JP6287684B2 - Rare earth magnet manufacturing method - Google Patents

Rare earth magnet manufacturing method Download PDF

Info

Publication number
JP6287684B2
JP6287684B2 JP2014167923A JP2014167923A JP6287684B2 JP 6287684 B2 JP6287684 B2 JP 6287684B2 JP 2014167923 A JP2014167923 A JP 2014167923A JP 2014167923 A JP2014167923 A JP 2014167923A JP 6287684 B2 JP6287684 B2 JP 6287684B2
Authority
JP
Japan
Prior art keywords
sintered body
rare earth
earth magnet
coercive force
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014167923A
Other languages
Japanese (ja)
Other versions
JP2016046327A (en
Inventor
大 小淵
大 小淵
栄介 保科
栄介 保科
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2014167923A priority Critical patent/JP6287684B2/en
Publication of JP2016046327A publication Critical patent/JP2016046327A/en
Application granted granted Critical
Publication of JP6287684B2 publication Critical patent/JP6287684B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Description

本発明は、焼結体に熱間据え込み加工を施して希土類磁石を製造する希土類磁石の製造方法に関するものである。   The present invention relates to a method for producing a rare earth magnet, in which a sintered body is subjected to hot upsetting to produce a rare earth magnet.

ランタノイド等の希土類元素を用いた希土類磁石は永久磁石とも称され、その用途は、ハードディスクやMRIを構成するモータのほか、ハイブリッド車や電気自動車等の駆動用モータなどに用いられている。   Rare earth magnets using rare earth elements such as lanthanoids are also called permanent magnets, and their uses are used in motors for driving hard disks and MRI, as well as drive motors for hybrid vehicles and electric vehicles.

この希土類磁石の磁石性能の指標として残留磁化(残留磁束密度)と保磁力を挙げることができるが、モータの小型化や高電流密度化による発熱量の増大に対し、使用される希土類磁石にも耐熱性に対する要求は一層高まっており、高温使用下で磁石の磁気特性を如何に保持できるかが当該技術分野での重要な研究課題の一つとなっている。   Residual magnetization (residual magnetic flux density) and coercive force can be cited as indicators of the magnet performance of this rare earth magnet. However, in response to increased heat generation due to miniaturization of motors and higher current density, rare earth magnets used also The demand for heat resistance is further increasing, and how to maintain the magnetic properties of the magnet under high temperature use is one of the important research subjects in the technical field.

希土類磁石としては、組織を構成する結晶粒(主相)のスケールが3〜5μm程度の一般的な焼結磁石のほか、結晶粒を50nm〜300nm程度のナノスケールに微細化したナノ結晶磁石があるが、中でも、上記する結晶粒の微細化を図りながら高価な重希土類元素の添加量を低減したり、重希土類元素の添加を無くすことのできるナノ結晶磁石が現在注目されている。   As rare earth magnets, in addition to general sintered magnets with a crystal grain (main phase) scale of 3 to 5 μm constituting the structure, nanocrystal magnets with crystal grains refined to a nanoscale of about 50 nm to 300 nm are available. Among them, nanocrystal magnets that can reduce the amount of expensive heavy rare earth elements added or eliminate the addition of heavy rare earth elements while miniaturizing the crystal grains described above are currently attracting attention.

希土類磁石の製造方法の一例を概説すると、たとえばNd-Fe-B系の金属溶湯を急冷凝固して得られた微粉末(磁性粉末)を加圧成形しながら焼結体とし、この焼結体に磁気的異方性を付与するべく熱間塑性加工を施して希土類磁石(配向磁石)を製造する方法が一般に適用されている。なお、この熱間塑性加工には、後方押出し加工や前方押出し加工といった押出し加工や、据え込み加工(鍛造加工)などが適用されている。   An outline of an example of a method for producing a rare earth magnet is as follows. For example, a fine powder (magnetic powder) obtained by rapidly solidifying an Nd-Fe-B metal melt is pressed into a sintered body, and this sintered body is formed. In general, a method of producing a rare earth magnet (orientated magnet) by performing hot plastic working to impart magnetic anisotropy to the magnet is applied. In addition, extrusion processing such as backward extrusion processing and forward extrusion processing, upsetting processing (forging processing), and the like are applied to the hot plastic processing.

据え込み加工にはさらに、自由鍛造や半密閉鍛造、密閉鍛造が存在している。自由鍛造は、下型のたとえば平坦面にワークを載置し、下型に対して上型を降下させてたとえば上型の平坦なプレス面でワークをプレスし、この際に側方に潰れて広がるワークを側方で拘束させない鍛造法である。これに対し、半密閉鍛造は、側方の一部に側面型を配設しておき、側方に潰れて広がるワークの側方の一部を拘束する鍛造法である。また、密閉鍛造は、上型、下型に加えて据え込み空間を完全閉塞する側面型を備え、側方に潰れて広がるワークの側方を完全に拘束する鍛造法である。   In addition, there are free forging, semi-hermetic forging, and hermetic forging. In free forging, a workpiece is placed on a flat surface of the lower die, for example, the upper die is lowered with respect to the lower die, and the workpiece is pressed with a flat pressing surface of the upper die, for example, and then crushed to the side. It is a forging method that does not constrain the spreading work sideways. On the other hand, semi-hermetic forging is a forging method in which a side surface mold is disposed on a part of the side, and a part of the side of the workpiece that is crushed and spread laterally is restrained. Sealing forging is a forging method that includes a side die that completely closes the upsetting space in addition to the upper die and the lower die, and completely restrains the side of the workpiece that is crushed and spread laterally.

焼結体に熱間据え込み加工をおこなって磁気的異方性を付与することにより、加工された希土類磁石はその全体に亘って結晶にひずみが加えられて磁化容易方向(六方晶c軸方向)に配向する結果、高い磁化(残留磁束密度)が得られる。その一方で、結晶にひずみが加えられることで結晶粒が成長し、結晶粒の成長に伴って結晶間の磁気分断に寄与する粒界相が低減することになり、結果として保磁力が低下することになる。   By subjecting the sintered body to hot upsetting and imparting magnetic anisotropy, the processed rare earth magnet is strained throughout the entire crystal and is easily magnetized (hexagonal c-axis direction). As a result, high magnetization (residual magnetic flux density) is obtained. On the other hand, crystal grains grow by applying strain to the crystal, and the grain boundary phase contributing to the magnetic separation between the crystals decreases as the crystal grains grow, resulting in a decrease in coercive force. It will be.

ところで、IPMモータ等のロータ内に埋設される永久磁石である希土類磁石には、ステータコア側から入射してくる外部磁界による減磁に抗し得る保磁力が要求されている。この希土類磁石に作用する外部磁界は、希土類磁石の埋設されたロータを平面的に見た際に希土類磁石のステータコア側の隅角部が最も大きく、ロータコアの中央側が小さくなるのが一般的である。   Incidentally, a rare earth magnet, which is a permanent magnet embedded in a rotor such as an IPM motor, is required to have a coercive force that can resist demagnetization due to an external magnetic field incident from the stator core side. The external magnetic field acting on the rare earth magnet is generally such that when the rotor embedded with the rare earth magnet is viewed in plan, the corner of the rare earth magnet on the stator core side is the largest and the center side of the rotor core is small. .

したがって、希土類磁石の全領域を同程度の保磁力性能にする必要はなく、高い保磁力が要求される箇所において相対的に大きな保磁力性能を有する希土類磁石であればよい。
このような観点から、特許文献1では、部位ごとに異なる必要保磁力を備えた磁石を組み合わせてなる永久磁石が開示されている。
Therefore, it is not necessary for the entire area of the rare earth magnet to have the same degree of coercive force performance, and it is sufficient if the rare earth magnet has a relatively large coercive force performance at a location where a high coercive force is required.
From such a viewpoint, Patent Document 1 discloses a permanent magnet formed by combining magnets having different required coercive forces for each part.

たとえば、上記据え込み加工による加工率を相違させることで保磁力性能の異なる複数の磁石を製作し、部位ごとに必要な保磁力を備えた磁石を組み合わせて永久磁石を製作することにより、たとえば隅角部には相対的に大きな保磁力を備えた保磁力分布のある永久磁石を製作することができる。   For example, by producing a plurality of magnets having different coercive force performance by varying the processing rate by the upsetting process, and by combining a magnet having a coercive force necessary for each part, a permanent magnet can be produced. A permanent magnet having a relatively large coercive force and having a coercive force distribution can be manufactured at the corner.

しかしながら、この方法では、一つの永久磁石(希土類磁石)を製作するに当たり、保磁力の異なる複数の磁石を用意し、さらに用意された複数の磁石を必要保磁力に応じて各部位に固有の磁石が配設されるようにして組み付ける磁石製作工程を要し、この磁石製作工程が多大な時間と手間を要することは容易に理解できる。   However, in this method, when manufacturing one permanent magnet (rare earth magnet), a plurality of magnets having different coercive forces are prepared, and the prepared magnets are magnets specific to each part according to the required coercive force. It can be easily understood that a magnet manufacturing process is required to be assembled in such a manner that a large amount of time and labor are required.

また、希土類磁石に保磁力分布を付与する別の方法として、熱間塑性加工にて製造された希土類磁石(配向磁石)の粒界相に、ジスプロシウム等の重希土類元素やその合金等を粒界拡散する方法もある。しかし、この方法では、重希土類元素等を粒界拡散させることから、材料コストがかかることと改質合金の粒界拡散工程を要することが相俟って、希土類磁石の製造コストの増加が避けられない。   As another method for imparting a coercive force distribution to a rare earth magnet, a heavy rare earth element such as dysprosium or an alloy thereof is added to the grain boundary phase of a rare earth magnet (orientated magnet) manufactured by hot plastic working. There is also a way to spread. However, this method diffuses heavy rare earth elements, etc. at the grain boundaries, and therefore increases the manufacturing cost of rare earth magnets due to the material cost and the need for the grain boundary diffusion process of the modified alloy. I can't.

特開2009−27847号公報JP 2009-27847 A

本発明は上記する問題に鑑みてなされたものであり、焼結体に熱間据え込み加工を施して希土類磁石を製造する製造方法に関し、製造コストを増加させることなく、しかも簡易な方法で、保磁力分布のある希土類磁石を製造することのできる希土類磁石の製造方法を提供することを目的とする。   The present invention has been made in view of the above problems, and relates to a manufacturing method for manufacturing a rare earth magnet by subjecting a sintered body to a hot upsetting process, without increasing the manufacturing cost, and in a simple method, It is an object of the present invention to provide a method for producing a rare earth magnet capable of producing a rare earth magnet having a coercive force distribution.

前記目的を達成すべく、本発明による希土類磁石の製造方法は、希土類磁石用の磁性粉末を加圧成形して焼結体を製作し、焼結体に磁気的異方性を付与する熱間塑性加工を施して希土類磁石を製造する希土類磁石の製造方法において、前記熱間塑性加工は、下型と上型と側面型からなる成形型の内部に焼結体を載置し、上型、下型のいずれか一方を他方に対して相対移動させて加圧する熱間据え込み加工であり、熱間据え込み加工に際し、焼結体の中で他の部位に比して相対的に高い保磁力を付与したい箇所は予め側方に張り出した凸部に形成しておき、焼結体を成形型に載置した際に、該凸部が側面型に当接する、もしくは該凸部が焼結体の他の部位に比して側面型に近接している状態として熱間据え込み加工をおこなうものである。   In order to achieve the above object, a method of manufacturing a rare earth magnet according to the present invention is a hot process for producing a sintered body by press-molding a magnetic powder for a rare earth magnet and imparting magnetic anisotropy to the sintered body. In the method of producing a rare earth magnet by performing plastic working to produce a rare earth magnet, the hot plastic working is performed by placing a sintered body inside a molding die composed of a lower die, an upper die and a side die, This is a hot upsetting process in which either one of the lower molds is moved relative to the other for pressurization. During the hot upsetting process, the sintered body has a relatively high holding capacity compared to other parts. The part where the magnetic force is to be applied is formed in advance on a convex part protruding laterally, and when the sintered body is placed on the mold, the convex part comes into contact with the side surface mold, or the convex part is sintered. Hot upsetting is performed in a state of being closer to the side surface mold than other parts of the body.

本発明の希土類磁石の製造方法は、熱間塑性加工として熱間据え込み加工を適用し、この加工において、上型と下型に加えて側面型を備えた成形型を使用する。このことに加えて、成形型の据え込み空間に収容される焼結体に関し、相対的に高い保磁力を付与したい部位に凸部を形成しておき、凸部を側面型に当接させた状態で熱間据え込み加工を実施する、もしくは凸部を側面型に近接させた状態で熱間据え込み加工を実施することにより、高い保磁力を付与したい部位における熱間据え込み加工の際の変形量を可及的に少なくし、導入されるひずみを少なくすることで保磁力低下を抑制するものである。したがって、熱間据え込み加工によって焼結体に磁気的異方性が付与されて高い磁化性能を備え、かつ高い保磁力を要する箇所には当該保磁力を備えた保磁力分布のある希土類磁石が製造される。   The manufacturing method of the rare earth magnet of the present invention applies hot upsetting as hot plastic working, and uses a forming die having a side die in addition to an upper die and a lower die. In addition to this, with respect to the sintered body accommodated in the upsetting space of the mold, a convex portion is formed at a portion where a relatively high coercive force is to be applied, and the convex portion is brought into contact with the side surface mold. When performing hot upsetting at a location where high coercive force is to be applied, by performing hot upsetting in a state, or by performing hot upsetting with the convex portion close to the side surface mold By reducing the deformation amount as much as possible and reducing the introduced strain, the coercive force decrease is suppressed. Accordingly, a magnetic anisotropy is imparted to the sintered body by hot upsetting to provide a high magnetization performance, and a rare earth magnet having a coercive force distribution having a coercive force is provided at a location requiring a high coercive force. Manufactured.

側面型は、据え込み空間を完全に密閉する形態(密閉鍛造法)であってもよいし、一部閉塞する形態(半密閉鍛造法)であってもよい。   The side mold may be in a form (sealing forging method) in which the upsetting space is completely sealed, or may be in a form (semi-sealing forging method) in which it is partially closed.

本発明者等による検証の結果、凸部を設けておいた部位の熱間据え込み加工時の変形が抑制されることで導入される塑性ひずみが少なくなり、その部位の保磁力が高められることが実証されている。   As a result of verification by the present inventors, the plastic strain introduced is reduced by suppressing deformation during hot upsetting of the part provided with the convex part, and the coercive force of the part is increased. Has been demonstrated.

本発明の製造方法によれば、側面型を備えた成形型を使用して熱間据え込み加工をおこなうこと、焼結体のうちで相対的に高い保磁力を付与したい部位に凸部を形成しておくことにより、所定の保磁力を要する箇所に当該保磁力が付与された希土類磁石を、製造コストを増加させることなく、しかも簡易かつ効率的な方法で製造することが可能になる。   According to the manufacturing method of the present invention, hot upsetting is performed using a mold having a side surface mold, and a convex portion is formed in a portion of the sintered body where a relatively high coercive force is to be applied. By doing so, it becomes possible to manufacture a rare earth magnet having a coercive force applied to a portion requiring a predetermined coercive force by a simple and efficient method without increasing the manufacturing cost.

ここで、上記凸部に関し、たとえば直方体に加工された焼結体の上面隅角部に相対的に高い保磁力を付与したい場合は、焼結体の上面の四つの隅角部から側方に張り出した凸部を設けておけばよい。また、焼結体の上下面の隅角部に相対的に高い保磁力を付与したい場合は、焼結体の上下面の計八つの隅角部から側方に張り出した凸部を設けておけばよい。   Here, for example, when it is desired to give a relatively high coercive force to the upper surface corner portion of the sintered body processed into a rectangular parallelepiped, the four convex portions on the upper surface of the sintered body are laterally provided. An overhanging protrusion may be provided. Also, if you want to give relatively high coercive force to the corners on the upper and lower surfaces of the sintered body, you can provide convex parts that protrude laterally from the total of the eight corners on the upper and lower surfaces of the sintered body. That's fine.

あるいは、焼結体の上面もしくは上下面において、焼結体の側方に張り出した矩形枠状の凸部を設けておくこともできる。この場合、焼結体の断面視形状は、上面のみに矩形枠状の凸部が設けられている場合はTの字状となり、上下面に矩形枠状の凸部を設けておく場合はHの字状となる。   Or the convex part of the rectangular frame shape projected on the side of a sintered compact can also be provided in the upper surface or upper and lower surfaces of a sintered compact. In this case, the cross-sectional shape of the sintered body is T-shaped when a rectangular frame-shaped convex portion is provided only on the upper surface, and H when the rectangular frame-shaped convex portion is provided on the upper and lower surfaces. It becomes the character shape.

既述するように、ロータに希土類磁石が組み込まれた際に高い保磁力が必要となる部位は、たとえば希土類磁石が直方体の場合はティース側となる四つの隅角部であることから、直方体の焼結体において、これが希土類磁石に製造されてロータに組み込まれた際にティース側となる四つの隅角部において側方に張り出した凸部を形成しておき、たとえば成形型の側面型にこの四つの凸部を当接させた状態で熱間据え込み加工を実施することで、ロータに組み込まれた際にティース側となる四つの隅角部の保磁力が他の部位に比して相対的に高い希土類磁石を製造することができる。   As described above, when the rare earth magnet is incorporated in the rotor, the portion that requires a high coercive force is, for example, four corners on the teeth side when the rare earth magnet is a rectangular parallelepiped. In the sintered body, convex portions projecting sideways are formed at the four corners on the teeth side when the rare earth magnet is manufactured and incorporated in the rotor. By performing hot upsetting with the four convex parts in contact, the coercive force at the four corners on the teeth side when assembled in the rotor is relative to that of other parts. High-rare earth magnets can be manufactured.

以上の説明から理解できるように、本発明の希土類磁石の製造方法によれば、熱間塑性加工として熱間据え込み加工を適用し、この加工において、上型と下型に加えて側面型を備えた成形型を使用するとともに、成形型の据え込み空間に収容される焼結体に関し、相対的に高い保磁力を付与したい部位に凸部を形成しておき、凸部を側面型に当接させた状態で熱間据え込み加工を実施する、もしくは凸部を側面型に近接させた状態で熱間据え込み加工を実施する。このことにより、高い保磁力を付与したい部位における熱間据え込み加工の際の変形量を可及的に少なくし、導入されるひずみを少なくすることで保磁力低下を抑制することができ、熱間据え込み加工によって高い磁化性能を有し、高い保磁力を要する部位に当該保磁力を有する保磁力分布のある希土類磁石を、製造コストを増加させることなく、簡易かつ効率的に製造することができる。   As can be understood from the above description, according to the method of manufacturing a rare earth magnet of the present invention, hot upsetting is applied as hot plastic processing, and in this processing, a side die is used in addition to an upper die and a lower die. Concerning the sintered body accommodated in the upsetting space of the mold, a convex part is formed at a part where a relatively high coercive force is to be applied, and the convex part is applied to the side mold. The hot upsetting process is performed in a contact state, or the hot upsetting process is performed in a state where the convex portion is close to the side surface mold. As a result, the amount of deformation at the time of hot upsetting at a site where a high coercive force is to be imparted can be reduced as much as possible, and the reduction of the coercive force can be suppressed by reducing the strain introduced. It is possible to easily and efficiently manufacture rare earth magnets that have high magnetization performance by interposition processing and have a coercive force distribution in parts that require high coercive force without increasing the manufacturing cost. it can.

本発明の希土類磁石の製造方法で使用される希土類磁石用の磁性粉末の製作方法を説明した模式図である。It is the schematic diagram explaining the manufacturing method of the magnetic powder for rare earth magnets used with the manufacturing method of the rare earth magnet of this invention. 本発明の希土類磁石の製造方法において、焼結体の製作方法を説明した模式図である。It is the schematic diagram explaining the manufacturing method of a sintered compact in the manufacturing method of the rare earth magnet of this invention. (a)は図2の製作方法で製作された焼結体の実施の形態1を示した斜視図であり、(b)は焼結体の実施の形態2を示した斜視図である。(c)は焼結体の実施の形態3を示した斜視図である。(A) is the perspective view which showed Embodiment 1 of the sintered compact manufactured with the manufacturing method of FIG. 2, (b) is the perspective view which showed Embodiment 2 of the sintered compact. (C) is the perspective view which showed Embodiment 3 of the sintered compact. 焼結体の実施の形態1を使用して熱間塑性加工(熱間据え込み加工)を実施している状況を説明した模式図である。It is the schematic diagram explaining the condition which is implementing the hot plastic working (hot upsetting process) using Embodiment 1 of a sintered compact. 製造された保磁力分布のある希土類磁石を示した斜視図である。It is the perspective view which showed the manufactured rare earth magnet with coercive force distribution. (a)は図3aで示す焼結体のミクロ構造を説明した図であり、(b)は図5で示す希土類磁石のミクロ構造を説明した図である。(A) is the figure explaining the microstructure of the sintered compact shown in FIG. 3a, (b) is the figure explaining the microstructure of the rare earth magnet shown in FIG. 実施例および比較例の熱間据え込み加工を説明した図とそれぞれの加工方向ひずみ分布を示した図である。It is the figure explaining the hot upsetting process of an Example and a comparative example, and the figure which showed each process direction strain distribution. (a)は実施例および比較例の測定位置における加工方向ひずみの測定結果を示した図であり、(b)は実施例および比較例の測定位置における保磁力の測定結果を示した図である。(A) is the figure which showed the measurement result of the process direction distortion | strain in the measurement position of an Example and a comparative example, (b) is the figure which showed the measurement result of the coercive force in the measurement position of an Example and a comparative example. .

以下、図面を参照して本発明の希土類磁石の製造方法の実施の形態を説明する。   Embodiments of a method for producing a rare earth magnet according to the present invention will be described below with reference to the drawings.

(希土類磁石の製造方法の実施の形態)
図1は本発明の希土類磁石の製造方法で使用される希土類磁石用の磁性粉末の製作方法を説明した模式図であり、図2は本発明の希土類磁石の製造方法において、焼結体の製作方法を説明した模式図である。また、図3は製作された焼結体の実施の形態を示した図である。さらに、図4は焼結体の実施の形態1を使用して熱間塑性加工(熱間据え込み加工)を実施している状況を説明した模式図であり、図5は製造された保磁力分布のある希土類磁石を示した斜視図である。
(Embodiment of manufacturing method of rare earth magnet)
FIG. 1 is a schematic diagram for explaining a method for producing a magnetic powder for a rare earth magnet used in the method for producing a rare earth magnet of the present invention, and FIG. 2 is a method for producing a sintered body in the method for producing a rare earth magnet of the present invention. It is the schematic diagram explaining the method. FIG. 3 is a view showing an embodiment of the manufactured sintered body. Further, FIG. 4 is a schematic diagram illustrating a situation where hot plastic working (hot upsetting) is performed using the first embodiment of the sintered body, and FIG. 5 is a manufactured coercive force. It is the perspective view which showed the rare earth magnet with distribution.

本発明の製造方法は、希土類磁石用の磁性粉末を加圧成形して焼結体を製作し、焼結体に磁気的異方性を付与する熱間塑性加工を施して希土類磁石を製造する方法である。まず、磁性粉末の製作方法を概説する。   In the manufacturing method of the present invention, a sintered body is manufactured by pressure-molding magnetic powder for a rare earth magnet, and a rare earth magnet is manufactured by performing hot plastic working to impart magnetic anisotropy to the sintered body. Is the method. First, a method for producing magnetic powder will be outlined.

たとえば50kPa以下に減圧した不図示の炉中で、単ロールによるメルトスピニング法により、合金インゴットを高周波溶解し、図1で示すように、希土類磁石を与える組成の溶湯を銅ロールRに噴射して急冷薄帯B(急冷リボン)を製作する。   For example, in a furnace (not shown) whose pressure is reduced to 50 kPa or less, the alloy ingot is melted at a high frequency by a melt spinning method using a single roll, and as shown in FIG. Quenching ribbon B (quenching ribbon) is manufactured.

製作された急冷薄帯Bを粗粉砕して磁性粉末Jを製作する。ここで、磁性粉末Jの粒径範囲は75〜300μmの範囲となるように調整されるのがよい。   The produced rapidly cooled ribbon B is roughly pulverized to produce a magnetic powder J. Here, the particle size range of the magnetic powder J is preferably adjusted to be in the range of 75 to 300 μm.

次に、製作された磁性粉末を加圧成形して焼結体を製作する方法を説明する。
図2で示すように、中央に溝のある上型K1,下型K2および側面型K3からなる成形型M1を使用する。なお、側面型K3は中央に断面矩形の中空を有した筒体である。
Next, a method for producing a sintered body by pressing the produced magnetic powder will be described.
As shown in FIG. 2, a molding die M1 including an upper die K1, a lower die K2, and a side die K3 having a groove in the center is used. The side surface mold K3 is a cylindrical body having a hollow with a rectangular cross section at the center.

同図で示すように、成形型M1内に磁性粉末Jを充填し、上型K1を降下させて(X1方向)加圧成形する。   As shown in the figure, the magnetic powder J is filled in the molding die M1, and the upper die K1 is lowered (X1 direction) to perform pressure molding.

図2で示す加圧成形により、図3aで示すように、直方体の下方において側方に張り出した凸部S1aを備えた焼結体S1が製作される。   As shown in FIG. 3 a, a sintered body S <b> 1 having a convex portion S <b> 1 a projecting laterally below the rectangular parallelepiped is manufactured by the pressure molding shown in FIG. 2.

なお、使用する成形型を変更したり、適宜の後加工を施すことにより、たとえば図3bで示すように直方体の上下面に凸部S2aを備えた焼結体S2や、図3cで示すように直方体の一方の側面の四つの隅角部に凸部S3aを備えた焼結体S3を製作することもできる。ここで、図3cで示す焼結体S3は、これが熱間据え込み加工されてできた希土類磁石がロータのスロットに収容された際に、凸部S3aを具備する四つの隅角部に相当する希土類磁石の隅角部がロータ周囲に配設されているティースTS側に対向するようになっている。これは、既述するように、ロータに配設される希土類磁石のうち、ティースに対向する側の隅角部の減磁が激しく、したがって他の部位に比して高い保磁力を要求されるからである。   In addition, by changing the shaping | molding die to be used or performing appropriate post-processing, for example, as shown in FIG. 3b, as shown in FIG. 3b, the sintered body S2 having the convex portions S2a on the upper and lower surfaces of the rectangular parallelepiped, A sintered body S3 having convex portions S3a at four corners on one side surface of the rectangular parallelepiped can also be manufactured. Here, the sintered body S3 shown in FIG. 3c corresponds to the four corner portions having the convex portions S3a when the rare earth magnet formed by hot upsetting is accommodated in the slot of the rotor. The corners of the rare earth magnet are opposed to the teeth TS disposed around the rotor. As described above, among the rare-earth magnets arranged in the rotor, the demagnetization of the corner portion on the side facing the teeth is severe, so that a higher coercive force is required as compared with other parts. Because.

ここで、焼結体S1は、ナノ結晶組織のNd-Fe-B系の主相(平均粒径が300nm以下で、たとえば50nm〜200nm程度の結晶粒径)と、主相の周りにあるNd-X合金(X:金属元素)の粒界相を備えたものである。また、焼結体S1の粒界相を構成するNd-X合金は、Ndと、Co、Fe、Ga等のうちの少なくとも一種以上の合金からなり、たとえば、Nd-Co、Nd-Fe、Nd-Ga、Nd-Co-Fe、Nd-Co-Fe-Gaのうちのいずれか一種、もしくはこれらの二種以上が混在したものであって、Ndリッチな状態となっている。   Here, the sintered body S1 includes a Nd-Fe-B main phase (having an average grain size of 300 nm or less, for example, a crystal grain size of about 50 nm to 200 nm) and a Nd around the main phase. -X alloy (X: metal element) grain boundary phase. The Nd—X alloy constituting the grain boundary phase of the sintered body S1 is made of Nd and at least one alloy of Co, Fe, Ga, and the like. For example, Nd—Co, Nd—Fe, Nd One of -Ga, Nd-Co-Fe, and Nd-Co-Fe-Ga, or a mixture of two or more of these, is in an Nd-rich state.

次に、焼結体S1を熱間塑性加工(熱間据え込み加工)して希土類磁石を製造する方法を説明する。   Next, a method for producing a rare earth magnet by hot plastic working (hot upsetting) of the sintered body S1 will be described.

図4で示すように、下型K5上に断面矩形の中空を有した筒状の側面型K6が配設され、その据え込み空間G内で摺動自在な上型K4を備えた成形型M2を適用し、据え込み空間Gに焼結体S1を凸部S1aが下型K5側にくるようにし、さらに凸部S1aを側面型K6に当接させた状態で載置する。すなわち、図示例の熱間据え込み加工は密閉鍛造方式の加工となっている。   As shown in FIG. 4, a cylindrical side mold K6 having a hollow section with a rectangular cross section is disposed on the lower mold K5, and a molding mold M2 having an upper mold K4 that is slidable in the upsetting space G. Is applied, and the sintered body S1 is placed in the upright space G so that the convex portion S1a comes to the lower mold K5 side, and the convex portion S1a is in contact with the side surface mold K6. That is, the hot upsetting process in the illustrated example is a closed forging process.

上型K4を下方に摺動して(X2方向)焼結体S1を据え込み加工することにより、図5で示すように直方体形状の希土類磁石Cが製造される。   A rectangular parallelepiped rare earth magnet C is manufactured as shown in FIG. 5 by sliding the upper mold K4 downward (in the X2 direction) and upsetting the sintered body S1.

ここで、焼結体S1のうち、凸部S1aを設けておいた部位は熱間据え込み加工をおこなう前段階で側面型K6に当接していることから、熱間据え込み加工時に凸部S1aの変形は他の部位に比して抑制される。したがって、希土類磁石Cのうち、この凸部S1aに対応する箇所では導入される塑性ひずみが少なくなり、その部位の保磁力が高められることで高保磁力領域が形成され、一方で、凸部S1aを具備しない箇所に相当する他の部位は相対的に低保磁力領域となっている。   Here, in the sintered body S1, the portion provided with the convex portion S1a is in contact with the side surface mold K6 at the stage before performing the hot upsetting process, and thus the convex portion S1a during the hot upsetting process. The deformation of is suppressed as compared with other parts. Therefore, in the rare earth magnet C, the plastic strain introduced in the portion corresponding to the convex portion S1a is reduced, and the high coercive force region is formed by increasing the coercive force of the portion, while the convex portion S1a is Other portions corresponding to the portions not provided are relatively low coercive force regions.

このように、図示する希土類磁石の製造方法によれば、熱間据え込み加工に際し、焼結体S1の中で他の部位に比して相対的に高い保磁力を付与したい箇所は予め側方に張り出した凸部S1aに形成しておき、焼結体S1を成形型M2に載置した際に、この凸部S1aを側面型K6に当接させることで、保磁力分布のある希土類磁石Cを効率的に製造することができる。なお、凸部S1aを側面型K6に当接させず、他の部位に比して相対的に側面型K6に近接させた状態で熱間据え込み加工を実施してもよい。   As described above, according to the method of manufacturing a rare earth magnet shown in the drawing, a portion in the sintered body S1 to which a relatively high coercive force is to be applied as compared with other portions is preliminarily laterally. The rare earth magnet C having a coercive force distribution is formed by contacting the convex portion S1a with the side surface mold K6 when the sintered body S1 is placed on the molding die M2. Can be efficiently manufactured. Note that the hot upsetting process may be performed in a state where the convex portion S1a is not brought into contact with the side surface mold K6 and is relatively close to the side surface mold K6 as compared with other portions.

なお、熱間塑性加工の際の歪み速度は0.1/sec以上に調整されているのがよい。また、熱間塑性加工による加工度(圧縮率)が大きい場合、たとえば圧縮率が10%程度以上の場合の熱間塑性加工を強加工と称することができるが、加工率60〜80%程度の範囲で熱間塑性加工をおこなうのがよい。   Note that the strain rate during the hot plastic working is preferably adjusted to 0.1 / sec or more. In addition, when the degree of processing (compression rate) by hot plastic working is large, for example, hot plastic working when the compressibility is about 10% or more can be called strong processing, but the processing rate is about 60-80% It is better to perform hot plastic working in the range.

また、図6aは図3aで示す焼結体のミクロ構造を説明した図であり、図6bは図5で示す希土類磁石のミクロ構造を説明した図である。図6aで示すように、磁性粉末を加圧成形して製作された焼結体S1は、ナノ結晶粒MP(主相)間を粒界相BPが充満する等方性の結晶組織を呈している。これに対し、図6bで示すように、熱間塑性加工されて製造された希土類磁石Cは、磁気的異方性の結晶組織を呈している。   6a is a diagram for explaining the microstructure of the sintered body shown in FIG. 3a, and FIG. 6b is a diagram for explaining the microstructure of the rare earth magnet shown in FIG. As shown in FIG. 6a, the sintered body S1 produced by pressure-molding magnetic powder exhibits an isotropic crystal structure in which the grain boundary phase BP is filled between the nanocrystal grains MP (main phase). Yes. In contrast, as shown in FIG. 6b, the rare earth magnet C manufactured by hot plastic working exhibits a magnetic anisotropic crystal structure.

このように、本発明の希土類磁石の製造方法によれば、熱間塑性加工である熱間据え込み加工において、上型K4と下型K5に加えて側面型K6を備えた成形型M2を使用するとともに、成形型M2の据え込み空間Gに収容される焼結体S1に関し、相対的に高い保磁力を付与したい部位に凸部S1aを形成しておき、凸部S1aを側面型K6に当接させた状態で熱間据え込み加工を実施する、もしくは凸部S1aを側面型K6に近接させた状態で熱間据え込み加工を実施する。このことにより、高い保磁力を付与したい部位における熱間据え込み加工の際の変形量を可及的に少なくし、導入されるひずみを少なくすることで保磁力低下を抑制することができ、熱間据え込み加工によって高い磁化性能を有し、高い保磁力を要する部位に当該保磁力を有する保磁力分布のある希土類磁石Cを、製造コストを増加させることなく、簡易かつ効率的に製造することが可能になる。   Thus, according to the method of manufacturing a rare earth magnet of the present invention, in the hot upsetting process, which is a hot plastic process, the mold M2 having the side mold K6 in addition to the upper mold K4 and the lower mold K5 is used. In addition, with respect to the sintered body S1 accommodated in the upsetting space G of the mold M2, a convex portion S1a is formed at a portion where a relatively high coercive force is to be applied, and the convex portion S1a is applied to the side surface mold K6. The hot upsetting process is performed in a contact state, or the hot upsetting process is performed in a state where the convex portion S1a is brought close to the side surface mold K6. As a result, the amount of deformation at the time of hot upsetting at a site where a high coercive force is to be imparted can be reduced as much as possible, and the reduction of the coercive force can be suppressed by reducing the strain introduced. A simple and efficient production of rare earth magnets C with high coercive force and high coercive force distribution with coercive force distribution without increasing production costs. Is possible.

(従来の製造方法と本発明の製造方法で製造された希土類磁石のひずみと保磁力を測定する実験とその結果)
本発明者等は、従来の製造方法と本発明の製造方法で製造された希土類磁石のひずみと保磁力を測定する実験をおこなった。
(Experiment and results of measuring strain and coercivity of rare earth magnets manufactured by the conventional manufacturing method and the manufacturing method of the present invention)
The present inventors conducted experiments to measure strain and coercivity of rare earth magnets manufactured by the conventional manufacturing method and the manufacturing method of the present invention.

ここで、図7は実施例1、2および比較例の熱間据え込み加工を説明した図とそれぞれの加工方向ひずみ分布を示した図である。なお、図7の左側で示す実験モデル図は焼結体や成形型が左右対称であることから、中心線CLの右側のみを図示しており、図7の右側で示すひずみ分布図も同様である。   Here, FIG. 7 is a diagram illustrating hot upsetting of Examples 1 and 2 and a comparative example, and a diagram showing strain distribution in each processing direction. The experimental model diagram shown on the left side of FIG. 7 shows only the right side of the center line CL because the sintered body and the mold are symmetrical, and the strain distribution diagram shown on the right side of FIG. is there.

実施例1は図3aで示す焼結体S1を熱間据え込み加工した場合であり、実施例2は図3bで示す焼結体S2を熱間据え込み加工した場合である。また、比較例は従来一般の直方体の焼結体S’を熱間据え込み加工した場合である。   Example 1 is a case in which the sintered body S1 shown in FIG. 3a is hot upset processed, and Example 2 is a case in which the sintered body S2 shown in FIG. 3b is hot upset processed. The comparative example is a case where a conventional general rectangular parallelepiped sintered body S 'is hot upset processed.

図7のひずみ分布図より、比較例の希土類磁石の隅角部のひずみは大きく、その一方で、実施例1、2の希土類磁石の隅角部(領域A1,A2)のひずみは極めて小さくなっている。   From the strain distribution diagram of FIG. 7, the distortion of the corner portion of the rare earth magnet of the comparative example is large, while the distortion of the corner portion (region A1, A2) of the rare earth magnet of Examples 1 and 2 is extremely small. ing.

また、図7のひずみ分布図における各測定点P1、P2,P3における加工方向ひずみに関する測定結果、保磁力に関する測定結果をそれぞれ図8a、bに示している。   Moreover, the measurement result regarding the process direction distortion | strain in each measurement point P1, P2, P3 in the strain distribution map of FIG. 7 and the measurement result regarding a coercive force are each shown to FIG.

図8aより、比較例のひずみ-0.5に対して、実施例1、2のひずみはほぼゼロに近い値であることが分かる。   From FIG. 8a, it can be seen that the strains of Examples 1 and 2 are almost close to zero with respect to the strain -0.5 of the comparative example.

また、図8bより、比較例の保磁力が17kOe程度であるのに対し、実施例1、2の保磁力はともに22kOe程度と、比較例に比して5kOeも保磁力が増加することが実証されている。   8b shows that the coercive force of the comparative example is about 17 kOe, while the coercive force of Examples 1 and 2 is about 22 kOe, which is 5 kOe higher than that of the comparative example. Has been.

このように、高い保磁力を付与したい焼結体部位に凸部を設け、熱間据え込み加工の際にこの凸部の変形を抑制することにより、高価な重希土類元素等を粒界拡散させることなく、保磁力性能に優れた希土類磁石を製造することが可能になる。   In this way, a convex portion is provided in a sintered body portion to which a high coercive force is to be imparted, and the deformation of the convex portion is suppressed during hot upsetting to diffuse expensive heavy rare earth elements and the like at grain boundaries. Therefore, it becomes possible to produce a rare earth magnet excellent in coercive force performance.

以上、本発明の実施の形態を図面を用いて詳述してきたが、具体的な構成はこの実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲における設計変更等があっても、それらは本発明に含まれるものである。   The embodiment of the present invention has been described in detail with reference to the drawings. However, the specific configuration is not limited to this embodiment, and there are design changes and the like without departing from the gist of the present invention. They are also included in the present invention.

M1,M2…成形型、K1,K4…上型、K2,K5…下型、K3,K6… 側面型、G…据え込み空間、R…銅ロール、B…急冷薄帯(急冷リボン)、J…磁性粉末、S1、S2、S3…焼結体、S1a,S2a,S3a…凸部、C…希土類磁石(配向磁石)、MP…主相(結晶粒、結晶)、BP…粒界相   M1, M2 ... Mold, K1, K4 ... Upper mold, K2, K5 ... Lower mold, K3, K6 ... Side face mold, G ... Installation space, R ... Copper roll, B ... Quenching ribbon (quenching ribbon), J ... Magnetic powder, S1, S2, S3 ... Sintered body, S1a, S2a, S3a ... Convex part, C ... Rare earth magnet (orientation magnet), MP ... Main phase (crystal grains, crystals), BP ... Grain boundary phase

Claims (3)

希土類磁石用の磁性粉末を加圧成形して焼結体を製作し、焼結体に磁気的異方性を付与する熱間塑性加工を施して希土類磁石を製造する希土類磁石の製造方法において、
前記熱間塑性加工は、下型と上型と側面型からなる成形型の内部に焼結体を載置し、上型、下型のいずれか一方を他方に対して相対移動させて加圧する熱間据え込み加工であり、
熱間据え込み加工に際し、焼結体の中で他の部位に比して相対的に高い保磁力を付与したい箇所は予め側方に張り出した凸部に形成しておき、焼結体を成形型に載置した際に、該凸部が側面型に当接する、もしくは該凸部が焼結体の他の部位に比して側面型に近接している状態として熱間据え込み加工をおこなう希土類磁石の製造方法。
In a method for producing a rare earth magnet, a magnetic powder for a rare earth magnet is pressure-molded to produce a sintered body, and the sintered body is subjected to hot plastic processing for imparting magnetic anisotropy to produce a rare earth magnet.
In the hot plastic working, a sintered body is placed inside a molding die composed of a lower die, an upper die, and a side die, and either the upper die or the lower die is moved relative to the other and pressed. Hot upsetting,
At the time of hot upsetting, a portion of the sintered body to which a relatively high coercive force is to be imparted compared to other parts is formed in a convex portion protruding in the side in advance, and the sintered body is molded. When placed on the mold, the convex part comes into contact with the side surface mold, or the convex part is in a state closer to the side surface mold than the other parts of the sintered body, and hot upsetting is performed. A method for producing a rare earth magnet.
焼結体の中で他の部位に比して相対的に高い保磁力を付与したい箇所は、焼結体の上面もしくは下面の端部であり、
焼結体の側面のうち、前記上面もしくは下面の端部に対応する箇所を側方に張り出させて前記凸部とする請求項1に記載の希土類磁石の製造方法。
In the sintered body, the location where a relatively high coercive force is desired compared to other parts is the end of the upper surface or the lower surface of the sintered body,
The method for producing a rare earth magnet according to claim 1, wherein a portion of the side surface of the sintered body corresponding to the end portion of the upper surface or the lower surface is protruded laterally to form the convex portion.
焼結体の中で他の部位に比して相対的に高い保磁力を付与したい箇所は、焼結体の上面と下面の端部であり、
焼結体の側面のうち、前記上面と下面の端部に対応する箇所を側方に張り出させて前記凸部とする請求項1に記載の希土類磁石の製造方法。
The places where you want to give a relatively high coercive force compared to other parts in the sintered body are the upper and lower ends of the sintered body,
The method for producing a rare earth magnet according to claim 1, wherein, among the side surfaces of the sintered body, portions corresponding to the end portions of the upper surface and the lower surface are projected sideways to form the convex portions.
JP2014167923A 2014-08-20 2014-08-20 Rare earth magnet manufacturing method Active JP6287684B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014167923A JP6287684B2 (en) 2014-08-20 2014-08-20 Rare earth magnet manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014167923A JP6287684B2 (en) 2014-08-20 2014-08-20 Rare earth magnet manufacturing method

Publications (2)

Publication Number Publication Date
JP2016046327A JP2016046327A (en) 2016-04-04
JP6287684B2 true JP6287684B2 (en) 2018-03-07

Family

ID=55636642

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014167923A Active JP6287684B2 (en) 2014-08-20 2014-08-20 Rare earth magnet manufacturing method

Country Status (1)

Country Link
JP (1) JP6287684B2 (en)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0663063B2 (en) * 1985-03-19 1994-08-17 松下電器産業株式会社 Method for producing manganese-aluminum-carbon alloy magnet
JPS6210257A (en) * 1985-07-05 1987-01-19 Matsushita Electric Ind Co Ltd Manufacture of manganese-aluminum-carbon alloy magnet
JPH0663070B2 (en) * 1986-04-17 1994-08-17 松下電器産業株式会社 Method for producing manganese-aluminum-carbon alloy magnet
JPH0663069B2 (en) * 1986-04-17 1994-08-17 松下電器産業株式会社 Method for producing manganese-aluminum-carbon alloy magnet
US4859410A (en) * 1988-03-24 1989-08-22 General Motors Corporation Die-upset manufacture to produce high volume fractions of RE-Fe-B type magnetically aligned material
JP2004335499A (en) * 2003-04-30 2004-11-25 Yamaha Corp Thermoelectric material and its manufacturing method
JP5707934B2 (en) * 2010-12-27 2015-04-30 トヨタ自動車株式会社 Method for manufacturing anisotropic permanent magnet
JP5790617B2 (en) * 2012-10-18 2015-10-07 トヨタ自動車株式会社 Rare earth magnet manufacturing method
JP2014103251A (en) * 2012-11-20 2014-06-05 Toyota Motor Corp Method of manufacturing rare earth magnet

Also Published As

Publication number Publication date
JP2016046327A (en) 2016-04-04

Similar Documents

Publication Publication Date Title
CN109300640B (en) Rare earth magnet and method for producing same
CA2887984C (en) Rare-earth magnet production method
US9859055B2 (en) Manufacturing method for rare-earth magnet
US10347418B2 (en) Method of manufacturing rare earth magnet
KR101513824B1 (en) Method producing rare earth magnet
US20150279529A1 (en) Rare earth magnet and method for producing same
CN104347217B (en) Coercive-force-enhanced NdFeB thermal deformation magnet as well as preparation method and application thereof
JP6274068B2 (en) Rare earth magnet manufacturing method
WO2014080852A1 (en) Method for manufacturing rare-earth magnet
JP5707934B2 (en) Method for manufacturing anisotropic permanent magnet
JP2013098485A (en) Manufacturing apparatus and manufacturing method for rare earth magnet
US20100321139A1 (en) Permanent magnet and method of producing permanent magnet
JP6287684B2 (en) Rare earth magnet manufacturing method
CN105427984A (en) Manufacturing process of SmCo magnet with high iron content and high performance
JP5704186B2 (en) Rare earth magnet manufacturing method
JP6112084B2 (en) Rare earth magnet manufacturing method
KR20160041790A (en) Method for manufacturing rare-earth magnets
JP2013157345A (en) Method of producing rare-earth magnet
CN108242334B (en) Method for manufacturing rare earth magnet
JP6358085B2 (en) Method for identifying magnetic performance of rare earth magnets
JP6036648B2 (en) Rare earth magnet manufacturing method
JP6354684B2 (en) Plastic working method
JP2015123463A (en) Forward extrusion forging device and forward extrusion forging method
CN105427986A (en) High-performance SmCo permanent magnet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180122

R151 Written notification of patent or utility model registration

Ref document number: 6287684

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151