystalline magnets having a grain size of the main phase (crystal) constituting the structure of about 200 nm or less, but also those having a grain size of 300 nm or more. Furthermore, a sintered magnet having a grain size of 1 μm or more, a bonded magnet in which crystal grains are bonded with a resin binder, and the like are included. Above all, the size of the main phase of the magnetic powder before the hot plastic working is such that the average maximum size (average maximum particle size) of the main phase of the rare-earth magnet finally produced is about 300 to 400 nm or less. It is desirable that it is adjusted.

希土類磁石の製造方法の一例を挙げると、液体急冷にて微細な結晶粒である急冷薄帯(急冷リボン)を製作し、これを粗粉砕等して希土類磁石用の磁粉を製作し、この磁粉をたとえばダイス内に充填してパンチで加圧しながら焼結してバルク化を図ることで等方性の焼結体を得る。   An example of a method for producing a rare earth magnet is to produce a quenched ribbon (quenched ribbon), which is a fine crystal grain, by liquid quenching, and coarsely pulverize it to produce a magnetic powder for a rare earth magnet. For example, an isotropic sintered body is obtained by filling the inside of a die and sintering it while pressing with a punch to achieve bulking.

この焼結体は、たとえばナノ結晶組織のRE-Fe-B系の主相(RE:Nd、Prの少なくとも一種で、より具体的にはNd、Pr、Nd-Prのいずれか一種もしくは二種以上)と、該主相の周りにあるRE-X合金(X:金属元素)の粒界相からなる金属組織を有している。   This sintered body is, for example, a RE-Fe-B main phase (RE: at least one of Nd and Pr, more specifically one or two of Nd, Pr, and Nd-Pr with a nanocrystalline structure. And a metal structure composed of a grain boundary phase of the RE-X alloy (X: metal element) around the main phase.

第2のステップにおいて、上記する焼結体を装置内に収容し、磁気的異方性を与える熱間押出し鍛造(熱間塑性加工)を施すことによって配向磁石である希土類磁石が製造される。   In the second step, the sintered body described above is accommodated in the apparatus, and hot extrusion forging (hot plastic working) giving magnetic anisotropy is performed to produce a rare earth magnet as an oriented magnet.

以上の説明から理解できるように、本発明の前方押出し鍛造装置と前方押出し鍛造方法によれば、装置を構成するダイスの屈曲部でワークとして収容された希土類磁石前駆体である焼結体にせん断力を付与し、屈曲部より押出し方向前方にあるダイスの第2の領域では押し出された焼結体を構成する各結晶が高い配向度を有して揃うことから、残留磁化の高い希土類磁石を製造することができる。   As can be understood from the above description, according to the forward extrusion forging device and the forward extrusion forging method of the present invention, the sintered body, which is a rare earth magnet precursor accommodated as a workpiece at the bent portion of the die constituting the device, is sheared. Since the crystals constituting the extruded sintered body are aligned with a high degree of orientation in the second region of the die that is in front of the bending portion in the extruding direction from the bent portion, a rare earth magnet having a high residual magnetization is obtained. Can be manufactured.

(a)は本発明の前方押出し鍛造装置の実施の形態1を示した縦断面図であり、(b)は(a)のb−b矢視図である。(A) is the longitudinal cross-sectional view which showed Embodiment 1 of the forward extrusion forging apparatus of this invention, (b) is a bb arrow line view of (a). (a)は前方押出し鍛造装置の実施の形態1にてワークである焼結体が前方押出し鍛造されている状況を示した縦断面図であり、(b)は(a)のb−b矢視図である。(A) is the longitudinal cross-sectional view which showed the condition where the sintered compact which is a workpiece | work is forward extrusion forged in Embodiment 1 of a forward extrusion forging apparatus, (b) is the bb arrow of (a). FIG. (a)、(b)ともに、前方押出し鍛造装置の実施の形態2,3を示した縦断面図である。(A), (b) is the longitudinal cross-sectional view which showed Embodiment 2, 3 of the forward extrusion forging apparatus. (a)は焼結体のミクロ構造を説明した図であり、(b)は希土類磁石のミクロ構造を説明した図である。(A) is a figure explaining the microstructure of a sintered compact, (b) is a figure explaining the microstructure of the rare earth magnet. 第1の領域から第2の領域にワークが移行した際の寸法変化を特定したCAE解析結果を示した図である。It is the figure which showed the CAE analysis result which specified the dimensional change when a workpiece | work transferred to the 2nd area | region from the 1st area | region.

以下、図面を参照して本発明の前方押出し鍛造装置と前方押出し鍛造方法の実施の形態を説明する。   Hereinafter, embodiments of the forward extrusion forging device and the forward extrusion forging method of the present invention will be described with reference to the drawings.

(前方押出し鍛造装置の実施の形態)
図1a,bは本発明の前方押出し鍛造装置の実施の形態1を示した縦断面図である。図示する鍛造装置10は、中空5を有するダイス1と、ダイス1の第1の領域2の中空5内で摺動自在(X1方向)なパンチ6と、パンチ6を摺動させる不図示のアクチュエータや鍛造時にダイス1を加熱する不図示の加熱手段から大略構成されている。
(Embodiment of forward extrusion forging device)
1a and 1b are longitudinal sectional views showing Embodiment 1 of a forward extrusion forging device according to the present invention. The forging device 10 shown in the figure includes a die 1 having a hollow 5, a punch 6 that is slidable (in the X1 direction) within the hollow 5 in the first region 2 of the die 1, and an actuator (not shown) that slides the punch 6. Or a heating means (not shown) for heating the die 1 during forging.

ダイス1は、鉛直方向に長手方向L1(ワーク押出し方向)を有する第1の領域2と、この第1の領域2に対して角度θ1(=90度)で屈曲して水平方向に長手方向L2(ワーク押出し方向)を有する第2の領域4と、第1の領域2と第2の領域4を繋ぐ屈曲部3とから構成されている。   The die 1 has a first region 2 having a longitudinal direction L1 (work extruding direction) in the vertical direction, and is bent at an angle θ1 (= 90 degrees) with respect to the first region 2, and the longitudinal direction L2 in the horizontal direction. It is comprised from the 2nd area | region 4 which has (work extrusion direction), and the bending part 3 which connects the 1st area | region 2 and the 2nd area | region 4. FIG.

中空5内に収容された不図示のワークは、その後方に位置して第1の領域2の内周面に沿って中空5内を摺動するパンチ6にて中空5の前方へ押し出され、屈曲部3を経て第2の領域4に押し出されて鍛造されるようになっている。   A workpiece (not shown) accommodated in the hollow 5 is pushed forward of the hollow 5 by a punch 6 that slides in the hollow 5 along the inner peripheral surface of the first region 2 located behind the workpiece. It is extruded to the second region 4 through the bent portion 3 and forged.

第1の領域2、第2の領域4ともにその長手方向に直交する断面形状は矩形であり、図1aで示すダイス1を側方から見た縦断面図において、第1の領域2の矩形断面を構成する一方の辺(第2の辺2b)は長さがt2、第2の領域4の矩形断面を構成する一方の辺(第4の辺4b)は長さがt4である。また、図1bで示すダイス1を正面から見た縦断面図において、第1の領域2の矩形断面を構成する他方の辺(第1の辺2a)は長さがt1、第2の領域4の矩形断面を構成する他方の辺(第3の辺4a)は長さがt3である。
そして、図示例においては、t3>t1、t4=t2の関係を有している。
In both the first region 2 and the second region 4, the cross-sectional shape orthogonal to the longitudinal direction is a rectangle, and in the longitudinal cross-sectional view of the die 1 shown in FIG. Is one side (second side 2b) having a length t2, and one side (fourth side 4b) constituting the rectangular cross section of the second region 4 has a length t4. Further, in the longitudinal sectional view of the die 1 shown in FIG. 1b as viewed from the front, the other side (first side 2a) constituting the rectangular cross section of the first region 2 has a length t1, and the second region 4 The other side (third side 4a) constituting the rectangular cross section has a length t3.
In the illustrated example, the relationship is t3> t1, t4 = t2.

ただし、本発明の鍛造装置においては、第1の辺2aに対応する第3の辺4a、第2の辺2bに対応する第4の辺4bにおいて、t3>t1、t4>t2の少なくとも一方を満たしていれば本発明の鍛造装置による効果が奏される。したがって、t3>t1でt4>t2の形態、t3>t1でt4=t2の形態、t3>t1でt4<t2の形態などであってもよい。   However, in the forging device of the present invention, at least one of t3> t1 and t4> t2 is set on the third side 4a corresponding to the first side 2a and the fourth side 4b corresponding to the second side 2b. If it is satisfied, the effect of the forging device of the present invention is exhibited. Therefore, a form of t4> t2 when t3> t1, a form of t4 = t2 when t3> t1, a form of t4 <t2 when t3> t1, and the like may be used.

尤も、図示例のようにt3>t1、t4=t2の関係を有している形態では、たとえば押出し鍛造されるワークが希土類磁石前駆体である焼結体の場合において、前方押出し加工によって焼結体が第1の領域から屈曲部を経て第2の領域に押し出されるに当たり、焼結体と希土類磁石の幅は変化せず(t4=t2のため)、厚さのみが変化して結晶配向が揃うことになる。したがって、製品設計に必要なパラメータが少なくなり、製品設計が容易となることから好ましい実施の形態と言える。   However, in the form having a relationship of t3> t1 and t4 = t2 as in the illustrated example, for example, when the workpiece to be extruded and forged is a sintered body that is a rare earth magnet precursor, sintering is performed by forward extrusion. When the body is extruded from the first region to the second region through the bend, the width of the sintered body and the rare earth magnet does not change (because t4 = t2), only the thickness changes and the crystal orientation changes. Will be aligned. Therefore, it can be said that this is a preferred embodiment because the parameters required for product design are reduced and product design is facilitated.

また、図示例のダイス1では、第2の領域4において長さが相対的に長くなる第3の辺4aに対応する第1の領域2における第1の辺2aが、第1の領域2の途中位置2’から屈曲部3にかけて漸増している漸増部2”を有している。   Further, in the illustrated die 1, the first side 2 a in the first region 2 corresponding to the third side 4 a having a relatively long length in the second region 4 is the first region 2. A gradually increasing portion 2 ″ that gradually increases from the midway position 2 ′ to the bent portion 3 is provided.

図2で示すように、たとえばワークWが焼結体の場合において、たとえば第1の領域2の第1の辺2aから第2の領域4の第3の辺4aにかけて屈曲部3を介して急激に長さt1から長さt3に長くなった際に、屈曲部3にてせん断力Sを受けた焼結体の各結晶の配向が所望に揃うことが実際には難しくなることが想定される。そこで、第1の領域2の途中位置2’から第1の辺2aが屈曲部3にかけて漸増し、屈曲部3にて第3の辺4aの長さt3と同じ長さとなるようにダイス1を設計しておく。このことにより、第1の領域2から第2の領域4に焼結体が移行した際に、焼結体は第1の領域2の途中から徐々に第1の辺2aに沿う方向で幅が広がり、屈曲部3にてせん断力を受けてせん断歪みが導入され、第3の辺4aの長さt3を既に備えた状態で焼結体が第2の領域4に移行することにより、各結晶の配向がスムーズに実行されることになる。   As shown in FIG. 2, for example, in the case where the workpiece W is a sintered body, for example, abruptly passing through the bent portion 3 from the first side 2 a of the first region 2 to the third side 4 a of the second region 4. When the length t1 is increased from the length t1 to the length t3, it is assumed that it is actually difficult to achieve the desired orientation of each crystal of the sintered body that has received the shearing force S at the bent portion 3. . Therefore, the first side 2a is gradually increased from the middle position 2 ′ of the first region 2 to the bent portion 3, and the die 1 is set to have the same length as the length t3 of the third side 4a at the bent portion 3. Design it. Thus, when the sintered body moves from the first region 2 to the second region 4, the width of the sintered body gradually increases from the middle of the first region 2 in the direction along the first side 2a. The sintered body is transferred to the second region 4 in a state where the shearing force is introduced by receiving the shearing force at the bent portion 3 and the length t3 of the third side 4a is already provided. The orientation is smoothly executed.

なお、図2bにおいて、前方押出し鍛造されて第2の領域に押し出された希土類磁石を構成する横長扁平状の各結晶は、それらの長手方向が第3の辺4aに沿う方向に揃い、したがって配向は第4の辺4b方向に揃うことになる。   In FIG. 2b, the horizontally long and flat crystals constituting the rare earth magnet that has been forward-extruded forged and extruded into the second region have their longitudinal directions aligned in the direction along the third side 4a, and are therefore oriented. Are aligned in the direction of the fourth side 4b.

図3a,bは、前方押出し鍛造装置の実施の形態2,3を示した縦断面図である。図3aで示す鍛造装置10Aは、屈曲部3を経た第2の領域4Aの第1の領域2に対する角度θ2が90度未満のダイス1Aを具備するものであり、図3bで示す鍛造装置10Bは、屈曲部3を経た第2の領域4Bの第1の領域2に対する角度θ3が90度より大きく、180度未満のダイス1Bを具備するものである。   3a and 3b are longitudinal sectional views showing Embodiments 2 and 3 of the forward extrusion forging device. A forging device 10A shown in FIG. 3a includes a die 1A in which an angle θ2 of the second region 4A passing through the bent portion 3 with respect to the first region 2 is less than 90 degrees, and the forging device 10B shown in FIG. An angle θ3 of the second region 4B that has passed through the bent portion 3 with respect to the first region 2 is greater than 90 degrees and includes a die 1B that is less than 180 degrees.

このように、本発明の前方押出し鍛造装置は、その構成要素であるダイスがその途中位置で0度より大きく180度未満の角度で屈曲していることにより、ワークが屈曲部を通過する際にせん断力をワークに付与し、せん断歪を導入することができる。さらに、第1の領域の矩形断面を構成する2つの辺に対応する第2の領域の2つの辺のうちの少なくとも1つの辺が長くなるように構成されていることで、ワークが希土類磁石前駆体の焼結体の場合には、焼結体を構成する各結晶の配向を促進することができる。   As described above, the forward extrusion forging device of the present invention is configured such that when the workpiece passes through the bent portion, the component die is bent at an intermediate position at an angle greater than 0 degrees and less than 180 degrees. A shear force can be applied to the workpiece to introduce a shear strain. Furthermore, the workpiece is configured so that at least one of the two sides of the second region corresponding to the two sides constituting the rectangular cross section of the first region is long, so that the workpiece is a rare earth magnet precursor. In the case of a sintered body, the orientation of each crystal constituting the sintered body can be promoted.

ワークが希土類磁石前駆体の焼結体の場合に、この焼結体のミクロ構造を図4aに、焼結体が図示する鍛造装置10にて押出し鍛造(熱間塑性加工)されてなる希土類磁石のミクロ構造を図4bにそれぞれ示す。   When the workpiece is a sintered body of a rare earth magnet precursor, the microstructure of this sintered body is shown in FIG. 4a. The rare earth magnet is formed by extrusion forging (hot plastic working) in the forging device 10 illustrated in FIG. 4a. The microstructures are shown in FIG.

図4aで示すように、焼結体はナノ結晶粒MP(主相)間を粒界相BPが充満する等方性の結晶組織を呈している。   As shown in FIG. 4 a, the sintered body has an isotropic crystal structure in which the grain boundary phase BP is filled between the nanocrystalline grains MP (main phase).

これに対し、図4bで示すように、ナノ結晶粒MPが扁平形状をなし、異方軸とほぼ平行な界面は湾曲したり屈曲していて、磁気的異方性の高い希土類磁石となっている。   On the other hand, as shown in FIG. 4b, the nanocrystalline grains MP have a flat shape, and the interface substantially parallel to the anisotropic axis is curved or bent, resulting in a rare earth magnet having high magnetic anisotropy. Yes.

(希土類磁石の製造方法および前方押出し鍛造方法の実施の形態)
次に、希土類磁石の製造方法を前方押出し鍛造方法と合わせて概説する。
たとえば50kPa以下に減圧したArガス雰囲気の不図示の炉中で、単ロールによるメルトスピニング法により、合金インゴットを高周波溶解し、希土類磁石を与える組成の溶湯を銅ロールRに噴射して急冷薄帯(急冷リボン)を製作し、これを粗粉砕する。
(Embodiments of rare earth magnet manufacturing method and forward extrusion forging method)
Next, the manufacturing method of the rare earth magnet will be outlined together with the forward extrusion forging method.
For example, in a furnace not shown in an Ar gas atmosphere reduced in pressure to 50 kPa or less, a melt spinning method using a single roll melts the alloy ingot at high frequency, and a molten metal having a composition giving a rare earth magnet is sprayed onto the copper roll R to rapidly cool the ribbon. (Quenched ribbon) is manufactured and coarsely pulverized.

粗粉砕された急冷薄帯のうち、最大寸法が200nm程度かそれ以下の寸法の急冷薄帯を選別し、これを超硬ダイスとこの中空内を摺動する超硬パンチで画成されたキャビティ内に充填する。そして、超硬パンチで加圧しながら加圧方向に電流を流して通電加熱することにより、ナノ結晶組織のNd-Fe-B系の主相(50nm〜200nm程度の結晶粒径)と、主相の周りにあるNd-X合金(X:金属元素)の粒界相からなる四角柱状の焼結体を製作する。   Among the coarsely pulverized quenching ribbons, a quenching ribbon having a maximum dimension of about 200 nm or less is selected, and this is defined by a carbide die and a carbide punch that slides in the hollow. Fill inside. The main phase of the Nd-Fe-B system with a nanocrystalline structure (crystal grain size of about 50 nm to 200 nm) and the main phase are heated by applying a current in the pressing direction while pressing with a carbide punch. A square columnar sintered body consisting of the grain boundary phase of Nd-X alloy (X: metal element) around is manufactured.

ここで、粒界相を構成するNd-X合金は、Ndと、Co、Fe、Ga等のうちの少なくとも1種以上の合金からなり、たとえば、Nd-Co、Nd-Fe、Nd-Ga、Nd-Co-Fe、Nd-Co-Fe-Gaのうちのいずれか一種、もしくはこれらの二種以上が混在したものであって、Ndリッチな状態となっている。   Here, the Nd—X alloy constituting the grain boundary phase is made of Nd and at least one alloy of Co, Fe, Ga, etc., for example, Nd—Co, Nd—Fe, Nd—Ga, One of Nd-Co-Fe and Nd-Co-Fe-Ga, or a mixture of two or more of these, is in an Nd-rich state.

焼結体は図4aで示すように、ナノ結晶粒MP(主相)間を粒界相BPが充満する等方性の結晶組織を呈している。   As shown in FIG. 4 a, the sintered body exhibits an isotropic crystal structure in which the grain boundary phase BP is filled between the nanocrystalline grains MP (main phase).

四角柱状の焼結体が製造されたら、図1で示す前方押出し装置10を構成するダイス1の第1の領域2に収容し、ここで前方押出し鍛造(熱間塑性加工)をおこなうことで、焼結体に磁気的異方性が付与されて希土類磁石(配向磁石)が製造される。押出し鍛造加工からなる熱間塑性加工によって、製造された希土類磁石は、図4bで示すように、ナノ結晶粒MPが扁平形状をなし、異方軸とほぼ平行な界面は湾曲したり屈曲していて、磁気的異方性に優れた希土類磁石となっている。   Once the rectangular columnar sintered body is manufactured, it is accommodated in the first region 2 of the die 1 constituting the forward extrusion apparatus 10 shown in FIG. 1, and forward extrusion forging (hot plastic working) is performed here. Magnetic anisotropy is imparted to the sintered body to produce a rare earth magnet (orientated magnet). As shown in FIG. 4b, the rare earth magnet manufactured by hot plastic working consisting of extrusion forging has a flat shape with nanocrystalline grains MP, and the interface substantially parallel to the anisotropic axis is curved or bent. Thus, the rare earth magnet has excellent magnetic anisotropy.

製造された希土類磁石に関し、RE-Fe-B系の主相(RE:Nd、Prの少なくとも一種)と、該主相の周りにあるRE-X合金(X:金属元素)の粒界相からなる金属組織を有しており、REの含有割合が29質量%≦RE≦32質量%であり、製造された希土類磁石の主相の平均粒径は300nmとなっているのがよい。REの含有割合が上記範囲にあることで、熱間塑性加工時の割れの発生抑止効果が一層高く、高い配向度を保証することができる。また、REの含有割合が上記範囲であることで、高い残留磁束密度を保証できる主相の大きさが確保できる。   Regarding the manufactured rare earth magnet, from the grain boundary phase of the RE-Fe-B main phase (at least one of RE: Nd and Pr) and the RE-X alloy (X: metal element) around the main phase It is preferable that the RE content is 29 mass% ≦ RE ≦ 32 mass%, and the average particle size of the main phase of the manufactured rare earth magnet is 300 nm. When the content ratio of RE is within the above range, the effect of suppressing the occurrence of cracks during hot plastic working is even higher, and a high degree of orientation can be guaranteed. In addition, when the RE content is in the above range, the size of the main phase that can guarantee a high residual magnetic flux density can be secured.

なお、製造された希土類磁石(配向磁石)に対し、Dy等の重希土類金属のほか、Nd-Cu合金、Nd-Al合金、Pr-Cu合金、Pr-Al合金等の重希土類金属を含まない改質合金を粒界拡散し、保磁力が一層高められた希土類磁石としてもよい。たとえば、Nd-Cu合金の共晶温度は520℃程度、Pr-Cu合金の共晶温度は480℃程度、Nd-Al合金の共晶温度は640℃程度、Pr-Al合金の共晶温度は650℃程度であり、これらの改質合金はナノ結晶磁石を構成する結晶粒の粗大化を齎す700℃〜1000℃を大きく下回っていることから、希土類磁石がナノ結晶磁石の場合に特に好適である。   In addition to heavy rare earth metals such as Dy, manufactured rare earth magnets (orientated magnets) do not contain heavy rare earth metals such as Nd-Cu alloy, Nd-Al alloy, Pr-Cu alloy, and Pr-Al alloy. The modified alloy may be a rare earth magnet in which the grain boundary is diffused and the coercive force is further increased. For example, the eutectic temperature of Nd-Cu alloy is about 520 ° C, the eutectic temperature of Pr-Cu alloy is about 480 ° C, the eutectic temperature of Nd-Al alloy is about 640 ° C, and the eutectic temperature of Pr-Al alloy is These modified alloys are particularly suitable when the rare earth magnet is a nanocrystalline magnet, since these modified alloys are much lower than 700 ° C to 1000 ° C, which encourages the coarsening of the crystal grains constituting the nanocrystalline magnet. is there.

(磁気特性の向上を検証したCAE解析とその結果)
本発明者等は、以下の方法でCAE解析を実施した。すなわち、磁石原料(合金組成は、質量%で、Fe-30Nd-0.93B-4Co-0.4Ga)を所定量配合し、Ar雰囲気中で溶解した後、その溶湯をるつぼのオリフィスからCu製の回転ロールに射出して急冷し、急冷薄帯を製造した。
(CAE analysis verifying improved magnetic properties and its results)
The present inventors conducted CAE analysis by the following method. That is, a predetermined amount of magnet raw material (alloy composition is Fe-30Nd-0.93B-4Co-0.4Ga in mass%) is melted in an Ar atmosphere, and then the molten metal is rotated from a crucible orifice to a Cu-made rotor. The film was injected into a roll and quenched to produce a quenched ribbon.

この急冷薄帯をAr雰囲気中でカッターミルで粉砕し、0.2mm以下の希土類合金粉末を得た後、希土類合金粉末を20×20×40mmのサイズを持つ金型に入れ、上下を超硬ポンチで封止した。そしてチャンバーにセットし、10-2Paに減圧し、400MPaを負荷してすぐに高周波コイルで650℃まで加熱し、プレスした。プレス後、60秒保持した後に型からバルク体を取り出し、熱間加工用の試験片とした。この試験片を750℃、0.01〜1/ sec の歪速度で圧縮試験を実施した。また、得られた材料物性データをINPUTとし、従来のE-CAP工法(ただし、本発明の鍛造装置と同様に屈曲した装置を適用している)と本発明の前方押出し鍛造方法に関してCAE解析を実施した。また、CAE解析によって得られた歪分布から磁気特性を評価した。さらに、本発明の前方押出し鍛造方法の場合の寸法変化も併せて特定した。磁気特性および寸法変化に関する解析結果を以下の表1に示し、寸法変化に関してはさらに図5にも示す。 This rapidly cooled ribbon is pulverized with a cutter mill in an Ar atmosphere to obtain a rare earth alloy powder of 0.2 mm or less, and then the rare earth alloy powder is put into a mold having a size of 20 × 20 × 40 mm, and the upper and lower carbide punches. Sealed with. Then, it was set in a chamber, depressurized to 10 −2 Pa, loaded with 400 MPa, immediately heated to 650 ° C. with a high frequency coil, and pressed. After pressing and holding for 60 seconds, the bulk body was taken out of the mold and used as a test piece for hot working. The test piece was subjected to a compression test at 750 ° C. and a strain rate of 0.01 to 1 / sec. In addition, the obtained material property data is set as INPUT, and CAE analysis is performed on the conventional E-CAP method (however, a bending device is applied in the same manner as the forging device of the present invention) and the forward extrusion forging method of the present invention. Carried out. The magnetic properties were evaluated from the strain distribution obtained by CAE analysis. Furthermore, the dimensional change in the case of the forward extrusion forging method of the present invention was also specified. The analysis results regarding the magnetic characteristics and dimensional changes are shown in Table 1 below, and the dimensional changes are further shown in FIG.

Figure 2015123463
Figure 2015123463

まず、残留磁化(Br)に関しては、相当塑性歪と第2の領域の第3の辺の長さ方向への伸び量により、およそ残留磁化が予測できることがこれまでの実験と本CAE解析の比較によって分かっている。今回比較する工法の相当塑性歪と第2の領域の第3の辺の長さ方向への伸び量から、従来のE-CAP工法では1.25T、本発明の鍛造方法では1.32Tと予測される。   First, regarding remanent magnetization (Br), it is possible to predict the remanent magnetization by the equivalent plastic strain and the amount of elongation in the length direction of the third side of the second region. I know. From the equivalent plastic strain of the method compared to this time and the amount of elongation in the length direction of the third side of the second region, it is predicted that the conventional E-CAP method is 1.25T and the forging method of the present invention is 1.32T. .

次に、保磁力(Hc)に関しては、相当塑性歪のみにほぼ相関することが分かっており、今回比較する工法の相当塑性歪と第2の領域の第3の辺の長さ方向への伸び量から、従来のE-CAP工法では15kOe、本発明の鍛造方法では16kOeと予測される。   Next, it is known that the coercive force (Hc) is substantially correlated only with the equivalent plastic strain, and the equivalent plastic strain of the method to be compared this time and the elongation in the length direction of the third side of the second region. From the quantity, it is estimated that the conventional E-CAP method is 15 kOe and the forging method of the present invention is 16 kOe.

また、寸法変化に関しては、従来のE-CAP工法では第1の領域から屈曲部を経て第2の領域に移行しても断面寸法の変化はないことから、第1の領域の第1の辺の長さも第2の領域の第3の辺の長さもともに5mmである。   Regarding the dimensional change, in the conventional E-CAP method, there is no change in the cross-sectional dimension even when the first region is moved to the second region through the bent portion, so the first side of the first region is not changed. And the length of the third side of the second region are both 5 mm.

これに対し、図5で示すように、本発明の鍛造方法では、第2の領域の第3の辺の長さを高さ方向で上方からP1、P2、P3の3箇所で実施し、その平均値7mmを得た。   On the other hand, as shown in FIG. 5, in the forging method of the present invention, the length of the third side of the second region is carried out in the height direction at three points P1, P2, and P3 from above, An average value of 7 mm was obtained.

したがって、従来のE-CAP工法の場合の5mmを正規化した場合、本発明の鍛造方法による寸法変化率は1.4と特定された。   Therefore, when 5 mm in the case of the conventional E-CAP method was normalized, the dimensional change rate by the forging method of the present invention was specified as 1.4.

以上、本発明の実施の形態を図面を用いて詳述してきたが、具体的な構成はこの実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲における設計変更等があっても、それらは本発明に含まれるものである。   The embodiment of the present invention has been described in detail with reference to the drawings. However, the specific configuration is not limited to this embodiment, and there are design changes and the like without departing from the gist of the present invention. They are also included in the present invention.

1,1A,1B…ダイス、2…第1の領域、3… 屈曲部、4,4A,4B…第2の領域、5…中空、6…パンチ、10,10A,10B…鍛造装置(前方押出し鍛造装置)、W…ワーク(焼結体)、MP…主相(ナノ結晶粒、結晶粒、結晶)、BP…粒界相   DESCRIPTION OF SYMBOLS 1,1A, 1B ... Dies, 2 ... 1st area | region, 3 ... Bending part, 4, 4A, 4B ... 2nd area | region, 5 ... Hollow, 6 ... Punch 10, 10A, 10B ... Forging apparatus (forward extrusion) Forging device), W ... Work (sintered body), MP ... Main phase (nanocrystal grain, crystal grain, crystal), BP ... Grain boundary phase

Claims (5)

中空を有して屈曲するダイスと、ダイス内を摺動するパンチとから構成される前方押出し鍛造装置であって、
ダイスは、パンチが摺動する第1の領域と、屈曲部を介して第1の領域よりも押出し方向前方に位置する第2の領域とから構成され、第1の領域内にワークが収容され、該第1の領域内でパンチが摺動してワークが第2の領域に押出されて鍛造されるようになっており、
第1の領域と第2の領域の押出し方向に直交する断面の形状はともに矩形であり、
第1の領域の前記断面の矩形を構成する直交する2辺をそれぞれ第1の辺(長さt1)、第2の辺(長さt2)とし、
第2の領域の前記断面の矩形を構成する直交する2辺のうち、第1の辺に対応する辺を第3の辺(長さt3)、第2の辺に対応する辺を第4の辺(長さt4)とした際に、
t3>t1、t4>t2の少なくとも一方を満たしている前方押出し鍛造装置。
A forward extrusion forging device comprising a die having a hollow and bending, and a punch sliding in the die,
The die is composed of a first region in which the punch slides and a second region located in front of the first region through the bent portion in the pushing direction, and the workpiece is accommodated in the first region. , The punch slides in the first region, the workpiece is extruded into the second region and forged,
Both of the cross-sectional shapes orthogonal to the extrusion direction of the first region and the second region are rectangular,
Two orthogonal sides constituting the rectangle of the cross section of the first region are defined as a first side (length t1) and a second side (length t2), respectively.
Of the two orthogonal sides constituting the rectangle of the cross section of the second region, the side corresponding to the first side is the third side (length t3), and the side corresponding to the second side is the fourth side When the side (length t4)
A forward extrusion forging device that satisfies at least one of t3> t1 and t4> t2.
第2の領域において長さが相対的に長くなる辺に対応する第1の領域の辺が、第1の領域の途中位置から屈曲部にかけて漸増している請求項1に記載の前方押出し鍛造装置。   The forward extrusion forging device according to claim 1, wherein a side of the first region corresponding to a side having a relatively long length in the second region is gradually increased from a middle position of the first region to a bent portion. . t3>t1、t4=t2である請求項1に記載の前方押出し鍛造装置。   The forward extrusion forging device according to claim 1, wherein t3> t1 and t4 = t2. 前方押出し鍛造装置を使用して鍛造品を製造する前方押出し鍛造方法であって、
中空を有して屈曲するダイスと、ダイス内を摺動するパンチとからなる前方押出し鍛造装置であり、ダイスは、パンチが摺動する第1の領域と、屈曲部を介して第1の領域よりも押出し方向前方に位置する第2の領域とから構成され、第1の領域内にワークが収容され、該第1の領域内でパンチが摺動してワークが第2の領域に押出されて鍛造されるようになっており、第1の領域と第2の領域の押出し方向に直交する断面の形状はともに矩形であり、第1の領域の前記断面の矩形を構成する直交する2辺をそれぞれ第1の辺(長さt1)、第2の辺(長さt2)とし、第2の領域の前記断面の矩形を構成する直交する2辺のうち、第1の辺に対応する辺を第3の辺(長さt3)、第2の辺に対応する辺を第4の辺(長さt4)とした際に、t3>t1、t4>t2の少なくとも一方を満たしている前方押出し鍛造装置を用意する第1のステップ、
ワークをダイスに収容し、パンチを摺動させてワークを鍛造して鍛造品を製造する第2のステップからなる前方押出し鍛造方法。
A forward extrusion forging method for producing a forged product using a forward extrusion forging device,
A forward extrusion forging device comprising a die having a hollow and bending and a punch sliding in the die, the die having a first region through which the punch slides and a first region through the bent portion And a second region located in front of the pushing direction, the workpiece is accommodated in the first region, the punch slides in the first region, and the workpiece is pushed into the second region. The cross-sectional shape perpendicular to the extrusion direction of the first region and the second region is both rectangular, and the two orthogonal sides constituting the rectangular shape of the cross-section of the first region Are the first side (length t1) and the second side (length t2), respectively, and the side corresponding to the first side among the two orthogonal sides constituting the rectangle of the cross section of the second region Is the third side (length t3) and the side corresponding to the second side is the fourth side (length t4), t3> t1, t4> t2 A first step of preparing a forward extrusion forging device satisfying at least one of
A forward extrusion forging method comprising a second step of manufacturing a forged product by housing a work in a die and sliding the punch to forge the work.
前記ワークは、希土類磁石材料となる粉末であって、RE-Fe-B系の主相(RE:Nd、Prの少なくとも一種)と、該主相の周りにあるRE-X合金(X:金属元素)の粒界相からなる粉末を加圧成形して得られた焼結体であり、
前記前方押出し鍛造により、前記焼結体に異方性を与える熱間塑性加工が施されて鍛造品である希土類磁石が製造される請求項4に記載の前方押出し鍛造方法。
The workpiece is a powder that becomes a rare earth magnet material, which is a RE-Fe-B main phase (at least one of RE: Nd and Pr) and a RE-X alloy (X: metal) around the main phase. Element) is a sintered body obtained by pressure molding a powder composed of a grain boundary phase,
The forward extrusion forging method according to claim 4, wherein the forward extrusion forging is used to produce a rare earth magnet which is a forged product by subjecting the sintered body to hot plastic processing which gives anisotropy.
JP2013268874A 2013-12-26 2013-12-26 Forward extrusion forging device and forward extrusion forging method Pending JP2015123463A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013268874A JP2015123463A (en) 2013-12-26 2013-12-26 Forward extrusion forging device and forward extrusion forging method
PCT/IB2014/002794 WO2015097517A1 (en) 2013-12-26 2014-12-16 Forward extrusion forging apparatus and forward extrusion forging method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013268874A JP2015123463A (en) 2013-12-26 2013-12-26 Forward extrusion forging device and forward extrusion forging method

Publications (1)

Publication Number Publication Date
JP2015123463A true JP2015123463A (en) 2015-07-06

Family

ID=52396740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013268874A Pending JP2015123463A (en) 2013-12-26 2013-12-26 Forward extrusion forging device and forward extrusion forging method

Country Status (2)

Country Link
JP (1) JP2015123463A (en)
WO (1) WO2015097517A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017126752A (en) * 2016-01-14 2017-07-20 中国科学院寧波材料技術与工程研究所Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences Method and apparatus for manufacturing heat deformation magnet

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2004013873A1 (en) * 2002-08-05 2006-09-21 株式会社三徳 Rare earth-iron-boron magnet manufacturing method
JP2009027847A (en) * 2007-07-20 2009-02-05 Daido Steel Co Ltd Permanent magnet and embedded magnet type motor employing the same
JP2013045844A (en) * 2011-08-23 2013-03-04 Toyota Motor Corp Manufacturing method of rare earth magnet, and rare earth magnet

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02173201A (en) * 1988-12-24 1990-07-04 Tokin Corp Manufacture of rare earth element magnet and forming die for hot working
JP4957415B2 (en) 2006-09-06 2012-06-20 大同特殊鋼株式会社 Method for manufacturing permanent magnet and permanent magnet

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2004013873A1 (en) * 2002-08-05 2006-09-21 株式会社三徳 Rare earth-iron-boron magnet manufacturing method
JP2009027847A (en) * 2007-07-20 2009-02-05 Daido Steel Co Ltd Permanent magnet and embedded magnet type motor employing the same
JP2013045844A (en) * 2011-08-23 2013-03-04 Toyota Motor Corp Manufacturing method of rare earth magnet, and rare earth magnet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017126752A (en) * 2016-01-14 2017-07-20 中国科学院寧波材料技術与工程研究所Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences Method and apparatus for manufacturing heat deformation magnet

Also Published As

Publication number Publication date
WO2015097517A1 (en) 2015-07-02

Similar Documents

Publication Publication Date Title
JP6003920B2 (en) Rare earth magnet manufacturing method
CA2887984C (en) Rare-earth magnet production method
US9859055B2 (en) Manufacturing method for rare-earth magnet
JP5751237B2 (en) Rare earth magnet and manufacturing method thereof
KR101664726B1 (en) Method of manufacturing rare earth magnet
JP5983598B2 (en) Rare earth magnet manufacturing method
JP5742733B2 (en) Rare earth magnet manufacturing method
WO2014080852A1 (en) Method for manufacturing rare-earth magnet
JP2015093312A (en) Forward extrusion forging device and forward extrusion forging method
JP6102881B2 (en) Rare earth magnet manufacturing method
KR20160041790A (en) Method for manufacturing rare-earth magnets
JP2015123463A (en) Forward extrusion forging device and forward extrusion forging method
US9847169B2 (en) Method of production rare-earth magnet
CN108242334B (en) Method for manufacturing rare earth magnet
JP6036648B2 (en) Rare earth magnet manufacturing method
JP2013138111A (en) Method of manufacturing rare-earth magnet

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151006

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151007

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160216