JP5786708B2 - Rare earth magnet manufacturing method - Google Patents

Rare earth magnet manufacturing method Download PDF

Info

Publication number
JP5786708B2
JP5786708B2 JP2011288650A JP2011288650A JP5786708B2 JP 5786708 B2 JP5786708 B2 JP 5786708B2 JP 2011288650 A JP2011288650 A JP 2011288650A JP 2011288650 A JP2011288650 A JP 2011288650A JP 5786708 B2 JP5786708 B2 JP 5786708B2
Authority
JP
Japan
Prior art keywords
molded body
rare earth
frame material
magnet
earth magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011288650A
Other languages
Japanese (ja)
Other versions
JP2013138127A (en
Inventor
宮本 典孝
典孝 宮本
大輔 一期崎
大輔 一期崎
哲也 庄司
哲也 庄司
真鍋 明
明 真鍋
悠哉 池田
悠哉 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2011288650A priority Critical patent/JP5786708B2/en
Publication of JP2013138127A publication Critical patent/JP2013138127A/en
Application granted granted Critical
Publication of JP5786708B2 publication Critical patent/JP5786708B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Description

本発明は、熱間塑性加工によって配向磁石となっている希土類磁石の製造方法に関するものである。   The present invention relates to a method for producing a rare earth magnet that is an oriented magnet by hot plastic working.

ランタノイド等の希土類元素を用いた希土類磁石は永久磁石とも称され、その用途は、ハードディスクやMRIを構成するモータのほか、ハイブリッド車や電気自動車等の駆動用モータなどに用いられている。   Rare earth magnets using rare earth elements such as lanthanoids are also called permanent magnets, and their uses are used in motors for driving hard disks and MRI, as well as drive motors for hybrid vehicles and electric vehicles.

この希土類磁石の磁石性能の指標として残留磁化(残留磁束密度)と保磁力を挙げることができるが、モータの小型化や高電流密度化による発熱量の増大に対し、使用される希土類磁石にも耐熱性に対する要求は一層高まっており、高温使用下で磁石の保磁力を如何に保持できるかが当該技術分野での重要な研究課題の一つとなっている。車両駆動用モータに多用される希土類磁石の一つであるNd-Fe-B系磁石を取り挙げると、結晶粒の微細化を図ることやNd量の多い組成合金を用いること、保磁力性能の高いDy、Tbといった重希土類元素を添加することなどによってその保磁力を増大させる試みがおこなわれている。   Residual magnetization (residual magnetic flux density) and coercive force can be cited as indicators of the magnet performance of this rare earth magnet. However, in response to increased heat generation due to miniaturization of motors and higher current density, rare earth magnets used also The demand for heat resistance is further increasing, and how to maintain the coercive force of a magnet under high temperature use is one of the important research subjects in the technical field. Taking Nd-Fe-B magnets, one of the rare-earth magnets frequently used in vehicle drive motors, to refine crystal grains, use a composition alloy with a large amount of Nd, Attempts have been made to increase the coercivity by adding heavy rare earth elements such as high Dy and Tb.

希土類磁石の製造方法の一例を概説すると、たとえばNd-Fe-B系の金属溶湯を急冷凝固して得られた微粉末を加圧成形しながら成形体とし、この成形体に磁気的異方性を付与するべく熱間塑性加工を施して希土類磁石(配向磁石)を製造する方法が一般に適用されている。   An outline of an example of a method for producing a rare earth magnet is as follows. For example, a fine powder obtained by rapid solidification of a Nd-Fe-B metal melt is formed into a compact while being pressed, and the magnetic anisotropy is applied to the compact. In general, a method of producing a rare earth magnet (orientated magnet) by performing hot plastic working to impart the above-mentioned properties is applied.

上記熱間塑性加工は、たとえば上下のパンチ(ポンチとも言う)間に成形体を配し、加熱しながら上下のパンチでたとえば1秒程度かそれ以下の短時間押圧するものであるが、この上下のパンチによる押圧によって成形体が塑性変形しながら潰される際に塑性変形した成形体の側面に割れが生じ易いという問題があった。これは、上下のパンチと接触している部分が変形し難く、その分だけ側面中央部が過度に膨らむ、いわゆる太鼓状に変形することが一因である。この割れが生じてしまうと、配向度を高めるために形成された加工歪が割れた箇所で開放されてしまい、歪エネルギーを結晶配向に十分に向けることができなくなり、結果として高い配向度(これによって高い磁化が齎される)の配向磁石が得られ難くなってしまう。   In the hot plastic working, for example, a compact is disposed between upper and lower punches (also referred to as punches) and heated and pressed with the upper and lower punches for a short time of, for example, about 1 second or less. When the molded body is crushed while being plastically deformed by pressing with a punch, there is a problem that the side surface of the plastically deformed molded body is likely to crack. One reason for this is that the portions that are in contact with the upper and lower punches are not easily deformed, and the central portion of the side surface is excessively swollen so as to be deformed in a so-called drum shape. When this crack occurs, the processing strain formed to increase the degree of orientation is released at the cracked location, and the strain energy cannot be sufficiently directed to the crystal orientation, resulting in a high degree of orientation (this Therefore, it is difficult to obtain an oriented magnet having high magnetization.

そこで、このような熱間塑性加工時の割れの問題を解消できる従来技術として特許文献1に開示の製造方法を挙げることができる。この製造方法は、上記成形体の全体を金属カプセル内に封入した後に、この金属カプセルを上下のパンチで押圧しながら熱間塑性加工をおこなうものであり、この製造方法によれば、希土類磁石の磁気的異方性が一層向上するとしている。   Therefore, a manufacturing method disclosed in Patent Document 1 can be cited as a prior art that can solve the problem of cracking during such hot plastic working. In this manufacturing method, after the whole molded body is encapsulated in a metal capsule, hot plastic working is performed while pressing the metal capsule with upper and lower punches. The magnetic anisotropy is further improved.

しかしながら、成形体の全体が金属カプセルで完全に包囲されていると、上下からの押圧による成形体の側方への塑性変形が極端に拘束されてしまい、塑性変形後の成形体の側面に割れが生じないかわりに十分な塑性変形がおこなわれ難く、結果として高い配向度が得られ難いという別途の問題が生じ得る。これは、たとえば上面、下面と円周側面を有する円柱状の成形体を例に取り上げるに、金属カプセルのうち、成形体の側面に対応する側面領域が側方に塑性変形しようとした際に、この側面領域と一体となっている成形体の上面および下面に対応する上面領域および下面領域が側面領域の広がりを拘束することによって齎されるものである。   However, if the entire molded body is completely surrounded by the metal capsule, the plastic deformation to the side of the molded body due to pressing from above and below is extremely restricted, and the side surface of the molded body after plastic deformation is cracked. In spite of the fact that it does not occur, sufficient plastic deformation is difficult to be performed, and as a result, another problem that it is difficult to obtain a high degree of orientation may occur. For example, when taking a cylindrical shaped body having an upper surface, a lower surface and a circumferential side surface as an example, when a side region corresponding to the side surface of the molded body of the metal capsule is about to be plastically deformed laterally, The upper surface region and the lower surface region corresponding to the upper surface and the lower surface of the molded body integrated with the side surface region are constrained by restraining the spread of the side surface region.

特開平2−250920号公報JP-A-2-250920

本発明は上記する問題に鑑みてなされたものであり、熱間塑性加工を経て希土類磁石を製造する製造方法に関し、熱間塑性加工の際に塑性変形される成形体の側面に割れが生じるのを抑制しながら、十分な塑性変形を図ることによって配向度の高い希土類磁石を製造することのできる希土類磁石の製造方法を提供することを目的とする。   The present invention has been made in view of the above-described problems, and relates to a manufacturing method for manufacturing a rare earth magnet through hot plastic working, in which cracks are generated on the side surface of a molded body that is plastically deformed during hot plastic working. It is an object of the present invention to provide a method for producing a rare earth magnet capable of producing a rare earth magnet having a high degree of orientation by suppressing sufficient plastic deformation.

前記目的を達成すべく、本発明による希土類磁石の製造方法は、希土類磁石材料となる粉末を加圧成形して、上面と下面と側面を有する成形体を製造する第1のステップ、前記成形体の前記側面に該成形体よりも相対的に高い延性の枠材を配して側面が包囲された成形体と枠材のユニット体を形成し、これを上下のパンチで挟み、該上下のパンチで成形体の上面と下面を直接押圧しながら異方性を与える熱間塑性加工を施して配向磁石である希土類磁石を製造する第2のステップからなるものである。   In order to achieve the above object, the method for producing a rare earth magnet according to the present invention comprises a first step of producing a molded body having an upper surface, a lower surface and a side surface by pressure-molding a powder as a rare earth magnet material, the molded body. A frame body having a ductility relatively higher than that of the molded body is provided on the side surface of the molded body to form a unit body of the molded body and the frame material surrounded by the side surface, and sandwiched between the upper and lower punches. The second step is to produce a rare earth magnet which is an oriented magnet by performing hot plastic working which gives anisotropy while directly pressing the upper and lower surfaces of the compact.

本発明による希土類磁石の製造方法は、その製造過程における熱間塑性加工において、成形体の全体を金属キャップ内に封入するのではなくて、熱間塑性加工の際に成形体を押圧する上下のパンチ(もしくはポンチ)に対応する成形体の上面と下面を開放させておき、成形体の側面のみを枠材で包囲した姿勢でパンチで押圧して熱間塑性加工をおこなうものである。   The method of manufacturing a rare earth magnet according to the present invention is not limited to enclosing the entire compact in a metal cap in the hot plastic working in the production process, but rather the upper and lower pressing the compact during the hot plastic working. The upper and lower surfaces of the molded body corresponding to the punch (or punch) are opened, and hot plastic working is performed by pressing with a punch in a posture in which only the side surface of the molded body is surrounded by a frame material.

ここで、成形体の側面のみを包囲する枠材は、成形体の延性よりも相対的に高い延性を有する素材から構成されており、上下のパンチから一定の押圧力が作用した際に、成形体の側方への塑性変形を過度に拘束することなく、枠材も同様に側方に塑性変形することにより、成形体の側方への十分な塑性変形を保証しながら、若干の拘束によって成形体の側方での割れの発生を抑制できるものである。   Here, the frame material that surrounds only the side surface of the molded body is made of a material having a ductility that is relatively higher than the ductility of the molded body, and is formed when a certain pressing force is applied from the upper and lower punches. Without excessively restraining the plastic deformation to the side of the body, the frame material is also plastically deformed to the side, thereby ensuring sufficient plastic deformation to the side of the molded body, with a slight restriction. Generation of cracks on the side of the molded body can be suppressed.

たとえばNe-Fe-B系の粉体を加圧成形してできる成形体に対し、この成形体よりも延性に富む金属素材として、銅やその合金、軟鋼、低炭素鋼などを挙げることができ、これら延性に富む素材金属からなる枠材を成形体の側面を完全に包囲するように嵌め込んで成形体と枠材からなるユニット体を形成する。   For example, copper, its alloys, mild steel, low carbon steel, etc. can be cited as metal materials that are more ductile than this compact, which can be formed by pressure molding Ne-Fe-B powder. Then, the frame member made of the material metal rich in ductility is fitted so as to completely surround the side surface of the molded body to form a unit body made of the molded body and the frame material.

このユニット体を上下のパンチ間に載置し、上下のパンチでユニット体を構成する成形体の上面および下面を直接押圧することにより、枠材と成形体はともに側方に塑性変形しながら潰されるが、塑性変形した成形体はその外周に位置する枠材で割れが生じる程度の過度な塑性変形には至らず、しかしながら高い配向度を保証できる程度に塑性変形して磁気的異方性に優れた配向磁石が形成される。特に、側面が太鼓状に膨らむことを抑制できることによって、割れ防止に関して大きな効果がある。   By placing this unit body between the upper and lower punches and directly pressing the upper and lower surfaces of the molded body constituting the unit body with the upper and lower punches, both the frame material and the molded body are crushed while plastically deforming sideways. However, the plastically deformed molded body does not reach excessive plastic deformation to the extent that cracks occur in the frame material located on the outer periphery thereof, however, it is plastically deformed to such an extent that a high degree of orientation can be ensured, and magnetic anisotropy is achieved. An excellent oriented magnet is formed. In particular, since the side surface can be prevented from swelling in a drum shape, it has a great effect on preventing cracks.

なお、成形体は、六面体をはじめとする多面体(八面体など)のほか、円柱体、切頭円錐体、切頭角錐体など、多様な立体形状のものを適用でき、その立体形状に応じた形状の枠材が使用される。   In addition to the hexahedron and other polyhedrons (such as octahedrons), the molded body can be applied to a variety of solid shapes such as cylinders, truncated cones, truncated pyramids, etc. Shaped frame material is used.

また、熱間塑性加工で使用される成形型が、上下のパンチとこれらのパンチが摺動する枠状のダイスとから構成される場合には、ダイスとパンチで画成されるキャビティ内に成形型が収容されて熱間塑性加工がおこなわれることになるが、このキャビティの大きさは、成形体とその周囲の枠材が十分に塑性変形するのを阻害しないだけの大きさを有するものとなる。   If the mold used in hot plastic processing is composed of upper and lower punches and a frame-shaped die on which these punches slide, the mold is formed in a cavity defined by the die and the punch. The mold will be accommodated and hot plastic working will be performed, but the size of this cavity should not be large enough to prevent the molded body and the surrounding frame material from being sufficiently plastically deformed. Become.

また、本発明による希土類磁石の製造方法の他の実施の形態は、希土類磁石材料となる粉末を加圧成形して、上面と下面と側面を有する成形体を製造する第1のステップ、前記成形体の前記側面に該成形体よりも相対的に高い延性の枠材を配し、さらに、該成形体よりも相対的に高い延性を有し、前記枠材と縁切りされている2つの蓋材を成形体の上面と下面にそれぞれ配して、側面と上下面が相互に縁切りされた枠材および蓋材とこれらで包囲された成形体からなるユニット体を形成し、これを上下のパンチで挟み、該上下のパンチで成形体の上面と下面に位置する上下の蓋材を押圧しながら異方性を与える熱間塑性加工を施して配向磁石である希土類磁石を製造する第2のステップからなるものである。   In another embodiment of the method for producing a rare earth magnet according to the present invention, the first step of producing a molded body having an upper surface, a lower surface, and a side surface by pressure-molding a powder to be a rare earth magnet material, the molding Two lid members which are provided with a duct material having a ductility relatively higher than that of the molded body on the side surface of the body, and which have a ductility which is relatively higher than that of the molded body and which are cut off from the frame material. Are formed on the upper surface and the lower surface of the molded body, respectively, to form a unit body consisting of a frame material and a lid material whose side surfaces and upper and lower surfaces are mutually cut off, and a molded body surrounded by these, and this is formed by upper and lower punches. From the second step of manufacturing a rare earth magnet that is an oriented magnet by sandwiching and performing hot plastic processing to give anisotropy while pressing the upper and lower lids positioned on the upper and lower surfaces of the molded body with the upper and lower punches It will be.

本実施の形態は、枠材と縁切りされ、枠材と同様に成形型よりも相対的に延性の高い上下の蓋材で成形型を覆ってユニット体を形成し、上下のパンチで上下の蓋材を押圧しながた熱間塑性加工をおこなうものである。   In the present embodiment, the unit body is formed by covering the molding die with upper and lower lid materials which are cut off from the frame material and are relatively more ductile than the molding die, and the upper and lower lids are formed by upper and lower punches. Hot plastic working is performed while pressing the material.

成形体は勿論のこと、枠材も蓋材も十分に塑性変形することができるので、上下のパンチが成形体を直接押圧するのではなくて蓋材を介して押圧することにより、成形体がパンチで直接押圧された際に生じ得る破損を完全に解消することができる。   Not only the molded body, but also the frame material and the lid material can be sufficiently plastically deformed. Therefore, the upper and lower punches do not directly press the molded body but press the lid material, so that the molded body is The damage that can occur when pressed directly by the punch can be completely eliminated.

また、成形体に比して延性の高い蓋材をパンチと成形体の間に介在させることにより、蓋材が塑性変形しながらパンチからの押圧力を成形体に付与することとなり、蓋材がクッション材的な役割を奏する(潤滑効果と称することもできる)ことで成形体に生じ得る割れをより一層抑制することができる。   Further, by interposing a lid material having a higher ductility than the molded body between the punch and the molded body, the lid material is plastically deformed and a pressing force from the punch is applied to the molded body. By playing a role like a cushion material (also referred to as a lubrication effect), it is possible to further suppress cracks that may occur in the molded body.

さらに、枠材と蓋材が縁切りされているため、既述する従来技術のように蓋材が枠材の変形を阻害することがなく、枠材が独立して変形できることから、割れ防止効果は極めて高くなる。   Furthermore, since the frame material and the lid material are cut off, the lid material does not hinder the deformation of the frame material as in the prior art described above, and the frame material can be deformed independently, so the crack prevention effect is Extremely high.

本発明者等の検証によれば、上記する蓋材の潤滑効果により、パンチからの押圧力を上下の蓋材を介して成形体に伝達することで成形体の厚み方向(もしくは高さ方向)に均一に押圧力を付与することができ、成形体が厚み方向で均一に変形し(厚み中央付近のみ膨らむ太鼓状を呈する場合は、この変形によって割れが生じ易い)、磁石全体で高い配向度の配向磁石となることが実証されている。   According to the verification by the present inventors, due to the above-described lubricating effect of the lid material, the pressing force from the punch is transmitted to the molded body via the upper and lower lid materials, thereby the thickness direction (or height direction) of the molded body. A uniform pressing force can be applied to the molded body, and the molded body is uniformly deformed in the thickness direction (if the drum has a drum shape that swells only near the thickness center, this deformation tends to cause cracking), and the degree of orientation of the entire magnet is high. It has been proved to be an oriented magnet.

なお、枠材や蓋材が成形体と接する表面や、さらには蓋材がパンチと接する表面に潤滑剤を塗布しておき、相互に接する部材間の摩擦力を極力低減しておいて熱間塑性加工をおこなうのが好ましい。   Apply a lubricant to the surface where the frame or lid material contacts the molded body, or the surface where the lid material contacts the punch, and reduce the frictional force between the members in contact with each other as much as possible. It is preferable to perform plastic working.

以上の説明から理解できるように、本発明の希土類磁石の製造方法によれば、その製造過程における熱間塑性加工において、成形体の全体を金属キャップ内に封入するのではなくて、熱間塑性加工の際に成形体を押圧する上下のパンチに対応する成形体の上面と下面を開放させておき、成形体の側面のみを枠材で包囲した姿勢でパンチで押圧して熱間塑性加工をおこなうことにより、成形体に割れを生じさせることなく、もしくは割れを生じ難くしながら、成形体を十分に塑性変形させることができ、もって配向度が高く、磁化性能に優れた希土類磁石を製造することができる。   As can be understood from the above description, according to the method of manufacturing a rare earth magnet of the present invention, in the hot plastic working in the manufacturing process, instead of enclosing the entire compact in a metal cap, The upper and lower surfaces of the molded body corresponding to the upper and lower punches that press the molded body during processing are opened, and hot plastic working is performed by pressing with the punch in a posture in which only the side surface of the molded body is surrounded by the frame material. By carrying out the process, the molded body can be sufficiently plastically deformed without causing cracks in the molded body or hardly causing cracks, thereby producing a rare earth magnet having a high degree of orientation and excellent magnetizing performance. be able to.

(a)、(b)の順で本発明の希土類磁石の製造方法の第1のステップを説明した模式図である。It is the schematic diagram explaining the 1st step of the manufacturing method of the rare earth magnet of this invention in order of (a) and (b). 第1のステップで製造された成形体のミクロ構造を説明した図である。It is a figure explaining the microstructure of the molded object manufactured at the 1st step. (a)は成形体に枠材を嵌め込もうしている状況を示した図であり、(b)は成形体と枠材からなるユニット体を示した図である。(A) is the figure which showed the condition which is going to fit the frame material in the molded object, (b) is the figure which showed the unit body which consists of a molded object and a frame material. (a)は図3のユニット体に蓋材を配設しようとしている状況を示した図であり、(b)は成形体と枠材と蓋材からなるユニット体を示した図である。(A) is the figure which showed the condition which is going to arrange | position the cover material to the unit body of FIG. 3, (b) is the figure which showed the unit body which consists of a molded object, a frame material, and a cover material. (a)、(b)の順で製造方法の第2のステップを説明した図である。It is the figure explaining the 2nd step of the manufacturing method in order of (a) and (b). 製造された配向磁石(希土類磁石)のミクロ構造を説明した図である。It is a figure explaining the microstructure of the manufactured oriented magnet (rare earth magnet). 加工率と配向度の関係を検証した実験結果を示す図である。It is a figure which shows the experimental result which verified the relationship between a processing rate and orientation degree. (a)は実験後の実施例1の配向磁石の写真図であり、(b)は実験後の比較例1の配向磁石の写真図である。(A) is a photograph of the oriented magnet of Example 1 after the experiment, and (b) is a photograph of the oriented magnet of Comparative Example 1 after the experiment. (a)は成形体の上面からの距離と加工率の関係を検証した実験結果を示す図であり、(b)は実施例3の写真図である。(A) is a figure which shows the experimental result which verified the relationship between the distance from the upper surface of a molded object, and a processing rate, (b) is a photograph figure of Example 3. FIG. 配向磁石の上面からの距離と残留磁化の関係を検証した実験結果を示す図である。It is a figure which shows the experimental result which verified the relationship between the distance from the upper surface of an orientation magnet, and a residual magnetization.

以下、図面を参照して本発明の希土類磁石の製造方法の実施の形態を説明する。なお、図示する配向磁石はナノ結晶磁石(粒径が200nm程度かそれ以下)からなる場合を説明したものであるが、本発明の製造方法が対象とする配向磁石はナノ結晶磁石に限定されるものではなく、粒径が300μm以上のものや、1μm以上の焼結磁石、さらには樹脂バインダーで結晶粒がバインドされたボンド磁石などを包含するものである。また、図示例では、第1のステップで成形される成形体が円柱体であるが、これ以外の多様な形状、たとえば六面体をはじめとする多面体(八面体など)のほか、切頭円錐体、切頭角錐体などの立体形状のものであってもよいことは勿論のことである。   Embodiments of a method for producing a rare earth magnet according to the present invention will be described below with reference to the drawings. Although the illustrated oriented magnet has been described for a case of a nanocrystalline magnet (particle size is about 200 nm or less), the oriented magnet targeted by the production method of the present invention is limited to a nanocrystalline magnet. These include, but not limited to, those having a particle size of 300 μm or more, sintered magnets having a particle size of 1 μm or more, and bonded magnets in which crystal grains are bound with a resin binder. In the illustrated example, the molded body formed in the first step is a cylindrical body, but various shapes other than this, for example, a polyhedron such as a hexahedron (an octahedron, etc.), a truncated cone, Of course, a three-dimensional shape such as a truncated pyramid may be used.

(希土類磁石の製造方法)
図1a、bはその順で本発明の希土類磁石の製造方法の第1のステップを説明した模式図であり、図2は第1のステップで製造された成形体のミクロ構造を説明した図である。また、図3は成形体と枠材からなるユニット体を示した図であり、図4は、成形体と枠材と上下の蓋材からなるユニット体を示した図である。また、図5a、bはその順で製造方法の第2のステップを説明した模式図であり、図6は第2のステップで製造された配向磁石(希土類磁石)のミクロ構造を説明した図である。
(Rare earth magnet manufacturing method)
FIGS. 1a and 1b are schematic views illustrating the first step of the method of manufacturing a rare earth magnet of the present invention in that order, and FIG. 2 is a view illustrating the microstructure of the molded body manufactured in the first step. is there. FIG. 3 is a diagram showing a unit body composed of a molded body and a frame material, and FIG. 4 is a diagram showing a unit body composed of the molded body, the frame material, and upper and lower lid materials. 5A and 5B are schematic views illustrating the second step of the manufacturing method in that order, and FIG. 6 is a diagram illustrating the microstructure of the oriented magnet (rare earth magnet) manufactured in the second step. is there.

図1aで示すように、たとえば50kPa以下に減圧したArガス雰囲気の不図示の炉中で、単ロールによるメルトスピニング法により、合金インゴットを高周波溶解し、希土類磁石を与える組成の溶湯を銅ロールRに噴射して急冷薄帯B(急冷リボン)を製作し、これを粗粉砕する。   As shown in FIG. 1a, for example, an alloy ingot is melted at a high frequency by a melt spinning method using a single roll in a furnace (not shown) in an Ar gas atmosphere whose pressure is reduced to 50 kPa or less. To produce a quenched ribbon B (quenched ribbon), which is coarsely pulverized.

粗粉砕された急冷薄帯Bを図1bで示すように超硬ダイスDとこの中空内を摺動する超硬パンチPで画成されたキャビティ内に充填し、超硬パンチPで加圧しながら(X方向)加圧方向に電流を流して通電加熱することにより、ナノ結晶組織のNd-Fe-B系の主相(50nm〜200nm程度の結晶粒径)と、主相の周りにあるNd-X合金(X:金属元素)の粒界相からなる円柱状の成形体Sを製作する(第1のステップ)。   As shown in FIG. 1B, the coarsely pulverized quenched ribbon B is filled into a cavity defined by a carbide die D and a carbide punch P sliding in the hollow, and is pressed with the carbide punch P. (X direction) Nd-Fe-B main phase (crystal grain size of about 50 nm to 200 nm) of nanocrystalline structure and Nd around the main phase by flowing current in the pressurizing direction and conducting heating. A cylindrical shaped body S composed of a grain boundary phase of -X alloy (X: metal element) is manufactured (first step).

ここで、粒界相を構成するNd-X合金は、Ndと、Co、Fe、Ga等のうちの少なくとも1種以上の合金からなり、たとえば、Nd-Co、Nd-Fe、Nd-Ga、Nd-Co-Fe、Nd-Co-Fe-Gaのうちのいずれか一種、もしくはこれらの二種以上が混在したものであって、Ndリッチな状態となっている。   Here, the Nd—X alloy constituting the grain boundary phase is made of Nd and at least one alloy of Co, Fe, Ga, etc., for example, Nd—Co, Nd—Fe, Nd—Ga, One of Nd-Co-Fe and Nd-Co-Fe-Ga, or a mixture of two or more of these, is in an Nd-rich state.

図2で示すように、成形体Sはナノ結晶粒MP(主相)間を粒界相BPが充満する等方性の結晶組織を呈している。   As shown in FIG. 2, the compact S exhibits an isotropic crystal structure in which the grain boundary phase BP is filled between the nanocrystal grains MP (main phase).

第1のステップで成形体Sが製造されたら、円柱状の成形体Sの側面にこの成形型Sよりも高い延性(変形性)を有する金属素材の枠材を取り付ける。より具体的には、図3aで示すように、円柱状の成形体Sに対し、成形体Sと同じ高さで、かつ成形体Sの外径をと同じ内径を有するリング状の枠材Cを嵌め込んで、図3bで示すような成形体Sと枠材Cからなるユニット体Uを形成する。   When the molded body S is manufactured in the first step, a metal frame material having ductility (deformability) higher than that of the mold S is attached to the side surface of the cylindrical molded body S. More specifically, as shown in FIG. 3 a, a ring-shaped frame material C having the same height as the molded body S and the same inner diameter as the molded body S with respect to the cylindrical molded body S. To form a unit body U composed of a molded body S and a frame material C as shown in FIG.

なお、枠材の素材によって、成形体と枠材の寸法関係は以下のようであるのが好ましい。すなわち、枠材が銅もしくは銅合金からなる場合であって成形体が円柱体の場合は、成形体の径をDとした際に、0.1D〜0.3Dの肉厚の枠材を使用し、成形体が直方体の場合は、成形体の延伸方向の一辺をLとした際に、0.1L〜0.3Lの肉厚の枠材を使用する。これは、0.1D、0.1L未満の場合に割れ防止効果が小さく、0.3D、0.3Lを超える場合に配向のための塑性流動に乱れが生じるためである。   Depending on the material of the frame material, the dimensional relationship between the molded body and the frame material is preferably as follows. That is, when the frame material is made of copper or a copper alloy and the molded body is a cylindrical body, when the diameter of the molded body is D, use a frame material with a thickness of 0.1D to 0.3D, When the molded body is a rectangular parallelepiped, a thick frame material of 0.1 L to 0.3 L is used when one side in the extending direction of the molded body is L. This is because the crack prevention effect is small when it is less than 0.1D and 0.1L, and the plastic flow for orientation is disturbed when it exceeds 0.3D and 0.3L.

一方、枠材が軟鋼からなる場合であって成形体が円柱体の場合は、成形体の径をDとした際に、0.05D〜0.15Dの肉厚の枠材を使用し、成形体が直方体の場合は、成形体の延伸方向の一辺をLとした際に、0.05L〜0.15Lの肉厚の枠材を使用する。これは、0.05D、0.05L未満の場合に割れ防止効果が小さく、0.15D、0.15Lを超える場合に磁石に割れが生じるためである。   On the other hand, when the frame material is made of mild steel and the molded body is a cylindrical body, when the diameter of the molded body is D, a frame material with a thickness of 0.05D to 0.15D is used, and the molded body is In the case of a rectangular parallelepiped, a thick frame material of 0.05 L to 0.15 L is used, where L is one side in the extending direction of the molded body. This is because the crack prevention effect is small when it is less than 0.05D and 0.05L, and the magnet is cracked when it exceeds 0.15D and 0.15L.

また、図4aで示すように、成形型Sと枠材Cからなるユニット体の上下に上蓋Fと下蓋Fを配し、図4bで示すように別途のユニット体U1を形成してもよい。   Further, as shown in FIG. 4a, an upper lid F and a lower lid F may be arranged above and below a unit body made up of the mold S and the frame material C, and a separate unit body U1 may be formed as shown in FIG. 4b. .

図3bで示すユニット体Uを用いて次のステップの説明をおこなう。図5aで示すように、超硬ダイスDとこの中空内を摺動する超硬パンチPで画成されたキャビティ内にユニット体Uを収容し、上下のパンチP,Pでユニット体Uの上下面、すなわち、上下に露出した成形体Sの上下面と枠材Cの端面を挟み込む。   The next step will be described using the unit body U shown in FIG. 3b. As shown in FIG. 5a, the unit body U is accommodated in a cavity defined by a carbide die D and a carbide punch P sliding in the hollow, and the upper and lower punches P, P are used to The lower surface, that is, the upper and lower surfaces of the molded body S exposed vertically is sandwiched between the end surfaces of the frame member C.

そして、キャビティ内を高温雰囲気とした状態で上下のパンチP,Pを相互に近接するようにして1秒以下の短時間で摺動させることにより(熱間塑性加工)(図5aのX方向に押圧)、図5bで示すように成形体Sとこれよりも延性の高い枠材Cを側方に塑性変形させる(Y方向)。   Then, by sliding the upper and lower punches P, P in close proximity to each other in a high temperature atmosphere in the cavity in a short time of 1 second or less (hot plastic working) (in the X direction in FIG. 5a) Pressing), as shown in FIG. 5b, the molded body S and the frame material C having higher ductility are plastically deformed laterally (Y direction).

この側方への塑性変形によって加工歪を成形体Sに付与することにより、磁気的異方性を有し、配向度の高い配向磁石S’(希土類磁石)が得られる(第2のステップ)(図中、C’は塑性変形後の枠材)。この熱間塑性加工では、加工温度や加工時間のほかに、歪速度の調整も重要な要素となる。   By imparting a working strain to the molded body S by this lateral plastic deformation, an oriented magnet S ′ (rare earth magnet) having magnetic anisotropy and a high degree of orientation is obtained (second step). (In the figure, C ′ is a frame material after plastic deformation). In this hot plastic working, in addition to the processing temperature and processing time, adjustment of the strain rate is also an important factor.

この熱間塑性加工により、図6で示すように、異方性のナノ結晶粒MPを有する結晶組織の配向磁石S’が製造される。なお、熱間塑性加工による加工度(圧縮率)が大きい場合、たとえば圧縮率が10%程度以上の場合の熱間塑性加工を強加工と称することができる。   By this hot plastic working, as shown in FIG. 6, an oriented magnet S ′ having a crystalline structure having anisotropic nanocrystalline grains MP is manufactured. When the degree of processing (compression rate) by hot plastic working is large, for example, hot plastic working when the compressibility is about 10% or more can be referred to as strong working.

熱間塑性加工に際し、図3で示すように成形体Sの側面をこれよりも延性の高い枠材で包囲したユニット体Uを上下のパンチP,Pで押圧することにより、枠材Cと成形体Sはともに側方に塑性変形しながら潰されるが、塑性変形した成形体S’はその外周に位置する枠材C’で割れが生じる程の過度な塑性変形には至らず、しかしながら高い配向度を保証できる程度に塑性変形して磁気的異方性に優れた配向磁石S’が製造される。   At the time of hot plastic working, as shown in FIG. 3, the unit body U in which the side surface of the molded body S is surrounded by a frame material with higher ductility is pressed with the upper and lower punches P and P, thereby forming the frame material C and the molded body. Both of the bodies S are crushed while being plastically deformed to the side. However, the plastically deformed molded body S ′ does not lead to excessive plastic deformation to the extent that the frame material C ′ located on the outer periphery thereof is cracked. An oriented magnet S ′ having excellent magnetic anisotropy by plastic deformation to such an extent that the degree can be guaranteed is manufactured.

これは、枠材Cが成形体Sをその上下面をも含めて完全に包囲するものでないことから、枠材Cが成形体Sに割れが生じる程の過度な塑性変形を抑制しながら、自身の塑性変形が自身の構造によって過度に拘束されないことに起因している。   This is because the frame material C does not completely surround the molded body S including its upper and lower surfaces, so that the frame material C suppresses excessive plastic deformation to the extent that the molded body S is cracked. This is because the plastic deformation is not excessively constrained by its own structure.

また、図4bで示す上下の蓋体F,Fを有するユニット体U1を使用して上下のパンチP,Pで押圧することにより、パンチP、Pからの押圧力を上下の蓋材F,Fを介して成形体Sに伝達することで成形体Sの厚み方向(もしくは高さ方向)に均一に押圧力を付与することができ、このことによってより一層高い配向度の配向磁石を製造することができる。   Further, by pressing the upper and lower punches P and P using the unit body U1 having the upper and lower cover bodies F and F shown in FIG. 4b, the pressing force from the punches P and P is changed to the upper and lower cover materials F and F. Can be applied uniformly to the thickness direction (or height direction) of the molded body S by transmitting it to the molded body S, thereby producing an oriented magnet with a higher degree of orientation. Can do.

[加工率と配向度の関係を検証した実験とその結果]
本発明者等は、以下で示す各製造方法で実施例1と比較例1〜3の配向磁石試験片を製作し、熱間塑性加工後の外観写真を撮像して外観を観察するとともに、加工率と配向度の関係を検証する実験をおこなった。
[Experiment to verify the relationship between processing rate and degree of orientation and its results]
The inventors of the present invention manufactured oriented magnet test pieces of Example 1 and Comparative Examples 1 to 3 in each manufacturing method shown below, and observed the appearance by taking a photograph of the appearance after hot plastic working, and processing An experiment was conducted to verify the relationship between the rate and the degree of orientation.

(実施例1)
希土類合金原料(合金組成は、質量%で、Fe-30Nd-1B-4Co-0.6Ga)を所定量配合し、Arガス雰囲気下で溶解させた後、その溶湯をオリフィスからCrメッキを施したCu製の回転ロールに射出して急冷して合金薄帯を製造し、これをArガス雰囲気中でカッターミルで粉砕して篩にかけ、0.2mm以下の希土類磁石用粉末を得た。
(Example 1)
A rare earth alloy raw material (alloy composition is Fe-30Nd-1B-4Co-0.6Ga in mass%) is mixed in a predetermined amount, dissolved in an Ar gas atmosphere, and then the molten metal is subjected to Cr plating from an orifice. An alloy ribbon was produced by injection onto a rotating roll made of metal and quenching, and this was pulverized with a cutter mill in an Ar gas atmosphere and sieved to obtain a rare earth magnet powder of 0.2 mm or less.

得られた希土類磁石用粉末8.4gをφ10×40mmの容積をもつ超硬ダイスに収容し、上下の超硬パンチで封止した。   8.4 g of the obtained rare earth magnet powder was placed in a carbide die having a volume of φ10 × 40 mm and sealed with upper and lower carbide punches.

これをチャンバーにセットし、10−2Paに減圧し、400MPaを負荷した後にすぐに高周波コイルで650℃で加熱しながらプレスした。プレス後、60秒保持した後に成形型から高さ14mmの成形体を取り出した。 This was set in a chamber, depressurized to 10 −2 Pa, and immediately after being loaded with 400 MPa, it was pressed while heating at 650 ° C. with a high-frequency coil. After pressing for 60 seconds, a molded body having a height of 14 mm was taken out of the mold.

この成形体に対し、外径φ12.5mmで内径10mm、高さ14mmの無酸素銅のリングを成形体に嵌め込み、加熱温度750℃、加工率を60%、65%、70%、75%、80%で変化させ、歪速度10/secで熱間塑性加工をおこなった。なお、パンチ面は潤滑のためにグラファイトを塗布しておいた。   For this molded body, an oxygen-free copper ring with an outer diameter of 12.5 mm, an inner diameter of 10 mm, and a height of 14 mm is fitted into the molded body, the heating temperature is 750 ° C., the processing rate is 60%, 65%, 70%, 75%, It was changed at 80% and hot plastic working was performed at a strain rate of 10 / sec. The punch surface was coated with graphite for lubrication.

(比較例1)
実施例1の製造方法において、銅のリングを使用せずに、外径φ12.5mmで内径10mm、高さ14mmの配向磁石を加工率60%、65%、70%、75%、80%で変化させて製作した。
(Comparative Example 1)
In the manufacturing method of Example 1, without using a copper ring, an oriented magnet having an outer diameter of 12.5 mm, an inner diameter of 10 mm, and a height of 14 mm was processed at 60%, 65%, 70%, 75%, and 80%. Made by changing.

(比較例2)
実施例1の製造方法において、銅のリングを使用せずに、銅カプセル(炭素鋼S25Cで、φ14mm×18mm)を使用してこの内部に成形体を封入して同条件で熱間塑性加工をおこない、配向磁石を製作した。
(Comparative Example 2)
In the manufacturing method of Example 1, without using a copper ring, a copper capsule (carbon steel S25C, φ14 mm x 18 mm) is used to enclose the molded body inside, and hot plastic working is performed under the same conditions. I made an oriented magnet.

(比較例3)
実施例1の製造方法において、銅のリングを使用せずに、銅カプセル(炭素鋼S25Cで、φ11mm×15mm)を使用してこの内部に成形体を封入して同条件で熱間塑性加工をおこない、配向磁石を製作した。なお、歪速度を0.01、0.1、1、10、30/secで変化させて製作している。
(Comparative Example 3)
In the manufacturing method of Example 1, without using a copper ring, a copper capsule (carbon steel S25C, φ11mm × 15mm) is used to enclose the molded body inside, and hot plastic working is performed under the same conditions. I made an oriented magnet. The strain rate is changed at 0.01, 0.1, 1, 10, 30 / sec.

(評価方法)
実施例1と比較例1で磁石中心から10mm×10mm×2.5mm(厚み)の試験片を切り出して磁気測定をおこなった。なお、比較例1は割れのために、このサイズの試験片が採取できないため、2×2×(1〜2)mm(厚み)のサイズで切り出して測定した。この測定結果を以下の表1に、また、M-Hループから配向度Mr/Msの評価をおこなった結果を図7にそれぞれ示す。さらに、実験後の実施例1の配向磁石の写真図、および実験後の比較例1の配向磁石の写真図をそれぞれ図8a,bに示す。
(Evaluation method)
In Example 1 and Comparative Example 1, a test piece of 10 mm × 10 mm × 2.5 mm (thickness) was cut out from the center of the magnet and magnetic measurement was performed. In Comparative Example 1, since a test piece of this size could not be collected due to cracking, it was cut out and measured at a size of 2 × 2 × (1-2) mm (thickness). The measurement results are shown in Table 1 below, and the results of evaluation of the orientation degree Mr / Ms from the MH loop are shown in FIG. Further, a photograph of the oriented magnet of Example 1 after the experiment and a photograph of the oriented magnet of Comparative Example 1 after the experiment are shown in FIGS. 8a and 8b, respectively.

Figure 0005786708
Figure 0005786708

まず、図8a,bより、実施例1は成形体の全体が良好に扁平に潰れているものの、割れは確認できない。一方、比較例1の成形体は外周部に多くの割れが確認できる。   First, from FIGS. 8a and 8b, in Example 1, although the whole molded body is satisfactorily flattened, cracks cannot be confirmed. On the other hand, in the molded body of Comparative Example 1, many cracks can be confirmed on the outer peripheral portion.

また、表1より、実施例1は加工率が高いものほど比較例1に比べてBrが高くなっている。これは、図7より、配向度Mr/Msが大きくなっているためであると考えられる。   Also, from Table 1, in Example 1, the higher the processing rate, the higher the Br than in Comparative Example 1. This is considered to be because the degree of orientation Mr / Ms is increased from FIG.

比較例1は、熱間塑性加工の際に成形体に生じる割れによって歪が開放されてしまい、異方性配向を十分に促進できないと考えられる一方で、実施例1は割れが無く、熱間塑性加工の際の歪が異方性配向に十分に向けられた効果がでているものと考えられる。   In Comparative Example 1, strain is released due to cracks generated in the molded body during hot plastic working, and it is considered that anisotropic orientation cannot be sufficiently promoted, while Example 1 has no cracks and is hot. It is considered that the strain at the time of plastic working is sufficiently directed to the anisotropic orientation.

また、比較例2、3を比較するに、比較例2は普通に潰れていたが、比較例3はカプセルが破れ、その箇所から磁石が少しはみ出していた。   Further, when Comparative Examples 2 and 3 were compared, Comparative Example 2 was crushed normally, but in Comparative Example 3, the capsule was broken and the magnet slightly protruded from the portion.

さらに、比較例2についてその断面調査をおこなった結果、磁石内部には割れが多く、磁気測定用の試験片を切り出すことができなかった。この割れの原因は、冷却時のカプセル材の熱収縮による拘束力に磁石が抗しきれなかったためであると考えられる。なお、磁石の熱膨張係数は4ppm/K、カプセル(S25C)は12.2ppm/Kである。   Furthermore, as a result of conducting a cross-sectional investigation on Comparative Example 2, there were many cracks inside the magnet, and it was impossible to cut out a test piece for magnetic measurement. The cause of this crack is thought to be that the magnet could not resist the restraining force due to the thermal contraction of the capsule material during cooling. The thermal expansion coefficient of the magnet is 4 ppm / K, and the capsule (S25C) is 12.2 ppm / K.

一方、比較例3はカプセルの熱収縮の際の拘束による割れは無かったが、カプセルの肉厚が薄いため、自由伸びするには上下の伸びの少ないパンチ面に引っ張られてカプセルが破れ、不均一な塑性流動を示していた。すなわち、加工率の大きさほどに結晶は潰れておらず、配向度も高くなっていなかった(配向度0.86)。   On the other hand, in Comparative Example 3, there was no cracking due to restraint during thermal shrinkage of the capsule, but since the capsule was thin, the capsule was broken by being pulled by the punch surface with little up and down for free elongation. It showed uniform plastic flow. That is, the crystal was not crushed as the processing rate was large, and the degree of orientation was not high (orientation degree 0.86).

[枠材(リング)の肉厚を変化させた際の試験片の断面観察とその結果、および磁気性能を測定した結果]
本発明者等は、以下の方法で実施例2の試験片を作成し、その際に使用する枠材(リング)の素材を銅製のものと炭素鋼(S25C)製のものの2種で、かつそれぞれのリングの肉厚を種々変化させて複数の試験片を製作し、断面観察をおこなうとともに磁化を測定した。その結果を以下の表2に示す。
[Section observation of the test piece when the thickness of the frame material (ring) was changed, the result, and the result of measuring the magnetic performance]
The inventors of the present invention created a test piece of Example 2 by the following method, and the frame material (ring) used at that time was made of two types, one made of copper and one made of carbon steel (S25C), and A plurality of test pieces were manufactured by varying the wall thickness of each ring, the cross-section was observed, and the magnetization was measured. The results are shown in Table 2 below.

(実施例2)
希土類合金原料(合金組成は、質量%で、Fe-30Nd-1B-4Co-0.6Ga)を所定量配合し、Arガス雰囲気下で溶解させた後、その溶湯をオリフィスからCrメッキを施したCu製の回転ロールに射出して急冷して合金薄帯を製造し、これをArガス雰囲気中でカッターミルで粉砕して篩にかけ、0.2mm以下の希土類磁石用粉末を得た。
(Example 2)
A rare earth alloy raw material (alloy composition is Fe-30Nd-1B-4Co-0.6Ga in mass%) is mixed in a predetermined amount, dissolved in an Ar gas atmosphere, and then the molten metal is subjected to Cr plating from an orifice. An alloy ribbon was produced by injection onto a rotating roll made of metal and quenching, and this was pulverized with a cutter mill in an Ar gas atmosphere and sieved to obtain a rare earth magnet powder of 0.2 mm or less.

得られた希土類磁石用粉末27.4gを15×15×40mmの容積をもつ超硬ダイスに収容し、上下の超硬パンチで封止した。   27.4 g of the obtained rare earth magnet powder was placed in a carbide die having a volume of 15 × 15 × 40 mm and sealed with upper and lower carbide punches.

これをチャンバーにセットし、10−2Paに減圧し、400MPaを負荷した後にすぐに高周波コイルで700℃で加熱しながらプレスした。プレス後、60秒保持した後に成形型から高さ16mmの成形体を取り出した。 This was set in a chamber, depressurized to 10 −2 Pa, and immediately after being loaded with 400 MPa, it was pressed while heating at 700 ° C. with a high frequency coil. After pressing for 60 seconds, a molded body having a height of 16 mm was taken out of the mold.

この成形体に対し、外径φ12.5mmで内径10mm、高さ14mmの無酸素銅のリングを成形体に嵌め込み、加熱温度780℃、加工率75%、歪速度1/secで熱間塑性加工をおこなった。なお、パンチ面は潤滑のためにグラファイトを塗布しておいた。そして、枠材(リング)に無酸素銅製のものと炭素鋼製(S25C)のものを使用し、それぞれのリングの肉厚を0.3〜4mmの間で種々変化させた。   An oxygen-free copper ring with an outer diameter of 12.5 mm, an inner diameter of 10 mm, and a height of 14 mm is fitted into this molded body, and hot plastic working is performed at a heating temperature of 780 ° C, a processing rate of 75%, and a strain rate of 1 / sec. I did it. The punch surface was coated with graphite for lubrication. And the thing made from oxygen-free copper and the thing made from carbon steel (S25C) were used for the frame material (ring), and the thickness of each ring was variously changed between 0.3-4 mm.

Figure 0005786708
Figure 0005786708

枠材(リング)の材質が銅の場合であって、肉厚が0.75mm以下の場合、拘束力が小さ過ぎて割れに対する効果が確認できなかった。また、3mm以上の場合は、塑性流動の抵抗になるためか、結晶配向の乱れがあり、結果としてBrが低くなっている。   When the material of the frame material (ring) was copper and the wall thickness was 0.75 mm or less, the binding force was too small to confirm the effect on cracking. On the other hand, when the thickness is 3 mm or more, the crystal orientation is disturbed because of resistance to plastic flow, and as a result, Br is low.

一方、材質がS25Cの場合であって、肉厚が0.5mm未満の場合は強度が不足し、2mm以上の場合は磁石に割れが生じた。   On the other hand, when the material was S25C and the wall thickness was less than 0.5 mm, the strength was insufficient, and when it was 2 mm or more, the magnet was cracked.

これら枠材の肉厚と割れの有無、および磁化の関係は、成形体の容積に依存するものと考えられ、以下の関係の場合に枠材が有効に作用するものと考えられる。   The relationship between the thickness of the frame material, the presence or absence of cracks, and the magnetization is considered to depend on the volume of the molded body, and the frame material is considered to act effectively in the following relationship.

枠材が銅もしくは銅合金からなる場合であって成形体が円柱体の場合は、成形体の径をDとした際に、0.1D〜0.3Dの肉厚の枠材を使用し、成形体が直方体の場合は、成形体の延伸方向の一辺をLとした際に、0.1L〜0.3Lの肉厚の枠材を使用する。   When the frame material is made of copper or copper alloy and the molded body is a cylindrical body, when the diameter of the molded body is D, a thick frame material of 0.1D to 0.3D is used, and the molded body In the case of a rectangular parallelepiped, a thick frame material of 0.1 L to 0.3 L is used, where L is one side in the extending direction of the molded body.

一方、枠材が軟鋼からなる場合であって成形体が円柱体の場合は、成形体の径をDとした際に、0.05D〜0.15Dの肉厚の枠材を使用し、成形体が直方体の場合は、成形体の延伸方向の一辺をLとした際に、0.05L〜0.15Lの肉厚の枠材を使用する。   On the other hand, when the frame material is made of mild steel and the molded body is a cylindrical body, when the diameter of the molded body is D, a frame material with a thickness of 0.05D to 0.15D is used, and the molded body is In the case of a rectangular parallelepiped, a thick frame material of 0.05 L to 0.15 L is used, where L is one side in the extending direction of the molded body.

[成形体を枠材と枠材に縁切りされた蓋材で包囲した際の効果を確認した実験とその結果]
本発明者等はさらに、以下の実施例3、実施例1’、実施例4の各試験片を製作し、実施例3に関しては、1mmの厚みの蓋材を使用して熱間塑性加工をおこなった試験片に関し、試験片の上面(上蓋材と密着していた面)からの距離ごとに粉末加工率を測定した。図9aは実験結果を示す図であり、図9bは実施例3の外観写真図である。
[Experiment to confirm the effect when the molded body is surrounded by a frame material and a lid material cut into a frame material and its results]
The inventors further manufactured each test piece of Example 3, Example 1 ′, and Example 4 below, and for Example 3, hot plastic working was performed using a 1 mm-thick lid material. With respect to the test piece, the powder processing rate was measured for each distance from the upper surface of the test piece (the surface that was in close contact with the upper lid material). FIG. 9A is a diagram showing experimental results, and FIG. 9B is an external view photograph of Example 3.

また、実施例3の試験片は、中心部から10mm×10mm×0.2〜3mmで5種の試料を切り出し、実施例1’、実施例4の各試験片は中心部から10mm×10mm×1mmで試料を切り出し、それぞれの磁化を測定した。図10に磁化測定結果を示す。   In addition, the test piece of Example 3 cut out 5 types of samples at 10 mm × 10 mm × 0.2-3 mm from the center, and each test piece of Example 1 ′ and Example 4 was 10 mm × 10 mm × 1 mm from the center. Samples were cut out and their magnetizations were measured. FIG. 10 shows the magnetization measurement result.

(実施例3)
希土類合金原料(合金組成は、質量%で、Fe-30Nd-1B-4Co-0.6Ga)を所定量配合し、Arガス雰囲気下で溶解させた後、その溶湯をオリフィスからCrメッキを施したCu製の回転ロールに射出して急冷して合金薄帯を製造し、これをArガス雰囲気中でカッターミルで粉砕して篩にかけ、0.2mm以下の希土類磁石用粉末を得た。
(Example 3)
A rare earth alloy raw material (alloy composition is Fe-30Nd-1B-4Co-0.6Ga in mass%) is mixed in a predetermined amount, dissolved in an Ar gas atmosphere, and then the molten metal is subjected to Cr plating from an orifice. An alloy ribbon was produced by injection onto a rotating roll made of metal and quenching, and this was pulverized with a cutter mill in an Ar gas atmosphere and sieved to obtain a rare earth magnet powder of 0.2 mm or less.

得られた希土類磁石用粉末8.4gをφ10×40mmの容積をもつ超硬ダイスに収容し、上下の超硬パンチで封止した。   8.4 g of the obtained rare earth magnet powder was placed in a carbide die having a volume of φ10 × 40 mm and sealed with upper and lower carbide punches.

これをチャンバーにセットし、10−2Paに減圧し、400MPaを負荷した後にすぐに高周波コイルで650℃で加熱しながらプレスした。プレス後、60秒保持した後に成形型から高さ14mmの成形体を取り出した。 This was set in a chamber, depressurized to 10 −2 Pa, and immediately after being loaded with 400 MPa, it was pressed while heating at 650 ° C. with a high-frequency coil. After pressing for 60 seconds, a molded body having a height of 14 mm was taken out of the mold.

この成形体に対し、外径φ12.5mmで内径10mm、高さ14mmの無酸素銅のリングを成形体に嵌め込み、さらに、その上下にφ14mmで厚みT1が0.3、0.5、1、2、3mmの銅板を設置し、加熱温度750℃、加工率75%、歪速度10/secで熱間塑性加工をおこなった。   An oxygen-free copper ring with an outer diameter of 12.5 mm, an inner diameter of 10 mm and a height of 14 mm is fitted into the molded body, and the thickness T1 is 0.3, 0.5, 1, 2, and 3 mm with a diameter of 14 mm above and below the molded body. A copper plate was installed, and hot plastic working was performed at a heating temperature of 750 ° C., a processing rate of 75%, and a strain rate of 10 / sec.

(実施例1’)
実施例3において銅板を用いないで熱間塑性加工を実施した。
(Example 1 ')
In Example 3, hot plastic working was performed without using a copper plate.

(実施例4)
実施例3において銅板の代わりに軟鋼板(SS41、板厚T1=1mm)を用いて熱間塑性加工を実施した。
(Example 4)
In Example 3, hot plastic working was performed using a mild steel plate (SS41, plate thickness T1 = 1 mm) instead of the copper plate.

まず、図9bは実施例3の外観写真図でより、銅板の750℃での加工による大きな塑性変形により、内部の成形体に対しては潤滑効果でその全体形状が中膨らみではなくて円柱状に変形していることが確認できる。   First, FIG. 9b is an external view photograph of Example 3, and due to the large plastic deformation caused by processing the copper plate at 750 ° C., the overall shape of the internal molded body is not a bulge due to a lubricating effect, but a cylindrical shape. It can be confirmed that it is deformed.

また、図9aより、実施例3は、銅板による潤滑効果により、成形体の厚み方向で均一に磁石粉が変形していることが実証されている。   Further, from FIG. 9a, it is proved that in Example 3, the magnet powder is uniformly deformed in the thickness direction of the molded body due to the lubricating effect by the copper plate.

さらに、図10より、板材の厚みが0.5〜2mmの範囲の場合には、成形体の幅方向の全域に亘って成形体が潰れたため(パンチ近傍の歪も大きいため)、成形体の全域に亘って結晶配向し、Brが大きくなっているものと考えられる。なお、板材が厚すぎるとその表面が逆に伸びすぎて表面に縦方向の割れが発生することが確認できている。一方、板材が無いものや銅ほどに軟らかくない鉄などでは潤滑効果を期待することができず、パンチ近傍の変形が少なくなり、配向がその箇所で進行せずに磁化の向上が少ないことが分かった。   Furthermore, as shown in FIG. 10, when the thickness of the plate material is in the range of 0.5 to 2 mm, the molded body is crushed over the entire width direction of the molded body (because the distortion in the vicinity of the punch is large). It is considered that the crystal is oriented and Br is large. It has been confirmed that if the plate material is too thick, the surface thereof is excessively stretched and cracks in the vertical direction are generated on the surface. On the other hand, when there is no plate material or iron that is not as soft as copper, the lubrication effect cannot be expected, deformation near the punch is reduced, and orientation does not advance at that location, indicating that there is little improvement in magnetization. It was.

以上、本発明の実施の形態を図面を用いて詳述してきたが、具体的な構成はこの実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲における設計変更等があっても、それらは本発明に含まれるものである。   The embodiment of the present invention has been described in detail with reference to the drawings. However, the specific configuration is not limited to this embodiment, and there are design changes and the like without departing from the gist of the present invention. They are also included in the present invention.

R…銅ロール、B…急冷薄帯(急冷リボン)、D…超硬ダイス、P…超硬パンチ、S…成形体、S’…配向磁石(希土類磁石)、C…枠材、F…蓋材、U,U1…ユニット体、MP…主相(ナノ結晶粒、結晶粒)、BP…粒界相   R: Copper roll, B: Quenched ribbon (quenched ribbon), D: Carbide die, P: Carbide punch, S ... Molded body, S '... Oriented magnet (rare earth magnet), C ... Frame material, F ... Lid Material, U, U1 ... Unit body, MP ... Main phase (nanocrystal grains, crystal grains), BP ... Grain boundary phase

Claims (1)

希土類磁石材料となる粉末を加圧成形して、上面と下面と側面を有する成形体を製造する第1のステップ、
前記成形体の前記側面に該成形体よりも相対的に高い延性の枠材を配し、さらに、該成形体よりも相対的に高い延性を有し、前記枠材と縁切りされている2つの蓋材を成形体の上面と下面にそれぞれ配して、側面と上下面が相互に縁切りされた枠材および蓋材とこれらで包囲された成形体からなるユニット体を形成し、これを上下のパンチで挟み、該上下のパンチで成形体の上面と下面に位置する上下の蓋材を押圧しながら異方性を与える熱間塑性加工を施して配向磁石である希土類磁石を製造する第2のステップからなる希土類磁石の製造方法。
A first step of producing a molded body having an upper surface, a lower surface and a side surface by pressure-molding a powder to be a rare earth magnet material;
A frame material having a ductility relatively higher than that of the molded body is arranged on the side surface of the molded body, and further, two frames having a ductility relatively higher than that of the molded body and edged with the frame material. The lid material is arranged on the upper surface and the lower surface of the molded body, respectively, to form a unit body composed of a frame material and a lid material whose side surfaces and upper and lower surfaces are mutually cut off, and a molded body surrounded by these. A second rare earth magnet that is an oriented magnet is manufactured by sandwiching with punches and applying anisotropy while pressing the upper and lower lids positioned on the upper and lower surfaces of the compact with the upper and lower punches. A method for producing a rare earth magnet comprising steps.
JP2011288650A 2011-12-28 2011-12-28 Rare earth magnet manufacturing method Expired - Fee Related JP5786708B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011288650A JP5786708B2 (en) 2011-12-28 2011-12-28 Rare earth magnet manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011288650A JP5786708B2 (en) 2011-12-28 2011-12-28 Rare earth magnet manufacturing method

Publications (2)

Publication Number Publication Date
JP2013138127A JP2013138127A (en) 2013-07-11
JP5786708B2 true JP5786708B2 (en) 2015-09-30

Family

ID=48913607

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011288650A Expired - Fee Related JP5786708B2 (en) 2011-12-28 2011-12-28 Rare earth magnet manufacturing method

Country Status (1)

Country Link
JP (1) JP5786708B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5704186B2 (en) 2013-04-01 2015-04-22 トヨタ自動車株式会社 Rare earth magnet manufacturing method
JP6213423B2 (en) * 2014-08-25 2017-10-18 トヨタ自動車株式会社 Rare earth magnet manufacturing method
JP6365447B2 (en) * 2015-07-08 2018-08-01 トヨタ自動車株式会社 Manufacturing method of rotor
CN106001578B (en) * 2016-07-26 2018-12-25 郑州磨料磨具磨削研究所有限公司 A kind of radial pressure sintering forming die

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06105504A (en) * 1992-09-21 1994-04-15 Honda Motor Co Ltd Manufacture of permanent magnet member for motor
US5516371A (en) * 1994-09-22 1996-05-14 Korea Research Institute Of Standard And Science Method of manufacturing magnets
KR0159651B1 (en) * 1995-06-19 1998-12-15 정몽원 Method for manufacturing a magnet made from anisotropic rare earth
KR100201695B1 (en) * 1996-12-03 1999-06-15 오상수 Apparatus of manufacturing anisotropic permanent magnet
JP2011216642A (en) * 2010-03-31 2011-10-27 Tdk Corp Anisotropic exchange spring magnet, method of manufacturing the same, anisotropic bonded magnet, and anisotropic sintered magnet

Also Published As

Publication number Publication date
JP2013138127A (en) 2013-07-11

Similar Documents

Publication Publication Date Title
CA2887984C (en) Rare-earth magnet production method
JP5790617B2 (en) Rare earth magnet manufacturing method
JP6330907B2 (en) Method for producing rare earth magnet compact
KR20120135337A (en) Method for producing rare-earth magnet
JP2013149862A (en) Method of manufacturing rare earth magnet
JP5786708B2 (en) Rare earth magnet manufacturing method
EP2767992A1 (en) Manufacturing method for magnetic powder for forming sintered body of rare-earth magnet precursor
KR20130116933A (en) Method producing rare earth magnet
JP6613730B2 (en) Rare earth magnet manufacturing method
JP6213423B2 (en) Rare earth magnet manufacturing method
KR101813427B1 (en) Method of manufacturing rare earth magnet
JP2001210508A (en) Method of manufacturing arc segment magnet, ring magnet, and rare earth sintered magnet
WO2014080852A1 (en) Method for manufacturing rare-earth magnet
JPWO2014002986A1 (en) Rare earth sintered magnet manufacturing method and mold
JP6447804B2 (en) Method for manufacturing magnet compact
JP2014203842A (en) Manufacturing method of rare-earth magnet
JP6604321B2 (en) Rare earth magnet manufacturing method
JP2015220337A (en) Method for manufacturing compact for magnet, compact for magnet and magnetic member
JP2013138111A (en) Method of manufacturing rare-earth magnet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150630

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150713

R151 Written notification of patent or utility model registration

Ref document number: 5786708

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees