JP6358085B2 - Method for identifying magnetic performance of rare earth magnets - Google Patents

Method for identifying magnetic performance of rare earth magnets Download PDF

Info

Publication number
JP6358085B2
JP6358085B2 JP2014266118A JP2014266118A JP6358085B2 JP 6358085 B2 JP6358085 B2 JP 6358085B2 JP 2014266118 A JP2014266118 A JP 2014266118A JP 2014266118 A JP2014266118 A JP 2014266118A JP 6358085 B2 JP6358085 B2 JP 6358085B2
Authority
JP
Japan
Prior art keywords
rare earth
orientation
earth magnet
volume
flux density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014266118A
Other languages
Japanese (ja)
Other versions
JP2016127114A (en
Inventor
大輔 一期崎
大輔 一期崎
健祐 小森
健祐 小森
祐輔 志茂
祐輔 志茂
真鍋 明
明 真鍋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2014266118A priority Critical patent/JP6358085B2/en
Publication of JP2016127114A publication Critical patent/JP2016127114A/en
Application granted granted Critical
Publication of JP6358085B2 publication Critical patent/JP6358085B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Magnetic Variables (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Description

本発明は、希土類磁石の磁気性能の特定方法に関するものである。   The present invention relates to a method for specifying the magnetic performance of a rare earth magnet.

ランタノイド等の希土類元素を用いた希土類磁石は永久磁石とも称され、その用途は、ハードディスクやMRIを構成するモータのほか、ハイブリッド車や電気自動車等の駆動用モータなどに用いられている。   Rare earth magnets using rare earth elements such as lanthanoids are also called permanent magnets, and their uses are used in motors for driving hard disks and MRI, as well as drive motors for hybrid vehicles and electric vehicles.

この希土類磁石の磁石性能の指標として残留磁化(残留磁束密度)と保磁力を挙げることができるが、モータの小型化や高電流密度化による発熱量の増大に対し、使用される希土類磁石にも耐熱性に対する要求は一層高まっており、高温使用下で磁石の磁気特性を如何に保持できるかが当該技術分野での重要な研究課題の一つとなっている。   Residual magnetization (residual magnetic flux density) and coercive force can be cited as indicators of the magnet performance of this rare earth magnet. However, in response to increased heat generation due to miniaturization of motors and higher current density, rare earth magnets used also The demand for heat resistance is further increasing, and how to maintain the magnetic properties of the magnet under high temperature use is one of the important research subjects in the technical field.

希土類磁石としては、組織を構成する結晶粒(主相)のスケールが3〜5μm程度の一般的な焼結磁石のほか、結晶粒を50nm〜300nm程度のナノスケールに微細化したナノ結晶磁石があるが、中でも、上記する結晶粒の微細化を図りながら高価な重希土類元素の添加量を低減したり、重希土類元素の添加を無くすことのできるナノ結晶磁石が現在注目されている。   As rare earth magnets, in addition to general sintered magnets with a crystal grain (main phase) scale of 3 to 5 μm constituting the structure, nanocrystal magnets with crystal grains refined to a nanoscale of about 50 nm to 300 nm are available. Among them, nanocrystal magnets that can reduce the amount of expensive heavy rare earth elements added or eliminate the addition of heavy rare earth elements while miniaturizing the crystal grains described above are currently attracting attention.

希土類磁石の製造方法の一例を概説すると、たとえばNd-Fe-B系の金属溶湯を急冷凝固して得られた急冷薄帯(急冷リボン)を製作し、これを粉砕して製作された磁性粉末を熱間にて加圧成形しながら焼結体とし、この焼結体に磁気的異方性を付与するべく熱間塑性加工を施して希土類磁石(配向磁石)を製造する方法が一般に適用されている。   An example of a method for producing rare earth magnets is outlined below. For example, a magnetic ribbon produced by pulverizing a quenched ribbon (quenched ribbon) obtained by rapidly solidifying an Nd-Fe-B metal melt. In general, a method of producing a rare earth magnet (orientated magnet) by forming a sintered body while being hot-pressed into a sintered body and subjecting the sintered body to hot plastic working to give magnetic anisotropy is generally applied. ing.

ところで、希土類磁石等の磁石において、その性能向上に寄与する複数の組織パラメータが存在することは既に知られるところであり、たとえば、高残留磁束密度を得るためには結晶配向度が高い方がよいことや、Nd-Fe-B系磁石においては体積率が高い方がよいことなどが知見の一例として挙げられ、これらは理論的にも説明されている。しかしながら、これらの知見は主として単独のパラメータの影響に関する説明に終始しており、希土類磁石の磁気性能に対してそれぞれのパラメータの寄与が総合的に判断された知見はこれまでにない。   By the way, it is already known that a magnet such as a rare earth magnet has a plurality of structural parameters that contribute to improving its performance. For example, in order to obtain a high residual magnetic flux density, a higher degree of crystal orientation is better. In addition, in Nd—Fe—B series magnets, it is preferable to have a higher volume ratio, and the like is given as an example of the knowledge, and these are also explained theoretically. However, these findings mainly start from the explanation about the influence of a single parameter, and there has never been any knowledge that comprehensively determines the contribution of each parameter to the magnetic performance of the rare earth magnet.

ここで、特許文献1には磁石の厚み方向における保磁力分布をB-Hトレーサの測定値から算出することにより、磁石を実際に分割することなく、非破壊で算出する磁力特性算出方法が開示されている。   Here, Patent Document 1 discloses a magnetic property calculation method that calculates the coercive force distribution in the thickness direction of the magnet from the measurement value of the BH tracer, and calculates the magnet without division, without actually dividing the magnet. Yes.

この磁力特性算出方法によれば、磁石を破壊することなく、その保磁力分布を短時間で容易に算出することができるとしている。この算出方法は、磁気特性をマクロ的に測定し、評価していると言えるものの、ミクロ的な組織の影響については一切考慮されていない。したがって、単にマクロ的な磁気特性の特定に留まるものであり、どの組織因子に働きかけることで高性能磁石が得られるようになるかについては分かる術がない。そのため、複数の組織因子が相互に影響し合って磁石全体の磁気特性を決定していることを評価する手法の開示は当然に存在しない。   According to this magnetic force characteristic calculation method, the coercive force distribution can be easily calculated in a short time without destroying the magnet. Although it can be said that this calculation method measures and evaluates magnetic characteristics macroscopically, the influence of the microscopic structure is not taken into consideration at all. Therefore, it merely remains to specify macroscopic magnetic characteristics, and there is no way of knowing which tissue factor can be used to obtain a high-performance magnet. Therefore, there is naturally no disclosure of a technique for evaluating that a plurality of tissue factors influence each other to determine the magnetic characteristics of the entire magnet.

特開2013−36904号公報JP 2013-36904 A

本発明は上記する問題に鑑みてなされたものであり、磁石を構成する複数のミクロ組織の影響を総合的に判断することにより、希土類磁石の磁気特性を精度よく特定することのできる希土類磁石の磁気特性の特定方法を提供することを目的とする。   The present invention has been made in view of the above-described problems, and a rare earth magnet capable of accurately identifying the magnetic characteristics of a rare earth magnet by comprehensively determining the influence of a plurality of microstructures constituting the magnet. An object of the present invention is to provide a method for specifying magnetic characteristics.

前記目的を達成すべく、本発明による希土類磁石の磁気性能の特定方法は、希土類磁石用の磁性粉末が加圧成形されて焼結体が製作され、該焼結体に磁気的異方性を付与する熱間塑性加工が施されて製作された希土類磁石の磁気性能を特定する希土類磁石の磁気性能の特定方法であって、結晶組織を、A:等軸粒組織、B:せん断配向組織、C:酸化物・窒化物組織、D:扁平粒配向組織に分類し、以下の式にて残留磁化:Brを特定するものであり、Br=Br(A)+Br(B)+Br(C)+Br(D)であり、ここで、Br(A)は組織Aの体積%×組織Aの配向度×組織Aの主相率×希土類磁石の理論最高Br値であり、Br(B)は組織Bの体積%×組織Bの配向度×組織Bの主相率×希土類磁石の理論最高Br値であり、Br(C)は組織Cの体積%×0であり、Br(D)は組織Dの体積%×組織Dの配向度×組織Dの主相率×希土類磁石の理論最高Br値で規定される、磁気性能の特定方法である。 In order to achieve the above object, the magnetic performance of the rare earth magnet according to the present invention is determined by pressing a magnetic powder for a rare earth magnet to produce a sintered body, which has a magnetic anisotropy. A method for identifying the magnetic performance of a rare earth magnet to identify the magnetic performance of a rare earth magnet manufactured by applying hot plastic working, wherein A: equiaxed grain structure, B: shear orientation structure, C: Oxide / nitride structure, D: Flat grain orientation structure, remnant magnetization: Br is specified by the following formula: Br = Br (A) + Br (B) + Br (C) + Br (D), where Br (A) is the volume% of structure A × orientation degree of structure A × main phase ratio of structure A × theoretical highest Br value of rare earth magnet , and Br (B) is structure B. Volume% × orientation degree of structure B × main phase ratio of structure B × theoretical maximum Br value of rare earth magnet , Br (C) is volume% of structure C × 0, Br (D) is the structure D Volume% x degree of orientation of structure D x main phase ratio of structure D x rare earth magnet It is a method for specifying magnetic performance, defined by the theoretical maximum Br value of stone .

本発明の磁気特性の特定方法は、結晶組織を4種類に分類し、各組織の残留磁化Br、すなわち体積と配向度の積を算定して総和を求めることにより、希土類磁石全体の磁気特性(中でも残留磁束密度、残留磁化)を特定するものである。   The method for specifying the magnetic properties of the present invention categorizes crystal structures into four types, calculates the residual magnetization Br of each structure, that is, the product of volume and orientation, and obtains the sum to obtain the magnetic properties of the entire rare earth magnet ( Among them, the residual magnetic flux density and residual magnetization are specified.

結晶組織の中のA:等軸粒組織は、たとえば慣性楕円に近似した際のアスペクト比が4未満の結晶組織である。なお、アスペクト比が小さい場合(たとえば4未満の場合)は配向度が低く、アスペクト比が大きな場合(たとえば4以上の場合)は配向度が高い。   The A: equiaxed grain structure in the crystal structure is a crystal structure having an aspect ratio of less than 4 when approximated to an inertial ellipse, for example. When the aspect ratio is small (for example, less than 4), the degree of orientation is low, and when the aspect ratio is large (for example, 4 or more), the degree of orientation is high.

一方、結晶組織の中のB:せん断配向組織は、配向した結晶群のC軸方向に対し、およそ垂直に入った亀裂周辺における配向が乱れた結晶組織であり、たとえばダイヤ形状に見える組織である。   On the other hand, the B: shear orientation structure in the crystal structure is a crystal structure in which the orientation around the crack that is approximately perpendicular to the C-axis direction of the oriented crystal group is disordered, for example, a structure that looks like a diamond shape. .

一方、結晶組織の中のC:酸化物・窒化物組織は、結晶粒界もしくは粉末粒界に析出するNd酸化物やNd窒化物などの結晶組織である。   On the other hand, the C: oxide / nitride structure in the crystal structure is a crystal structure of Nd oxide, Nd nitride, or the like precipitated at the crystal grain boundary or the powder grain boundary.

さらに、結晶組織の中のD:扁平粒配向組織は、慣性楕円に近似した際のアスペクト比が4以上の結晶組織である。   Furthermore, the D: flat grain oriented structure in the crystal structure is a crystal structure having an aspect ratio of 4 or more when approximated to an inertia ellipse.

本発明の磁気特性の特定方法は、上記4種類の結晶組織の体積%と配向度の積、および各結晶組織の主相率と希土類磁石の理論最高Br値の積を算出し、双方のを算出して各組織の残留磁束密度とし、4種類の結晶組織の残留磁束密度の和を算出して希土類磁石全体の残留磁束密度とするものである。 Particular method of the magnetic properties of the present invention, the four types of calculating a product of the crystal volume% and orientation degree of the product of tissue, and the main phase ratio and the theoretical maximum Br value of the rare earth magnet of the crystal structure, both the product Is calculated as the residual magnetic flux density of each structure, and the sum of the residual magnetic flux densities of the four types of crystal structures is calculated as the residual magnetic flux density of the entire rare earth magnet.

ここで、Nd-Fe-B系の希土類磁石の場合、理論最高Br値は1.61Tとなる。   Here, in the case of a Nd—Fe—B rare earth magnet, the theoretical maximum Br value is 1.61T.

また、主相率とは、材料に占めるハード磁性相であるたとえばNd2Fe14B結晶の体積分率のことであり、主相率=(1−粒界相率)×(1−気孔率)で算定することができる。 The main phase ratio is a volume fraction of, for example, Nd 2 Fe 14 B crystal, which is a hard magnetic phase in the material, and main phase ratio = (1−grain boundary phase ratio) × (1−porosity). ).

また、C:酸化物・窒化物組織に関しては、酸化物、窒化物ゆえに主相が含まれておらず、残留磁束密度への寄与がないことからゼロが乗じられているものの、その体積を求めることにより、残留磁束密度低下への寄与を推定できることからその算出には大きな意味がある。   In addition, regarding C: oxide / nitride structure, the main phase is not included because of oxide and nitride, and there is no contribution to the residual magnetic flux density. Therefore, since the contribution to the decrease in residual magnetic flux density can be estimated, the calculation has a great meaning.

以上の説明から理解できるように、本発明の希土類磁石の磁気特性の特定方法によれば、希土類磁石を構成する複数種の微細組織が希土類磁石全体の磁気特性に及ぼす影響を定量的に算出し、各算出値を合算することで希土類磁石全体の磁気特性、特に残留磁束密度を精度よく特定することができる。   As can be understood from the above description, according to the method for specifying the magnetic characteristics of the rare earth magnet of the present invention, the influence of the multiple types of microstructures constituting the rare earth magnet on the magnetic characteristics of the entire rare earth magnet is quantitatively calculated. By summing up the calculated values, the magnetic properties of the entire rare earth magnet, particularly the residual magnetic flux density, can be specified with high accuracy.

希土類磁石を4種類の微細組織で表したことを説明した模式図である。It is the schematic diagram explaining that the rare earth magnet was represented by four types of microstructures. 主相量の算定フローを説明した図である。It is a figure explaining the calculation flow of the amount of main phases. 主相量の算定に適用される計算シートの一例を示した図である。It is the figure which showed an example of the calculation sheet | seat applied to calculation of the amount of main phases. 4種類の微細組織のSEM画像写真図であって、(a)は等軸粒組織の写真図であり、(b)はせん断配向組織の写真図であり、(c)は酸化物・窒化物組織の写真図であり、(d)は扁平粒配向組織の写真図である。4 is a SEM image photograph of four types of microstructures, (a) is a photograph of an equiaxed grain structure, (b) is a photograph of a shear orientation structure, and (c) is an oxide / nitride. It is a photograph figure of a structure, and (d) is a photograph figure of a flat grain orientation organization. (a)は本発明の特定方法で特定された希土類磁石の残留磁束密度とVSM(振動試料型磁力計)にて測定された残留磁束密度の測定値を比較する実験結果を示した図であり、(b)は本発明の特定方法で特定された希土類磁石の残留磁束密度における各結晶組織の寄与分を特定した図である。(A) is the figure which showed the experimental result which compares the measured value of the residual magnetic flux density measured by VSM (vibration sample type magnetometer) with the residual magnetic flux density of the rare earth magnet specified by the specific method of this invention. (B) is the figure which specified the contribution of each crystal structure in the residual magnetic flux density of the rare earth magnet specified by the specific method of the present invention. 残留磁束密度を低下させている要因分析結果を示した図である。It is the figure which showed the factor analysis result which is reducing the residual magnetic flux density.

以下、図面を参照して本発明の希土類磁石の磁気性能の特定方法の実施の形態を説明する。   Embodiments of a method for specifying the magnetic performance of a rare earth magnet according to the present invention will be described below with reference to the drawings.

(希土類磁石の磁気特性の特定方法の実施の形態)
図1は希土類磁石を4種類の微細組織で表したことを説明した模式図である。まず、図1で示す希土類磁石Mの製造方法を概説する。
(Embodiment of method for specifying magnetic characteristics of rare earth magnet)
FIG. 1 is a schematic diagram illustrating that a rare earth magnet is represented by four types of microstructures. First, the manufacturing method of the rare earth magnet M shown in FIG. 1 will be outlined.

液体急冷にて微細な結晶粒である急冷薄帯を製作し、これを粉砕して、磁性粉末を製作する。具体的には、たとえば50kPa以下に減圧した不図示の炉中で、単ロールによるメルトスピニング法により、合金インゴットを高周波溶解し、希土類磁石を与える組成の溶湯を銅ロールに噴射して急冷薄帯(急冷リボン)を製作する。   Quenching thin ribbons, which are fine crystal grains, are produced by liquid quenching and pulverized to produce magnetic powder. Specifically, for example, in a furnace (not shown) depressurized to 50 kPa or less, a melt spinning method using a single roll melts an alloy ingot at high frequency, and a molten metal having a composition that gives a rare earth magnet is jetted onto a copper roll to quench the ribbon. (Quenching ribbon) is manufactured.

ここで、急冷リボンの組成は、RE-Fe-B系の主相(RE:Nd、Prの少なくとも一種)と、該主相の周りにあるRE-X合金(X:金属元素であって重希土類元素を含まない)からなり、たとえばこれがナノ結晶組織の場合には、50nm〜300nm程度の結晶粒径の主相からなる。   Here, the composition of the quenched ribbon is that the main phase of the RE-Fe-B system (at least one of RE: Nd and Pr) and the RE-X alloy around the main phase (X: metal element and heavy For example, when this is a nanocrystalline structure, it is composed of a main phase having a crystal grain size of about 50 nm to 300 nm.

また、粒界相を構成するNd-X合金は、Ndと、Co、Fe、Ga、Cu、Al等のうちの少なくとも一種以上の合金からなり、たとえば、Nd-Co、Nd-Fe、Nd-Ga、Nd-Co-Fe、Nd-Co-Fe-Gaのうちのいずれか一種、もしくはこれらの二種以上が混在したものであって、Ndリッチな状態となっている。   The Nd—X alloy constituting the grain boundary phase is composed of Nd and at least one alloy of Co, Fe, Ga, Cu, Al, etc., for example, Nd—Co, Nd—Fe, Nd— One of Ga, Nd—Co—Fe, and Nd—Co—Fe—Ga, or a mixture of two or more of these, is in an Nd-rich state.

製作された急冷リボンを回収し、これを粗粉砕して磁性粉末を製作する。粗粉砕された磁性粉末の粒径範囲は、たとえば75〜300μmの範囲となるように調整される。   The produced rapidly cooled ribbon is collected and coarsely pulverized to produce a magnetic powder. The particle size range of the coarsely pulverized magnetic powder is adjusted to be in the range of 75 to 300 μm, for example.

次に、不図示の超硬ダイスとこの中空内を摺動する超硬パンチから構成された成形型のキャビティ内に磁性粉末を収容(充填)する。そして、超硬パンチで加圧しながら、加圧方向に電流を流して700℃程度で通電加熱することにより(熱間成形、焼結)、焼結体が製作される。たとえば、この焼結体は、ナノ結晶組織のNd-Fe-B系の主相(平均粒径が300nm以下で、たとえば50nm〜200nm程度の結晶粒径)と、主相の周りにあるNd-X合金(X:金属元素)の粒界相を備えた組織を有している。   Next, the magnetic powder is accommodated (filled) in a cavity of a molding die composed of a carbide die (not shown) and a carbide punch sliding in the hollow. And while pressing with a super hard punch, an electric current is sent in the pressurizing direction, and it heats by heating at about 700 degreeC (hot forming, sintering), and a sintered compact is manufactured. For example, this sintered body has a Nd-Fe-B main phase with a nanocrystalline structure (average particle size of 300 nm or less, for example, a crystal particle size of about 50 nm to 200 nm) and Nd- around the main phase. It has a structure with a grain boundary phase of X alloy (X: metal element).

ここで、焼結体の粒界相を構成するNd-X合金は、Ndと、Co、Fe、Ga等のうちの少なくとも一種以上の合金からなり、たとえば、Nd-Co、Nd-Fe、Nd-Ga、Nd-Co-Fe、Nd-Co-Fe-Gaのうちのいずれか一種、もしくはこれらの二種以上が混在したものであって、Ndリッチな状態となっている。   Here, the Nd-X alloy constituting the grain boundary phase of the sintered body is composed of Nd and at least one alloy of Co, Fe, Ga, etc., for example, Nd-Co, Nd-Fe, Nd One of -Ga, Nd-Co-Fe, and Nd-Co-Fe-Ga, or a mixture of two or more of these, is in an Nd-rich state.

焼結体が製作されたら、不図示の超硬パンチで加圧しながら熱間塑性加工を施すことにより、焼結体に磁気的異方性が付与され、所望の配向度を有する希土類磁石Mが製造される。   When the sintered body is manufactured, a rare earth magnet M having a desired degree of orientation is obtained by applying a hot plastic working while pressing with a carbide punch (not shown) to give magnetic anisotropy to the sintered body. Manufactured.

なお、熱間塑性加工の際の歪み速度は0.1/sec以上に調整されているのがよい。また、熱間塑性加工による加工度(圧下率、圧縮率)が大きい場合、たとえば圧下率が10%程度以上の場合の熱間塑性加工を強加工と称することができるが、圧下率60〜80%程度の範囲で熱間塑性加工をおこなうのがよい。   Note that the strain rate during the hot plastic working is preferably adjusted to 0.1 / sec or more. In addition, when the degree of work (rolling rate, compressibility) by hot plastic working is large, for example, hot plastic working when the rolling rate is about 10% or more can be referred to as strong working. It is better to perform hot plastic working in the range of about%.

熱間塑性加工を経て製作された希土類磁石Mは、磁気的異方性の結晶組織を呈しており、図1で示すように、容易磁化方向に配向し、残留磁束密度Brを有している。   The rare-earth magnet M manufactured through hot plastic working has a magnetic anisotropic crystal structure, and is oriented in the easy magnetization direction and has a residual magnetic flux density Br as shown in FIG. .

本発明の磁気特性の特定方法では、図1で示すように、製作された希土類磁石Mを4種類の結晶組織に分類する。具体的には、結晶組織を、A:等軸粒組織、B:せん断配向組織、C:酸化物・窒化物組織、D:扁平粒配向組織に分類する。   In the method for specifying magnetic characteristics of the present invention, as shown in FIG. 1, the manufactured rare earth magnet M is classified into four types of crystal structures. Specifically, the crystal structure is classified into A: equiaxed grain structure, B: shear orientation structure, C: oxide / nitride structure, and D: flat grain orientation structure.

ここで、等軸粒組織Aは、たとえば慣性楕円に近似した際のアスペクト比が4未満の結晶組織である。   Here, the equiaxed grain structure A is, for example, a crystal structure having an aspect ratio of less than 4 when approximated to an inertial ellipse.

一方、せん断配向組織Bは、配向した結晶群のC軸方向に対し、およそ垂直に入った亀裂周辺における配向が乱れた結晶組織であり、たとえばダイヤ形状に見える組織である。   On the other hand, the shear orientation structure B is a crystal structure in which the orientation around the crack that is approximately perpendicular to the C-axis direction of the oriented crystal group is disordered, for example, a structure that looks like a diamond shape.

一方、酸化物・窒化物組織Cは、結晶粒界もしくは粉末粒界に析出するNd酸化物やNd窒化物などの結晶組織である。   On the other hand, the oxide / nitride structure C is a crystal structure of Nd oxide, Nd nitride, or the like precipitated at a crystal grain boundary or a powder grain boundary.

さらに、扁平粒配向組織Dは、慣性楕円に近似した際のアスペクト比が4以上の結晶組織である。   Further, the flat grain oriented structure D is a crystal structure having an aspect ratio of 4 or more when approximated to an inertial ellipse.

上記4種類の結晶組織に分類し、希土類磁石M全体の残留磁束密度Brを以下の式で特定する。   The residual magnetic flux density Br of the entire rare earth magnet M is specified by the following formula by classifying into the above four types of crystal structures.

Br=Br(A)+Br(B)+Br(C)+Br(D)・・・・・・(数式)   Br = Br (A) + Br (B) + Br (C) + Br (D) (Formula)

ここで、Br(A)は組織Aの体積%×組織Aの配向度×組織Aの主相率×希土類磁石の理論最高Br値であり、Br(B)は組織Bの体積%×組織Bの配向度×組織Bの主相率×希土類磁石の理論最高Br値であり、Br(C)は組織Cの体積%×0であり、Br(D)は組織Dの体積%×組織Dの配向度×組織Dの主相率×希土類磁石の理論最高Br値である。 Here, Br (A) is the volume% of structure A x orientation degree of structure A x main phase ratio of structure A x theoretical maximum Br value of rare earth magnet , Br (B) is volume% of structure B x structure B Orientation ratio x main phase ratio of structure B x theoretical maximum Br value of rare earth magnet , Br (C) is volume% of structure C x 0, Br (D) is volume% of structure D x structure D The degree of orientation x the main phase ratio of structure D x the theoretical maximum Br value of the rare earth magnet .

各結晶組織のBrを算定することにより、希土類磁石Mを構成する複数種の結晶組織が希土類磁石M全体の磁気特性に及ぼす影響を定量的に算出し、各算出値を合算することで希土類磁石M全体の磁気特性、特に残留磁束密度を精度よく特定することができる。   By calculating Br of each crystal structure, the influence of a plurality of types of crystal structures constituting the rare earth magnet M on the magnetic properties of the entire rare earth magnet M is quantitatively calculated, and the calculated values are added together to calculate the rare earth magnet. The magnetic characteristics of the entire M, particularly the residual magnetic flux density, can be specified with high accuracy.

(本発明の磁気特性の特定方法による評価結果を検証した実験とその結果)
本発明者等は、Nd-Fe-B系の希土類磁石を製作し、A:等軸粒組織、B:せん断配向組織、C:酸化物・窒化物組織、D:扁平粒配向組織の4種類の結晶組織に分類してそれらの残留磁束密度を特定し、希土類磁石全体の残留磁束密度を特定するとともに、VSM(振動試料型磁力計)にて希土類磁石の残留磁束密度を実測し、双方の結果を比較する実験をおこなった。
(Experiment and results of verifying the evaluation results by the magnetic property specifying method of the present invention)
The present inventors manufactured Nd—Fe—B rare earth magnets, A: equiaxed grain structure, B: shear orientation structure, C: oxide / nitride structure, D: flat grain orientation structure. The residual magnetic flux density of the entire rare earth magnet is identified, and the residual magnetic flux density of the rare earth magnet is measured with a VSM (vibrating sample magnetometer). An experiment was conducted to compare the results.

以下、合金組成を表1に、急冷リボンの製作条件を表2に、焼結体の製作条件を表3に、熱間塑性加工条件を表4に、本発明の特定方法を適用した際の結果一覧を表5に、磁気特性結果を表6にそれぞれ示す。なお、全ての試料について、4mm×4mm×2mm(磁化容易方向)の直方体形状に加工し、8Tで着磁した後、VSMによって残留磁束密度を測定した。   Hereinafter, the alloy composition is shown in Table 1, the quenching ribbon production conditions in Table 2, the sintered body production conditions in Table 3, the hot plastic working conditions in Table 4, and the specific method of the present invention is applied. The result list is shown in Table 5, and the magnetic characteristic result is shown in Table 6. All samples were processed into a 4 mm × 4 mm × 2 mm (easy magnetization direction) rectangular parallelepiped shape, magnetized at 8 T, and the residual magnetic flux density was measured by VSM.

[表1]

Figure 0006358085
[Table 1]
Figure 0006358085

[表2]

Figure 0006358085
[Table 2]
Figure 0006358085

[表3]

Figure 0006358085
[Table 3]
Figure 0006358085

[表4]

Figure 0006358085
[Table 4]
Figure 0006358085

[表5]

Figure 0006358085
[Table 5]
Figure 0006358085

[表6]

Figure 0006358085
[Table 6]
Figure 0006358085

ここで、Br換算方法に関しては、Br換算=体積/100×主相率((1-粒界相率)×密度/100)×配向/100×1.61にて換算した。   Here, regarding the Br conversion method, it was converted as follows: Br conversion = volume / 100 × main phase ratio ((1-grain boundary phase ratio) × density / 100) × orientation / 100 × 1.61.

また、ICP質量分析、ON分析値に基づく主相量の計算方法を図2,3を参照して説明する。   In addition, a calculation method of the main phase amount based on ICP mass spectrometry and ON analysis values will be described with reference to FIGS.

状態図から磁石中の相を、Nd2Fe14B相、Nd相、Nd2O3相、NdFeB4相の4種類と仮定し、各相密度とICP質量分析、ON分析による各分析値によって各元素量から各相の重量および体積分率を算出した。ここで、Cu、Alは粒界相に排出されることからNd量として換算した。また、窒化物NdNは酸化物であるNd2O3よりもNd量の消費が1.5倍であることから、N量は1.5倍のO量として計算した。 From the phase diagram, the phases in the magnet are assumed to be four types: Nd 2 Fe 14 B phase, Nd phase, Nd 2 O 3 phase, and NdFeB 4 phase, and each phase density, ICP mass analysis, and each analysis value by ON analysis The weight and volume fraction of each phase were calculated from the amount of each element. Here, since Cu and Al were discharged to the grain boundary phase, they were converted as Nd amounts. In addition, since Nd nitride consumes 1.5 times as much Nd as Nd 2 O 3 which is an oxide, N was calculated as 1.5 times the amount of O.

主相量の計算方法は、図2で示すように、まず、図3の計算シートの(1)にてICP質量分析およびON分析にて分析した結果を入力し、次に、計算シートの(2)にて各相の分子量を計算し、次に、計算シートの(3)にて分析した結果と各相の分子量から各相のモル比を計算し、次に、計算シートの(4)の各相密度から各相質量に換算することにより、主相量を計算シートの(5)で計算する。   As shown in FIG. 2, the main phase amount calculation method is as follows. First, input the results of analysis by ICP mass spectrometry and ON analysis in (1) of the calculation sheet of FIG. The molecular weight of each phase is calculated in 2), and then the molar ratio of each phase is calculated from the analysis result in (3) of the calculation sheet and the molecular weight of each phase, and then (4) of the calculation sheet. The amount of the main phase is calculated in (5) of the calculation sheet by converting each phase density to the mass of each phase.

まず、図4を参照して、4種類の微細組織のSEM画像写真図を説明する。ここで、図4(a)は等軸粒組織の写真図であり、図4(b)はせん断配向組織の写真図であり、図4(c)は酸化物・窒化物組織の写真図であり、図4(d)は扁平粒配向組織の写真図である。   First, referring to FIG. 4, four types of microstructure SEM image photographs will be described. Here, FIG. 4 (a) is a photograph of an equiaxed grain structure, FIG. 4 (b) is a photograph of a shear orientation structure, and FIG. 4 (c) is a photograph of an oxide / nitride structure. FIG. 4 (d) is a photograph of a flat grain oriented structure.

図4(a)の等軸粒組織の写真図より、組織のアスペクト比が比較的小さいことが確認でき、その一方で、図4(d)の扁平粒配向組織の写真図より、組織のアスペクト比が非常に大きいことが確認できる。また、図4(b)のせん断配向組織の写真図より、結晶組織がダイヤ形状であることが確認できる。さらに、図4(c)の酸化物・窒化物組織の写真図より、この組織には主相が存在しないことが確認できる。   From the photograph of the equiaxed grain structure in FIG. 4A, it can be confirmed that the aspect ratio of the structure is relatively small. On the other hand, from the photograph of the flat grain oriented structure in FIG. It can be confirmed that the ratio is very large. Moreover, it can confirm that a crystal structure is a diamond shape from the photograph figure of the shear orientation structure | tissue of FIG.4 (b). Furthermore, from the photograph of the oxide / nitride structure in FIG. 4C, it can be confirmed that there is no main phase in this structure.

次に、図5,6を参照して実験結果を説明する。ここで、図5(a)は本発明の特定方法で特定された希土類磁石の残留磁束密度とVSM(振動試料型磁力計)にて測定された残留磁束密度の測定値を比較する実験結果を示した図であり、図5(b)は本発明の特定方法で特定された希土類磁石の残留磁束密度における各結晶組織の寄与分を特定した図である。また、図6は残留磁束密度を低下させている要因分析結果を示した図である。   Next, experimental results will be described with reference to FIGS. Here, FIG. 5A shows experimental results comparing the measured values of the residual magnetic flux density of the rare earth magnet specified by the specifying method of the present invention and the residual magnetic flux density measured by a VSM (vibrating sample magnetometer). FIG. 5B is a diagram in which the contribution of each crystal structure in the residual magnetic flux density of the rare earth magnet specified by the specifying method of the present invention is specified. FIG. 6 is a diagram showing the result of factor analysis for reducing the residual magnetic flux density.

図5(a)より、本発明の特定方法で特定された残留磁束密度BrとVSMによって実測された残留磁束密度Brを比較すると、残留磁束密度Brが低い1.2Tの領域から残留磁束密度Brが高い1.4Tの領域にかけての一致度が極めて高いことが分かる。このことより、本発明の特定方法が精度よく残留磁束密度Brを特定可能であることが実証されている。   From FIG. 5 (a), when the residual magnetic flux density Br determined by the specifying method of the present invention and the residual magnetic flux density Br measured by VSM are compared, the residual magnetic flux density Br is found from the 1.2T region where the residual magnetic flux density Br is low. It can be seen that the degree of agreement over the high 1.4T region is extremely high. This proves that the specifying method of the present invention can specify the residual magnetic flux density Br with high accuracy.

また、図5(b)より、本発明の特定方法で特定された残留磁束密度Brに対する各結晶組織の寄与分は、等軸粒組織が0.09T、せん断配向組織が0.02T、扁平粒配向組織が1.24Tであった。   From FIG. 5 (b), the contribution of each crystal structure to the residual magnetic flux density Br specified by the specifying method of the present invention is 0.09T for the equiaxed grain structure, 0.02T for the shear orientation structure, and the flat grain orientation structure. Was 1.24T.

また、残留磁束密度Brを低下させている要因である、せん断組織、粗大粒組織、酸化物・窒化物組織に関しては、Br低下量(全て結晶組織と仮定した場合と比較)が図6のように推定された。この推定結果により、目標の残留磁束密度Brを満たすために対策すべき組織を特定することができるが、このことは多岐にわたるプロセスの中で対策を検討する際に、その選択肢の低減に貢献することになり、言い換えれば、開発にかかるリードタイムの短縮やコスト削減に大きく貢献することになる。たとえば、粗大粒率を低下させたい場合、各工程の熱入力量や急冷粉末の初期組織に注目し、せん断配向組織の体積率を低下させたい場合は強加工時の加工条件やワーク、金型形状を検討するといったことが考えられる。   In addition, with regard to the shear structure, coarse grain structure, and oxide / nitride structure, which are factors that reduce the residual magnetic flux density Br, the amount of Br decrease (compared to the case where all crystal structures are assumed) is as shown in FIG. Estimated. This estimation can identify the organization that should be addressed to meet the target residual flux density Br, but this will help reduce that option when considering measures in a variety of processes. In other words, it greatly contributes to shortening the lead time for development and cost reduction. For example, if you want to reduce the coarse grain ratio, pay attention to the amount of heat input in each process and the initial structure of the quenched powder, and if you want to reduce the volume ratio of the shear-oriented structure, the processing conditions, work, and mold during strong processing It may be possible to consider the shape.

(高い残留磁束密度Brを満たす組織状態の一考察)
本発明者等はさらに、上記表1〜表4の合金組成および加工条件にて希土類磁石を製作し、高い残留磁束密度Brを満たす組織状態を考察した。
(Consideration of microstructure state satisfying high residual magnetic flux density Br)
The inventors further manufactured rare earth magnets with the alloy compositions and processing conditions shown in Tables 1 to 4 above, and considered the structure state satisfying the high residual magnetic flux density Br.

一般に、熱間塑性加工によって高い配向度を得るに必要な粒界相量の範囲であること、すなわち、0.955≦Nd-Fe-B率≦0.965の範囲であることと、最適条件(温度・歪速度)下で熱間塑性加工することが重要であり、これらの条件下で製作することで、微細配向組織の配向度≧95%が達成できる。   In general, the range of grain boundary phase required to obtain a high degree of orientation by hot plastic working, that is, the range of 0.955 ≦ Nd-Fe-B ratio ≦ 0.965, and the optimum conditions (temperature and strain It is important to perform hot plastic working under the above speed, and by producing under these conditions, the degree of orientation of the finely oriented structure ≧ 95% can be achieved.

理想的には、微細配向組織が体積として100%であり、この場合の残留磁束密度BrをNd-Fe-Bの飽和磁化理論値である1.61Tを用いて計算すると、その期待値は1.61T×0.955(Nd-Fe-B率)×0.95(配向度)=1.46Tとなる。これに製作工程上不可避である酸化物・窒化物組織1%の影響を考慮すると、1.46T×0.99=1.45Tが得られる。しかしながら、実際には残留磁束密度Br低下の寄与が大きな、配向度の低い粗大粒やせん断配向組織が少なからず発生し、残留磁束密度Brは1.45Tよりも低下する。   Ideally, the fine orientation structure is 100% in volume, and when the residual magnetic flux density Br in this case is calculated using 1.61T which is the saturation magnetization theoretical value of Nd-Fe-B, the expected value is 1.61T. X 0.955 (Nd-Fe-B ratio) x 0.95 (degree of orientation) = 1.46T. Considering the influence of 1% oxide / nitride structure, which is inevitable in the manufacturing process, 1.46T × 0.99 = 1.45T is obtained. However, in actuality, there are a large number of coarse grains and shear-oriented structures with a low degree of orientation that contribute greatly to the reduction of the residual magnetic flux density Br, and the residual magnetic flux density Br drops below 1.45T.

この低下量は、本発明の特定方法にて得られた各結晶組織と残留磁束密度Brの関係から推定でき、粗大粒組織に関しては体積1%当りの残留磁束密度Br変化量は-0.0057Tであり、せん断配向組織に関しては体積1%当りのBr低下量は-0.0095T である。残留磁束密度Brの低下に対する寄与は、粗大粒:せん断配向組織≒1:1.5とせん断配向組織の方が大きく、この関係から残留磁束密度Br=1.46T−(粗大粒体積×0.0057+せん断配向組織×0.0095)(T)であり、この関係から、車両駆動用モータで適用される希土類磁石に求められる高い残留磁束密度Br≧1.37T を満たす磁石組織は以下となる。   This amount of decrease can be estimated from the relationship between each crystal structure obtained by the specific method of the present invention and the residual magnetic flux density Br. For the coarse grain structure, the amount of change in the residual magnetic flux density Br per 1% volume is -0.0057T. With regard to the shear-oriented structure, the Br decrease amount per 1% volume is -0.0095T. The contribution to the decrease in the residual magnetic flux density Br is larger in the case of coarse grain: shear orientation structure ≒ 1: 1.5, and from this relation, the residual magnetic flux density Br = 1.46 T-(coarse grain volume x 0.0057 + shear orientation structure) From this relationship, the magnet structure satisfying the high residual magnetic flux density Br ≧ 1.37T required for the rare earth magnet applied in the vehicle drive motor is as follows.

(条件1)粗大粒組織の体積率 +1.5×(せん断配向組織の体積率)≦15(体積%)
(条件2)微細粒組織の配向度≧95%
(条件3)酸化物・窒化物≦1%
(条件4)粒界相量(1−NdFeB率)≦ 4.5(体積%)
(Condition 1) Volume ratio of coarse-grained structure + 1.5 × (volume ratio of shear-oriented structure) ≦ 15 (volume%)
(Condition 2) Orientation degree of fine grain structure ≧ 95%
(Condition 3) Oxide / Nitride ≦ 1%
(Condition 4) Grain boundary phase amount (1-NdFeB ratio) ≦ 4.5 (volume%)

各結晶組織の解析結果は表6に示している。同表より、上記条件を満たすか否かを検証する。   The analysis results of each crystal structure are shown in Table 6. From the table, it is verified whether or not the above conditions are satisfied.

粗大粒組織の体積率 +1.5×(せん断配向組織の体積率) = 9.26(体積%) ≦15(体積%)となり、条件1を満たす。   Volume ratio of coarse-grained structure + 1.5 × (volume ratio of shear-oriented structure) = 9.26 (volume%) ≦ 15 (volume%).

また、微細粒組織の配向度=95%≧95%となり、条件2を満たす。   Further, the orientation degree of the fine grain structure = 95% ≧ 95%, which satisfies the condition 2.

また、酸化物・窒化物組織=0.5%≦1%となり、条件3を満たす。   Further, the oxide / nitride structure = 0.5% ≦ 1%, which satisfies the condition 3.

さらに、粒界相量(1-NdFeB率)=3.8%≦4.5(体積%)より、条件4を満たす。   Furthermore, the condition 4 is satisfied from the amount of grain boundary phase (1-NdFeB ratio) = 3.8% ≦ 4.5 (volume%).

また、VSMによる磁気特性評価結果はBr=1.410T≧1.37Tとなる。したがって、上記各条件を各結晶組織が満たした場合に、高い残留磁束密度Brが得られることが分かる。   The magnetic property evaluation result by VSM is Br = 1.410T ≧ 1.37T. Therefore, it can be seen that a high residual magnetic flux density Br can be obtained when each crystal structure satisfies the above conditions.

以上、本発明の実施の形態を図面を用いて詳述してきたが、具体的な構成はこの実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲における設計変更等があっても、それらは本発明に含まれるものである。   The embodiment of the present invention has been described in detail with reference to the drawings. However, the specific configuration is not limited to this embodiment, and there are design changes and the like without departing from the gist of the present invention. They are also included in the present invention.

M…希土類磁石、A…等軸粒組織、B…せん断配向組織、C…酸化物・窒化物組織、D…扁平粒配向組織   M: rare earth magnet, A: equiaxed grain structure, B: shear orientation structure, C: oxide / nitride structure, D: flat grain orientation structure

Claims (1)

希土類磁石用の磁性粉末が加圧成形されて焼結体が製作され、該焼結体に磁気的異方性を付与する熱間塑性加工が施されて製作された希土類磁石の磁気性能を特定する希土類磁石の磁気性能の特定方法であって、
結晶組織を、A:等軸粒組織、B:せん断配向組織、C:酸化物・窒化物組織、D:扁平粒配向組織に分類し、以下の式にて残留磁化:Brを特定する、希土類磁石の磁気性能の特定方法。
Br=Br(A)+Br(B)+Br(C)+Br(D)
ここで、Br(A)は組織Aの体積%×組織Aの配向度×組織Aの主相率×希土類磁石の理論最高Br値であり、Br(B)は組織Bの体積%×組織Bの配向度×組織Bの主相率×希土類磁石の理論最高Br値であり、Br(C)は組織Cの体積%×0であり、Br(D)は組織Dの体積%×組織Dの配向度×組織Dの主相率×希土類磁石の理論最高Br値であり、Br、Br(A)、Br(B)、Br(C)、およびBr(D)の単位はTである。
Magnetic powder for rare earth magnets is pressure-molded to produce a sintered body, and the magnetic performance of the rare earth magnet produced by hot plastic working to give magnetic anisotropy to the sintered body is specified. A method for identifying the magnetic performance of a rare earth magnet,
The crystal structure is classified into A: equiaxed grain structure, B: shear orientation structure, C: oxide / nitride structure, D: flat grain orientation structure, and the remnant magnetization: Br is specified by the following formula. A method for determining the magnetic performance of a magnet.
Br = Br (A) + Br (B) + Br (C) + Br (D)
Here, Br (A) is the volume% of structure A x orientation degree of structure A x main phase ratio of structure A x theoretical maximum Br value of rare earth magnet , Br (B) is volume% of structure B x structure B Orientation ratio x main phase ratio of structure B x theoretical maximum Br value of rare earth magnet , Br (C) is volume% of structure C x 0, Br (D) is volume% of structure D x structure D theoretical maximum Br Nedea main phase ratio × rare earth magnet degree of orientation × tissue D Ri, Br, Br (a), Br (B), Br (C), and the unit of Br (D) is Ru T der .
JP2014266118A 2014-12-26 2014-12-26 Method for identifying magnetic performance of rare earth magnets Expired - Fee Related JP6358085B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014266118A JP6358085B2 (en) 2014-12-26 2014-12-26 Method for identifying magnetic performance of rare earth magnets

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014266118A JP6358085B2 (en) 2014-12-26 2014-12-26 Method for identifying magnetic performance of rare earth magnets

Publications (2)

Publication Number Publication Date
JP2016127114A JP2016127114A (en) 2016-07-11
JP6358085B2 true JP6358085B2 (en) 2018-07-18

Family

ID=56359696

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014266118A Expired - Fee Related JP6358085B2 (en) 2014-12-26 2014-12-26 Method for identifying magnetic performance of rare earth magnets

Country Status (1)

Country Link
JP (1) JP6358085B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7342706B2 (en) * 2020-01-10 2023-09-12 大同特殊鋼株式会社 Permanent magnet and its manufacturing method

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004077458A1 (en) * 2003-02-25 2004-09-10 Tdk Corporation Ferrite magnet powder, sintered magnet, bond magnet and magnetic recording medium
EP1662516B1 (en) * 2003-08-12 2014-12-31 Hitachi Metals, Ltd. R-t-b sintered magnet and rare earth alloy
JP2005259751A (en) * 2004-03-09 2005-09-22 Neomax Co Ltd Ferrite magnet and its manufacturing method
JP4863122B2 (en) * 2007-03-30 2012-01-25 Tdk株式会社 Manufacturing method of sintered metal magnet
CN101707107B (en) * 2009-11-23 2012-05-23 烟台首钢磁性材料股份有限公司 Manufacturing method of high-residual magnetism high-coercive force rare earth permanent magnetic material
JP5640946B2 (en) * 2011-10-11 2014-12-17 トヨタ自動車株式会社 Method for producing sintered body as rare earth magnet precursor
JP2014103251A (en) * 2012-11-20 2014-06-05 Toyota Motor Corp Method of manufacturing rare earth magnet
JP6081254B2 (en) * 2013-03-26 2017-02-15 株式会社東芝 Permanent magnet and motor and generator using the same

Also Published As

Publication number Publication date
JP2016127114A (en) 2016-07-11

Similar Documents

Publication Publication Date Title
JP5640954B2 (en) Rare earth magnet manufacturing method
KR101306880B1 (en) Method for producing rare-earth magnet
KR101378090B1 (en) R-t-b sintered magnet
CN109964290B (en) Method for producing R-T-B sintered magnet
KR101378089B1 (en) R-t-b sintered magnet
US10199145B2 (en) Rare-earth magnet and method for producing the same
JP5870914B2 (en) Rare earth magnet manufacturing method
JP6848735B2 (en) RTB series rare earth permanent magnet
KR101740165B1 (en) Rare earth magnet and method for producing same
JP5640946B2 (en) Method for producing sintered body as rare earth magnet precursor
JP5691989B2 (en) Method for producing magnetic powder for forming sintered body of rare earth magnet precursor
JP6848736B2 (en) RTB series rare earth permanent magnet
JPWO2015037041A1 (en) Permanent magnets, motors, generators, and automobiles
JP2017157834A (en) R-t-b based permanent magnet
JP2013197414A (en) Sintered compact and production method therefor
JP6613730B2 (en) Rare earth magnet manufacturing method
CN105312575B (en) The method for preparing rare earth magnetite
CN108574348B (en) Electric motor
CN107204224B (en) Permanent magnet, rotating electrical machine, and vehicle
JP6358085B2 (en) Method for identifying magnetic performance of rare earth magnets
KR20160041790A (en) Method for manufacturing rare-earth magnets
JP4483630B2 (en) Manufacturing method of rare earth sintered magnet
JP2013157345A (en) Method of producing rare-earth magnet
OTT et al. Manufacturing Processes for Permanent Magnets: Part I—Sintering and Casting

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180522

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180604

R151 Written notification of patent or utility model registration

Ref document number: 6358085

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees