WO2014080852A1 - Method for manufacturing rare-earth magnet - Google Patents

Method for manufacturing rare-earth magnet Download PDF

Info

Publication number
WO2014080852A1
WO2014080852A1 PCT/JP2013/080974 JP2013080974W WO2014080852A1 WO 2014080852 A1 WO2014080852 A1 WO 2014080852A1 JP 2013080974 W JP2013080974 W JP 2013080974W WO 2014080852 A1 WO2014080852 A1 WO 2014080852A1
Authority
WO
WIPO (PCT)
Prior art keywords
punch
molded body
die
magnet
mold
Prior art date
Application number
PCT/JP2013/080974
Other languages
French (fr)
Japanese (ja)
Inventor
大 小淵
伸也 西ヶ谷
祐介 横田
彰 加納
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Publication of WO2014080852A1 publication Critical patent/WO2014080852A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/14Both compacting and sintering simultaneously
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0273Imparting anisotropy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties
    • C22C2202/02Magnetic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0576Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together pressed, e.g. hot working

Definitions

  • the present invention relates to a method for producing a rare earth magnet that is an oriented magnet by hot plastic working.
  • Rare earth magnets using rare earth elements such as lanthanoids are also called permanent magnets, and their uses are used in motors for driving hard disks and MRIs, as well as drive motors for hybrid vehicles and electric vehicles.
  • Residual magnetization residual magnetic flux density
  • coercive force can be cited as indicators of the magnet performance of this rare earth magnet.
  • Residual magnetization residual magnetic flux density
  • coercive force can be cited as indicators of the magnet performance of this rare earth magnet.
  • rare earth magnets used in response to increased heat generation due to miniaturization of motors and higher current density, rare earth magnets used also The demand for heat resistance is further increasing, and how to maintain the magnetic properties of the magnet under high temperature use is one of the important research subjects in the technical field.
  • An outline of an example of a method for producing a rare earth magnet is as follows. For example, a fine powder obtained by rapid solidification of a Nd-Fe-B metal melt is formed into a compact while being pressed, and the magnetic anisotropy is applied to the compact. In general, a method of producing a rare earth magnet (orientated magnet) by performing hot plastic working to impart the above-mentioned properties is applied.
  • a compact is disposed between a lower die constituting a plastic working die and a punch (also referred to as a punch), and pressed with the lower die and the punch for a short time of about 1 second or less while being heated.
  • a punch also referred to as a punch
  • upsetting that presses until a predetermined processing rate is achieved is applied.
  • this hot plastic working can give magnetic anisotropy to the molded body
  • the molded body is plastically deformed in the process of being crushed while being plastically deformed by the lower die and the press by the punch during the hot plastic working.
  • cracks including fine cracks
  • Patent Document 1 a manufacturing method disclosed in Patent Document 1 can be cited as a prior art that can solve the problem of cracking during such hot plastic working.
  • this manufacturing method the whole molded body is encapsulated in a metal capsule, and then hot plastic working is performed while pressing the metal capsule with a lower mold and a punch. It is said that the magnetic anisotropy of the material will be further improved.
  • Patent Documents 2 to 5 disclose other techniques for performing hot plastic working in a state where a molded body is sealed in a metal capsule.
  • the upper surface region and the lower surface region corresponding to the upper surface and the lower surface of the molded body integrated with the side surface region are constrained by restraining the spread of the side surface region.
  • Patent Document 6 discloses a technique for thinning a metal capsule by forging in multiple stages, but the disclosed embodiment uses an iron plate having a thickness of 7 mm or more.
  • the magnet shape after forging cannot be said to be a near net shape, and finishing work is absolutely necessary, resulting in a decrease in material yield and an increase in processing costs. Becomes prominent.
  • FIG. 11a shows an analysis model of a molded body sandwiched between a punch and a lower mold before upsetting (the model is an assembly of a large number of element cells when performing finite element analysis by a computer.
  • FIG. 11b shows a state of deformation of the analytical model after upsetting with a processing rate of 50%. Note that the analysis model shown is a model of only the right cross section because the analysis results are the same on the left and right sides of the compact.
  • JP-A-2-250920 Japanese Patent Laid-Open No. 2-250922 JP-A-2-250919 JP-A-2-250918 JP-A-4-04301 JP-A-4-134804
  • the present invention has been made in view of the above-described problems, and in producing a rare earth magnet that is an oriented magnet by performing hot plastic processing that is upsetting processing on a molded body, without causing cracks in the molded body, Moreover, it is an object of the present invention to provide a method for producing a rare earth magnet in which the orientation disorder of the crystal structure does not occur due to the shear frictional force acting from the punch or the lower mold when the compact is laterally deformed.
  • a method for producing a rare earth magnet comprises a first step of producing a columnar shaped body by pressure-molding a powder as a rare earth magnet material, and a cavity in which the shaped body is accommodated.
  • a plastic working die comprising a die provided with a punch slidable in the cavity is prepared, and the cavity has a cross section having a larger cross-sectional dimension than a cross section perpendicular to the pressing direction of the molded body by the punch.
  • the molded body is accommodated in the cavity and sandwiched between the lower die of the die and the punch, and hot plastic working is performed to give anisotropy while directly pressing the upper surface and the lower surface of the molded body with the punch and the lower die.
  • the second step of manufacturing a rare earth magnet as an orientation magnet is composed of two steps.
  • the first step A the lower die and the punch are pressed.
  • the side of the molded body which is the free end face that is not pressed by the lower mold and the punch, protrudes to the side and is pressed from the side mold of the die on the side of the molded body, and the processing rate necessary for imparting anisotropy
  • the next step B the side face of the oriented magnet precursor is not pressed from the side face mold of the die.
  • the magnet is returned to the free end face and pressed with a lower die and a punch until a processing rate necessary for imparting anisotropy is reached to produce an oriented magnet.
  • the manufacturing method of the rare earth magnet of the present invention is divided into two or more stages before reaching the desired processing rate instead of performing hot plastic processing to the desired processing rate by pressing once with a punch during upsetting.
  • This is a method of performing hot plastic working.
  • the side of the molded body is in a free state (free end surface) before the hot plastic working, and the molded body is moved to the stage before the desired processing rate is reached.
  • the side surface is pressed by a side surface mold of a die.
  • the molded body undergoes compositional deformation and its side surface deforms to the side.
  • the side surface of the die contacts the die, and the side surface of the molded body is pressed from the side surface die of the die by further pressing. Will be.
  • a correction force is applied to the sheared friction force that counteracts the shear frictional force that the molded body receives from the punch and the lower mold in the direction opposite to the lateral deformation direction.
  • the resulting disorder in the orientation of the crystal structure can be eliminated.
  • the molded body pressed by the punch is constrained from the side surface mold of the die after being deformed to the side freely in Step A in which the plastic deformation is performed to the previous stage where the desired processing rate is obtained.
  • the problem of occurrence of cracks in the case of the conventional manufacturing method in which a desired processing rate can be obtained by one hot plastic working and the side surface of the molded body is always free is effectively solved.
  • Step A which comprises this step once
  • Step B an oriented magnet (rare earth magnet) is manufactured.
  • the oriented magnet is manufactured by moving to step B after executing step A twice or more.
  • the side surface die of the die which is a constituent element thereof is configured to be separable or movable, and step A of the second step is completed.
  • the side surface mold can be separated or moved so as to be separated from the side surface of the oriented magnet precursor and form a space on the side of the side surface.
  • step A when step A is repeated 5 times and then the process proceeds to step B to produce an oriented magnet, the side surface mold of the die is gradually slid to the side and fixed after each step A is completed. Step A may be executed.
  • the rare earth magnets to be produced by the production method of the present invention include not only nanocrystalline magnets having a grain size of the main phase (crystal) constituting the structure of about 200 nm or less, but also those having a grain size of 300 nm or more. Furthermore, a sintered magnet having a grain size of 1 ⁇ m or more, a bonded magnet in which crystal grains are bonded with a resin binder, and the like are included.
  • a rapidly cooled ribbon which is a fine crystal grain, is manufactured by liquid quenching, and this is coarsely pulverized to produce magnetic powder for a rare earth magnet.
  • An isotropic molded body can be obtained by filling and sintering while pressing with a punch to achieve bulking.
  • This molded body is, for example, a RE-Fe-B main phase with a nanocrystalline structure (RE: at least one of Nd and Pr, more specifically one or more of Nd, Pr and Nd-Pr. ) And a grain boundary phase of the RE-X alloy (X: metal element) around the main phase.
  • RE nanocrystalline structure
  • X metal element
  • the oriented magnet manufactured in the second step diffuses modified alloys such as Nd-Cu alloy, Nd-Al alloy, Pr-Cu alloy, Pr-Al alloy, etc. at the grain boundary to further increase the coercive force. It may be an enhanced rare earth magnet.
  • the eutectic point of Nd-Cu alloy is about 520 ° C
  • the eutectic point of Pr-Cu alloy is about 480 ° C
  • the eutectic point of Nd-Al alloy is about 640 ° C
  • the eutectic point of Pr-Al alloy is 650 ° C. All of them are well below 700 ° C. to 1000 ° C., which causes coarsening of crystal grains constituting the nanocrystalline magnet, and are particularly suitable when the rare earth magnet is a nanocrystalline magnet.
  • the hot plastic working is performed from at least two steps.
  • the side surface of the molded body which is a free end surface that is not pressed by the lower die and the punch, is pressed from the side surface die of the die by pressing with the lower die and the punch, and processing necessary for imparting anisotropy
  • the oriented magnet precursor is manufactured by performing pressing with the punch and the lower die until the stage before reaching the rate, and in the next step B, the side surface of the oriented magnet precursor is changed to a free end surface without pressure from the side surface die of the die.
  • the oriented magnet is manufactured by performing pressing with the lower die and the punch until the processing rate necessary for imparting anisotropy is reached.
  • this manufacturing method it is possible to apply a correction force to the molded body that counteracts the shear frictional force that the molded body receives from the punch and the lower mold in the direction opposite to the lateral deformation direction. It is possible to eliminate the disorder of the orientation of the crystal structure caused by the deformation and to suppress the occurrence of cracks during hot plastic working, and to produce rare earth magnets with high remanence due to high degree of orientation at a high material yield. be able to.
  • FIG. 8 is a flow diagram simulating the change of the metal structure from before the hot plastic working to the end of the hot plastic working in the portion VIII in Example 1 of FIG. 7. It is the figure which showed the analysis result regarding the relationship between a friction coefficient and material yield. It is the figure which showed the analysis result regarding the relationship between the processing rate in step A of a 2nd step, and material yield.
  • (A) is the figure which showed the analysis model of the molded object pinched
  • (b) is an installation model with a processing rate of 50%. It is the figure which showed the deformation
  • the manufacturing method shown in the figure is one in which step A is followed by step B to manufacture an oriented magnet, but step A is executed twice or more and then step B is executed. Then, a method of manufacturing an oriented magnet may be used.
  • the illustrated oriented magnet is a nanocrystalline magnet (particle size is about 300 nm or less)
  • the oriented magnet targeted by the manufacturing method of the present invention is limited to a nanocrystalline magnet. These include, but not limited to, those having a particle size of 300 nm or more, sintered magnets of 1 ⁇ m or more, and bonded magnets in which crystal grains are bound with a resin binder.
  • FIGS. 1a and 1b are schematic views illustrating the first step of the method of manufacturing a rare earth magnet of the present invention in that order
  • FIG. 2 is a view illustrating the microstructure of the molded body manufactured in the first step. is there.
  • FIG. 3 is a schematic diagram illustrating a plastic working die used in the second step of the manufacturing method of the present invention.
  • FIG. 4 illustrates step A of the second step in the order of FIGS. 4a and 4b.
  • FIG. 5 is a flowchart illustrating step B of the second step in the order of FIGS. 5a and 5b.
  • FIG. 6 is a diagram illustrating the microstructure of the manufactured oriented magnet (rare earth magnet) of the present invention.
  • an alloy ingot is melted at a high frequency by a melt spinning method using a single roll in a furnace (not shown) in an Ar gas atmosphere whose pressure is reduced to 50 kPa or less.
  • a quenched ribbon B quenched ribbon
  • a quenched ribbon B having a maximum dimension of about 200 nm or less is selected, and this is shown in FIG. Fill the cavity defined by the hard punch P. Then, while applying pressure with the carbide punch P (X direction), current is applied in the pressing direction to heat and heat, so that the main phase of the Nd-Fe-B system with a nanocrystal structure (crystal grain size of about 50 nm to 200 nm) And a columnar shaped body S composed of a grain boundary phase of an Nd—X alloy (X: metal element) around the main phase (first step).
  • X Nd—X alloy
  • the Nd—X alloy constituting the grain boundary phase is made of Nd and at least one alloy of Co, Fe, Ga, etc., for example, Nd—Co, Nd—Fe, Nd—Ga, One of Nd-Co-Fe and Nd-Co-Fe-Ga, or a mixture of two or more of these, is in an Nd-rich state.
  • the compact S exhibits an isotropic crystal structure in which the grain boundary phase BP is filled between the nanocrystalline grains MP (main phase).
  • the shaped body S is transferred to the cavity Ca of the plastic working die 10 shown in FIG. 3, and hot plastic working which is upsetting is performed here.
  • the plastic working die 10 includes a die 2 and a punch 2 that directly presses the formed body S.
  • the die 1 has a box shape, and includes a lower die 1a, side dies 1b, and 1d.
  • a side surface mold 1c partition mold that divides the cavity Ca defined by the molds 1b and 1d into two is housed.
  • the side surface mold 1c is slidable laterally, is slid to a desired position, is positioned, and is temporarily fixed.
  • FIG. 4 is a diagram illustrating step A of the second step
  • FIG. 5 is a diagram illustrating step B of the second step after FIG.
  • step A of the second step shown in FIG. 4 upsetting (thermal) is performed up to a processing rate (for example, 40%) of the previous stage out of a desired processing rate (for example, 80%) necessary for imparting anisotropy.
  • a processing rate for example, 40%
  • a desired processing rate for example, 80%
  • the hot plastic working is executed until a desired working rate is obtained.
  • a space G is formed between one side surface Sc of the molded body S and the side surface mold 1c, and thus the side surface Sc of the molded body S is a free end surface. Yes.
  • the air existing in the space G can be deaerated through an air vent hole (not shown).
  • the formed body S is pressed in the vertical direction by the punch 2 with the pressing force P1.
  • the shaped body S When the shaped body S is pressed in the vertical direction by the punch 2, the shaped body S is deformed to the side as shown in FIG. 4b to become the oriented magnet precursor S ', and the space G that was on the side of the side surface Sc becomes the oriented magnet. The state is filled with the precursor S ′.
  • the upper surface S′a and the lower surface S′b of the oriented magnet precursor S ′ that is plastically deformed are pressed by the punch 2 and the lower mold 1a, and the side surface S′c. Is pushed by receiving pressure P2 from the side mold 1c, and therefore the side S′c is no longer a free end face.
  • the pressing is finished up to the processing rate of the previous stage of the desired processing rate, and the side surface Sc that is the free end surface of the molded body S that is plastically deformed at this stage is restrained, and further, a pressing force is applied, A forcing force is applied to the molded body in a direction that cancels the shear frictional force acting on the molded body from the punch or lower mold described in FIG. 11, and orientation disorder occurs in the crystalline structure of the molded body during upsetting.
  • the problem of the occurrence of the problem is solved.
  • the side surface is restrained appropriately during plastic deformation of the molded body, the problem of cracks occurring in the molded body during hot plastic working is effectively eliminated. Details of the elimination of the shear frictional force will be described later.
  • Step B of the second step First, as shown in FIG. 5a, the side surface mold 1c existing in the cavity Ca is removed, and the punch to be used is replaced with a punch 2A having the same area and the same shape as the lower mold 1a of the die 1. At 2A, the oriented magnet precursor S ′ is pressed in the vertical direction with the pressing force P3.
  • the oriented magnet precursor S ′ When the oriented magnet precursor S ′ is pressed in the vertical direction by the punch 2A, the oriented magnet precursor S ′ is deformed laterally as shown in FIG. 5B, and is oriented by pressing with the punch 2A until a desired processing rate is obtained.
  • the space G that was on the side of the magnet precursor S ′ is filled with the orientation magnet C, and the orientation magnet C is manufactured.
  • the oriented magnet C manufactured by the two-step hot plastic working of steps A and B has a flat nanocrystal grain MP, and the interface substantially parallel to the anisotropic axis is curved or bent.
  • the oriented magnet C is excellent in magnetic anisotropy.
  • the hot plastic working is finished once to produce an oriented magnet precursor, and the side face is restrained from the middle of plastic deformation in the production of this oriented magnet precursor.
  • Example 1 the upper and lower surfaces of the molded body that was plastically deformed as in Comparative Example 1 were subjected to shear frictional force from the punch and the lower mold, but the side surface of the molded body was pressurized from the side mold, A correction force that cancels the shear friction force is applied by the pressure.
  • Example 1 the part VIII is taken as a region where the influence of the shear friction force is large, and the deformation, movement and orientation change of the main phase during the hot plastic working in the part VIII are shown as a flow diagram in FIG.
  • the main phase is deformed laterally during the hot plastic working and becomes flat, the main phase is rotated by the shear friction force acting from the punch, and the orientation of the main phase is also dragged in the direction of this shear friction force.
  • a correction force is applied to cancel the shear frictional force, and the orientation is returned to the vertical direction while the main phase rotates.
  • distortion is corrected in the direction of easy magnetization, and the oriented magnet has an orientation degree substantially aligned in the vertical direction.
  • the present inventors further provide an oriented magnet (Comparative Example 2) when the hot plastic working is performed up to a predetermined working rate in one hot plastic working without constraining the side surface of the molded body, the second step.
  • an oriented magnet according to the manufacturing method of the present invention consisting of two-step molding of steps A and B (Example 2), and the second step is a six-step molding of step A and the next step B of seven steps
  • CAE analysis was performed to identify the material yield when changing the coefficient of friction between the compact, the punch and the lower die.
  • the present inventors further relate to an oriented magnet according to the manufacturing method of the present invention when the second step comprises two-step molding of steps A and B, and the friction coefficient between the molded body, the punch and the lower mold is changed. Then, CAE analysis was performed to identify the material yield when changing the processing rate in Step A.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Hard Magnetic Materials (AREA)
  • Powder Metallurgy (AREA)

Abstract

Provided is a method for manufacturing a rare-earth magnet, which is an orientation magnet, by subjecting a compact to hot plastic working, in which cracks do not form in the compact and there is no orientation disruption due to the shear friction force applied by a punch or the like during lateral deformation of the compact. The method comprises: a first step for manufacturing a compact (S); and a second step for manufacturing a rare-earth magnet (C), which is an orientation magnet, by preparing a plastic working mold (10) comprising a die (1) and a punch (2), placing the compact (S) in a cavity (Ca) of the mold (10), and subjecting the compact (S) to hot plastic working. The second step comprises steps (A) and (B). Step (A) comprises: causing a side surface of the compact (S), which is a free end-face, to project laterally due to the pressure from the punch (2); applying pressure to the side surface from a side-surface mold (1c); and continuing the application of pressure up to a prior stage where the working rate required to impart anisotropic properties is reached, to manufacture an orientation magnet precursor (S'). Step (B) comprises returning the side surface of the orientation magnet precursor (S') to the free end-face and continuing the application of pressure until the working rate required to impart anisotropic properties is reached, to manufacture the orientation magnet (C).

Description

希土類磁石の製造方法Rare earth magnet manufacturing method
 本発明は、熱間塑性加工によって配向磁石となっている希土類磁石の製造方法に関するものである。 The present invention relates to a method for producing a rare earth magnet that is an oriented magnet by hot plastic working.
 ランタノイド等の希土類元素を用いた希土類磁石は永久磁石とも称され、その用途は、ハードディスクやMRIを構成するモータのほか、ハイブリッド車や電気自動車等の駆動用モータなどに用いられている。 Rare earth magnets using rare earth elements such as lanthanoids are also called permanent magnets, and their uses are used in motors for driving hard disks and MRIs, as well as drive motors for hybrid vehicles and electric vehicles.
 この希土類磁石の磁石性能の指標として残留磁化(残留磁束密度)と保磁力を挙げることができるが、モータの小型化や高電流密度化による発熱量の増大に対し、使用される希土類磁石にも耐熱性に対する要求は一層高まっており、高温使用下で磁石の磁気特性を如何に保持できるかが当該技術分野での重要な研究課題の一つとなっている。 Residual magnetization (residual magnetic flux density) and coercive force can be cited as indicators of the magnet performance of this rare earth magnet. However, in response to increased heat generation due to miniaturization of motors and higher current density, rare earth magnets used also The demand for heat resistance is further increasing, and how to maintain the magnetic properties of the magnet under high temperature use is one of the important research subjects in the technical field.
 希土類磁石の製造方法の一例を概説すると、たとえばNd-Fe-B系の金属溶湯を急冷凝固して得られた微粉末を加圧成形しながら成形体とし、この成形体に磁気的異方性を付与するべく熱間塑性加工を施して希土類磁石(配向磁石)を製造する方法が一般に適用されている。 An outline of an example of a method for producing a rare earth magnet is as follows. For example, a fine powder obtained by rapid solidification of a Nd-Fe-B metal melt is formed into a compact while being pressed, and the magnetic anisotropy is applied to the compact. In general, a method of producing a rare earth magnet (orientated magnet) by performing hot plastic working to impart the above-mentioned properties is applied.
 上記熱間塑性加工は、塑性加工型を構成する下型とパンチ(ポンチとも言う)間に成形体を配し、加熱しながら下型とパンチでたとえば1秒程度かそれ以下の短時間押圧し、所定の加工率となるまで押圧する据え込み加工が一般に適用されている。この熱間塑性加工によって成形体に磁気的異方性を付与できる一方で、熱間塑性加工の際の下型とパンチによる押圧によって成形体が塑性変形しながら潰される過程で、塑性変形した成形体の側面に割れ(微細割れを含む)が生じ易いという問題があった。 In the hot plastic working, a compact is disposed between a lower die constituting a plastic working die and a punch (also referred to as a punch), and pressed with the lower die and the punch for a short time of about 1 second or less while being heated. In general, upsetting that presses until a predetermined processing rate is achieved is applied. While this hot plastic working can give magnetic anisotropy to the molded body, the molded body is plastically deformed in the process of being crushed while being plastically deformed by the lower die and the press by the punch during the hot plastic working. There was a problem that cracks (including fine cracks) were likely to occur on the side surfaces of the body.
 これは、下型およびパンチと接触している部分が変形し過ぎ、その分だけ側面中央部が過度に膨らむ、いわゆる太鼓状に変形することが一因である。この割れが生じてしまうと、配向度を高めるために形成された加工歪が割れた箇所で開放されてしまい、歪エネルギーを結晶配向に十分に向けることができなくなり、結果として高い配向度(これによって高い磁化が齎される)の配向磁石が得られ難くなってしまう。 This is partly because the part in contact with the lower mold and the punch is deformed too much, and the center part of the side surface is excessively swollen to the extent that it is so-called drum-shaped. When this crack occurs, the processing strain formed to increase the degree of orientation is released at the cracked location, and the strain energy cannot be sufficiently directed to the crystal orientation, resulting in a high degree of orientation (this Therefore, it is difficult to obtain an oriented magnet having high magnetization.
 また、このように外周部に割れが生じてしまうことから、熱間塑性加工によって成形された配向磁石においては、割れのない中央部分から所定寸法の配向磁石を切り出して製品化を図っており、材料歩留まりが低いという問題もあった。 In addition, since the outer peripheral portion is cracked in this way, in the oriented magnet formed by hot plastic working, the oriented magnet of a predetermined dimension is cut out from the center portion without cracking, and commercialization is attempted. There was also a problem that the material yield was low.
 そこで、このような熱間塑性加工時の割れの問題を解消できる従来技術として特許文献1に開示の製造方法を挙げることができる。この製造方法は、上記成形体の全体を金属カプセル内に封入した後に、この金属カプセルを下型とパンチで押圧しながら熱間塑性加工をおこなうものであり、この製造方法によれば、希土類磁石の磁気的異方性が一層向上するとしている。なお、このように金属カプセル内に成形体を封入した状態で熱間塑性加工をおこなう技術はそのほかにも、特許文献2~5に開示されている。 Therefore, a manufacturing method disclosed in Patent Document 1 can be cited as a prior art that can solve the problem of cracking during such hot plastic working. In this manufacturing method, the whole molded body is encapsulated in a metal capsule, and then hot plastic working is performed while pressing the metal capsule with a lower mold and a punch. It is said that the magnetic anisotropy of the material will be further improved. In addition to this, Patent Documents 2 to 5 disclose other techniques for performing hot plastic working in a state where a molded body is sealed in a metal capsule.
 しかしながら、成形体の全体が金属カプセルで完全に包囲されていると、上下からの押圧による成形体の側方への塑性変形が極端に拘束されてしまい、塑性変形後の成形体の側面に割れが生じない代わりに十分な塑性変形がおこなわれ難く、結果として高い配向度が得られ難いという別の問題が生じ得る。これは、たとえば上面、下面と円周側面を有する円柱状の成形体を例に取り上げるに、金属カプセルのうち、成形体の側面に対応する側面領域が側方に塑性変形しようとした際に、この側面領域と一体となっている成形体の上面および下面に対応する上面領域および下面領域が側面領域の広がりを拘束することによって齎されるものである。 However, if the entire molded body is completely surrounded by the metal capsule, the plastic deformation to the side of the molded body due to pressing from above and below is extremely restricted, and the side surface of the molded body after plastic deformation is cracked. In spite of the fact that no deformation occurs, it is difficult to perform sufficient plastic deformation, resulting in another problem that it is difficult to obtain a high degree of orientation. For example, when taking a cylindrical shaped body having an upper surface, a lower surface and a circumferential side surface as an example, when a side region corresponding to the side surface of the molded body of the metal capsule is about to be plastically deformed laterally, The upper surface region and the lower surface region corresponding to the upper surface and the lower surface of the molded body integrated with the side surface region are constrained by restraining the spread of the side surface region.
 実際に上記各特許文献には歪速度についての言及は無く、仮に0.1/sec以上の歪速度、加工率50%以上(たとえば70%かそれ以上)で熱間塑性加工をおこなった場合を想定すると、割れを完全に防止することはできない。その理由は、一定以上の厚みの鋼系材料で溶接して全面を覆った状態で0.1/sec以上の歪速度で加工した場合、磁石組織の受ける衝撃が強すぎ、あるいは冷却される場合に熱膨張差の違いによって熱間塑性加工された成形体が既述するように金属カプセルによって強い拘束を受けるからである。 Actually, there is no mention of the strain rate in each of the above patent documents, and it is assumed that hot plastic working is performed at a strain rate of 0.1 / sec or more and a processing rate of 50% or more (for example, 70% or more). It is not possible to completely prevent cracking. The reason is that if the steel structure is welded with a steel material of a certain thickness or more and processed at a strain rate of 0.1 / sec or more with the entire surface covered, the magnet structure is too shocked or heated when cooled. This is because the molded body that has been hot plastic processed due to the difference in expansion is strongly restrained by the metal capsule as described above.
 この問題を解消するべく、特許文献6では多段階で鍛造することによって金属カプセルを薄くしていく技術が開示されているが、ここで開示の実施例は肉厚が7mm以上の鉄板を用いており、これでは割れを完全に防ぐことができないことに加えて、鍛造後の磁石形状がニアネットシェイプと言えず、仕上げ加工が全面必須となって、材料歩留まりの低下や加工費の増加といった問題が顕著となる。 In order to solve this problem, Patent Document 6 discloses a technique for thinning a metal capsule by forging in multiple stages, but the disclosed embodiment uses an iron plate having a thickness of 7 mm or more. In addition to being unable to completely prevent cracking, the magnet shape after forging cannot be said to be a near net shape, and finishing work is absolutely necessary, resulting in a decrease in material yield and an increase in processing costs. Becomes prominent.
 なお、特許文献1等で開示されるように、成形体の全面を完全に覆う金属カプセルの肉厚を薄くしていくと、1/sec以上の歪速度では金属カプセルが破壊され、成形体に不連続な凹凸が生じてしまい、配向乱れの原因となることから好ましい方法とは言えない。 As disclosed in Patent Document 1, etc., when the thickness of the metal capsule that completely covers the entire surface of the molded body is reduced, the metal capsule is destroyed at a strain rate of 1 / sec or more, and the molded body is Since discontinuous irregularities occur and cause disorder of alignment, it is not a preferable method.
 以上のことから、熱間塑性加工の際の課題である成形体に割れが生じることを解消する方策として金属カプセル等で成形体を包囲して加圧する方法を適用しても十分な効果が得られ難いことより、熱間塑性加工に際して成形体に割れを生じさせることなく、しかも高い配向度の配向磁石を製造する方法が当該技術分野で切望されている。 From the above, it is possible to obtain a sufficient effect even by applying a method in which the molded body is surrounded and pressed with a metal capsule or the like as a measure to eliminate the occurrence of cracks in the molded body, which is a problem in hot plastic working. Therefore, a method for producing an oriented magnet having a high degree of orientation without causing cracks in the molded body during hot plastic working is eagerly desired.
 ここで、成形体の側方を金属リング等で拘束する方法ではなく、塑性加工型を構成するダイスの下型とパンチの双方で成形体の上下面を押圧する従来一般の据え込み加工による熱間塑性加工に話しを戻すと、この方法では、既述する成形体の側面に割れが生じ易いといった問題の他に、据え込み加工の際にパンチによる押圧によって成形体が側方に変形しようとした際に、成形体がパンチと下型から該変形の方向と逆向きのせん断摩擦力を受けるといった問題もある。このことを図11を参照して説明する。 Here, it is not a method of constraining the side of the molded body with a metal ring or the like, but heat by conventional upsetting that presses the upper and lower surfaces of the molded body with both the lower die and the punch constituting the plastic working die. Returning to the inter-plastic processing, in this method, in addition to the problem that the side surface of the molded body described above is likely to crack, the molded body tends to be deformed to the side by pressing with a punch during upsetting. In this case, there is also a problem that the molded body receives a shear frictional force opposite to the direction of deformation from the punch and the lower mold. This will be described with reference to FIG.
 図11aは据え込み加工前のパンチと下型で挟まれた成形体の解析モデルを示しており(モデルは、コンピュータにて有限要素解析を実行するに当たり、成形体を多数の要素セルの集合体としたもの)、図11bは加工率50%の据え込み加工後の解析モデルの変形の状態を示している。なお、図示する解析モデルは、成形体の左右で解析結果が同じになることから右側断面のみをモデル化したものである。 FIG. 11a shows an analysis model of a molded body sandwiched between a punch and a lower mold before upsetting (the model is an assembly of a large number of element cells when performing finite element analysis by a computer. FIG. 11b shows a state of deformation of the analytical model after upsetting with a processing rate of 50%. Note that the analysis model shown is a model of only the right cross section because the analysis results are the same on the left and right sides of the compact.
 図11aで示すようにパンチにて成形体を押圧すると、図11bで示すように何等の拘束も受けていない成形体の自由端面が側方へ変形する。この側方への変形の際に、成形体の上面と下面はそれぞれ、パンチと下型から側方への変形方向とは逆方向のせん断摩擦力を受ける。その結果、成形体の中心領域がその周囲の領域に比して塑性変形が進行して高歪み領域となり、これに起因して結晶組織の配向乱れが生じ、残留磁化の低下を齎すとともに、材料歩留まりの悪化による製造コスト増といった問題に繋がる。 When the molded body is pressed with a punch as shown in FIG. 11a, the free end face of the molded body not subjected to any constraint as shown in FIG. 11b is deformed laterally. During the lateral deformation, the upper surface and the lower surface of the molded body are subjected to a shear frictional force in a direction opposite to the lateral deformation direction from the punch and the lower die. As a result, the central region of the compact becomes more highly strained due to the progress of plastic deformation compared to the surrounding region, resulting in disorder of the orientation of the crystal structure, which leads to a decrease in residual magnetization and the material. This leads to problems such as an increase in manufacturing cost due to a decrease in yield.
特開平2-250920号公報JP-A-2-250920 特開平2-250922号公報Japanese Patent Laid-Open No. 2-250922 特開平2-250919号公報JP-A-2-250919 特開平2-250918号公報JP-A-2-250918 特開平4-044301号公報JP-A-4-04301 特開平4-134804号公報JP-A-4-134804
 本発明は上記する問題に鑑みてなされたものであり、成形体に据え込み加工である熱間塑性加工を施して配向磁石である希土類磁石を製造するに当たり、成形体に割れが生じることなく、しかも成形体の側方変形の際にパンチや下型から作用するせん断摩擦力による結晶組織の配向乱れが生じない希土類磁石の製造方法を提供することを目的とする。 The present invention has been made in view of the above-described problems, and in producing a rare earth magnet that is an oriented magnet by performing hot plastic processing that is upsetting processing on a molded body, without causing cracks in the molded body, Moreover, it is an object of the present invention to provide a method for producing a rare earth magnet in which the orientation disorder of the crystal structure does not occur due to the shear frictional force acting from the punch or the lower mold when the compact is laterally deformed.
 前記目的を達成すべく、本発明による希土類磁石の製造方法は、希土類磁石材料となる粉末を加圧成形して、柱状の成形体を製造する第1のステップ、前記成形体が収容されるキャビティを備えたダイスと該キャビティ内で摺動自在なパンチとからなる塑性加工型を用意し、前記キャビティは、前記成形体のパンチによる加圧方向と直交する断面よりも断面寸法の大きな断面を有しており、前記キャビティに成形体を収容してダイスの下型とパンチで挟み、該パンチと下型で成形体の上面と下面を直接押圧しながら異方性を与える熱間塑性加工を施して配向磁石である希土類磁石を製造する第2のステップからなり、前記第2のステップはさらに2つのステップから構成されており、最初のステップAでは、下型とパンチによる押圧によって、下型とパンチで押圧されていない自由端面である成形体の側面が側方に張り出して成形体の側方にあるダイスの側面型から加圧され、異方性の付与に必要な加工率に達する前の段階までパンチと下型による押圧を実行して配向磁石前駆体を製造するものであり、次のステップBでは、配向磁石前駆体の側面をダイスの側面型からの加圧のない自由端面に戻し、異方性の付与に必要な加工率に達するまで下型とパンチによる押圧を実行して配向磁石を製造するものである。 In order to achieve the above object, a method for producing a rare earth magnet according to the present invention comprises a first step of producing a columnar shaped body by pressure-molding a powder as a rare earth magnet material, and a cavity in which the shaped body is accommodated. A plastic working die comprising a die provided with a punch slidable in the cavity is prepared, and the cavity has a cross section having a larger cross-sectional dimension than a cross section perpendicular to the pressing direction of the molded body by the punch. The molded body is accommodated in the cavity and sandwiched between the lower die of the die and the punch, and hot plastic working is performed to give anisotropy while directly pressing the upper surface and the lower surface of the molded body with the punch and the lower die. The second step of manufacturing a rare earth magnet as an orientation magnet is composed of two steps. In the first step A, the lower die and the punch are pressed. The side of the molded body, which is the free end face that is not pressed by the lower mold and the punch, protrudes to the side and is pressed from the side mold of the die on the side of the molded body, and the processing rate necessary for imparting anisotropy In the next step B, the side face of the oriented magnet precursor is not pressed from the side face mold of the die. The magnet is returned to the free end face and pressed with a lower die and a punch until a processing rate necessary for imparting anisotropy is reached to produce an oriented magnet.
 本発明の希土類磁石の製造方法は、据え込み加工に際してパンチによる一度の押圧によって所望の加工率まで熱間塑性加工を実行することに代わり、所望の加工率に達する前に2以上の段階に分けて熱間塑性加工を実行する方法である。そして、最初のステップ(ステップA)では、熱間塑性加工前の段階で成形体の側面がフリーな状態(自由端面)であったものが、所望の加工率に達する前の段階まで成形体を押圧した際に側面をダイスの側面型で加圧するようにしたものである。 The manufacturing method of the rare earth magnet of the present invention is divided into two or more stages before reaching the desired processing rate instead of performing hot plastic processing to the desired processing rate by pressing once with a punch during upsetting. This is a method of performing hot plastic working. Then, in the first step (Step A), the side of the molded body is in a free state (free end surface) before the hot plastic working, and the molded body is moved to the stage before the desired processing rate is reached. When pressed, the side surface is pressed by a side surface mold of a die.
 すなわち、成形体が組成変形してその側面が側方に変形し、この変形の過程でダイスの側面型に当接し、さらなるパンチによる押圧によって、成形体の側面はダイスの側面型から加圧されることになる。この成形体の側面の加圧により、成形体がパンチと下型から受ける、側方への変形方向とは逆方向のせん断摩擦力を相殺するような矯正力が付与され、このせん断摩擦力に起因する結晶組織の配向乱れを解消することができる。 That is, the molded body undergoes compositional deformation and its side surface deforms to the side. In the course of this deformation, the side surface of the die contacts the die, and the side surface of the molded body is pressed from the side surface die of the die by further pressing. Will be. By pressurizing the side surface of the molded body, a correction force is applied to the sheared friction force that counteracts the shear frictional force that the molded body receives from the punch and the lower mold in the direction opposite to the lateral deformation direction. The resulting disorder in the orientation of the crystal structure can be eliminated.
 一方で、パンチにて押圧される成形体は、所望の加工率となる前段階まで熱間塑性加工されるステップAにおいて、自由に側方へ変形した後にダイスの側面型から拘束されることから、一度の熱間塑性加工にて所望の加工率が得られるとともに成形体の側面が常にフリーな状態である従来の製造方法の場合の割れの発生という問題も効果的に解消される。 On the other hand, the molded body pressed by the punch is constrained from the side surface mold of the die after being deformed to the side freely in Step A in which the plastic deformation is performed to the previous stage where the desired processing rate is obtained. In addition, the problem of occurrence of cracks in the case of the conventional manufacturing method in which a desired processing rate can be obtained by one hot plastic working and the side surface of the molded body is always free is effectively solved.
 なお、熱間塑性加工を実行して配向磁石を製造する第2のステップに関しては、このステップを構成するステップAを一度実行した後にステップBに移行して配向磁石(希土類磁石)が製造される形態のほか、ステップAを2回以上実行した後にステップBに移行して配向磁石が製造される形態もある。 In addition, regarding the 2nd step which manufactures an oriented magnet by performing hot plastic working, after performing Step A which comprises this step once, it transfers to Step B and an oriented magnet (rare earth magnet) is manufactured. In addition to the form, there is also a form in which the oriented magnet is manufactured by moving to step B after executing step A twice or more.
 また、第2のステップで用いられる塑性加工型の一つの実施の形態として、その構成要素であるダイスの側面型は分離自在もしくは可動自在に構成されており、第2のステップのステップAが終了した段階で該側面型が分離もしくは可動して配向磁石前駆体の側面から離れ、該側面の側方に空間を形成するように構成されている形態を挙げることができる。 Further, as one embodiment of the plastic working die used in the second step, the side surface die of the die which is a constituent element thereof is configured to be separable or movable, and step A of the second step is completed. In this stage, the side surface mold can be separated or moved so as to be separated from the side surface of the oriented magnet precursor and form a space on the side of the side surface.
 たとえばステップAを5回繰り返した後にステップBに移行して配向磁石を製造する場合には、各回のステップAが終了した段階でダイスの側面型を徐々に側方にスライドさせて固定し、次のステップAを実行すればよい。 For example, when step A is repeated 5 times and then the process proceeds to step B to produce an oriented magnet, the side surface mold of the die is gradually slid to the side and fixed after each step A is completed. Step A may be executed.
 ここで、本発明の製造方法が製造対象とする希土類磁石には、組織を構成する主相(結晶)の粒径が200nm以下程度のナノ結晶磁石は勿論のこと、粒径が300nm以上のもの、さらには粒径が1μm以上の焼結磁石や樹脂バインダーで結晶粒が結合されたボンド磁石などが包含される。 Here, the rare earth magnets to be produced by the production method of the present invention include not only nanocrystalline magnets having a grain size of the main phase (crystal) constituting the structure of about 200 nm or less, but also those having a grain size of 300 nm or more. Furthermore, a sintered magnet having a grain size of 1 μm or more, a bonded magnet in which crystal grains are bonded with a resin binder, and the like are included.
 第1のステップでは、液体急冷にて微細な結晶粒である急冷薄帯(急冷リボン)を製作し、これを粗粉砕等して希土類磁石用の磁粉を製作し、この磁粉をたとえばダイス内に充填してパンチで加圧しながら焼結してバルク化を図ることで等方性の成形体が得られる。 In the first step, a rapidly cooled ribbon (quenched ribbon), which is a fine crystal grain, is manufactured by liquid quenching, and this is coarsely pulverized to produce magnetic powder for a rare earth magnet. An isotropic molded body can be obtained by filling and sintering while pressing with a punch to achieve bulking.
 この成形体は、たとえばナノ結晶組織のRE-Fe-B系の主相(RE:Nd、Prの少なくとも一種で、より具体的にはNd、Pr、Nd-Prのいずれか一種もしくは二種以上)と、該主相の周りにあるRE-X合金(X:金属元素)の粒界相からなる金属組織を有している。 This molded body is, for example, a RE-Fe-B main phase with a nanocrystalline structure (RE: at least one of Nd and Pr, more specifically one or more of Nd, Pr and Nd-Pr. ) And a grain boundary phase of the RE-X alloy (X: metal element) around the main phase.
 なお、第2のステップにて製造された配向磁石に対し、Nd-Cu合金、Nd-Al合金、Pr-Cu合金、Pr-Al合金等の改質合金を粒界拡散し、保磁力が一層高められた希土類磁石としてもよい。Nd-Cu合金の共晶点は520℃程度、Pr-Cu合金の共晶点は480℃程度、Nd-Al合金の共晶点は640℃程度、Pr-Al合金の共晶点は650℃程度であり、いずれもナノ結晶磁石を構成する結晶粒の粗大化を齎す700℃~1000℃を大きく下回っていることから、希土類磁石がナノ結晶磁石の場合に特に好適である。 The oriented magnet manufactured in the second step diffuses modified alloys such as Nd-Cu alloy, Nd-Al alloy, Pr-Cu alloy, Pr-Al alloy, etc. at the grain boundary to further increase the coercive force. It may be an enhanced rare earth magnet. The eutectic point of Nd-Cu alloy is about 520 ° C, the eutectic point of Pr-Cu alloy is about 480 ° C, the eutectic point of Nd-Al alloy is about 640 ° C, and the eutectic point of Pr-Al alloy is 650 ° C. All of them are well below 700 ° C. to 1000 ° C., which causes coarsening of crystal grains constituting the nanocrystalline magnet, and are particularly suitable when the rare earth magnet is a nanocrystalline magnet.
 以上の説明から理解できるように、本発明の希土類磁石の製造方法によれば、成形体を塑性加工型に収容して熱間塑性加工をおこなうに当たり、この熱間塑性加工を少なくとも2つのステップから実行し、最初のステップAにおいて下型とパンチによる押圧によって下型とパンチで押圧されていない自由端面である成形体の側面をダイスの側面型から加圧し、異方性の付与に必要な加工率に達する前の段階までパンチと下型による押圧を実行して配向磁石前駆体を製造し、次のステップBにおいて配向磁石前駆体の側面をダイスの側面型からの加圧のない自由端面に戻し、異方性の付与に必要な加工率に達するまで下型とパンチによる押圧を実行して配向磁石を製造するものである。この製造方法により、成形体がパンチと下型から受ける、側方への変形方向とは逆方向のせん断摩擦力を相殺するような矯正力を成形体に付与することができ、このせん断摩擦力に起因する結晶組織の配向乱れを解消するとともに熱間塑性加工の際の割れの発生も抑止することができ、高い配向度に起因した残留磁化の高い希土類磁石を高い材料歩留まりの下で製造することができる。 As can be understood from the above description, according to the method for producing a rare earth magnet of the present invention, when the molded body is accommodated in the plastic working mold and the hot plastic working is performed, the hot plastic working is performed from at least two steps. In the first step A, the side surface of the molded body, which is a free end surface that is not pressed by the lower die and the punch, is pressed from the side surface die of the die by pressing with the lower die and the punch, and processing necessary for imparting anisotropy The oriented magnet precursor is manufactured by performing pressing with the punch and the lower die until the stage before reaching the rate, and in the next step B, the side surface of the oriented magnet precursor is changed to a free end surface without pressure from the side surface die of the die. The oriented magnet is manufactured by performing pressing with the lower die and the punch until the processing rate necessary for imparting anisotropy is reached. With this manufacturing method, it is possible to apply a correction force to the molded body that counteracts the shear frictional force that the molded body receives from the punch and the lower mold in the direction opposite to the lateral deformation direction. It is possible to eliminate the disorder of the orientation of the crystal structure caused by the deformation and to suppress the occurrence of cracks during hot plastic working, and to produce rare earth magnets with high remanence due to high degree of orientation at a high material yield. be able to.
(a)、(b)の順で本発明の希土類磁石の製造方法の第1のステップを説明した模式図である。It is the schematic diagram explaining the 1st step of the manufacturing method of the rare earth magnet of this invention in order of (a) and (b). 第1のステップで製造された成形体のミクロ構造を説明した図である。It is a figure explaining the microstructure of the molded object manufactured at the 1st step. 製造方法の第2のステップで使用する塑性加工型を説明した模式図である。It is the schematic diagram explaining the plastic working type | mold used at the 2nd step of a manufacturing method. (a)、(b)の順で第2のステップのステップAを説明したフロー図である。It is the flowchart explaining step A of the 2nd step in order of (a) and (b). (a)、(b)の順で第2のステップのステップBを説明したフロー図である。It is the flowchart explaining step B of the 2nd step in order of (a) and (b). 製造された本発明の配向磁石(希土類磁石)のミクロ構造を説明した図である。It is a figure explaining the microstructure of the manufactured oriented magnet (rare earth magnet) of this invention. 配向磁石の歪み分布を特定した解析結果を示した図である。It is the figure which showed the analysis result which specified the distortion distribution of the oriented magnet. 図7の実施例1におけるVIII部において、熱間塑性加工前から熱間塑性加工終了までの金属組織の変化状況を模擬したフロー図である。FIG. 8 is a flow diagram simulating the change of the metal structure from before the hot plastic working to the end of the hot plastic working in the portion VIII in Example 1 of FIG. 7. 摩擦係数と材料歩留まりの関係に関する解析結果を示した図である。It is the figure which showed the analysis result regarding the relationship between a friction coefficient and material yield. 第2のステップのステップAにおける加工率と材料歩留まりの関係に関する解析結果を示した図である。It is the figure which showed the analysis result regarding the relationship between the processing rate in step A of a 2nd step, and material yield. (a)は従来の据え込み加工による熱間塑性加工法において、加工前のパンチと下型で挟まれた成形体の解析モデルを示した図であり、(b)は加工率50%の据え込み加工後の解析モデルの変形の状態と歪み分布(解析結果)を示した図である。(A) is the figure which showed the analysis model of the molded object pinched | interposed with the punch and lower mold | die before a process in the hot plastic forming method by the conventional upsetting process, (b) is an installation model with a processing rate of 50%. It is the figure which showed the deformation | transformation state and distortion distribution (analysis result) of the analysis model after a cutting process.
 以下、図面を参照して本発明の希土類磁石の製造方法の実施の形態を説明する。なお、図示する製造方法は、その第2のステップにおいて、一度のステップAの後にステップBに移行して配向磁石を製造するものであるが、ステップAを2回以上実行した後にステップBに移行して配向磁石を製造する方法であってもよい。また、図示する配向磁石はナノ結晶磁石(粒径が300nm程度かそれ以下)からなる場合を説明したものであるが、本発明の製造方法が対象とする配向磁石はナノ結晶磁石に限定されるものではなく、粒径が300nm以上のものや、1μm以上の焼結磁石、さらには樹脂バインダーで結晶粒がバインドされたボンド磁石などを包含するものである。 Hereinafter, an embodiment of a method for producing a rare earth magnet of the present invention will be described with reference to the drawings. In the second step, the manufacturing method shown in the figure is one in which step A is followed by step B to manufacture an oriented magnet, but step A is executed twice or more and then step B is executed. Then, a method of manufacturing an oriented magnet may be used. In addition, although the illustrated oriented magnet is a nanocrystalline magnet (particle size is about 300 nm or less), the oriented magnet targeted by the manufacturing method of the present invention is limited to a nanocrystalline magnet. These include, but not limited to, those having a particle size of 300 nm or more, sintered magnets of 1 μm or more, and bonded magnets in which crystal grains are bound with a resin binder.
(希土類磁石の製造方法の実施の形態)
 図1a、bはその順で本発明の希土類磁石の製造方法の第1のステップを説明した模式図であり、図2は第1のステップで製造された成形体のミクロ構造を説明した図である。また、図3は本発明の製造方法の第2のステップで使用する塑性加工型を説明した模式図であり、図4は図4a、図4bの順で第2のステップのステップAを説明したフロー図であり、図5は図5a、図5bの順で第2のステップのステップBを説明したフロー図である。さらに、図6は製造された本発明の配向磁石(希土類磁石)のミクロ構造を説明した図である。
(Embodiment of manufacturing method of rare earth magnet)
FIGS. 1a and 1b are schematic views illustrating the first step of the method of manufacturing a rare earth magnet of the present invention in that order, and FIG. 2 is a view illustrating the microstructure of the molded body manufactured in the first step. is there. FIG. 3 is a schematic diagram illustrating a plastic working die used in the second step of the manufacturing method of the present invention. FIG. 4 illustrates step A of the second step in the order of FIGS. 4a and 4b. FIG. 5 is a flowchart illustrating step B of the second step in the order of FIGS. 5a and 5b. Further, FIG. 6 is a diagram illustrating the microstructure of the manufactured oriented magnet (rare earth magnet) of the present invention.
 図1aで示すように、たとえば50kPa以下に減圧したArガス雰囲気の不図示の炉中で、単ロールによるメルトスピニング法により、合金インゴットを高周波溶解し、希土類磁石を与える組成の溶湯を銅ロールRに噴射して急冷薄帯B(急冷リボン)を製作し、これを粗粉砕する。 As shown in FIG. 1a, for example, an alloy ingot is melted at a high frequency by a melt spinning method using a single roll in a furnace (not shown) in an Ar gas atmosphere whose pressure is reduced to 50 kPa or less. To produce a quenched ribbon B (quenched ribbon), which is coarsely pulverized.
 粗粉砕された急冷薄帯のうち、最大寸法が200nm程度かそれ以下の寸法の急冷薄帯Bを選別し、これを図1bで示すように超硬ダイスDとこの中空内を摺動する超硬パンチPで画成されたキャビティ内に充填する。そして、超硬パンチPで加圧しながら(X方向)加圧方向に電流を流して通電加熱することにより、ナノ結晶組織のNd-Fe-B系の主相(50nm~200nm程度の結晶粒径)と、主相の周りにあるNd-X合金(X:金属元素)の粒界相からなる柱状の成形体Sを製作する(第1のステップ)。 Among the coarsely pulverized quenched ribbons, a quenched ribbon B having a maximum dimension of about 200 nm or less is selected, and this is shown in FIG. Fill the cavity defined by the hard punch P. Then, while applying pressure with the carbide punch P (X direction), current is applied in the pressing direction to heat and heat, so that the main phase of the Nd-Fe-B system with a nanocrystal structure (crystal grain size of about 50 nm to 200 nm) And a columnar shaped body S composed of a grain boundary phase of an Nd—X alloy (X: metal element) around the main phase (first step).
 ここで、粒界相を構成するNd-X合金は、Ndと、Co、Fe、Ga等のうちの少なくとも1種以上の合金からなり、たとえば、Nd-Co、Nd-Fe、Nd-Ga、Nd-Co-Fe、Nd-Co-Fe-Gaのうちのいずれか一種、もしくはこれらの二種以上が混在したものであって、Ndリッチな状態となっている。 Here, the Nd—X alloy constituting the grain boundary phase is made of Nd and at least one alloy of Co, Fe, Ga, etc., for example, Nd—Co, Nd—Fe, Nd—Ga, One of Nd-Co-Fe and Nd-Co-Fe-Ga, or a mixture of two or more of these, is in an Nd-rich state.
 図2で示すように、成形体Sはナノ結晶粒MP(主相)間を粒界相BPが充満する等方性の結晶組織を呈している。 As shown in FIG. 2, the compact S exhibits an isotropic crystal structure in which the grain boundary phase BP is filled between the nanocrystalline grains MP (main phase).
 第1のステップで柱状の成形体Sが製造されたら、図3で示す塑性加工型10のキャビティCaに成形体Sを移載し、ここで据え込み加工である熱間塑性加工をおこなう。 When the columnar shaped body S is manufactured in the first step, the shaped body S is transferred to the cavity Ca of the plastic working die 10 shown in FIG. 3, and hot plastic working which is upsetting is performed here.
 塑性加工型10は、ダイス1と成形体Sを直接押圧するパンチ2から構成され、ダイス1は、箱状を呈し、下型1aと側面型1b、1dから構成され、この下型1aと側面型1b、1dで画成されたキャビティCaを2分する側面型1c(仕切り型)が収容された構成となっている。 The plastic working die 10 includes a die 2 and a punch 2 that directly presses the formed body S. The die 1 has a box shape, and includes a lower die 1a, side dies 1b, and 1d. A side surface mold 1c (partition mold) that divides the cavity Ca defined by the molds 1b and 1d into two is housed.
 キャビティCa内において、側面型1cは側方にスライド自在となっており、所望位置までスライドして位置決めされ、仮固定されるようになっている。 In the cavity Ca, the side surface mold 1c is slidable laterally, is slid to a desired position, is positioned, and is temporarily fixed.
 図示する塑性加工型10を適用した製造方法の第2のステップを図4,5を参照して説明する。より具体的には、図4は第2のステップのステップAを説明した図であり、図5は図4に次いで第2のステップのステップBを説明した図である。 A second step of the manufacturing method to which the illustrated plastic working die 10 is applied will be described with reference to FIGS. More specifically, FIG. 4 is a diagram illustrating step A of the second step, and FIG. 5 is a diagram illustrating step B of the second step after FIG.
 図4で示す第2のステップのステップAでは、異方性の付与に必要な所望の加工率(たとえば80%)のうち、その前段階の加工率(たとえば40%)まで据え込み加工(熱間塑性加工)が実行され、次のステップBにおいて所望の加工率となるまで熱間塑性加工が実行される。まず、図4aで示すように、ダイス1を構成する側面型1b、1cと下型1aで画成されたキャビティCa内に第1のステップで成形された成形体Sを収容し(成形体Sの下面Sbが下型1aに当接)、その上面Saの上にパンチPを載置する。 In step A of the second step shown in FIG. 4, upsetting (thermal) is performed up to a processing rate (for example, 40%) of the previous stage out of a desired processing rate (for example, 80%) necessary for imparting anisotropy. In the next step B, the hot plastic working is executed until a desired working rate is obtained. First, as shown in FIG. 4a, the molded body S molded in the first step is accommodated in the cavity Ca defined by the side molds 1b and 1c and the lower mold 1a constituting the die 1 (molded body S). And the punch P is placed on the upper surface Sa.
 このキャビティCa内における成形体Sの収容姿勢において、成形体Sの一方の側面Scと側面型1cの間には空間Gが形成されており、したがって成形体Sの側面Scは自由端面となっている。なお、空間Gに存在している空気は不図示の空気抜き孔を介して脱気できるようになっている。 In the accommodated posture of the molded body S in the cavity Ca, a space G is formed between one side surface Sc of the molded body S and the side surface mold 1c, and thus the side surface Sc of the molded body S is a free end surface. Yes. The air existing in the space G can be deaerated through an air vent hole (not shown).
 次に、パンチ2にて成形体Sを押圧力P1で鉛直方向に押圧する。 Next, the formed body S is pressed in the vertical direction by the punch 2 with the pressing force P1.
 パンチ2で成形体Sを鉛直方向に押圧すると、図4bで示すように成形体Sは側方に変形して配向磁石前駆体S'となり、側面Scの側方にあった空間Gが配向磁石前駆体S’で満たされた状態となる。 When the shaped body S is pressed in the vertical direction by the punch 2, the shaped body S is deformed to the side as shown in FIG. 4b to become the oriented magnet precursor S ', and the space G that was on the side of the side surface Sc becomes the oriented magnet. The state is filled with the precursor S ′.
 この状態でさらに成形体Sを押圧すると、塑性変形している配向磁石前駆体S’は、その上面S’a、下面S’bがパンチ2および下型1aで押圧され、さらに側面S'cが側面型1cから加圧力P2を受けて押し込まれ、したがって側面S’cはもはや自由端面ではなくなっている。 When the molded body S is further pressed in this state, the upper surface S′a and the lower surface S′b of the oriented magnet precursor S ′ that is plastically deformed are pressed by the punch 2 and the lower mold 1a, and the side surface S′c. Is pushed by receiving pressure P2 from the side mold 1c, and therefore the side S′c is no longer a free end face.
 このように所望の加工率の前段階の加工率まで押圧を終了するとともに、この段階で塑性変形する成形体Sの自由端面であった側面Scを拘束し、さらに加圧力を付与することにより、図11で説明したパンチや下型から成形体に作用するせん断摩擦力を相殺する方向に強制力が成形体に付与されることになり、据え込み加工の際に成形体の結晶組織に配向乱れが生じるといった問題が解消される。また、成形体の塑性変形の際に適度に側面が拘束されることから、熱間塑性加工の際に成形体に割れが生じるといった問題も効果的に解消される。なお、このせん断摩擦力の解消に関しては、その詳細を後述する。 In this way, the pressing is finished up to the processing rate of the previous stage of the desired processing rate, and the side surface Sc that is the free end surface of the molded body S that is plastically deformed at this stage is restrained, and further, a pressing force is applied, A forcing force is applied to the molded body in a direction that cancels the shear frictional force acting on the molded body from the punch or lower mold described in FIG. 11, and orientation disorder occurs in the crystalline structure of the molded body during upsetting. The problem of the occurrence of the problem is solved. In addition, since the side surface is restrained appropriately during plastic deformation of the molded body, the problem of cracks occurring in the molded body during hot plastic working is effectively eliminated. Details of the elimination of the shear frictional force will be described later.
 成形体Sに対して所望の加工率の前段階の加工率まで押圧がおこなわれて配向磁石前駆体S’が製造されたら、次に、第2のステップのステップBに移行する。まず、図5aで示すようにキャビティCa内に存在していた側面型1cを取り除き、使用するパンチをその平面積がダイス1の下型1aと同寸法および同形状のパンチ2Aに代え、このパンチ2Aで配向磁石前駆体S’を押圧力P3で鉛直方向に押圧する。 When the oriented magnet precursor S ′ is manufactured by pressing the compact S to a pre-processing rate of a desired processing rate, the process proceeds to Step B of the second step. First, as shown in FIG. 5a, the side surface mold 1c existing in the cavity Ca is removed, and the punch to be used is replaced with a punch 2A having the same area and the same shape as the lower mold 1a of the die 1. At 2A, the oriented magnet precursor S ′ is pressed in the vertical direction with the pressing force P3.
 パンチ2Aで配向磁石前駆体S’を鉛直方向に押圧すると、図5bで示すように配向磁石前駆体S’は側方に変形し、所望の加工率となるまでパンチ2Aで押圧することで配向磁石前駆体S'の側方にあった空間Gが配向磁石Cで満たされて配向磁石Cが製造される。 When the oriented magnet precursor S ′ is pressed in the vertical direction by the punch 2A, the oriented magnet precursor S ′ is deformed laterally as shown in FIG. 5B, and is oriented by pressing with the punch 2A until a desired processing rate is obtained. The space G that was on the side of the magnet precursor S ′ is filled with the orientation magnet C, and the orientation magnet C is manufactured.
 ステップA,Bの2段階の熱間塑性加工によって製造された配向磁石Cは、図6で示すようにナノ結晶粒MPが扁平形状をなし、異方軸とほぼ平行な界面は湾曲したり屈曲していて、磁気的異方性に優れた配向磁石Cとなっている。 As shown in FIG. 6, the oriented magnet C manufactured by the two-step hot plastic working of steps A and B has a flat nanocrystal grain MP, and the interface substantially parallel to the anisotropic axis is curved or bent. Thus, the oriented magnet C is excellent in magnetic anisotropy.
 そして、このように所望の加工率になる前段階で熱間塑性加工を一端終了して配向磁石前駆体を製造し、この配向磁石前駆体の製造に当たって塑性変形の途中からその側面を拘束して加圧することにより、割れを生じさせることなく、高い配向度で残留磁化の高い希土類磁石を製造することができる。 Then, in the previous stage where the desired processing rate is achieved, the hot plastic working is finished once to produce an oriented magnet precursor, and the side face is restrained from the middle of plastic deformation in the production of this oriented magnet precursor. By applying pressure, a rare earth magnet having a high degree of orientation and high remanence can be produced without causing cracks.
 [配向磁石の歪み分布を特定した解析とその結果]
 本発明者等は、成形体の側面を拘束することなく一度の熱間塑性加工にて所定の加工率まで熱間塑性加工をおこなった際の配向磁石(比較例1)における歪み分布、本発明の製造方法による配向磁石(実施例1)における歪み分布をそれぞれ解析にて特定した。この解析では、比較例1のモデルを加工率80%で熱間塑性加工し、実施例1のモデルは加工率40%、次いで80%と2段階で熱間塑性加工している。解析の結果を図7に示す。
[Analysis and results of strain distribution of oriented magnet]
The inventors of the present invention have disclosed a strain distribution in an oriented magnet (Comparative Example 1) when hot plastic working is performed up to a predetermined working rate in one hot plastic working without constraining the side surface of the molded body, The strain distribution in the oriented magnet (Example 1) produced by the manufacturing method was identified by analysis. In this analysis, the model of Comparative Example 1 is hot plastic processed at a processing rate of 80%, and the model of Example 1 is hot plastic processed in two stages: a processing rate of 40% and then 80%. The result of the analysis is shown in FIG.
 同図より、比較例1では、塑性変形したモデルの側方が自由端面のままであることから、塑性変形している成形体の上下面がパンチと下型からせん断摩擦力を受けている。 From the same figure, in Comparative Example 1, since the side of the plastically deformed model remains the free end surface, the upper and lower surfaces of the plastically deformed molded body are subjected to shear friction force from the punch and the lower mold.
 一方、実施例1では、比較例1と同様に塑性変形している成形体の上下面がパンチと下型からせん断摩擦力を受けるものの、成形体の側面が側面型から加圧され、この加圧力によってせん断摩擦力を相殺する矯正力が付与される。 On the other hand, in Example 1, the upper and lower surfaces of the molded body that was plastically deformed as in Comparative Example 1 were subjected to shear frictional force from the punch and the lower mold, but the side surface of the molded body was pressurized from the side mold, A correction force that cancels the shear friction force is applied by the pressure.
 実施例1において、せん断摩擦力による影響が大きな領域としてVIII部を取り上げ、このVIII部における熱間塑性加工途中の主相の変形や動き、配向の変化を図8にフロー図として示している。 In Example 1, the part VIII is taken as a region where the influence of the shear friction force is large, and the deformation, movement and orientation change of the main phase during the hot plastic working in the part VIII are shown as a flow diagram in FIG.
 熱間塑性加工の途中で主相が側方に変形して扁平状を呈し、パンチから作用するせん断摩擦力によって主相が回転し、このせん断摩擦力の方向に主相の配向もひきずられるものの、側面型からの加圧によって矯正力が付与されてせん断摩擦力が相殺され、主相が回転しながらその配向が鉛直方向に戻される。最終的に所望の加工率まで熱間塑性加工が実行された段階で、磁化容易方向に歪みが矯正され、配向度が鉛直方向にほぼ揃った配向磁石となる。 Although the main phase is deformed laterally during the hot plastic working and becomes flat, the main phase is rotated by the shear friction force acting from the punch, and the orientation of the main phase is also dragged in the direction of this shear friction force. By applying pressure from the side mold, a correction force is applied to cancel the shear frictional force, and the orientation is returned to the vertical direction while the main phase rotates. Finally, when hot plastic working is performed to a desired working rate, distortion is corrected in the direction of easy magnetization, and the oriented magnet has an orientation degree substantially aligned in the vertical direction.
 [摩擦係数と材料歩留まりの関係に関する解析とその結果]
 本発明者等はさらに、成形体の側面を拘束することなく一度の熱間塑性加工にて所定の加工率まで熱間塑性加工をおこなった際の配向磁石(比較例2)、第2のステップがステップA,Bの2段成形からなる本発明の製造方法による配向磁石(実施例2)、第2のステップが6回のステップAと次のステップBの7段成形からなる本発明の製造方法による配向磁石(実施例3)の各配向磁石に関し、成形体とパンチおよび下型の間の摩擦係数を変化させた際の材料歩留まりを特定するCAE解析を実施した。
[Analysis and results on the relationship between friction coefficient and material yield]
The present inventors further provide an oriented magnet (Comparative Example 2) when the hot plastic working is performed up to a predetermined working rate in one hot plastic working without constraining the side surface of the molded body, the second step. Is an oriented magnet according to the manufacturing method of the present invention consisting of two-step molding of steps A and B (Example 2), and the second step is a six-step molding of step A and the next step B of seven steps For each oriented magnet of the oriented magnet according to the method (Example 3), CAE analysis was performed to identify the material yield when changing the coefficient of friction between the compact, the punch and the lower die.
 本解析では、摩擦係数を0.1、0.2、0.3の3ケースで実施した。なお、摩擦係数0.2のケースはBN潤滑剤を使用している。解析結果を図9に示す。 In this analysis, the friction coefficient was implemented in three cases of 0.1, 0.2, and 0.3. Note that BN lubricant is used in the case with a friction coefficient of 0.2. The analysis results are shown in FIG.
 同図より、摩擦係数の増加に伴って材料歩留まりが低くなる傾向を示すことは比較例2、実施例2、3ともに同じであるものの、比較例2に比して2段成形の実施例2の材料歩留まりは5%も向上し、比較例2に比して7段成形の実施例3の材料歩留まりは10%も向上することが特定されている。 From the same figure, it is the same in Comparative Example 2 and Examples 2 and 3 that the material yield tends to decrease as the friction coefficient increases. It is specified that the material yield is improved by 5%, and the material yield of Example 3 of the seven-step molding is improved by 10% as compared with Comparative Example 2.
 [本発明の製造方法において第2のステップのステップAにおける加工率と材料歩留まりの関係に関する解析とその結果]
 本発明者等はさらに、第2のステップがステップA,Bの2段成形からなり、成形体とパンチおよび下型の間の摩擦係数を変化させた際の本発明の製造方法による配向磁石に関し、ステップAにおける加工率を変化させた際の材料歩留まりを特定するCAE解析を実施した。
[Analysis and result of relation between processing rate and material yield in step A of the second step in the manufacturing method of the present invention]
The present inventors further relate to an oriented magnet according to the manufacturing method of the present invention when the second step comprises two-step molding of steps A and B, and the friction coefficient between the molded body, the punch and the lower mold is changed. Then, CAE analysis was performed to identify the material yield when changing the processing rate in Step A.
 本解析においても、摩擦係数を0.1、0.2、0.3の3ケースで実施した。なお、摩擦係数0.2のケースはBN潤滑剤を使用している。解析結果を図10に示す。 In this analysis, the friction coefficient was 0.1, 0.2, and 0.3. Note that BN lubricant is used in the case with a friction coefficient of 0.2. The analysis result is shown in FIG.
 同図より、摩擦係数が0.2、0.3のケースでは加工率30%で材料歩留まりの最適値が得られ、摩擦係数が0.4のケースでは加工率40%で材料歩留まりの最適値が得られることが特定されている。この結果より、摩擦係数に応じてステップAにおける加工率を適宜変化させることにより、材料歩留まりの高い製造を実現できることが分った。 From the figure, it is specified that the optimum material yield is obtained at a processing rate of 30% when the friction coefficient is 0.2 and 0.3, and the optimum material yield is obtained at a processing rate of 40% when the friction coefficient is 0.4. Has been. From this result, it was found that production with a high material yield can be realized by appropriately changing the processing rate in Step A according to the friction coefficient.
 以上、本発明の実施の形態を図面を用いて詳述してきたが、具体的な構成はこの実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲における設計変更等があっても、それらは本発明に含まれるものである。 The embodiment of the present invention has been described in detail with reference to the drawings. However, the specific configuration is not limited to this embodiment, and there are design changes and the like without departing from the gist of the present invention. They are also included in the present invention.
 1…ダイス、1a…下型、1b、1d…側面型、1c…側面型(仕切り型)、2,2A…パンチ、10…塑性加工型、R…銅ロール、B…急冷薄帯(急冷リボン)、D…超硬ダイス、P…超硬パンチ、Ca…キャビティ、G…空間、S…成形体、S’…配向磁石前駆体、C…配向磁石(希土類磁石)、MP…主相(ナノ結晶粒、結晶粒、結晶)、BP…粒界相 DESCRIPTION OF SYMBOLS 1 ... Dies, 1a ... Lower type | mold, 1b, 1d ... Side surface type | mold, 1c ... Side surface type | mold (partition type | mold), 2,2A ... Punch, 10 ... Plastic working type | mold, R ... Copper roll, B ... Quenching ribbon (quenching ribbon) ), D ... carbide die, P ... carbide punch, Ca ... cavity, G ... space, S ... shaped body, S '... oriented magnet precursor, C ... oriented magnet (rare earth magnet), MP ... main phase (nano Crystal grain, crystal grain, crystal), BP ... grain boundary phase

Claims (3)

  1.  希土類磁石材料となる粉末を加圧成形して、柱状の成形体を製造する第1のステップ、
     前記成形体が収容されるキャビティを備えたダイスと該キャビティ内で摺動自在なパンチとからなる塑性加工型を用意し、前記キャビティは、前記成形体のパンチによる加圧方向と直交する断面よりも断面寸法の大きな断面を有しており、
     前記キャビティに成形体を収容してダイスの下型とパンチで挟み、該パンチと下型で成形体の上面と下面を直接押圧しながら異方性を与える熱間塑性加工を施して配向磁石である希土類磁石を製造する第2のステップからなり、
     前記第2のステップはさらに2つのステップから構成されており、
     最初のステップAでは、下型とパンチによる押圧によって、下型とパンチで押圧されていない自由端面である成形体の側面が側方に張り出して成形体の側方にあるダイスの側面型から加圧され、異方性の付与に必要な加工率に達する前の段階までパンチと下型による押圧を実行して配向磁石前駆体を製造するものであり、
     次のステップBでは、配向磁石前駆体の側面をダイスの側面型からの加圧のない自由端面に戻し、異方性の付与に必要な加工率に達するまで下型とパンチによる押圧を実行して配向磁石を製造するものである希土類磁石の製造方法。
    A first step of producing a columnar shaped body by pressure-molding a powder to be a rare earth magnet material;
    A plastic working die comprising a die having a cavity in which the molded body is accommodated and a punch slidable in the cavity is prepared, and the cavity has a cross section perpendicular to the pressing direction of the molded body by the punch. Also has a large cross-sectional dimension,
    The molded body is accommodated in the cavity and sandwiched between a lower die and a punch of the die, and subjected to hot plastic processing that gives anisotropy while directly pressing the upper surface and the lower surface of the molded body with the punch and the lower die, and using an oriented magnet. A second step of producing a rare earth magnet,
    The second step further comprises two steps,
    In the first step A, the side surface of the molded body, which is a free end surface not pressed by the lower mold and the punch, protrudes to the side by pressing with the lower mold and the punch, and is added from the side surface mold of the die on the side of the molded body. Pressed and punched to the stage before reaching the processing rate necessary for imparting anisotropy to produce an oriented magnet precursor by pressing with a punch and a lower die,
    In the next step B, the side surface of the oriented magnet precursor is returned to the free end surface without pressure from the side surface mold of the die, and pressing with the lower mold and punch is performed until the processing rate necessary for imparting anisotropy is reached. A method for producing a rare earth magnet that produces an oriented magnet.
  2.  前記ステップAを2回以上繰り返した後にステップBに移行して配向磁石を製造する請求項1に記載の希土類磁石の製造方法。 The method for producing a rare earth magnet according to claim 1, wherein the step A is repeated twice or more, and then the process proceeds to step B to produce an oriented magnet.
  3.  前記ダイスの側面型は分離自在もしくは可動自在に構成されており、第2のステップのステップAが終了した段階で該側面型が分離もしくは可動して配向磁石前駆体の側面から離れ、該側面の側方に空間を形成する請求項1または2に記載の希土類磁石の製造方法。 The side surface mold of the die is configured to be separable or movable, and when the step A of the second step is completed, the side surface mold is separated or moved to move away from the side surface of the oriented magnet precursor. The method for producing a rare earth magnet according to claim 1, wherein a space is formed on the side.
PCT/JP2013/080974 2012-11-20 2013-11-18 Method for manufacturing rare-earth magnet WO2014080852A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012254302A JP2014103251A (en) 2012-11-20 2012-11-20 Method of manufacturing rare earth magnet
JP2012-254302 2012-11-20

Publications (1)

Publication Number Publication Date
WO2014080852A1 true WO2014080852A1 (en) 2014-05-30

Family

ID=50776035

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/080974 WO2014080852A1 (en) 2012-11-20 2013-11-18 Method for manufacturing rare-earth magnet

Country Status (2)

Country Link
JP (1) JP2014103251A (en)
WO (1) WO2014080852A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6287684B2 (en) * 2014-08-20 2018-03-07 トヨタ自動車株式会社 Rare earth magnet manufacturing method
JP6112084B2 (en) * 2014-08-28 2017-04-12 トヨタ自動車株式会社 Rare earth magnet manufacturing method
JP6358085B2 (en) * 2014-12-26 2018-07-18 トヨタ自動車株式会社 Method for identifying magnetic performance of rare earth magnets
WO2017209332A1 (en) 2016-05-30 2017-12-07 성림첨단산업(주) Method for manufacturing rare earth magnet

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02238611A (en) * 1989-03-11 1990-09-20 Nippon Steel Corp Manufacture of rare-earth magnet
JPH046811A (en) * 1990-04-24 1992-01-10 Hitachi Metals Ltd Device for manufacturing rare earth element magnet
JPH10284314A (en) * 1997-04-10 1998-10-23 Masato Sagawa Magnetic core material
JP2003086413A (en) * 2001-06-28 2003-03-20 Sumitomo Special Metals Co Ltd Iron-based permanent magnet and manufacturing method therefor
JP2008505500A (en) * 2004-06-30 2008-02-21 ユニバーシティ・オブ・デイトン Anisotropic nanocomposite rare earth permanent magnets and methods for their production
JP2012044021A (en) * 2010-08-20 2012-03-01 Toyota Motor Corp Anisotropic magnet manufacturing method
JP2013098485A (en) * 2011-11-04 2013-05-20 Toyota Motor Corp Manufacturing apparatus and manufacturing method for rare earth magnet
JP2013098486A (en) * 2011-11-04 2013-05-20 Toyota Motor Corp Manufacturing method of rare earth magnet

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02238611A (en) * 1989-03-11 1990-09-20 Nippon Steel Corp Manufacture of rare-earth magnet
JPH046811A (en) * 1990-04-24 1992-01-10 Hitachi Metals Ltd Device for manufacturing rare earth element magnet
JPH10284314A (en) * 1997-04-10 1998-10-23 Masato Sagawa Magnetic core material
JP2003086413A (en) * 2001-06-28 2003-03-20 Sumitomo Special Metals Co Ltd Iron-based permanent magnet and manufacturing method therefor
JP2008505500A (en) * 2004-06-30 2008-02-21 ユニバーシティ・オブ・デイトン Anisotropic nanocomposite rare earth permanent magnets and methods for their production
JP2012044021A (en) * 2010-08-20 2012-03-01 Toyota Motor Corp Anisotropic magnet manufacturing method
JP2013098485A (en) * 2011-11-04 2013-05-20 Toyota Motor Corp Manufacturing apparatus and manufacturing method for rare earth magnet
JP2013098486A (en) * 2011-11-04 2013-05-20 Toyota Motor Corp Manufacturing method of rare earth magnet

Also Published As

Publication number Publication date
JP2014103251A (en) 2014-06-05

Similar Documents

Publication Publication Date Title
CA2887984C (en) Rare-earth magnet production method
US9859055B2 (en) Manufacturing method for rare-earth magnet
WO2014080852A1 (en) Method for manufacturing rare-earth magnet
KR101813427B1 (en) Method of manufacturing rare earth magnet
JP5786708B2 (en) Rare earth magnet manufacturing method
JP6102881B2 (en) Rare earth magnet manufacturing method
KR20160041790A (en) Method for manufacturing rare-earth magnets
JP5704186B2 (en) Rare earth magnet manufacturing method
JP6036648B2 (en) Rare earth magnet manufacturing method
CN108242334B (en) Method for manufacturing rare earth magnet
JP6354684B2 (en) Plastic working method
JP6287684B2 (en) Rare earth magnet manufacturing method
JP2015123463A (en) Forward extrusion forging device and forward extrusion forging method
JP2013138111A (en) Method of manufacturing rare-earth magnet

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13857190

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13857190

Country of ref document: EP

Kind code of ref document: A1