JP6330907B2 - Method for producing rare earth magnet compact - Google Patents
Method for producing rare earth magnet compact Download PDFInfo
- Publication number
- JP6330907B2 JP6330907B2 JP2016529610A JP2016529610A JP6330907B2 JP 6330907 B2 JP6330907 B2 JP 6330907B2 JP 2016529610 A JP2016529610 A JP 2016529610A JP 2016529610 A JP2016529610 A JP 2016529610A JP 6330907 B2 JP6330907 B2 JP 6330907B2
- Authority
- JP
- Japan
- Prior art keywords
- magnet
- powder
- molding
- molded body
- warm
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 40
- 229910052761 rare earth metal Inorganic materials 0.000 title description 23
- 150000002910 rare earth metals Chemical class 0.000 title description 20
- 239000000843 powder Substances 0.000 claims description 166
- 238000000465 moulding Methods 0.000 claims description 84
- 238000005056 compaction Methods 0.000 claims description 83
- 238000000034 method Methods 0.000 claims description 65
- 238000010438 heat treatment Methods 0.000 claims description 53
- 238000000748 compression moulding Methods 0.000 claims description 52
- 230000008569 process Effects 0.000 claims description 39
- 229910052751 metal Inorganic materials 0.000 claims description 34
- 239000002184 metal Substances 0.000 claims description 33
- 239000011230 binding agent Substances 0.000 claims description 30
- 239000002245 particle Substances 0.000 claims description 27
- 238000002360 preparation method Methods 0.000 claims description 25
- 238000010298 pulverizing process Methods 0.000 claims description 7
- 239000011324 bead Substances 0.000 claims description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 59
- 230000006835 compression Effects 0.000 description 43
- 238000007906 compression Methods 0.000 description 43
- 239000012071 phase Substances 0.000 description 15
- 230000004907 flux Effects 0.000 description 13
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 12
- 239000010949 copper Substances 0.000 description 12
- 230000003647 oxidation Effects 0.000 description 12
- 238000007254 oxidation reaction Methods 0.000 description 12
- 239000001301 oxygen Substances 0.000 description 12
- 229910052760 oxygen Inorganic materials 0.000 description 12
- 238000007596 consolidation process Methods 0.000 description 10
- 239000011701 zinc Substances 0.000 description 10
- 230000000052 comparative effect Effects 0.000 description 8
- 239000012535 impurity Substances 0.000 description 8
- 230000005415 magnetization Effects 0.000 description 8
- 239000000203 mixture Substances 0.000 description 8
- 238000011156 evaluation Methods 0.000 description 6
- 239000007789 gas Substances 0.000 description 6
- 239000006247 magnetic powder Substances 0.000 description 6
- 239000002491 polymer binding agent Substances 0.000 description 6
- 238000012545 processing Methods 0.000 description 6
- 239000000047 product Substances 0.000 description 6
- 239000002994 raw material Substances 0.000 description 6
- 229910045601 alloy Inorganic materials 0.000 description 5
- 239000000956 alloy Substances 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 239000011261 inert gas Substances 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- 239000002923 metal particle Substances 0.000 description 5
- 238000007493 shaping process Methods 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 229910052772 Samarium Inorganic materials 0.000 description 4
- 229920005596 polymer binder Polymers 0.000 description 4
- JBQYATWDVHIOAR-UHFFFAOYSA-N tellanylidenegermanium Chemical compound [Te]=[Ge] JBQYATWDVHIOAR-UHFFFAOYSA-N 0.000 description 4
- 229910052692 Dysprosium Inorganic materials 0.000 description 3
- 229910052691 Erbium Inorganic materials 0.000 description 3
- 229910052688 Gadolinium Inorganic materials 0.000 description 3
- 229910052689 Holmium Inorganic materials 0.000 description 3
- 229910052771 Terbium Inorganic materials 0.000 description 3
- 229910052776 Thorium Inorganic materials 0.000 description 3
- 229910052775 Thulium Inorganic materials 0.000 description 3
- 229910052769 Ytterbium Inorganic materials 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 3
- 239000002360 explosive Substances 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N nitrogen Substances N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 3
- 229920000620 organic polymer Polymers 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 229910000938 samarium–cobalt magnet Inorganic materials 0.000 description 3
- 229910000531 Co alloy Inorganic materials 0.000 description 2
- 229910000640 Fe alloy Inorganic materials 0.000 description 2
- 229910052777 Praseodymium Inorganic materials 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000000227 grinding Methods 0.000 description 2
- 229910052746 lanthanum Inorganic materials 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- -1 rare earth nitride Chemical class 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- 229910052718 tin Inorganic materials 0.000 description 2
- 239000011135 tin Substances 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- 229910000859 α-Fe Inorganic materials 0.000 description 2
- 229910014454 Ca-Cu Inorganic materials 0.000 description 1
- 229910004247 CaCu Inorganic materials 0.000 description 1
- 229910052684 Cerium Inorganic materials 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- 101150096058 Erfe gene Proteins 0.000 description 1
- 229910052693 Europium Inorganic materials 0.000 description 1
- 229910002593 Fe-Ti Inorganic materials 0.000 description 1
- 229910052765 Lutetium Inorganic materials 0.000 description 1
- 229910000914 Mn alloy Inorganic materials 0.000 description 1
- 229910052779 Neodymium Inorganic materials 0.000 description 1
- 229910000990 Ni alloy Inorganic materials 0.000 description 1
- 238000003723 Smelting Methods 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 229910001297 Zn alloy Inorganic materials 0.000 description 1
- OLBVUFHMDRJKTK-UHFFFAOYSA-N [N].[O] Chemical compound [N].[O] OLBVUFHMDRJKTK-UHFFFAOYSA-N 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000013065 commercial product Substances 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000011978 dissolution method Methods 0.000 description 1
- 230000005489 elastic deformation Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000005242 forging Methods 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000007373 indentation Methods 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 229910001172 neodymium magnet Inorganic materials 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 238000003921 particle size analysis Methods 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000004663 powder metallurgy Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 239000000700 radioactive tracer Substances 0.000 description 1
- 229910001404 rare earth metal oxide Inorganic materials 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 229910052702 rhenium Inorganic materials 0.000 description 1
- 229910001954 samarium oxide Inorganic materials 0.000 description 1
- 229940075630 samarium oxide Drugs 0.000 description 1
- FKTOIHSPIPYAPE-UHFFFAOYSA-N samarium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[Sm+3].[Sm+3] FKTOIHSPIPYAPE-UHFFFAOYSA-N 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/032—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
- H01F1/04—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
- H01F1/047—Alloys characterised by their composition
- H01F1/053—Alloys characterised by their composition containing rare earth metals
- H01F1/055—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/032—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
- H01F1/04—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
- H01F1/06—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder
- H01F1/08—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F41/00—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
- H01F41/02—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Hard Magnetic Materials (AREA)
- Powder Metallurgy (AREA)
- Manufacturing Cores, Coils, And Magnets (AREA)
Description
本発明は、磁石成形体の製造方法に関し、より詳細には、生産性が高く、磁力をより向上し得る希土類磁石成形体の製造方法に関する。 The present invention relates to a method for manufacturing a magnet molded body, and more particularly to a method for manufacturing a rare earth magnet molded body with high productivity and improved magnetic force.
希土類元素と遷移金属からなる希土類磁石は、結晶磁気異方性、飽和磁化ともに大きいため、永久磁石として多様な用途に有望である。なかでもSm−Fe−N系磁石に代表される希土類−遷移金属−窒素系磁石は、高価な原料を使用しなくとも優れた磁気特性を示すことが知られている。 Rare earth magnets composed of rare earth elements and transition metals are promising for various applications as permanent magnets because of their large magnetocrystalline anisotropy and saturation magnetization. Among them, rare earth-transition metal-nitrogen based magnets represented by Sm—Fe—N based magnets are known to exhibit excellent magnetic properties without using expensive raw materials.
また、現在、用いられている希土類磁石には、主に焼結磁石とボンド磁石の2種類がある。焼結磁石は、Nd−Fe−B系磁石に代表されるように、高温で焼結して形成体が製造されている。焼結磁石の場合、磁石原料粉末には磁気特性が乏しく、液相が発生する程度の高温に加熱することで優れた磁気特性が発現する。一方、ボンド磁石は、室温で、優れた磁気特性を有する磁石原料粉末を樹脂で固化成形して用いられている。 Moreover, there are mainly two types of rare earth magnets that are currently used: sintered magnets and bonded magnets. Sintered magnets are sintered at a high temperature to be formed as represented by Nd—Fe—B magnets. In the case of a sintered magnet, the magnetic raw material powder has poor magnetic properties, and excellent magnetic properties are exhibited by heating to a high temperature at which a liquid phase is generated. On the other hand, bond magnets are used by solidifying and molding magnet raw material powder having excellent magnetic properties with a resin at room temperature.
Sm−Fe−N系磁石は永久磁石として有望である一方、熱的安定性に欠けるという欠点がある。Sm−Fe−N系磁石を600℃以上に加熱すると希土類窒化物とα−Feに分解するため、従来の粉末冶金法のように焼結法で磁石成形体を作製することができない。そのため、ボンド磁石用の磁石粉末として用いられてきたが、この場合、バインダとして樹脂の体積が全体の約3割を占めるため、十分な磁力を得ることができない。 While Sm—Fe—N magnets are promising as permanent magnets, they have a drawback of lacking thermal stability. When a Sm—Fe—N magnet is heated to 600 ° C. or higher, it is decomposed into a rare earth nitride and α-Fe, so that a magnet compact cannot be produced by a sintering method as in the conventional powder metallurgy method. For this reason, it has been used as a magnet powder for bonded magnets. In this case, since the volume of the resin as a binder occupies about 30% of the whole, a sufficient magnetic force cannot be obtained.
そこで、Sm−Fe−N系磁石成形体の作製においては、磁石粉末以外の物質をできるだけ含有させない磁石成形体が得られるような、固化成形方法が求められている。このような固化成形法として、現在までに、特開平6−77027号公報に記載されている、爆薬を用いた粉末衝撃成形法が検討されている。 Therefore, in the production of an Sm—Fe—N-based magnet molded body, there is a demand for a solidified molding method that can provide a magnet molded body that contains as little substance as possible other than magnet powder. As such a solidification molding method, a powder impact molding method using explosives described in JP-A-6-77027 has been studied so far.
しかしながら、上記の従来技術に記載の方法は、品質安定性(磁気特性ばらつき)、生産性(量産サイクルタイム)、加工歩留まり(ニアネットシェイプ成形の可否)に課題がある。爆薬を用いた粉末衝撃成形法は、相対密度90%を超えるSm−Fe−N系バルク磁石が得られるが、爆薬を用いる手法であるため、量産手法としては制約がある。また、衝撃力が大きすぎるため、Sm−Fe−N系磁石が希土類窒化物とα−Feに分解し、磁気特性を低下させてしまう。 However, the method described in the above prior art has problems in quality stability (magnetic characteristic variation), productivity (mass production cycle time), and processing yield (whether near net shape molding is possible). The powder impact molding method using an explosive can obtain an Sm-Fe-N bulk magnet having a relative density exceeding 90%. However, since it is a method using an explosive, there is a limitation as a mass production method. Further, since the impact force is too great, the Sm—Fe—N magnet is decomposed into rare earth nitride and α-Fe, and the magnetic properties are deteriorated.
本発明は、上記の従来技術の問題を解決するためになされたものであり、品質安定性、生産性および加工歩留まりが向上した、量産に適した希土類磁石の製造方法を提供することを目的とする。さらに、磁気特性の低下が抑制された希土類磁石の製造方法を提供することを目的とする。 The present invention has been made to solve the above-described problems of the prior art, and an object thereof is to provide a method for producing a rare earth magnet suitable for mass production with improved quality stability, productivity and processing yield. To do. Furthermore, it aims at providing the manufacturing method of the rare earth magnet by which the fall of the magnetic characteristic was suppressed.
本発明者らは、上記の問題を解決すべく鋭意研究を行った。その結果、本発明の希土類磁石成形体の製造方法は、600℃以下の温度のSm−Fe−N系磁石粉末を、成形型中で、1〜5GPaの成形面圧で圧密成形し、相対密度80%以上のSm−Fe−N系磁石成形体を得る温間圧密成形工程を有する。 The present inventors have intensively studied to solve the above problems. As a result, the method for producing a rare earth magnet compact of the present invention comprises compacting Sm—Fe—N magnet powder having a temperature of 600 ° C. or lower in a mold at a molding surface pressure of 1 to 5 GPa. It has a warm compacting step to obtain an Sm-Fe-N magnet molded body of 80% or more.
以下、本発明の実施形態について詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail.
<第一実施形態>
第一実施形態の製造方法は、図1に示すように、準備工程(S11)と、温間圧密成形工程(S12)と、熱処理工程(S13)と、を有する。準備工程(S11)は、Sm−Fe−N系磁石粉末を用意する工程であり、任意である。温間圧密成形工程(S12)では、600℃以下の温度のSm−Fe−N系磁石粉末を、成形型中で、1〜5GPaの成形面圧で圧密成形し、相対密度80%以上のSm−Fe−N系磁石成形体を得る。熱処理工程(S13)では、温間圧密成形工程(S12)で得られた成形体を、350〜600℃の温度で1〜120分加熱する。しかしながら、準備工程(S11)および熱処理工程(S13)は任意の工程である。このようにして、製品である磁石成形体が得られる。<First embodiment>
The manufacturing method of 1st embodiment has a preparatory process (S11), a warm compaction process (S12), and a heat treatment process (S13), as shown in FIG. The preparation step (S11) is a step of preparing Sm—Fe—N magnet powder, and is optional. In the warm compacting step (S12), Sm—Fe—N magnet powder having a temperature of 600 ° C. or lower is compacted at a molding surface pressure of 1 to 5 GPa in a mold, and Sm having a relative density of 80% or more. A -Fe-N magnet molded body is obtained. In the heat treatment step (S13), the molded body obtained in the warm compaction step (S12) is heated at a temperature of 350 to 600 ° C. for 1 to 120 minutes. However, the preparation step (S11) and the heat treatment step (S13) are optional steps. In this way, a magnet molded body as a product is obtained.
(準備工程(S11))
本実施形態の希土類磁石成形体は、Sm−Fe−N系磁石粉末を用いて成形する。Sm−Fe−N系磁石粉末は、Sm−Fe−Nを主成分とする磁石相を含有する。上記したとおり、Sm−Fe−N系磁石粉末は、磁気特性に優れるため、永久磁石として有望である。原料となるSm−Fe−N系磁石粉末は、市販品を用いてもよく、自ら調製してもよい。また、Sm−Fe−N系磁石粉末に、金属バインダーをブレンドして使用することも好ましい。Sm−Fe−N系磁石粉末の市販品を使用する場合には、特に準備工程は必要ない。しかし、自ら原料となるSm−Fe−N系磁石粉末を調製する場合、および、金属バインダーとのブレンド粉を使用する場合には、磁石成形体の原料粉末を用意する準備工程を行う。なお、ブレンド粉もSm−Fe−N系磁石粉末と称する場合がある。(Preparation process (S11))
The rare earth magnet compact of the present embodiment is molded using Sm—Fe—N based magnet powder. The Sm—Fe—N-based magnet powder contains a magnet phase mainly composed of Sm—Fe—N. As described above, the Sm—Fe—N magnet powder is promising as a permanent magnet because of its excellent magnetic properties. A commercially available product may be used for the Sm—Fe—N magnet powder as a raw material, or it may be prepared by itself. Further, it is also preferable to use a metal binder blended with the Sm—Fe—N magnet powder. When using a commercial product of Sm-Fe-N magnet powder, a preparation step is not particularly required. However, when preparing an Sm—Fe—N magnet powder as a raw material by itself and using a blend powder with a metal binder, a preparation step of preparing a raw material powder for a magnet compact is performed. The blended powder may also be referred to as Sm—Fe—N magnet powder.
(微粉砕によりSm−Fe−N系磁石粉末を得る工程)
Sm−Fe−N系磁石粉末を調製する場合には、Sm−Fe−N系磁石粗粉を微粉砕し、Sm−Fe−N系磁石粉末を得ることができる。Sm−Fe−N系磁石粉末の大きさ(平均粒子径)は、本実施形態の作用効果を有効に発現し得る範囲内であればよいが、小さい程保磁力が高くなるため、10μm以下になるまで微粉砕することが好ましい。より好ましくは0.1〜8μm、さらに好ましくは0.5〜6μmの範囲である。希土類磁石粉末の平均粒子径が10μm以下であれば、保磁力に優れた磁石成形体が得られる。なお、Sm−Fe−N系磁石粉末として市販品を用いる場合にも、粉末の平均粒子径は10μm以下、より好ましくは0.1〜8μm、さらに好ましくは0.5〜6μmである。(Step of obtaining Sm—Fe—N magnet powder by fine grinding)
When preparing Sm-Fe-N magnet powder, Sm-Fe-N magnet powder can be pulverized to obtain Sm-Fe-N magnet powder. The size (average particle diameter) of the Sm—Fe—N-based magnet powder may be within a range in which the effects of the present embodiment can be effectively expressed. However, the smaller the value, the higher the coercive force, so that it is 10 μm or less. It is preferable to finely pulverize. More preferably, it is 0.1-8 micrometers, More preferably, it is the range of 0.5-6 micrometers. When the average particle diameter of the rare earth magnet powder is 10 μm or less, a magnet molded body having excellent coercive force can be obtained. In addition, also when using a commercial item as a Sm-Fe-N type magnet powder, the average particle diameter of powder is 10 micrometers or less, More preferably, it is 0.1-8 micrometers, More preferably, it is 0.5-6 micrometers.
ここで、磁石粉末の平均粒子径は、例えば、SEM(走査型電子顕微鏡)観察、TEM(透過型電子顕微鏡)観察などにより粒度分析(測定)することができる。なお、磁石粉末またはその断面の中には、球状ないし円形状(断面形状)ではなく、縦横比(アスペクト比)が違う不定形状の粉末が含まれている場合もある。したがって、上記でいう平均粒子径は、磁石粉末の形状(ないしその断面形状)が一様でないことから、観察画像内の各磁石粉末の切断面形状の絶対最大長の平均値で表すものとする。絶対最大長とは、磁石粉末(ないしその断面形状)の輪郭線上の任意の2点間の距離のうち、最大の長さをいう。この他にも、例えば、X線回折における希土類磁石相の回折ピークの半値幅より求められる結晶子径、または透過型電子顕微鏡像より得られる磁石粉末の粒子径の平均値を求めることにより得ることもできる。なお、他の平均粒子径の測定方法についても、同様にして求めることができる。 Here, the average particle diameter of the magnet powder can be subjected to particle size analysis (measurement) by, for example, SEM (scanning electron microscope) observation or TEM (transmission electron microscope) observation. In some cases, the magnet powder or its cross-section may include a powder having an irregular shape with a different aspect ratio (aspect ratio) rather than a spherical or circular shape (cross-sectional shape). Therefore, the average particle diameter mentioned above is expressed by the average value of the absolute maximum length of the cut surface shape of each magnet powder in the observation image because the shape of the magnet powder (or its cross-sectional shape) is not uniform. . The absolute maximum length means the maximum length among the distances between any two points on the contour line of the magnet powder (or its cross-sectional shape). In addition to this, for example, by obtaining the crystallite diameter obtained from the half-value width of the diffraction peak of the rare earth magnet phase in X-ray diffraction or the average value of the particle diameter of the magnet powder obtained from the transmission electron microscope image. You can also. In addition, it can obtain | require similarly about the measuring method of another average particle diameter.
Sm−Fe−N系磁石粗粉は、市販品を用いてもよいし、自ら調製してもよい。Sm−Fe−N系磁石粗粉は、例えば、サマリウム酸化物、鉄粉から還元拡散法によりSmFe合金粉末を製造して、N2ガス、NH3ガス、N2ガスとH2ガスの混合ガスなどの雰囲気中で600℃以下の加熱処理を施すことでSmFeNとしたものを用いることができる。また、SmFe合金を、溶解法で製造し、粗粉砕して得られた粉末に窒化処理を施したものを用いてもよい。A commercially available product may be used for the Sm-Fe-N magnet coarse powder, or it may be prepared by itself. The Sm-Fe-N magnet coarse powder is produced, for example, by producing a SmFe alloy powder from a samarium oxide or iron powder by a reduction diffusion method, and a mixed gas of N 2 gas, NH 3 gas, N 2 gas and H 2 gas. For example, SmFeN can be used by performing heat treatment at 600 ° C. or lower in an atmosphere such as the above. Moreover, you may use what nitrided the powder obtained by manufacturing a SmFe alloy by the melt | dissolution method and carrying out the coarse grinding | pulverization.
Sm−Fe−N系磁石粗粉を所望の平均粒子径になるまで微粉砕する方法としては、特に制限はなく、公知の粉砕機を使用することができる。好ましくは、乾式ジェットミル、または、湿式ビーズミルを使用することができる。乾式ジェットミルは、平均粒子径が2μm以下になるまで細かく粉砕することは技術的に困難であるが、微粉砕した磁石粉末が不純物を含みにくいという点で、有利である。一方、湿式ビーズミルは、磁石粉末を平均粒子径2μm以下にまで微細に粉砕できるため、得られる成形体の保磁力が高くなり好ましい。しかしながら、磁石粉末を有機溶媒中で粉砕するため、乾式ジェットミルに比較して得られる磁石粉末中の不純物量が多くなるデメリットがある。 There is no restriction | limiting in particular as a method of grind | pulverizing a Sm-Fe-N type magnet coarse powder until it becomes a desired average particle diameter, A well-known grinder can be used. Preferably, a dry jet mill or a wet bead mill can be used. Although it is technically difficult to finely pulverize the dry jet mill until the average particle size becomes 2 μm or less, it is advantageous in that the finely pulverized magnet powder hardly contains impurities. On the other hand, the wet bead mill is preferable because the magnetic powder can be finely pulverized to an average particle diameter of 2 μm or less, and the coercive force of the obtained molded body is increased. However, since the magnetic powder is pulverized in an organic solvent, there is a demerit that the amount of impurities in the magnetic powder obtained is larger than that of a dry jet mill.
Sm−Fe−N系磁石粗粉を微粉砕して自ら調製する場合には、準備工程以後の工程、すなわち、準備工程、温間圧密成形工程および熱処理工程を不活性雰囲気下で実施することが好ましい。不活性雰囲気下とは、実質的に酸素を含まない雰囲気下を意味する。不活性雰囲気下であれば、磁石の性能は不純物量と関連があるため、酸素などの不純物量が多くなり、磁気特性が低下することを防止できる。さらに、微粉砕したSm−Fe−N系磁石粉末を加熱する際、酸化により磁気特性が激しく劣化し、粉末が燃焼することを防止しうる。 When the Sm—Fe—N magnet coarse powder is finely pulverized and prepared by itself, the steps after the preparatory step, that is, the preparatory step, the warm compaction step, and the heat treatment step may be performed in an inert atmosphere. preferable. Under an inert atmosphere means an atmosphere that does not substantially contain oxygen. Under an inert atmosphere, the performance of the magnet is related to the amount of impurities, so that it is possible to prevent the amount of impurities such as oxygen from increasing and magnetic properties from deteriorating. Furthermore, when heating the finely pulverized Sm—Fe—N magnet powder, it is possible to prevent the powder from combusting due to violent deterioration of magnetic properties due to oxidation.
不活性雰囲気としては、窒素、希ガスなどの不活性ガス雰囲気とすることができる。不活性雰囲気下では、酸素濃度が100体積ppm以下であることが好ましく、より好ましくは50体積ppm以下、さらに好ましくは10体積ppm以下である。なお、Sm−Fe−N系磁石粉末として市販品を用いる場合には、粉末が表面処理されているため、不活性雰囲気下で以後の工程を実施する必要はない。Sm−Fe−N系磁石粗粉を微粉砕してSm−Fe−N系磁石粉末を得る場合には、微粉が表面処理されていない分、磁気特性のよりよい磁石成形体が得られる。 The inert atmosphere may be an inert gas atmosphere such as nitrogen or a rare gas. Under an inert atmosphere, the oxygen concentration is preferably 100 ppm by volume or less, more preferably 50 ppm by volume or less, and even more preferably 10 ppm by volume or less. In addition, when using a commercial item as Sm-Fe-N type | system | group magnetic powder, since the powder is surface-treated, it is not necessary to implement a subsequent process under inert atmosphere. When the Sm-Fe-N-based magnet coarse powder is finely pulverized to obtain the Sm-Fe-N-based magnet powder, a magnet compact with better magnetic properties can be obtained because the fine powder is not surface-treated.
以下、本実施形態で用いうるSm−Fe−N系磁石粉末について説明する。 Hereinafter, the Sm—Fe—N magnet powder that can be used in the present embodiment will be described.
(Sm−Fe−N系磁石粉末)
Sm−Fe−Nを主成分とする磁石粉末としては、より具体的には、以下のように例えば、Sm2Fe17Nx(ここで、xは、好ましくは1〜6、より好ましくは1.1〜5、更に好ましくは1.2〜3.8、より好ましくは1.7〜3.3、特に好ましくは2.0〜3.0)、Sm2Fe17N3、(Sm0.75Zr0.25)(Fe0.7Co0.3)Nx(ここで、xは、好ましくは1〜6である)、SmFe11TiNx(ここで、xは好ましくは1〜6である)、(Sm8Zr3Fe84)85N15、Sm7Fe93Nx(ここで、xは、好ましくは1〜20である)などが挙げられるが、これらに何ら制限されるものではない。より好ましくは、Sm2Fe17Nx(x=1.7〜3.3)、より好ましくはSm2Fe17Nx(x=3.0)を主成分とする磁石粉末が望ましい。これは、異方性磁界と飽和磁化が大きく、磁気特性に優れるためである。これらSm−Fe−N系磁石粉末は1種単独で用いても、2種以上を混合して用いてもよい。(Sm-Fe-N magnet powder)
More specifically, as a magnet powder containing Sm-Fe-N as a main component, for example, Sm 2 Fe 17 N x (where x is preferably 1 to 6, more preferably 1 as follows) 0.1 to 5, more preferably 1.2 to 3.8, more preferably 1.7 to 3.3, particularly preferably 2.0 to 3.0), Sm 2 Fe 17 N 3 , (Sm 0. 75 Zr 0.25 ) (Fe 0.7 Co 0.3 ) N x (where x is preferably 1-6), SmFe 11 TiN x (where x is preferably 1-6) And (Sm 8 Zr 3 Fe 84 ) 85 N 15 , Sm 7 Fe 93 N x (wherein x is preferably 1 to 20), etc., but are not limited thereto. Absent. More preferably, a magnet powder containing Sm 2 Fe 17 N x (x = 1.7 to 3.3) as a main component, and more preferably Sm 2 Fe 17 N x (x = 3.0) is desirable. This is because the anisotropic magnetic field and saturation magnetization are large and the magnetic characteristics are excellent. These Sm-Fe-N magnet powders may be used alone or in combination of two or more.
本実施形態の磁石粉末の主成分(Sm−Fe−N)の含有量としては、Sm−Fe−Nを主成分とするものであればよく、Sm−Fe−Nを磁石粉末全体に対して50質量%以上、好ましくは80質量%以上、より好ましくは90質量%以上、さらに好ましくは90〜99質量%である。なお、さらに好ましくは範囲の上限値を99質量%とし、100質量%としていないのは、表面の酸化物や不可避的不純物が含まれている為である。すなわち、本実施形態では50質量%以上であればよく、100質量%のものを使用することも可能であるが、実際上、表面の酸化物や不可避的不純物を取り除くことは困難かつ複雑ないし高度な精製(精錬)技術を用いる必要があり、高価である。 As content of the main component (Sm-Fe-N) of the magnet powder of this embodiment, what is necessary is just to have Sm-Fe-N as a main component, and Sm-Fe-N is with respect to the whole magnet powder. It is 50% by mass or more, preferably 80% by mass or more, more preferably 90% by mass or more, and further preferably 90 to 99% by mass. The upper limit of the range is more preferably 99% by mass and not 100% by mass because it contains surface oxides and inevitable impurities. That is, in this embodiment, it may be 50% by mass or more, and it is possible to use 100% by mass. However, in practice, it is difficult, complicated, and high to remove surface oxides and inevitable impurities. Expensive refining (smelting) technology is required and is expensive.
さらに、Sm−Fe−Nを主成分とする希土類磁石相には、他の元素を含有したものも本実施形態の技術範囲に含まれるものである。含有してよい他の元素としては、例えば、Ga、Nd、Zr、Ti、Cr、Co、Zn、Mn、V、Mo、W、Si、Re、Cu、Al、Ca、B、Ni、C、La、Ce、Pr、Pm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Y、Th、MM、好ましくは、Feを置換するCo、Ni、Nを置換するB、Cなどが挙げられるが、これらに何ら制限されるものではない。これらは1種単独又は2種以上を含有してもよい。これらの元素は主にSm−Fe−Nを主成分とする磁石相の相構造の一部と置換されるか、挿入されるなどして導入されるものである。 Further, the rare earth magnet phase mainly composed of Sm—Fe—N includes those containing other elements within the technical scope of the present embodiment. Examples of other elements that may be contained include, for example, Ga, Nd, Zr, Ti, Cr, Co, Zn, Mn, V, Mo, W, Si, Re, Cu, Al, Ca, B, Ni, C, La, Ce, Pr, Pm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Y, Th, MM, preferably B, C substituting for Co, Ni, N replacing Fe However, it is not limited to these. These may contain one kind alone or two or more kinds. These elements are introduced by replacing or inserting part of the phase structure of the magnet phase mainly composed of Sm—Fe—N.
同様に、Sm−Fe−Nを主成分とする希土類磁石粉末は、Sm−Fe−N以外の他の希土類磁石相を含んでいてもよい。こうした他の希土類磁石相としては、Sm−Fe−N以外の他の既存の希土類磁石相が挙げられる。かかる他の既存の希土類磁石相としては、例えば、Sm2Fe14B、Sm2Co14B、Sm2(Fe1−xCox)14B(ここで、xは好ましくは0≦x≦0.5である)、Sm15Fe77B5、Sm15Co77B5、Sm11.77Fe82.35B5.88、Sm11.77Co82.35B5.88、Sm1.1Fe4B4、Sm1.1Co4B4、Sm7Fe3B10、Sm7Co3B10、(Sm1−xDyx)15Fe77B8(ここで、xは、好ましくは0≦x≦0.4である)、(Sm1−xDyx)15Co77B8(ここで、xは、好ましくは0≦x≦0.4である)、Sm2Co17Nx(ここで、xは好ましくは1〜6である)、Sm15(Fe1−xCox)77B7Al1、Sm15(Fe0.80Co0.20)77−yB8Aly(ここで、yは、好ましくは0≦y≦5である)、(Sm0.95Dy0.05)15Fe77.5B7Al0.5、(Sm0.95Dy0.05)15(Fe0.95Co0.05)77.5B6.5Al0.5Cu0.2、Sm4Fe80B20、Sm4.5Fe73Co3GaB18.5、Sm5.5Fe66Cr5Co5B18.5、Sm10Fe74Co10SiB5、Sm3.5Fe78B18.5、Sm4Fe76.5B18.5、Sm4Fe77.5B18.5、Sm4.5Fe77B18.5、Sm3.5DyFe73Co3GaB18.5、Sm4.5Fe72Cr2Co3B18.5、Sm4.5Fe73V3SiB18.5、Sm4.5Fe71Cr3Co3B18.5、Sm5.5Fe66Cr5Co5B18.5、SmCo5、Sm2Co17、Sm3Co、Sm3Co9、SmCo2、SmCo3、Sm2Co7等のSm−Co合金系、Sm2Fe17、SmFe2、SmFe3等のSm−Fe合金系、CeCo5、Ce2Co17、Ce24Co11、CeCo2、CeCo3、Ce2Co7、Ce5Co19等のCe−Co合金系、Nd2Fe17等のNd−Fe合金系、CaCu5等のCa−Cu合金系、TbCu7等のTb−Cu合金系、SmFe11Ti等のSm−Fe−Ti合金系、ThMn12等のTh−Mn合金系、Th2Zn17等のTh−Zn合金系、Th2Ni17等のTh−Ni合金系、La2Fe14B、CeFe14B、Pr2Fe14B、Gd2Fe14B、Tb2Fe14B、Dy2Fe14B、Ho2Fe14B、Er2Fe14B、Tm2Fe14B、Yb2Fe14B、Y2Fe14B、Th2Fe14B、La2Co14B、CeCo14B、Pr2Co14B、Gd2Co14B、Tb2Co14B、Dy2Co14B、Ho2Co14B、Er2Co14B、Tm2Co14B、Yb2Co14B、Y2Co14B、Th2Co14B、YCo5、LaCo5、PrCo5、NdCo5、GdCo5、TbCo5、DyCo5、HoCo5、ErCo5、TmCo5、MMCo5、MM0.8Sm0.2Co5、Sm0.6Gd0.4Co5、YFe11Ti、NdFe11Ti、GdFe11Ti、TbFe11Ti、DyFe11Ti、HoFe11Ti、ErFe11Ti、TmFe11Ti、LuFe11Ti、Pr0.6Sm0.4Co、Sm0.6Gd0.4Co5、Ce(Co0.72Fe0.14Cu0.14)5.2、Ce(Co0.73Fe0.12Cu0.14Ti0.01)6.5、(Sm0.7Ce0.3)(Co0.72Fe0.16Cu0.12)7、Sm(Co0.69Fe0.20Cu0.10Zr0.01)7.4、Sm(Co0.65Fe0.21Cu0.05Zr0.02)7.67などが挙げられるが、これらに何ら制限されるものではない。これらは1種単独ででもよいし、2種以上を有していてもよい。その他、希土類磁石粉末は、不可避的な成分として、希土類磁石相の境界部などに存在する希土類酸化物相(SmO2相)、Fe・希土類の不純物、Feリッチ相、Feプアー相や他の不可避的不純物等を含み得る。Similarly, the rare earth magnet powder containing Sm—Fe—N as a main component may contain a rare earth magnet phase other than Sm—Fe—N. Examples of such other rare earth magnet phases include other existing rare earth magnet phases other than Sm—Fe—N. Such other existing rare earth magnet phases include, for example, Sm 2 Fe 14 B, Sm 2 Co 14 B, Sm 2 (Fe 1-x Co x ) 14 B (where x is preferably 0 ≦ x ≦ 0). Sm 15 Fe 77 B 5 , Sm 15 Co 77 B 5 , Sm 11.77 Fe 82.35 B 5.88 , Sm 11.77 Co 82.35 B 5.88 , Sm 1.1 Fe 4 B 4 , Sm 1.1 Co 4 B 4 , Sm 7 Fe 3 B 10 , Sm 7 Co 3 B 10 , (Sm 1-x Dy x ) 15 Fe 77 B 8 (where x is preferably 0 ≦ x ≦ 0.4), (Sm 1-x Dy x ) 15 Co 77 B 8 (where x is preferably 0 ≦ x ≦ 0.4), Sm 2 Co 17 N x (Where x is preferably 1 to 6), Sm 1 5 (Fe 1-x Co x ) 77 B 7 Al 1 , Sm 15 (Fe 0.80 Co 0.20 ) 77-y B 8 Al y (where y is preferably 0 ≦ y ≦ 5) ), (Sm 0.95 Dy 0.05 ) 15 Fe 77.5 B 7 Al 0.5 , (Sm 0.95 Dy 0.05 ) 15 (Fe 0.95 Co 0.05 ) 77.5 B 6 .5 Al 0.5 Cu 0.2 , Sm 4 Fe 80 B 20 , Sm 4.5 Fe 73 Co 3 GaB 18.5 , Sm 5.5 Fe 66 Cr 5 Co 5 B 18.5 , Sm 10 Fe 74 Co 10 SiB 5 , Sm 3.5 Fe 78 B 18.5 , Sm 4 Fe 76.5 B 18.5 , Sm 4 Fe 77.5 B 18.5 , Sm 4.5 Fe 77 B 18.5 , Sm 3.5 DyFe 73 Co 3 GaB 8.5, Sm 4.5 Fe 72 Cr 2 Co 3 B 18.5, Sm 4.5 Fe 73 V 3 SiB 18.5, Sm 4.5 Fe 71 Cr 3 Co 3 B 18.5, Sm 5. Sm—Co alloy system such as 5 Fe 66 Cr 5 Co 5 B 18.5 , SmCo 5 , Sm 2 Co 17 , Sm 3 Co, Sm 3 Co 9 , SmCo 2 , SmCo 3 , Sm 2 Co 7 , Sm 2 Fe 17 , SmFe 2 , SmFe 3 and other Sm—Fe alloy systems, CeCo 5 , Ce 2 Co 17 , Ce 24 Co 11 , CeCo 2 , CeCo 3 , Ce 2 Co 7 , Ce 5 Co 19 and other Ce—Co alloy systems Nd—Fe alloy systems such as Nd 2 Fe 17 , Ca—Cu alloy systems such as CaCu 5 , Tb—Cu alloy systems such as TbCu 7 , Sm—Fe—Ti alloys such as SmFe 11 Ti Type, Th-Mn alloy type such as ThMn 12 , Th-Zn alloy type such as Th 2 Zn 17 , Th-Ni alloy type such as Th 2 Ni 17 , La 2 Fe 14 B, CeFe 14 B, Pr 2 Fe 14 B, Gd 2 Fe 14 B, Tb 2 Fe 14 B, Dy 2 Fe 14 B, Ho 2 Fe 14 B, Er 2 Fe 14 B, Tm 2 Fe 14 B, Yb 2 Fe 14 B, Y 2 Fe 14 B, Th 2 Fe 14 B, La 2 Co 14 B, CeCo 14 B, Pr 2 Co 14 B, Gd 2 Co 14 B, Tb 2 Co 14 B, Dy 2 Co 14 B, Ho 2 Co 14 B, Er 2 Co 14 B, Tm 2 Co 14 B, Yb 2 Co 14 B, Y 2 Co 14 B, Th 2 Co 14 B, YCo 5 , LaCo 5 , PrCo 5 , NdCo 5 , GdCo 5 , T bCo 5 , DyCo 5 , HoCo 5 , ErCo 5 , TmCo 5 , MMCo 5 , MM 0.8 Sm 0.2 Co 5 , Sm 0.6 Gd 0.4 Co 5 , YFe 11 Ti, NdFe 11 Ti, GdFe 11 Ti, TbFe 11 Ti, DyFe 11 Ti, HoFe 11 Ti, ErFe 11 Ti, TmFe 11 Ti, LuFe 11 Ti, Pr 0.6S m 0.4 Co, Sm 0.6 Gd 0.4 Co 5 , Ce (Co 0.72 Fe 0.14 Cu 0.14 ) 5.2 , Ce (Co 0.73 Fe 0.12 Cu 0.14 Ti 0.01 ) 6.5 , (Sm 0.7 Ce 0.3 ) ( Co 0.72 Fe 0.16 Cu 0.12) 7 , Sm (Co 0.69 Fe 0.20 Cu 0.10 Zr 0.01) 7.4, Sm (Co 0.6 Fe 0.21, such as Cu 0.05 Zr 0.02) 7.67, and the like, but not in any way be construed as being limited thereto. These may be used alone or in combination of two or more. In addition, rare earth magnet powders are inevitable components such as rare earth oxide phase (SmO 2 phase), Fe / rare earth impurities, Fe rich phase, Fe poor phase and other inevitable components present at the boundary of rare earth magnet phase. Impurities, etc. may be included.
本実施形態のSm−Fe−Nを主成分とする磁石粉末の形状としては、如何なる形状であってもよい。例えば、球形状、楕円形状(長軸方向に平行な中央部断面の縦横比(アスペクト比)が1.0を超えて10以下の範囲が望ましい)、円柱形状、多角柱(例えば、三角柱、四角柱、五角柱、六角柱、・・n角柱(ここで、mは7以上の整数である))形状、針状ないし棒状形状(長軸方向に平行な中央部断面の縦横比(アスペクト比)が1.0を超えて10以下の範囲が望ましい。)、板状形状、円板(円盤)形状、薄片形状、鱗片形状、不定形状などが挙げられるが、これらに何ら制限されるものではない。なお、Sm−Fe−Nの希土類磁石相は結晶構造を有しており、結晶成長により所定の結晶形状とすることもできる。 The shape of the magnet powder mainly composed of Sm—Fe—N of the present embodiment may be any shape. For example, a spherical shape, an elliptical shape (preferably a range in which the aspect ratio (aspect ratio) of the central section parallel to the major axis direction is more than 1.0 and 10 or less), a cylindrical shape, a polygonal column (for example, a triangular prism, four Prismatic, pentagonal, hexagonal, ..n prismatic (where m is an integer greater than or equal to 7) shape, needle or rod shape (aspect ratio of the central section parallel to the long axis direction) Is preferably in the range of more than 1.0 and 10 or less.), Plate shape, disk (disk) shape, flake shape, scale shape, indeterminate shape, etc., but are not limited thereto. . Note that the rare earth magnet phase of Sm—Fe—N has a crystal structure, and can be formed into a predetermined crystal shape by crystal growth.
(金属バインダー)
本実施形態のSm−Fe−N系磁石粉末は、金属バインダーをブレンドして用いることが好ましい。金属バインダーをブレンドすることにより、後述する温間圧密成形の際に、金属バインダー成分同士の結合により、成形性が向上する。したがって、得られた磁石成形体は機械的強度に優れる。さらに、金属バインダーが成形時に発生する内部応力を緩和することができるため、欠陥の少ない磁石成形体を得ることができる。さらに、金属粒子をバインダーとして使用することにより、高温の環境においても使用可能な磁石成形体を得ることができる。金属バインダーをブレンドする際には、特に制限はなく、Sm−Fe−N系磁石粉末と金属バインダー粉末とが、均一になるまで混合機等で混合すればよい。なお、金属バインダーは、ボンド磁石における高分子バインダーと比較して相当程度の少量を使用すればよいため、磁気特性に影響しその低下をもたらす恐れはない。(Metal binder)
The Sm—Fe—N magnet powder of this embodiment is preferably blended with a metal binder. By blending the metal binder, the moldability is improved by bonding of the metal binder components during warm compaction described later. Therefore, the obtained magnet molding is excellent in mechanical strength. Furthermore, since the internal stress which a metal binder generate | occur | produces at the time of shaping | molding can be relieved, a magnet molded object with few defects can be obtained. Furthermore, by using metal particles as a binder, a magnet molded body that can be used even in a high-temperature environment can be obtained. When the metal binder is blended, there is no particular limitation, and the Sm-Fe-N magnet powder and the metal binder powder may be mixed with a mixer or the like until they are uniform. In addition, since a metal binder should just use a considerable small amount compared with the polymer binder in a bond magnet, it does not have a possibility of affecting the magnetic characteristic and causing the fall.
金属バインダーは、Sm−Fe−N系磁石粉末の全質量に対して30質量%以下含まれることが好ましく、より好ましくは、0.1〜20質量%、より好ましくは1〜10質量%含むことができる。金属バインダーが30質量%以下であれば、磁石成形体の磁気特性を損なう恐れがない。また、0.1質量%以上であれば、バインダーとしての効果が十分に発揮される。 The metal binder is preferably contained in an amount of 30% by mass or less, more preferably 0.1 to 20% by mass, and more preferably 1 to 10% by mass with respect to the total mass of the Sm—Fe—N magnet powder. Can do. If the metal binder is 30% by mass or less, there is no fear of impairing the magnetic properties of the magnet molded body. Moreover, if it is 0.1 mass% or more, the effect as a binder will fully be exhibited.
金属バインダーとしては、金属バインダー粒子の塑性変形に伴うエネルギーの弾塑性比が50%以下の非磁性金属粒子(以下、弾塑性比が50%以下の非磁性金属粒子とも略記する)が好ましい。弾塑性比が50%以下の変形しやすい粒子が、磁石成形体中の応力を緩和しバインダーとして有効に機能するためである。金属バインダーが軟質過ぎると付着強度が小さくなりすぎるので、軟質金属でも2.5%程度の弾塑性比があった方が好ましい。弾塑性比としては、好ましくは2.5〜50%、より好ましくは2.5〜45%、特に好ましくは2.5〜40%の範囲である。金属バインダーの塑性変形に伴うエネルギーの弾塑性比は、ナノインデンテーション法を用いて、変形のし易さの指標として定義した。 As the metal binder, nonmagnetic metal particles having an elastoplastic ratio of energy accompanying plastic deformation of the metal binder particles of 50% or less (hereinafter also abbreviated as nonmagnetic metal particles having an elastoplastic ratio of 50% or less) are preferable. This is because easily deformable particles having an elastoplastic ratio of 50% or less relieve stress in the magnet molded body and effectively function as a binder. If the metal binder is too soft, the adhesion strength will be too small. Therefore, it is preferable that the soft metal has an elastic-plastic ratio of about 2.5%. The elasto-plastic ratio is preferably 2.5 to 50%, more preferably 2.5 to 45%, and particularly preferably 2.5 to 40%. The elasto-plastic ratio of energy accompanying plastic deformation of the metal binder was defined as an index of ease of deformation using the nanoindentation method.
ナノインデンテーション法は、実験装置の基盤上に載置した試料の表面にダイヤモンド製の三角錐の圧子をある荷重まで押し込んだ(圧入)後、その圧子を取り除く(除荷)までの荷重(P)と変位(圧入深さh)の関係(圧入(負荷)−除荷曲線)を測定する方法である。圧入(負荷)曲線は材料の弾塑性的な変形挙動を反映し、除荷曲線は弾性的な回復挙動により得られる。そして、負荷曲線と除荷曲線と横軸で囲まれた面積が、塑性変形に消費したエネルギーEpである。また負荷曲線の最大荷重点から横軸(圧入深さh)に下ろした垂線と除荷曲線とで囲まれた面積が、弾性変形で吸収されたエネルギーEeである。以上から、粒子の塑性変形に伴うエネルギーの弾塑性比=Ep/Ee×100(%)として求められる。例えば、実施例で用いたZn粒子は弾塑性比50%以下である。 In the nanoindentation method, a diamond trigonal pyramid indenter is pushed to the surface of the sample placed on the base of the experimental apparatus to a certain load (press-fit), and then the load (P) is removed until the indenter is removed (unload). ) And displacement (press-fit depth h) (press-fit (load) -unload curve). The indentation (load) curve reflects the elastic-plastic deformation behavior of the material, and the unloading curve is obtained by the elastic recovery behavior. The area surrounded by the load curve, the unload curve and the horizontal axis is the energy Ep consumed for plastic deformation. Further, the area surrounded by the perpendicular line extending from the maximum load point of the load curve to the horizontal axis (pressing depth h) and the unloading curve is the energy Ee absorbed by the elastic deformation. From the above, the elastic-plastic ratio of energy accompanying plastic deformation of particles = Ep / Ee × 100 (%). For example, the Zn particles used in the examples have an elastoplastic ratio of 50% or less.
弾塑性比が50%以下の変形しやすい非磁性金属粒子としては、Ni、Co、Fe以外の金属元素であり、粉末として得られるものであれば使用することができる。具体体的には、Zn、Cu、Sn、Bi、InおよびAlの少なくとも一種の軟質の金属または合金などが好適に用いられる。このうち、特にZnが好ましい。ただし、本実施形態では、これらに何ら制限されるものではない。 The non-magnetic metal particles having an elasto-plastic ratio of 50% or less that are easily deformed are metal elements other than Ni, Co, and Fe, and can be used as long as they are obtained as a powder. Specifically, at least one soft metal or alloy of Zn, Cu, Sn, Bi, In, and Al is preferably used. Of these, Zn is particularly preferable. However, the present embodiment is not limited to these.
金属バインダーの形状としては、本発明の作用効果を損なわない範囲内であれば如何なる形状であってもよい。例えば、球形状、楕円形状(長軸方向に平行な中央部断面の縦横比(アスペクト比)が1.0を超えて10以下の範囲が望ましい)、円柱形状、多角柱(例えば、三角柱、四角柱、五角柱、六角柱、・・N角柱(ここで、Nは7以上の整数である。))形状、針状ないし棒状形状(長軸方向に平行な中央部断面の縦横比が1.0を超えて10以下の範囲が望ましい。)、板状形状、円板(円盤)形状、薄片形状、鱗片形状、不定形状などが挙げられるが、これらに何ら制限されるものではない。 The shape of the metal binder may be any shape as long as it does not impair the effects of the present invention. For example, a spherical shape, an elliptical shape (preferably a range in which the aspect ratio (aspect ratio) of the central section parallel to the major axis direction is more than 1.0 and 10 or less), a cylindrical shape, a polygonal column (for example, a triangular prism, four Rectangular prism, pentagonal prism, hexagonal prism,... N prism (where N is an integer greater than or equal to 7)), needle-like or rod-like (the aspect ratio of the central section parallel to the long axis direction is 1. A range of 0 to 10 is desirable.), A plate shape, a disk (disk) shape, a flake shape, a scale shape, an indefinite shape, and the like, but are not limited thereto.
金属バインダーの平均粒子径としては、本実施形態の作用効果を有効に発現し得る範囲内であればよく、通常0.01〜10μm、好ましくは0.05〜8μm、より好ましくは0.1〜7μmの範囲である。非磁性金属粒子の平均粒子径が0.01〜10μmであれば、磁石特性(保磁力、残留磁束密度、密着性)に優れた所望の磁石成形体とすることができる。 The average particle diameter of the metal binder may be within a range in which the effects of the present embodiment can be effectively expressed, and is usually 0.01 to 10 μm, preferably 0.05 to 8 μm, more preferably 0.1 to 0.1 μm. The range is 7 μm. When the average particle diameter of the nonmagnetic metal particles is 0.01 to 10 μm, a desired magnet molded body excellent in magnet characteristics (coercive force, residual magnetic flux density, adhesion) can be obtained.
本実施形態においては、高分子、特に有機高分子からなるバインダーは使用しないことが好ましい。有機高分子のバインダーは、ボンド磁石成形体に占める割合が3割程度と大きいが、磁石としては機能しないため、磁石成形体の磁気特性は低下してしまうためである。本実施形態は、高分子のバインダーを含まなくとも温間圧密成形によって磁石成形体を得られるため、有機高分子バインダーによる磁気特性の低下を防止できる点で優れている。また、融点の低い高分子バインダーを使用しないことにより、より高温の環境においても使用可能な磁石を得ることができる。また、本実施形態の磁石形成体は、ボンド磁石に対して、こうした樹脂が不要となり軽量化できる。しかしながら、本実施形態には、高分子バインダーを磁気特性の低下がない程度に微量に含む場合も包含される。 In the present embodiment, it is preferable not to use a binder made of a polymer, particularly an organic polymer. This is because the organic polymer binder occupies a large proportion of about 30% of the bonded magnet molded body, but does not function as a magnet, so that the magnetic properties of the magnet molded body deteriorate. The present embodiment is excellent in that it can prevent a decrease in magnetic properties due to an organic polymer binder because a magnet compact can be obtained by warm compaction without including a polymer binder. Moreover, the magnet which can be used also in a higher temperature environment can be obtained by not using the polymer binder with a low melting point. Moreover, the magnet formation body of this embodiment does not need such resin with respect to a bond magnet, and can be reduced in weight. However, the present embodiment includes a case where the polymer binder is contained in a very small amount so that the magnetic properties are not deteriorated.
(温間圧密成形工程(S12))
温間圧密成形工程(S12)は、600℃以下の温度のSm−Fe−N系磁石粉末を、成形型中で、1〜5GPaの成形面圧で圧密成形し、相対密度80%以上のSm−Fe−N系磁石成形体を得る工程である。本実施形態では、Sm−Fe−N系磁石粉末を高面圧で圧密成形することにより磁石成形体を製造するため、焼結する場合に生じていた磁気特性の劣化は生じない。したがって、Sm−Fe−N系磁石粉末の優れた磁気特性を維持したまま、磁石成形体を得ることができ、磁気特性の向上したSm−Fe−N系磁石成形体を得られる。(Warm compaction forming step (S12))
In the warm compacting step (S12), Sm—Fe—N magnet powder having a temperature of 600 ° C. or lower is compacted at a molding surface pressure of 1 to 5 GPa in a mold, and Sm having a relative density of 80% or more. This is a step of obtaining a -Fe-N magnet molded body. In this embodiment, since the magnet molded body is manufactured by compacting the Sm—Fe—N-based magnet powder at a high surface pressure, the deterioration of the magnetic characteristics that occurs when sintering is not caused. Therefore, a magnet compact can be obtained while maintaining the excellent magnetic properties of the Sm—Fe—N magnet powder, and an Sm—Fe—N magnet compact with improved magnetic properties can be obtained.
また、本実施形態ではSm−Fe−N系磁石粉末は、600℃以下の磁気特性が大きく変化しない温度に加熱された状態で圧密成形する。そのため、相対密度80%以上の成形体を得るには、例えば、常温(加熱しない状態)で圧密成形する場合に比較して、より低減された成形面圧で成形体を得ることができる。したがって、本実施形態は金型(成形型)の寿命を飛躍的に伸ばすことができ、より生産性が高く工業生産に適している。さらに、常温で同じ成形面圧で圧密成形した場合に比較して、得られる磁石成形体の密度を向上させることができる。圧密成形時のSm−Fe−N系磁石粉末の温度は、所望の相対密度の成形体を得つつも金型寿命をより伸ばすことができ、かつ、分解による磁気特性の低下がより防止できるとの観点から、より好ましくは50〜500℃、さらに好ましくは100〜450℃である。 In the present embodiment, the Sm—Fe—N magnet powder is compacted in a state where it is heated to a temperature at which the magnetic properties of 600 ° C. or lower do not change significantly. Therefore, in order to obtain a molded body having a relative density of 80% or more, for example, it is possible to obtain a molded body with a reduced molding surface pressure as compared with the case of compacting at normal temperature (not heated). Therefore, this embodiment can dramatically extend the life of the mold (molding die), has higher productivity and is suitable for industrial production. Furthermore, the density of the obtained magnet molding can be improved compared with the case where it compacts by the same molding surface pressure at normal temperature. The temperature of the Sm-Fe-N magnet powder at the time of compaction molding can extend the mold life while obtaining a molded article having a desired relative density, and can further prevent deterioration of magnetic properties due to decomposition. From this viewpoint, the temperature is more preferably 50 to 500 ° C, and further preferably 100 to 450 ° C.
本実施形態では、相対密度80%の磁石成形体を得る。相対密度が80%以上であると、自動車のモータ等の用途に十分な抗折強度の磁石成形体となるためである。相対密度は、磁石の組成と圧密成形時の圧力とに影響される。好ましくは相対密度は85%以上であり、より好ましくは90%以上である。相対密度は、計算により求めた真密度と、磁石成形体の寸法および重量測定から求めた実測密度とを用いて求める。相対密度は真密度に対する実測密度の割合(%)であり、実測密度の値を理論密度の値で除し、100をかけて計算したものである。 In the present embodiment, a magnet molded body having a relative density of 80% is obtained. This is because if the relative density is 80% or more, a magnet molded body having a sufficient bending strength for applications such as automobile motors can be obtained. The relative density is affected by the composition of the magnet and the pressure during compaction molding. Preferably the relative density is 85% or more, more preferably 90% or more. The relative density is obtained by using the true density obtained by calculation and the actual density obtained by measuring the size and weight of the magnet compact. The relative density is the ratio (%) of the actual density to the true density, and is calculated by dividing the actual density value by the theoretical density value and multiplying by 100.
また、本実施形態によれば、用途に適した成形型を選択することができる。そのため、成形型として所望の磁石成形体の形状のものを用いれば、ほぼそのまま次工程に使用でき、加工しろの非常に少ない、いわゆるニアネットシェイプ成形が可能となる。したがって、加工歩留まりがよく、製造工程が簡便になり、本実施形態はこれらの点から量産に適している。さらに、本実施形態で得られるのは、圧密成形のみで作製されたSm−Fe−N系磁石成形体であり、従来の製造方法よりも磁気特性のばらつきが少なく、したがって品質安定性に優れている。 Moreover, according to this embodiment, the shaping | molding die suitable for a use can be selected. Therefore, if a mold having a desired magnet shape is used, it can be used in the next process almost as it is, and so-called near net shape molding with a very small processing margin becomes possible. Therefore, the processing yield is good, the manufacturing process is simplified, and this embodiment is suitable for mass production from these points. Furthermore, what is obtained in this embodiment is an Sm-Fe-N-based magnet molded body produced only by compaction molding, with less variation in magnetic properties than the conventional manufacturing method, and thus excellent quality stability. Yes.
Sm−Fe−N系磁石粉末を600℃以下に加熱するには、特に制限はない。成形型に投入する前にSm−Fe−N系磁石粉末を加熱しておいてもよいし、磁石粉末を成形型に投入した後に成形型と共に加熱してもよい。本実施形態では、Sm−Fe−N系磁石粉末が600℃以下に加熱された状態で、圧密成形が実施されればよい。好ましくは、成形型にカートリッジヒータを差し込んで設置しておき、これにより、Sm−Fe−N系磁石粉末を成形型に投入した後、成形型ごと磁石粉末を加熱することができる。磁石粉末の温度の測定方法としては、成形型に温度センサを設置しておき、以下の方法を実施することができる。すなわち、成形型が所定の温度に達した後、磁石粉末全体が同じ温度に達するまで10分程度の時間、成形型温度を維持し、成形型の温度を磁石粉末の温度とみなす。その他、高周波等による加熱も可能である。成形型と共に磁石粉末を加熱する場合には、粉末が冷却される恐れがなく、製造工程も簡便となるため好ましい。また、Sm−Fe−N系磁石粉末のみを予め加熱する場合には、磁石粉末をオーブン等で所定の温度に加熱し、成形型に投入する。この場合には、生産リードタイムが削減されるため好ましい。成形型に投入された状態で、Sm−Fe−N系磁石粉末が600℃以下の温度に加熱されていればよい。 There is no particular limitation on heating the Sm—Fe—N magnet powder to 600 ° C. or lower. The Sm—Fe—N-based magnet powder may be heated before being charged into the mold, or may be heated together with the mold after the magnet powder has been charged into the mold. In the present embodiment, the compacting may be performed in a state where the Sm—Fe—N magnet powder is heated to 600 ° C. or less. Preferably, the cartridge heater is inserted and installed in the mold, so that the magnet powder can be heated together with the mold after the Sm—Fe—N magnet powder is charged into the mold. As a method for measuring the temperature of the magnet powder, a temperature sensor is installed in the mold, and the following method can be implemented. That is, after the mold reaches a predetermined temperature, the mold temperature is maintained for about 10 minutes until the entire magnet powder reaches the same temperature, and the temperature of the mold is regarded as the temperature of the magnet powder. In addition, heating by high frequency or the like is also possible. When magnet powder is heated together with the mold, it is preferable that the powder is not cooled and the manufacturing process is simplified. In addition, when only the Sm—Fe—N magnet powder is heated in advance, the magnet powder is heated to a predetermined temperature in an oven or the like and is put into a mold. This is preferable because the production lead time is reduced. It is only necessary that the Sm—Fe—N magnet powder is heated to a temperature of 600 ° C. or lower while being put in the mold.
圧密成形は、Sm−Fe−N系磁石粉末を1〜5GPaの高面圧で形成するものである。成形面圧が1GPa未満であると、相対密度80%以上の高密度磁石成形体を得ることが困難になり、成形面圧が5GPaを超えると、成形型の寿命が短くなる恐れがある。成形面圧は、所望の相対密度および磁気特性の成形体を得つつも金型寿命をより伸ばせるとの観点から、より好ましくは1.5〜3.5GPaである。圧密成形する方法としては特に制限はなく、所望の大きさの磁石形成体の金型を覆う広い面積に上記の高面圧をかけられる方法であればよい。好ましくは、鍛造に用いる高出力のプレス機を使用することができ、油圧プレス機、電動プレス機、インパクトプレス機等を使用する。 Consolidation molding is to form Sm—Fe—N magnet powder at a high surface pressure of 1 to 5 GPa. If the molding surface pressure is less than 1 GPa, it becomes difficult to obtain a high-density magnet molded body having a relative density of 80% or more. If the molding surface pressure exceeds 5 GPa, the life of the mold may be shortened. The molding surface pressure is more preferably 1.5 to 3.5 GPa from the viewpoint of further extending the mold life while obtaining a molded article having a desired relative density and magnetic characteristics. There is no restriction | limiting in particular as a method of compacting, What is necessary is just the method which can apply said high surface pressure to the wide area which covers the metal mold | die of the magnet formation body of a desired magnitude | size. Preferably, a high-output press used for forging can be used, and a hydraulic press, an electric press, an impact press, or the like is used.
成形型は、600℃以下の温度および1〜5GPaの高面圧に耐えうるものであれば、特に制限はなく、どのようなものも使用できる。図5(a)は、好ましい成形型の例を模式的に示した上面図であり、図5(b)は図5(a)のA−A方向の断面図である。図5(a)に示すように、成形型10は、外形が円筒形(上面環形状)円形の内側金型11が高面圧に耐えうる超硬合金で形成され、円筒形の外側金型12がより柔らかい金属で形成されている。また、図5(b)に示すように、内側金型11の中央の空間には四角柱形状の下部金型15上に、磁石粉末14が投入され、その上部には、四角柱形状の上部金型16が挿入されている。上部金型16の上部は、金型11、12の上面から突出しており、成形型10を上部から油圧プレスで加圧(押圧)する際に、上部金型16の突出部が押圧され、その下部の磁石粉末を圧密成形することにより、四角柱形状の磁石成形体を形成できるようになっている。すなわち内側金型11の空間形状を変えることで、円柱形状、多角柱形状等の磁石成形体を形成することができる。また、図5(a)(b)に示すように、成形型にはカートリッジヒータを通すための貫通孔13a、13bが設けられている。貫通孔13a、13b内のカートリッジヒータ(不図示)により、成形型全体が加熱され、成形空間内の磁石粉末14が600℃以下に維持された状態で、上方から油圧プレス等で加圧する。また、図5(a)に示すように、外側金型12には温度センサ用孔17が設けられており、温度センサ用孔17内の温度センサ(不図示)によって、外側金型12の温度を計測する。図5(b)に示すように、温度センサ用孔17は、磁石粉末14の上面に近い高さに設けられている。したがって、加熱された外側金型12と、内側金型11、下部金型15、上部金型16および磁石粉末14とが熱的に平衡な状態になるまで所定の時間静置した後は、温度センサ用孔17内の温度センサの示す温度を、磁石粉末14の温度とみなすことができる。 The mold is not particularly limited as long as it can withstand a temperature of 600 ° C. or lower and a high surface pressure of 1 to 5 GPa, and any mold can be used. Fig.5 (a) is the top view which showed the example of the preferable shaping | molding die typically, FIG.5 (b) is sectional drawing of the AA direction of Fig.5 (a). As shown in FIG. 5 (a), the molding die 10 is formed of a cemented carbide capable of withstanding high surface pressure, and the cylindrical inner die 11 whose outer shape is a cylindrical (upper ring shape) circular shape. 12 is made of softer metal. Further, as shown in FIG. 5 (b), magnet powder 14 is put on the lower mold 15 having a quadrangular prism shape in the central space of the inner mold 11, and an upper portion having a quadrangular prism shape is placed on the upper portion thereof. A mold 16 is inserted. The upper part of the upper mold 16 protrudes from the upper surfaces of the molds 11 and 12, and when the mold 10 is pressed (pressed) from the upper part by a hydraulic press, the protruding part of the upper mold 16 is pressed, By compacting the lower magnet powder, a quadrangular prism-shaped magnet compact can be formed. That is, by changing the space shape of the inner mold 11, a magnet molded body having a cylindrical shape, a polygonal column shape, or the like can be formed. Further, as shown in FIGS. 5A and 5B, the mold is provided with through holes 13a and 13b for passing the cartridge heater. The entire mold is heated by a cartridge heater (not shown) in the through holes 13a and 13b, and the magnet powder 14 in the molding space is maintained at 600 ° C. or lower and pressurized from above with a hydraulic press or the like. Further, as shown in FIG. 5A, the outer mold 12 is provided with a temperature sensor hole 17, and the temperature sensor (not shown) in the temperature sensor hole 17 causes the temperature of the outer mold 12. Measure. As shown in FIG. 5B, the temperature sensor hole 17 is provided at a height close to the upper surface of the magnet powder 14. Accordingly, after the heated outer mold 12 and the inner mold 11, the lower mold 15, the upper mold 16, and the magnet powder 14 are allowed to stand for a predetermined time until they are in a thermal equilibrium state, The temperature indicated by the temperature sensor in the sensor hole 17 can be regarded as the temperature of the magnet powder 14.
(熱処理工程(S13))
熱処理工程は、温間圧密成形工程の後、形成された磁石粉末を350〜600℃の温度で、1〜120分加熱する。熱処理工程は必須ではないが、最大に近い磁気特性を引き出すことができるため、実施することが好ましい。また、金属バインダーを使用した場合に、Sm−Fe−N系磁石粉末表面の軟磁性層や欠陥などが低減されるため、実施することが好ましい。これにより、Sm−Fe−N系磁石成形体の磁気特性のさらなる向上ができる。(Heat treatment step (S13))
In the heat treatment step, after the warm compaction step, the formed magnet powder is heated at a temperature of 350 to 600 ° C. for 1 to 120 minutes. Although the heat treatment step is not essential, it is preferable to carry out the heat treatment step because it can bring out magnetic properties close to the maximum. In addition, when a metal binder is used, the soft magnetic layer and defects on the surface of the Sm—Fe—N-based magnet powder are reduced, so that it is preferable to implement. Thereby, the further improvement of the magnetic characteristic of a Sm-Fe-N type magnet molded object can be performed.
成形体を熱処理するには、特に制限はなく、上記の温度で加熱できればどのような方法を用いてもよい。好ましくは、温間圧密成形工程と同様の方法で成形体を加熱することができる。例えば、温間圧密成形工程において、成形型中に設置したヒータで成形型とSm−Fe−N系磁石粉末とを共に加熱した場合には、圧密成形の後に同じヒータで加熱することができる。また、Sm−Fe−N系磁石成形体を成形型から取り出して、別途オーブンに入れて熱処理することもできる。熱処理工程は、より好ましくは380〜480℃で、10〜60分加熱することができる。なお、熱処理工程の高い効果を得るためには、圧密成形時の加熱温度よりも、熱処理温度を高くすることが好ましい。 There is no restriction | limiting in particular in heat-processing a molded object, What kind of method may be used if it can heat at said temperature. Preferably, the molded body can be heated by the same method as in the warm compaction process. For example, in the warm compaction process, when the mold and the Sm-Fe-N magnet powder are both heated with a heater installed in the mold, the same heater can be used after the compaction. Alternatively, the Sm—Fe—N-based magnet molded body can be taken out of the mold and separately placed in an oven for heat treatment. More preferably, the heat treatment step can be performed at 380 to 480 ° C. for 10 to 60 minutes. In addition, in order to acquire the high effect of a heat treatment process, it is preferable to make heat processing temperature higher than the heating temperature at the time of compaction molding.
本実施形態によれば、Sm−Fe−N系磁石成形体は、残留磁束密度Brが0.75T以上、保磁力が900kA/m以上であるものを得ることができる。より好ましくは、残留磁束密度が0.80T以上、保磁力が1100kA/m以上であるのが望ましい。残留磁束密度および保磁力の測定方法は実施例に記載の方法に従って測定したものである。 According to this embodiment, the Sm—Fe—N-based magnet compact can be obtained with a residual magnetic flux density Br of 0.75 T or more and a coercive force of 900 kA / m or more. More preferably, the residual magnetic flux density is 0.80 T or more and the coercive force is 1100 kA / m or more. The measuring method of the residual magnetic flux density and the coercive force is measured according to the method described in the examples.
<第二実施形態>
第二実施形態の製造方法は、第一実施形態の温間圧密成形工程(S12)の代わりに、磁場中での温間圧密成形工程(S22)を有する。すなわち、図2に示すように、準備工程(S21)、磁場中温間圧密成形工程(S22)、および熱処理工程(S23)により、製品である磁石成形体を得る。Sm−Fe−N系磁石粉末の準備工程(S21)および熱処理工程(S23)は、それぞれ第一実施形態の準備工程(S11)および(S13)と同様であり、また、任意の工程である。<Second embodiment>
The manufacturing method of 2nd embodiment has the warm compaction process (S22) in a magnetic field instead of the warm compaction process (S12) of 1st embodiment. That is, as shown in FIG. 2, a magnet molded body as a product is obtained by the preparation step (S21), the warm compaction in magnetic field step (S22), and the heat treatment step (S23). The preparation step (S21) and the heat treatment step (S23) of the Sm—Fe—N magnet powder are the same as the preparation steps (S11) and (S13) of the first embodiment, respectively, and are optional steps.
(磁場中温間圧密成形工程(S22))
温間圧密形成工程(S22)では、6kOe以上の磁場中で、600℃以下の温度の前記Sm−Fe−N系磁石粉末を、成形型中で、1〜5GPaの成形面圧で圧密成形し、相対密度80%以上のSm−Fe−N系磁石成形体を得る。温間圧密形成工程(S22)は、温間圧密成形工程を磁場中で実施する以外は、第一実施形態の温間圧密成形工程(S12)と同様である。(Warm compaction process in magnetic field (S22))
In the warm compaction step (S22), the Sm—Fe—N magnet powder having a temperature of 600 ° C. or less is compacted in a mold at a molding surface pressure of 1 to 5 GPa in a magnetic field of 6 kOe or more. An Sm—Fe—N-based magnet molded body having a relative density of 80% or more is obtained. The warm compaction step (S22) is the same as the warm compaction step (S12) of the first embodiment except that the warm compaction step is performed in a magnetic field.
第二実施形態において使用するSm−Fe−N系磁石粉末は、異方性であることが好ましい。異方性のSm−Fe−N系磁石粉末を用いて磁場中で温間圧密成形を行うことにより、磁石粉末の磁化容易軸が磁場方向に揃った状態で成形される。したがって、得られたSm−Fe−N系磁石成形体は、さらに高い残留磁束密度を有する、異方性の磁石成形体となる。印加する磁場は、より好ましくは17kOe以上である。 The Sm-Fe-N magnet powder used in the second embodiment is preferably anisotropic. By performing warm compaction molding in a magnetic field using anisotropic Sm-Fe-N magnet powder, the magnet powder is molded in a state where the easy magnetization axes are aligned in the magnetic field direction. Therefore, the obtained Sm—Fe—N-based magnet compact is an anisotropic magnet compact having a higher residual magnetic flux density. The applied magnetic field is more preferably 17 kOe or more.
磁場中で温間圧密成形工程を実施するには、6kOe以上の磁場を設けることができれば、特に制限はない。例えば、成形型の周囲に公知の磁場配向装置を設置し、磁場を印加した状態で圧密成形を行うことができる。磁場配向装置としては、所望の磁石成形体の形状、寸法などから、公知の磁場配向装置から適したものを選択することができる。磁場の印加方法としては、通常の磁場成形装置に配置されている電磁石のように静磁場を印加する方法や、交流を用いたパルス磁場を印加する方法のどちらを採用してもよい。 In order to perform the warm compaction process in a magnetic field, there is no particular limitation as long as a magnetic field of 6 kOe or more can be provided. For example, a known magnetic field orientation device can be installed around the mold, and compaction molding can be performed with a magnetic field applied. As the magnetic field orientation device, a suitable one from known magnetic field orientation devices can be selected from the shape, dimensions, etc. of the desired magnet compact. As a magnetic field application method, either a method of applying a static magnetic field like an electromagnet arranged in a normal magnetic field forming apparatus or a method of applying a pulsed magnetic field using alternating current may be adopted.
上記のようにして、本実施形態のSm−Fe−N系磁石成形体を得る。または、さらに、必要に応じて熱処理工程(S23)を実施することにより、Sm−Fe−N系磁石成形体を得ることができる。 As described above, the Sm—Fe—N-based magnet molded body of the present embodiment is obtained. Alternatively, an Sm—Fe—N-based magnet molded body can be obtained by performing the heat treatment step (S23) as necessary.
<第三実施形態>
第三実施形態の製造方法は、第一実施形態の温間圧密成形工程(S12)の代わりに、磁場中での予備圧縮成形工程(S32)および温間圧密成形工程(S33)を有する。Sm−Fe−N系磁石粉末の準備工程(S31)および熱処理工程(S34)は、それぞれ第一実施形態の準備工程(S11)および(S13)と同様であり、また、任意の工程である。すなわち、図3に示すように、準備工程(S31)、磁場中予備圧縮成形工程(S32)、温間圧密成形工程(S33)、および熱処理工程(S34)により、製品である磁石成形体を得る。<Third embodiment>
The manufacturing method of the third embodiment includes a pre-compression molding step (S32) and a warm compaction step (S33) in a magnetic field instead of the warm compaction step (S12) of the first embodiment. The preparation step (S31) and the heat treatment step (S34) of the Sm—Fe—N magnet powder are the same as the preparation steps (S11) and (S13) of the first embodiment, respectively, and are optional steps. That is, as shown in FIG. 3, a magnet molded body as a product is obtained by the preparation step (S31), the pre-compression molding step in a magnetic field (S32), the warm compaction step (S33), and the heat treatment step (S34). .
(磁場中予備圧縮成形工程(S32))
本実施形態では、温間圧密成形工程(S33)の前に、Sm−Fe−N系磁石粉末を6kOe以上の磁場中で圧縮成形し、相対密度30%以上のSm−Fe−N系の予備圧縮成形体を得る予備圧縮成形工程(S32)をさらに有する。温間圧密成形は、高面圧のプレス機を用いる。したがって、このような大型装置に磁場配向装置を取り付けるのは、広いスペースを必要とするため、実使用上は難しい場合がある。そこで、低面圧プレス機に磁場配向機を取り付け、相対密度30%以上の予備圧縮成形体を予め作製する。その後、その予備圧縮成形体を加熱し、高面圧プレス機で温間圧密成形する。工程数が増えるものの、量産を考慮すると、予備圧縮成形工程を設けることが好ましい場合があるためである。予備圧縮成形工程を実施することにより、予備圧縮成形体において、異方性を有するSm−Fe−N系磁石粉末は、磁化容易軸が揃った状態となる。そのため、その後の圧密成形工程を経て得られる磁石成形体も、磁化容易軸が揃い、より高い残留磁束密度を有する磁石成形体となる。(Preliminary compression molding step in magnetic field (S32))
In this embodiment, before the warm compaction step (S33), Sm—Fe—N magnet powder is compression molded in a magnetic field of 6 kOe or more, and a Sm—Fe—N system preliminary having a relative density of 30% or more. It further has a preliminary compression molding step (S32) for obtaining a compression molded body. The warm compaction uses a high surface pressure press. Therefore, attaching a magnetic field orientation device to such a large device requires a wide space and may be difficult in actual use. Therefore, a magnetic orientation machine is attached to the low surface pressure press and a pre-compression molded body having a relative density of 30% or more is produced in advance. Thereafter, the pre-compression molded body is heated and warm compacted with a high surface pressure press. This is because although the number of steps increases, it may be preferable to provide a preliminary compression molding step in consideration of mass production. By performing the pre-compression molding step, the Sm—Fe—N-based magnet powder having anisotropy in the pre-compression molded body is in a state in which easy axes of magnetization are aligned. Therefore, the magnet molded body obtained through the subsequent compacting process is also a magnet molded body having an easy magnetization axis and a higher residual magnetic flux density.
磁場中予備圧縮成形工程(S32)では、搬送、運搬中に予備圧縮成形体が破損しない程度の相対密度の予備圧縮成形体が得られればよいため、相対密度30%以上の予備圧縮成形体を形成するのが好ましい。さらに温間圧密成形時の酸化防止の観点からは、相対密度60%以上の予備圧縮成形体を形成するのがより好ましい。相対密度30%以上、好ましくは60%以上の予備圧縮成形体であれば、磁場方向に磁化容易軸が揃ったSm−Fe−N系磁石粉末は、移動することがなく、磁化容易軸はそろった状態で維持される。予備圧縮成形体の相対密度の上限値は、特に制限はなく、相対密度が80%以上であってもよい(表4参照)。このように、本実施形態では、温間圧密成形工程(S33)の前に、冷間圧密成形工程としての磁場中予備圧縮成形工程(S32)を挿入し、磁場中で比較的高密度(即ち、相対密度30%以上、好ましくは60%以上)の予備圧縮成形体を作製するのが好ましい。この予備圧縮成形体を加熱し温間圧密成形する事で、温間圧密成形工程(S33)(、更には熱処理工程(S34))での加熱による酸素量の増加を防ぎ、高い磁気特性を有するSmFeNバルク磁石成形体を作製することができる。即ち、予め、冷間圧密成形工程としての磁場中予備圧縮成形工程(S32)で比較的高密度化し、表面積割合を低下させた予備圧縮成形体を得ることで、温間圧密成形工程(S33)で十分に圧密化(高密度化、低表面積化)されるまでの加熱による酸化を効果的に抑制することができる。その結果、高い磁気特性を有する磁石成形体を得ることができる。また、高純度な不活性ガス雰囲気を用いなくても、高い磁気特性を有するSmFeNバルク磁石成形体を作製することができる。そのため、磁場中予備圧縮成形工程(S32)や温間圧密成形工程(S33)で用いる大型のプレス機を設置(格納)する気密性の高い設備や高純度な不活性ガスの供給、排気システム等の設備等が不要となる。これにより、Sm−Fe−N系磁石粉末の準備から磁石成形体の作製までの工程を大気雰囲気下(空気中)で連続的に行うことができるなど、量産化に適している。 In the pre-compression molding step (S32) in the magnetic field, it is only necessary to obtain a pre-compression compact having a relative density that does not damage the pre-compression compact during transportation and transportation. Preferably formed. Furthermore, from the viewpoint of preventing oxidation during warm compaction, it is more preferable to form a pre-compression molded body having a relative density of 60% or more. In the case of a pre-compression molded body having a relative density of 30% or more, preferably 60% or more, the Sm—Fe—N magnet powder having the easy magnetization axis aligned in the magnetic field direction does not move and the easy magnetization axis is aligned. It is maintained in the state. The upper limit of the relative density of the pre-compression molded body is not particularly limited, and the relative density may be 80% or more (see Table 4). As described above, in this embodiment, the pre-compression molding step (S32) in the magnetic field as the cold compaction step is inserted before the warm compaction step (S33), so that a relatively high density in the magnetic field (that is, It is preferable to prepare a pre-compression molded body having a relative density of 30% or more, preferably 60% or more. By heating and warm compacting the pre-compression molded body, an increase in oxygen amount due to heating in the warm compaction step (S33) (and further heat treatment step (S34)) is prevented, and high magnetic properties are obtained. An SmFeN bulk magnet compact can be produced. That is, a warm compression molding step (S33) is obtained by obtaining a preliminary compression molded body having a relatively high density and a reduced surface area ratio in a magnetic field preliminary compression molding step (S32) as a cold consolidation molding step. Thus, it is possible to effectively suppress oxidation due to heating until sufficient consolidation (high density, low surface area) is achieved. As a result, a magnet compact having high magnetic properties can be obtained. Further, an SmFeN bulk magnet compact having high magnetic properties can be produced without using a high purity inert gas atmosphere. Therefore, highly airtight equipment for installing (storing) a large press used in the pre-compression molding step (S32) in the magnetic field and the warm compaction step (S33), the supply of high purity inert gas, the exhaust system, etc. This equipment is unnecessary. Thereby, the process from the preparation of the Sm—Fe—N-based magnet powder to the production of the magnet compact can be continuously performed in an air atmosphere (in the air), which is suitable for mass production.
また、本実施形態では、冷間圧密成形工程としての磁場中予備圧縮成形工程(S32)の圧縮(圧密)成形と温間圧密成形工程(S43)の圧縮成形で、同じ高面圧のプレス機を共用することができる点で優れている。すなわち、Sm−Fe−N系磁石粉末を高面圧のプレス機のダイセット(金型)に充填し、十分に(冷間)成形温度に達した後、磁場中で、油圧プレスを用いて所望の成形面圧を負荷して(冷間)圧縮成形し、所望の相対密度を有する予備圧縮成形体を得る。次に、同じ高面圧のプレス機を用いて、金型内に形成された予備圧縮成形体に対し、十分に温間成形温度に達した後、油圧プレスを用いて所望の成形面圧を負荷して温間圧密成形し、所望の高い相対密度を有する磁石成形体を得ることができるものである。 Further, in the present embodiment, the same high surface pressure press machine is used in the compression (consolidation) molding in the preliminary compression molding process (S32) in the magnetic field as the cold compaction process and the compression molding in the warm compaction process (S43). Is excellent in that it can be shared. That is, the Sm—Fe—N magnet powder is filled in a die set (die) of a high surface pressure press machine, and after sufficiently reaching the (cold) forming temperature, using a hydraulic press in a magnetic field. Compression molding is performed by applying a desired molding surface pressure (cold) to obtain a pre-compression molded body having a desired relative density. Next, using a press machine with the same high surface pressure, after reaching the warm molding temperature sufficiently for the pre-compression molded body formed in the mold, a desired molding surface pressure is applied using a hydraulic press. It is possible to obtain a magnet compact having a desired high relative density by applying warm compaction under load.
磁場中予備圧縮成形工程(S32)での磁石(磁石粉末→予備圧縮成形体)の温度については、少なくとも温間圧密成形工程(S33)よりも低い温度、好ましくは50℃以下、最も好ましくは室温(加熱しない状態での温度)に設定しておくのが好ましい。上記した比較的低い温度範囲で(冷間)予備圧縮(圧密)成形することで、酸化を効果的に防止しつつ、比較的高密度かつ高圧縮で表面積割合の低い予備圧縮成形体を得ることができる。 The temperature of the magnet (magnet powder → pre-compression molded body) in the pre-compression molding step (S32) in a magnetic field is at least a temperature lower than that of the warm compaction molding step (S33), preferably 50 ° C. or less, most preferably room temperature. It is preferable to set it to (temperature without heating). By performing pre-compression (consolidation) molding in the above-mentioned relatively low temperature range (cold), it is possible to obtain a pre-compression molding with a relatively high density and high compression and a low surface area ratio while effectively preventing oxidation. Can do.
磁場中予備圧縮成形工程(S32)で、磁場を印加するには特に制限はなく、磁場配向機中にプレス機を設置することができる。磁場配向機としては、第二実施形態と同様の磁場配向機を使用することができる。また、プレス機としても、特に制限はなく、Sm−Fe−N系磁石粉末から、相対密度30%以上、好ましくは60%以上の予備圧縮成形体が得られるプレス機であれば、どのようなものも使用できる。例えば、上記したように油圧プレス機、電動プレス機、インパクトプレス機等の高面圧(高出力)のプレス機を使用できる。また、相対密度30〜50%程度の予備圧縮成形体を用いる場合には、温間圧密成形工程(S33)に用いる高面圧のプレス機よりも、低面圧のプレス機を使用することができる。 In the pre-compression molding step (S32) in the magnetic field, there is no particular limitation on the application of the magnetic field, and a press machine can be installed in the magnetic field orientation machine. As the magnetic field orientation machine, the same magnetic field orientation machine as in the second embodiment can be used. Also, the press machine is not particularly limited, and any press machine can be used as long as it can obtain a pre-compression molded body having a relative density of 30% or more, preferably 60% or more from the Sm-Fe-N magnet powder. Things can also be used. For example, as described above, a high surface pressure (high output) press machine such as a hydraulic press machine, an electric press machine, or an impact press machine can be used. Further, when a pre-compression molded body having a relative density of about 30 to 50% is used, it is possible to use a press machine with a low surface pressure rather than a press machine with a high surface pressure used in the warm compacting step (S33). it can.
磁場中予備圧縮成形工程(S32)での圧縮成形は、Sm−Fe−N系磁石粉末を0.1〜5GPaの範囲の比較的高面圧で形成するものである。磁場中予備圧縮成形時の成形面圧が0.1GPa未満であると、相対密度30%以上、好ましくは60%以上の比較的高密度の予備圧縮成形体を得ることが困難になる。一方、磁場中予備圧縮成形時の成形面圧が5GPaを超えると、プレス機の成形型(金型)の寿命が短くなる恐れがある。磁場中予備圧縮成形時の成形面圧は、温間圧密成形時の酸化防止の観点から、より好ましくは1〜3.5GPaである。 Compression molding in the pre-compression molding step (S32) in a magnetic field is to form Sm—Fe—N magnet powder with a relatively high surface pressure in the range of 0.1 to 5 GPa. If the molding surface pressure during pre-compression molding in a magnetic field is less than 0.1 GPa, it becomes difficult to obtain a relatively high-density pre-compression molded body having a relative density of 30% or more, preferably 60% or more. On the other hand, if the molding surface pressure at the time of preliminary compression molding in a magnetic field exceeds 5 GPa, the life of the press mold (mold) may be shortened. The molding surface pressure at the time of preliminary compression molding in a magnetic field is more preferably 1 to 3.5 GPa from the viewpoint of preventing oxidation at the time of warm consolidation molding.
得られた予備圧縮成形体は、次の温間圧密成形工程(S33)において、第一実施形態の温間圧密成形工程(S12)と同様にして、圧密成形する。さらに、必要に応じて熱処理工程(S34)を実施する。これにより、温間圧密成形工程(S33)、更には熱処理工程(S34)での加熱による酸素量の増加を防ぎ、高い磁気特性を有するSm−Fe−N系バルク磁石成形体を得ることができる。 The obtained preliminary compression-molded body is compacted in the next warm compacting step (S33) in the same manner as the warm compacting step (S12) of the first embodiment. Further, a heat treatment step (S34) is performed as necessary. Thereby, an increase in the amount of oxygen due to heating in the warm compaction step (S33) and further in the heat treatment step (S34) can be prevented, and an Sm—Fe—N bulk magnet compact having high magnetic properties can be obtained. .
<第四実施形態>
第四実施形態の製造方法は、第一実施形態または第二実施形態の温間圧密成形工程(S12)または(S22)の代わりに、予備圧縮成形工程(S42)と、温間圧密成形工程(S43)または磁場中温間圧密成形工程(S43’)と、を有する。以下、温間圧密成形工程(S43)または磁場中温間圧密成形工程(S43’)を(磁場中)温間圧密成形工程(S43又はS43’)とも称する。また、Sm−Fe−N系磁石粉末の準備工程(S41)は、第一実施形態の準備工程(S11)または第二実施形態の準備工程(S21)と同様であり、また、任意の工程である。さらに、Sm−Fe−N系磁石粉末の熱処理工程(S44)は、第一実施形態の熱処理工程(S13)または第二実施形態の熱処理工程(S23)と同様であり、また、任意の工程である。なお、第二実施形態の準備工程(S21)および熱処理工程(S23)は、それぞれ第一実施形態の準備工程(S11)および熱処理工程(S13)と同様である。すなわち、図4に示すように、準備工程(S41)、予備圧縮成形工程(S42)、(磁場中)温間圧密成形工程(S43又はS43’)、および熱処理工程(S44)により、製品である磁石成形体を得る。<Fourth embodiment>
In the manufacturing method of the fourth embodiment, instead of the warm compacting step (S12) or (S22) of the first embodiment or the second embodiment, a preliminary compression molding step (S42) and a warm compacting step ( S43) or a warm compaction step in a magnetic field (S43 ′). Hereinafter, the warm compaction step (S43) or the magnetic field warm compaction step (S43 ') is also referred to as (in the magnetic field) warm compaction step (S43 or S43'). Moreover, the preparation process (S41) of the Sm—Fe—N-based magnet powder is the same as the preparation process (S11) of the first embodiment or the preparation process (S21) of the second embodiment. is there. Furthermore, the heat treatment step (S44) of the Sm—Fe—N-based magnet powder is the same as the heat treatment step (S13) of the first embodiment or the heat treatment step (S23) of the second embodiment, and is optional. is there. The preparation step (S21) and the heat treatment step (S23) of the second embodiment are the same as the preparation step (S11) and the heat treatment step (S13) of the first embodiment, respectively. That is, as shown in FIG. 4, it is a product by a preparation process (S41), a pre-compression molding process (S42), a (in a magnetic field) warm compaction process (S43 or S43 ′), and a heat treatment process (S44). A magnet compact is obtained.
(予備圧縮成形工程(S42))
本実施形態では、(磁場中)温間圧密成形工程(S43又はS43’)の前に、Sm−Fe−N系磁石粉末を圧縮成形し、相対密度30%以上のSm−Fe−N系の予備圧縮成形体を得る予備圧縮成形工程(S42)をさらに有する。本実施形態は、(磁場中)温間圧密成形時の酸化対策の手法である。(磁場中)温間圧密成形工程(S43又はS43’)の前に、冷間圧密成形工程としての予備圧縮成形工程(S42)を挿入し、比較的高密度(即ち、相対密度30%以上、好ましくは60%以上)の予備圧縮成形体を作製する。この予備圧縮成形体を(無磁場で、または6kOe以上の磁場中で)加熱し温間圧密成形する事で、(磁場中)温間圧密成形工程(S43又はS43’)(、更には熱処理工程(S44))での加熱による酸素量の増加を防ぎ、高い磁気特性を有するSmFeNバルク磁石成形体を作製することができる。即ち、予め、冷間圧密成形工程としての予備圧縮成形工程(S42)で比較的高密度化し、表面積割合を低下させた予備圧縮成形体を得ることで、温間圧密成形工程(S43又はS43’)で十分に圧密化(高密度化、低表面積化)されるまでの加熱による酸化を効果的に抑制することができる。その結果、高い磁気特性を有する磁石成形体を得ることができる。また、高純度な不活性ガス雰囲気を用いなくても、高い磁気特性を有するSmFeNバルク磁石成形体を作製することができる。そのため、予備圧縮成形工程(S42)や(磁場中)温間圧密成形工程(S43又はS43’)で用いる大型のプレス機を設置(格納)する気密性の高い設備や高純度な不活性ガスの供給、排気システム等の設備等が不要となる。これにより、Sm−Fe−N系磁石粉末の準備から磁石成形体の作製までの工程を大気雰囲気下(空気中)で連続的に行うことができるなど、量産化に適している。(Preliminary compression molding step (S42))
In the present embodiment, before the warm compacting step (S43 or S43 ′) (in a magnetic field), the Sm—Fe—N magnet powder is compression-molded, and the Sm—Fe—N system having a relative density of 30% or more is used. It further has a preliminary compression molding step (S42) for obtaining a preliminary compression molded body. This embodiment is a technique for countermeasures against oxidation at the time of warm compaction (in a magnetic field). (In a magnetic field) Prior to the warm compaction step (S43 or S43 ′), a pre-compression molding step (S42) as a cold compaction step is inserted, and a relatively high density (that is, a relative density of 30% or more, A pre-compression molded body (preferably 60% or more) is produced. By heating and preliminarily compacting this pre-compressed compact (in a magnetic field or in a magnetic field of 6 kOe or more) and performing warm compaction (in a magnetic field), the warm compaction process (S43 or S43 ') (and further heat treatment process) An increase in the amount of oxygen due to heating in (S44) can be prevented, and an SmFeN bulk magnet molded body having high magnetic properties can be produced. That is, a warm compression molding step (S43 or S43 ′) is obtained by obtaining a preliminary compression molded body having a relatively high density and a reduced surface area ratio in the preliminary compression molding step (S42) as a cold compaction step. ) Can be effectively suppressed from being heated until it is sufficiently consolidated (high density, low surface area). As a result, a magnet compact having high magnetic properties can be obtained. Further, an SmFeN bulk magnet compact having high magnetic properties can be produced without using a high purity inert gas atmosphere. Therefore, highly airtight equipment and high-purity inert gas for installing (storing) a large press used in the pre-compression molding step (S42) and the warm compaction step (S43 or S43 ') (in a magnetic field) Equipment such as supply and exhaust systems are not required. Thereby, the process from the preparation of the Sm—Fe—N-based magnet powder to the production of the magnet compact can be continuously performed in an air atmosphere (in the air), which is suitable for mass production.
また、本実施形態では、冷間圧密成形工程としての予備圧縮成形工程(S42)の圧縮(圧密)成形と(磁場中)温間圧密成形工程(S43又はS43’)の圧縮成形で、同じ高面圧のプレス機を共用することができる点で優れている。すなわち、Sm−Fe−N系磁石粉末を高面圧のプレス機のダイセット(金型)に充填し、十分に(冷間)成形温度に達した後、油圧プレスを用いて所望の成形面圧を負荷して(冷間)圧縮成形し、所望の相対密度を有する予備圧縮成形体を得る。次に、同じ高面圧のプレス機を用いて、金型内に形成された予備圧縮成形体に対し、(磁場中)で、十分に温間成形温度に達した後、油圧プレスを用いて所望の成形面圧を負荷して(磁場中)温間圧密成形し、所望の高い相対密度を有する磁石成形体を得ることができるものである。 In the present embodiment, the compression (consolidation) molding in the preliminary compression molding process (S42) as the cold compaction process and the compression molding in the warm compaction process (S43 or S43 ') (in a magnetic field) are the same. It is excellent in that it can share a surface pressure press. That is, the Sm-Fe-N magnet powder is filled in a die set (die) of a high surface pressure press machine, and after a sufficient (cold) molding temperature is reached, a desired molding surface is obtained using a hydraulic press. Compression molding is performed under pressure (cold) to obtain a pre-compression molded body having a desired relative density. Next, using a press machine with the same high surface pressure, the pre-compression molded body formed in the mold is sufficiently heated (in a magnetic field) to reach a warm molding temperature, and then a hydraulic press is used. A magnet compact having a desired high relative density can be obtained by applying a desired compacting surface pressure (in a magnetic field) and performing warm compaction.
予備圧縮成形工程(S42)での磁石(磁石粉末→予備圧縮成形体)の温度については、少なくとも(磁場中)温間圧密成形工程(S43又はS43’)での(加熱)温度よりも低い温度、好ましくは50℃以下、最も好ましくは室温(加熱しない状態での温度)に設定しておくのが好ましい。上記した比較的低い温度範囲で(冷間)予備圧縮(圧密)成形することで、酸化を効果的に防止しつつ、比較的高密度かつ高圧縮で表面積割合の低い予備圧縮成形体を得ることができる。 About the temperature of the magnet (magnet powder → pre-compression molded body) in the pre-compression molding step (S42), at least a temperature lower than the (heating) temperature in the warm compaction step (S43 or S43 ′) (in the magnetic field) The temperature is preferably set to 50 ° C. or less, and most preferably set to room temperature (temperature without heating). By performing pre-compression (consolidation) molding in the above-mentioned relatively low temperature range (cold), it is possible to obtain a pre-compression molding with a relatively high density and high compression and a low surface area ratio while effectively preventing oxidation. Can do.
予備圧縮成形工程(S42)では、(磁場中)温間圧密成形時の酸化対策の手法として、(磁場中)温間圧密成形工程(S43又はS43’)の前に、冷間圧密成形工程としての予備圧縮成形工程を挿入し、比較的高密度の予備圧縮成形体を作製する。かかる観点から、相対密度30%以上、好ましくは60%以上の比較的高密度の(=表面積割合が低下した)予備圧縮成形体を形成するものである。相対密度30%以上、好ましくは60%以上の比較的高密度かつ低表面積割合の予備圧縮成形体であれば、この予備圧縮成形体を加熱し温間圧密成形する事で、(磁場中)温間圧密成形工程(S43又はS43’)での加熱による酸素量の増加を防ぐことができる。その結果、高い磁気特性を有するSmFeNバルク磁石成形体を作製することができる。なお、磁石成形体の相対密度の上限値は、特に制限はなく、相対密度が80%以上であってもよい(表4参照)。 In the pre-compression molding step (S42), as a countermeasure against oxidation at the time of (in a magnetic field) warm compaction, as a cold compaction step before (in a magnetic field) warm compaction step (S43 or S43 '). The pre-compression molding step is inserted to produce a relatively high-density pre-compression molded body. From this viewpoint, a pre-compression molded body having a relatively high density (= surface area ratio decreased) having a relative density of 30% or more, preferably 60% or more is formed. In the case of a pre-compression molded body having a relative density of 30% or more, preferably 60% or more and a relatively high density and a low surface area ratio, the pre-compression molding is heated and subjected to warm compaction to obtain a temperature (in a magnetic field). It is possible to prevent an increase in the amount of oxygen due to heating in the intermediate compaction forming step (S43 or S43 ′). As a result, an SmFeN bulk magnet compact having high magnetic properties can be produced. The upper limit of the relative density of the magnet compact is not particularly limited, and the relative density may be 80% or more (see Table 4).
予備圧縮成形工程(S42)での圧縮成形に用いることのできるプレス機としては、特に制限はなく、Sm−Fe−N系磁石粉末から、相対密度30%以上、好ましくは60%以上の予備圧縮成形体が得られるプレス機であれば、どのようなものも使用できる。例えば、第一又は第二実施形態の(磁場中)温間圧密成形で用いたプレス機と同様に、油圧プレス機、電動プレス機、インパクトプレス機等の高面圧(高出力)のプレス機を使用できる。また、相対密度30〜50%程度の予備圧縮成形体を用いる場合には、(磁場中)温間圧密成形工程(S43又はS43’)に用いる高面圧のプレス機よりも、低面圧のプレス機を使用することができる。 There is no restriction | limiting in particular as a press machine which can be used for the compression molding in a precompression molding process (S42), From the Sm-Fe-N type | system | group magnetic powder, the relative density of 30% or more, Preferably it is 60% or more of precompression. Any press can be used as long as it can obtain a molded body. For example, high surface pressure (high output) presses such as hydraulic presses, electric presses, impact presses, etc., as well as the presses used in the warm compaction (in a magnetic field) of the first or second embodiment Can be used. Further, when a pre-compression molded body having a relative density of about 30 to 50% is used, it has a lower surface pressure than a high surface pressure press used in the warm compaction process (in a magnetic field) (S43 or S43 ′). A press can be used.
予備圧縮成形工程(S42)での圧縮成形は、Sm−Fe−N系磁石粉末を0.1〜5GPaの範囲の比較的高面圧で形成するものである。予備圧縮成形時の成形面圧が0.1GPa未満であると、相対密度30%以上、好ましくは60%以上の比較的高密度の予備圧縮成形体を得ることが困難になる。一方、予備圧縮成形時の成形面圧が5GPaを超えると、プレス機の成形型(金型)の寿命が短くなる恐れがある。予備圧縮成形時の成形面圧は、温間圧密成形時の酸化防止の観点から、より好ましくは1〜3.5GPaである。 The compression molding in the pre-compression molding step (S42) is to form Sm—Fe—N magnet powder with a relatively high surface pressure in the range of 0.1 to 5 GPa. When the molding surface pressure at the time of preliminary compression molding is less than 0.1 GPa, it becomes difficult to obtain a comparatively high-density preliminary compression molded body having a relative density of 30% or more, preferably 60% or more. On the other hand, if the molding surface pressure at the time of preliminary compression molding exceeds 5 GPa, the life of the molding die (die) of the press machine may be shortened. The molding surface pressure during preliminary compression molding is more preferably 1 to 3.5 GPa from the viewpoint of preventing oxidation during warm compaction.
得られた予備圧縮成形体は、次の(磁場中)温間圧密成形工程(S43又はS43’)において、第一実施形態の温間圧密成形工程(S12)または第二実施形態の磁場中温間圧密成形工程(S22)と同様にして、圧密成形する。さらに、必要に応じて、熱処理工程(S44)として、第一実施形態の熱処理工程(S13)または第二実施形態の熱処理工程(S23)と同様にして、熱処理を実施する。これにより、(磁場中)温間圧密成形工程(S43又はS43’)、更には熱処理工程(S44)での加熱による酸素量の増加を防ぎ、高い磁気特性を有するSm−Fe−N系バルク磁石成形体を作製することができる。 In the next (in a magnetic field) warm compaction step (S43 or S43 ′), the obtained pre-compression molded body is the warm compaction step (S12) of the first embodiment or the warm in the magnetic field of the second embodiment. Consolidation molding is performed in the same manner as in the consolidation molding step (S22). Furthermore, if necessary, heat treatment is performed as the heat treatment step (S44) in the same manner as the heat treatment step (S13) of the first embodiment or the heat treatment step (S23) of the second embodiment. This prevents an increase in the amount of oxygen due to heating in the warm compaction step (S43 or S43 ′) and further in the heat treatment step (S44) (in a magnetic field), and has high magnetic properties. A molded body can be produced.
以下、本実施形態を実施例を通して具体的に説明するが、本実施形態は以下の実施例には限定されない。 Hereinafter, although this embodiment is concretely demonstrated through an Example, this embodiment is not limited to the following Examples.
<実施例1〜7>
(準備工程)
Sm−Fe−N系粉末は、平均粒子径D50=3μmのSm2Fe17Nx(x≒3)(日亜化学工業株式会社製)を用いた。金属バインダーには、亜鉛(Zn)粉末(株式会社高純度化学研究所)、銅(Cu)粉末(日本アトマイズ加工株式会社製)を用いた。Zn粉末、Cu粉末の平均粒子径D50はそれぞれ7μm、1μmであった。Sm−Fe−N系粉末と金属バインダー粉末をSm−Fe−N系粉末:Zn粉末:Cu粉末=80:15:5の割合(質量比)で混合し、ブレンド粉末Aを調製した。<Examples 1-7>
(Preparation process)
As the Sm—Fe—N-based powder, Sm 2 Fe 17 N x (x≈3) (manufactured by Nichia Corporation) having an average particle diameter D 50 = 3 μm was used. As the metal binder, zinc (Zn) powder (High Purity Chemical Laboratory Co., Ltd.) and copper (Cu) powder (manufactured by Nippon Atomizing Co., Ltd.) were used. Zn powder, the average particle diameter D 50 of the Cu powder each 7 [mu] m, was 1 [mu] m. The Sm—Fe—N powder and the metal binder powder were mixed at a ratio (mass ratio) of Sm—Fe—N powder: Zn powder: Cu powder = 80: 15: 5 to prepare a blend powder A.
(温間圧密成形工程)
ブレンド粉末Aを8g秤量し、直径15mmサイズのダイセット(円筒形金型)に充填し、実施例1〜7について、それぞれ、表1に示す所定の温度で10分間保持した。粉末Aが十分に成形温度に達した後、油圧プレスを用いて、それぞれ表1に示す成形面圧を負荷し、30秒間保持して圧密成形した。以上のような工程で実施例1〜7の磁石成形体を得た。(Warm compaction process)
8 g of the blended powder A was weighed and filled in a die set (cylindrical mold) having a diameter of 15 mm, and each of Examples 1 to 7 was held at a predetermined temperature shown in Table 1 for 10 minutes. After the powder A reached the molding temperature sufficiently, it was compacted by applying a molding surface pressure shown in Table 1 and holding it for 30 seconds using a hydraulic press. The magnet molded body of Examples 1-7 was obtained in the above processes.
(評価)
上記のような工程により、それぞれ同じ金型を使用して、実施例1〜7の磁石成形体の製造を継続し、金型命数を求めた。金型命数が1000個以上のものを〇、1000個未満のものを×で、表1に表す。実施例1〜7の磁石成形体の相対密度は、計算により求めた真密度と、磁石成形体の寸法および重量測定から求めた実測密度とを用いて求めた。相対密度は、真密度に対する実測密度の割合(%)であり、実測密度の値を理論密度の値で除し、100をかけて計算したものである(以下、同様である。)。得られた相対密度を表1に示す。(Evaluation)
By using the same molds as described above, the manufacture of the magnet molded bodies of Examples 1 to 7 was continued, and the mold lifespan was determined. Table 1 shows that the number of molds is 1000 or more, and ○ is less than 1000. The relative densities of the magnet compacts of Examples 1 to 7 were determined using the true density obtained by calculation and the actual density obtained from the dimensions and weight measurements of the magnet compact. The relative density is a ratio (%) of the actual density with respect to the true density, and is calculated by dividing the actual density value by the theoretical density value and multiplying by 100 (the same applies hereinafter). The relative density obtained is shown in Table 1.
<比較例1〜3>
比較例1〜3では、成形温度を室温(加熱しない状態;冷間圧密成形)とした以外は、実施例1と同様にして、磁石成形体を製造した。成形面圧については、それぞれ、表1に示す成形面圧とした。また、比較例1〜3についても、金型命数を実施例1と同様に評価した。評価結果を表1に示す。得られた磁石成形体の相対密度は、実施例1と同様にして求めた。得られた相対密度を表1に示す。<Comparative Examples 1-3>
In Comparative Examples 1 to 3, magnet compacts were produced in the same manner as in Example 1 except that the molding temperature was room temperature (non-heated state; cold compaction molding). The molding surface pressure was set to the molding surface pressure shown in Table 1, respectively. In addition, in Comparative Examples 1 to 3, the die number was evaluated in the same manner as in Example 1. The evaluation results are shown in Table 1. The relative density of the obtained magnet compact was determined in the same manner as in Example 1. The relative density obtained is shown in Table 1.
表1のデータより、実施例1〜7の温間圧密成形を用いることにより、比較例1〜3に比べて、同じ相対密度の磁石成形体を得るために必要な成形面圧を低減できることが分かる。さらに、実施例1、3および6と、比較例2とを比較すると、同じ成形面圧で成形した場合、実施例では磁石成形体の相対密度を向上させることができることが分かる。 From the data in Table 1, by using the warm compaction of Examples 1 to 7, it is possible to reduce the molding surface pressure necessary to obtain a magnet molded body having the same relative density as compared with Comparative Examples 1 to 3. I understand. Furthermore, when Examples 1, 3 and 6 are compared with Comparative Example 2, it can be seen that the relative density of the magnet molded body can be improved in the example when molding is performed with the same molding surface pressure.
<実施例8〜14>
(準備工程)
Sm−Fe−N系粉末には、平均粒子径D50=2.4μmのSm2Fe17Nx(x≒3)(住友金属鉱山株式会社製)を用いた。金属バインダーには、平均粒子径D50=3μmの亜鉛(Zn)粉末(堺化学工業株式会社製)を用いた。Sm−Fe−N系粉末とZn粉末を質量%で80:20の割合で混合し、ブレンド粉末Bを調製した。<Examples 8 to 14>
(Preparation process)
As the Sm—Fe—N-based powder, Sm 2 Fe 17 N x (x≈3) (manufactured by Sumitomo Metal Mining Co., Ltd.) having an average particle diameter D 50 = 2.4 μm was used. As the metal binder, zinc (Zn) powder (manufactured by Sakai Chemical Industry Co., Ltd.) having an average particle diameter D 50 = 3 μm was used. Sm—Fe—N-based powder and Zn powder were mixed at a mass ratio of 80:20 to prepare blend powder B.
(温間圧密成形工程)
ブレンド粉末Bから2.6gを秤量し、7×7mmサイズの超硬合金製ダイセット(四角柱状金型)に充填し、所定の温度で10分間保持した。粉末Bが十分に成形温度に達した後、油圧プレスを用いて1〜4GPaの成形面圧を負荷し、60秒間保持して圧密成形した。以上のような工程で実施例8〜14の磁石成形体を作製した(表2)。(Warm compaction process)
2.6 g from the blended powder B was weighed and filled in a 7 × 7 mm cemented carbide die set (square column mold) and held at a predetermined temperature for 10 minutes. After the powder B sufficiently reached the molding temperature, it was compacted by applying a molding surface pressure of 1 to 4 GPa using a hydraulic press and holding it for 60 seconds. The magnet moldings of Examples 8 to 14 were produced through the above-described steps (Table 2).
(評価)
上記のような工程により、それぞれ同じ金型を使用して、実施例8〜14の磁石成形体の製造を継続し、金型命数を求めた。金型命数が1000個以上のものを〇、1000個未満のものを×で、表2に表す。得られた磁石成形体の相対密度は、実施例1と同様にして求めた。得られた相対密度を表2に示す。(Evaluation)
By using the same molds as described above, the manufacture of the magnet molded bodies of Examples 8 to 14 was continued, and the mold life was determined. Table 2 shows that the number of molds is 1000 or more, and x is less than 1000. The relative density of the obtained magnet compact was determined in the same manner as in Example 1. The relative density obtained is shown in Table 2.
<比較例4〜5>
比較例4〜5では、成形温度を室温(加熱しない状態;冷間圧密成形)とした以外は、実施例8と同様にして、磁石成形体を製造した。成形面圧については、それぞれ、表2に示す成形面圧とした。また、比較例4〜5についても、金型命数を実施例8と同様に評価したものを表2に示す。得られた磁石成形体の相対密度は、実施例1と同様にして求めた。得られた相対密度を表2に示す。<Comparative Examples 4-5>
In Comparative Examples 4 to 5, magnet compacts were produced in the same manner as in Example 8, except that the molding temperature was room temperature (not heated; cold compaction molding). The molding surface pressure was set to the molding surface pressure shown in Table 2, respectively. Moreover, also about Comparative Examples 4-5, what evaluated the metal mold life number similarly to Example 8 is shown in Table 2. The relative density of the obtained magnet compact was determined in the same manner as in Example 1. The relative density obtained is shown in Table 2.
表2のデータより、温間圧密成形(実施例)を用いることにより、同じ相対密度の磁石成形体を得るために必要な成形面圧を低減出来る事、さらに同じ成形面圧で成形した場合、磁石成形体の相対密度を向上させることができる事がわかる。 From the data in Table 2, it is possible to reduce the molding surface pressure necessary to obtain a magnet molded body having the same relative density by using warm compaction (Example), and when molding with the same molding surface pressure, It can be seen that the relative density of the magnet compact can be improved.
<実施例15〜22>
(準備工程(S21))
Sm−Fe−N系粗粉は、平均粒子径D50≒20μmのSm2Fe17Nx(x≒3)(住友金属鉱山株式会社製)を用いた。Sm−Fe−N系粗粉をアシザワ・ファインテック(株)の湿式ビーズミルLMZ2を用いて微粉砕した粉末を3種類用意した。微粉砕粉の平均粒子径D50はA粉:1.7μm、B粉:1.6μm、C粉:1.4μmで、磁粉の酸素量はおよそ1質量%であった。<Examples 15 to 22>
(Preparation process (S21))
As the Sm—Fe—N coarse powder, Sm 2 Fe 17 N x (x≈3) (manufactured by Sumitomo Metal Mining Co., Ltd.) having an average particle diameter D 50 ≈20 μm was used. Three types of powders prepared by finely pulverizing Sm—Fe—N-based coarse powder using a wet bead mill LMZ2 manufactured by Ashizawa Finetech Co., Ltd. were prepared. The average particle diameter D 50 of the milling powder A powder: 1.7 [mu] m, B powder: 1.6 [mu] m, C powder: at 1.4 [mu] m, the amount of oxygen magnetic powder was about 1% by weight.
Sm−Fe−N系微粉と金属バインダー粉末としてZn粉末を、下記表3の割合で混合し、ブレンド粉末を調製した。なお、亜鉛(Zn)粉末は株式会社高純度化学研究所製であり、平均粒子径は3μmであった。 Sm—Fe—N-based fine powder and Zn powder as metal binder powder were mixed in the ratio shown in Table 3 below to prepare a blend powder. The zinc (Zn) powder was manufactured by Kojundo Chemical Laboratory Co., Ltd., and the average particle size was 3 μm.
(磁場中温間圧密成形工程(S22)および熱処理工程(23))
ブレンド粉末を2.6g秤量し、7×7mmサイズの超硬合金製ダイセット(四角柱状金型)に充填し、下記表3に示す温度で加熱した。その後、外部磁場21kOe印加状態で油圧プレスを用いて3〜4GPaの成形面圧を負荷し、30秒間保持して温間圧密成形した。その後、420℃で30分間熱処理をした。なお、微粉砕以降の工程はすべて、100ppm以下の低酸素雰囲気で行った。(Warm compaction step in magnetic field (S22) and heat treatment step (23))
2.6 g of the blended powder was weighed and filled in a 7 × 7 mm size cemented carbide die set (square column mold) and heated at the temperature shown in Table 3 below. Thereafter, a molding pressure of 3 to 4 GPa was applied using a hydraulic press while an external magnetic field of 21 kOe was applied, and warm compaction was performed by holding for 30 seconds. Thereafter, heat treatment was performed at 420 ° C. for 30 minutes. In addition, all the processes after pulverization were performed in a low oxygen atmosphere of 100 ppm or less.
(評価)
得られた磁石成形体の残留磁束密度Brおよび保磁力Hcjは、パルス式の自動磁化特性測定装置(日本電磁測器株式会社製PBH−1000)を用いて測定した。得られた磁石成形体の残留磁束密度Brおよび保磁力Hcjの測定結果を表3に示す。磁石成形体の相対密度は、実施例1と同様にして求めた。得られた相対密度を表3に示す。(Evaluation)
The residual magnetic flux density Br and the coercive force Hcj of the obtained magnet compact were measured using a pulse-type automatic magnetization characteristic measuring apparatus (PBH-1000 manufactured by Nippon Electromagnetic Sokki Co., Ltd.). Table 3 shows the measurement results of the residual magnetic flux density Br and the coercive force Hcj of the obtained magnet compact. The relative density of the magnet compact was determined in the same manner as in Example 1. The obtained relative density is shown in Table 3.
また、実施例15〜22についても、金型命数を実施例1と同様に評価した。評価結果を表3に示す。 Moreover, also about Examples 15-22, the mold number was evaluated similarly to Example 1. FIG. The evaluation results are shown in Table 3.
表3の結果から分かるように、第二実施形態による実施例15〜22では、磁場中温間圧密成形工程として、外部磁場21kOe印加状態で、600℃以下、1〜5GPaで温間圧密成形することにより、相対密度80%以上の磁石成形体が得られた。さらに、これらの磁石成形体は、残留磁束密度Brが0.75T以上、かつ、保磁力Hcjが900kA/m以上と優れた磁気特性を有していることが分かった。 As can be seen from the results in Table 3, in Examples 15 to 22 according to the second embodiment, as a warm compaction process in a magnetic field, warm compaction is performed at 600 ° C. or less and 1 to 5 GPa with an external magnetic field of 21 kOe applied. Thus, a magnet molded body having a relative density of 80% or more was obtained. Further, these magnet compacts were found to have excellent magnetic properties such as a residual magnetic flux density Br of 0.75 T or more and a coercive force Hcj of 900 kA / m or more.
<実施例23〜27>
(準備工程(S41))
Sm−Fe−N系粗粉は、平均粒子径D50≒20μmのSm2Fe17Nx(x≒3)(住友金属鉱山株式会社製)を用いた。Sm−Fe−N系粗粉をアシザワ・ファインテック(株)の湿式ビーズミルLMZ2を用いて微粉砕した。微粉砕粉の平均粒子径D50は1.7μmであった。<Examples 23 to 27>
(Preparation process (S41))
As the Sm—Fe—N coarse powder, Sm 2 Fe 17 N x (x≈3) (manufactured by Sumitomo Metal Mining Co., Ltd.) having an average particle diameter D 50 ≈20 μm was used. The Sm—Fe—N-based coarse powder was finely pulverized using a wet bead mill LMZ2 from Ashizawa Finetech Co., Ltd. The average particle diameter D 50 of fine pulverized powder was 1.7 [mu] m.
Sm−Fe−N系微粉と金属バインダー粉末としてZn粉末を、93:7の割合(質量比)で混合し、ブレンド粉末Cを調製した。なお、亜鉛(Zn)粉末は株式会社高純度化学研究所製であり、平均粒子径は3μmであった。 Blend powder C was prepared by mixing Sm—Fe—N fine powder and Zn powder as a metal binder powder in a ratio (mass ratio) of 93: 7. The zinc (Zn) powder was manufactured by Kojundo Chemical Laboratory Co., Ltd., and the average particle size was 3 μm.
(予備圧縮成形工程(S42))
ブレンド粉末Cを2.56g秤量し、直径約7mmサイズのダイセット(円筒形金型)に充填し、実施例23〜27について、それぞれ、下記表4に示す相対密度となるように、油圧プレスを用いて、冷間(室温)で予備圧縮して予備圧縮成形体を得た。(Preliminary compression molding step (S42))
2.56 g of the blended powder C was weighed and filled in a die set (cylindrical mold) having a diameter of about 7 mm, and each of Examples 23 to 27 was hydraulically pressed so as to have the relative density shown in Table 4 below. Was pre-compressed cold (room temperature) to obtain a pre-compression molded body.
(温間圧密成形工程(S43))
その後得られた予備圧縮成形体を、それぞれ、200℃で10分間保持した。予備圧縮成形体が十分に成形温度(200℃)に達した後、油圧プレスを用いて、200℃で3.5GPaの成形面圧を負荷し、30秒間保持して温間圧密成形した。以上のような工程で実施例23〜27の磁石成形体を得た。(Warm compaction process (S43))
The pre-compressed bodies obtained thereafter were each held at 200 ° C. for 10 minutes. After the preliminary compression molded body sufficiently reached the molding temperature (200 ° C.), a compacting pressure of 3.5 GPa was applied at 200 ° C. using a hydraulic press, and the compact was warm compacted by holding for 30 seconds. The magnet moldings of Examples 23 to 27 were obtained through the steps as described above.
<実施例28>
実施例28では、実施例23と同様にしてブレンド粉末Cを準備し、予備圧縮成形工程(S42)を行うことなく、このブレンド粉末Cを2.56g秤量し、直径約7mmサイズのダイセット(円筒形金型)に充填し、200℃で10分間保持した。ブレンド粉末Cが十分に成形温度(200℃)に達した後、油圧プレスを用いて、200℃で3.5GPaの成形面圧を負荷し、30秒間保持して温間圧密成形した。以上のような工程で実施例28の磁石成形体を得た。<Example 28>
In Example 28, blend powder C was prepared in the same manner as in Example 23, 2.56 g of this blend powder C was weighed without performing the pre-compression molding step (S42), and a die set having a diameter of about 7 mm ( A cylindrical mold) was filled and held at 200 ° C. for 10 minutes. After the blended powder C sufficiently reached the molding temperature (200 ° C.), using a hydraulic press, a molding surface pressure of 3.5 GPa was applied at 200 ° C. and held for 30 seconds to perform warm compaction. The magnet molded body of Example 28 was obtained through the process as described above.
(評価)
実施例23〜28の磁石成形体の残留磁束密度Brは、直流BHトレーサー(東英工業株式会社製TRF−5AH)を用いて測定した。実施例23〜28の磁石成形体の酸素量は、株式会社堀場製作所製 酸素窒素分析装置EMGA−920型により測定した。これら残留磁束密度Br及び酸素量の測定結果を表4に示す。更に、実施例23〜27の予備圧縮成形体の相対密度も、磁石成形体の相対密度と同様に、計算により求めた真密度と、予備圧縮成形体の寸法および重量測定から求めた実測密度とを用いて求めた。予備圧縮成形体の相対密度は、真密度に対する実測密度の割合(%)であり、実測密度の値を理論密度の値で除し、100をかけて計算したものである。得られた予備圧縮成形体の相対密度を表4に示す。(Evaluation)
The residual magnetic flux density Br of the magnet moldings of Examples 23 to 28 was measured using a DC BH tracer (TRF-5AH manufactured by Toei Kogyo Co., Ltd.). The oxygen content of the magnet molded bodies of Examples 23 to 28 was measured with an oxygen-nitrogen analyzer EMGA-920 type manufactured by Horiba, Ltd. Table 4 shows the measurement results of the residual magnetic flux density Br and the oxygen content. Further, the relative density of the precompression molded bodies of Examples 23 to 27 is the same as the relative density of the magnet molded body, the true density obtained by calculation, and the actual density obtained from the dimension and weight measurement of the precompression molded body. Was determined using. The relative density of the pre-compressed compact is the ratio (%) of the actual density to the true density, and is calculated by dividing the actual density value by the theoretical density value and multiplying by 100. Table 4 shows the relative density of the obtained pre-compression molded body.
なお、実施例23〜28の磁石成形体の相対密度は、実施例1と同様にして求めた。実施例23〜28の温間圧密成形体(磁石成形体)の相対密度は、いずれも88%であった。また、実施例23〜28についても、金型命数を実施例1と同様に評価した。その結果、いずれも評価は「○」であった。 In addition, the relative density of the magnet moldings of Examples 23 to 28 was determined in the same manner as in Example 1. The relative densities of the warm compacted bodies (magnet shaped bodies) of Examples 23 to 28 were all 88%. Moreover, also about Examples 23-28, the mold number was evaluated similarly to Example 1. As a result, all were evaluated as “◯”.
表4の結果から、相対密度60%以上の予備圧縮成形体を成形し、その予備圧縮成形体を温間圧密成形した実施例23〜27では、予備圧縮成形体を形成することなく温間圧密成形した実施例28に比べて、磁石成形体中の酸化量を抑えることができる。その結果、実施例23〜27は、実施例28に比べて、高い残留磁束密度Brを有するSmFeNバルク磁石成形体を作製することができることが分かった。 From the results of Table 4, in Examples 23 to 27 in which a preliminary compression molded body having a relative density of 60% or more was molded and the preliminary compression molded body was warm compacted, warm compaction was not performed without forming the preliminary compression molded body. Compared with the molded Example 28, the amount of oxidation in the magnet molded body can be suppressed. As a result, it was found that Examples 23 to 27 can produce SmFeN bulk magnet compacts having a high residual magnetic flux density Br as compared with Example 28.
また、磁石成形体中の酸化量を抑えた実施例23〜27においては、より高い相対密度の予備圧縮成形体を温間圧密成形した方が、磁石成形体中の酸化量を抑えることができ、より高い残留磁束密度Brを有する磁石成形体を作製できることがわかった。 Further, in Examples 23 to 27 in which the amount of oxidation in the magnet compact was suppressed, the amount of oxidation in the magnet compact could be suppressed by warm compacting a precompression compact with a higher relative density. It was found that a magnet molded body having a higher residual magnetic flux density Br can be produced.
10 成形型、
11 内側金型、
12 外側金型、
13a、13b 貫通孔、
14 磁石粉末、
15 下部金型、
16 上部金型、
17 温度センサ用孔、
S11、S21、S31 準備工程、
S12、S33 温間圧密成形工程、
S13、S23、S34 熱処理工程、
S22 磁場中温間圧密成形工程、
S32 予備圧縮成形工程。10 Mold,
11 Inner mold,
12 Outer mold,
13a, 13b through holes,
14 Magnet powder,
15 Lower mold,
16 Upper mold,
17 Temperature sensor hole,
S11, S21, S31 preparation steps,
S12, S33 Warm compacting process,
S13, S23, S34 heat treatment step,
S22 warm compaction process in a magnetic field,
S32 Pre-compression molding process.
Claims (11)
前記温間圧密成形工程の前に、前記Sm−Fe−N系磁石粉末を圧縮成形し、相対密度30%以上のSm−Fe−N系磁石成形体を得る予備圧縮成形工程と、を有し、
前記予備圧縮成形工程において、前記圧縮成形が6kOe以上の磁場中で行われるSm−Fe−N系磁石成形体の製造方法。 A warm compacting step of compacting Sm—Fe—N magnet powder having a temperature of 600 ° C. or less at a molding surface pressure of 1 to 5 GPa to obtain an Sm—Fe—N magnet compact having a relative density of 80% or more. When,
Before the warm compacting step, compression molding the Sm-Fe-N magnet powder to obtain a Sm-Fe-N magnet compact having a relative density of 30% or more, ,
In the preliminary compression molding step, the Sm-Fe-N magnet molded body is produced by performing the compression molding in a magnetic field of 6 kOe or more .
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JPPCT/JP2014/066713 | 2014-06-24 | ||
PCT/JP2014/066713 WO2015198396A1 (en) | 2014-06-24 | 2014-06-24 | Method for manufacturing molded rare earth magnet |
PCT/JP2015/068091 WO2015199096A1 (en) | 2014-06-24 | 2015-06-23 | Method for manufacturing rare earth magnetic mold |
Publications (2)
Publication Number | Publication Date |
---|---|
JPWO2015199096A1 JPWO2015199096A1 (en) | 2017-04-20 |
JP6330907B2 true JP6330907B2 (en) | 2018-05-30 |
Family
ID=54937534
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016529610A Active JP6330907B2 (en) | 2014-06-24 | 2015-06-23 | Method for producing rare earth magnet compact |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6330907B2 (en) |
WO (2) | WO2015198396A1 (en) |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6620570B2 (en) * | 2016-01-28 | 2019-12-18 | Tdk株式会社 | Method for producing metal bonded magnet |
JPWO2018163967A1 (en) * | 2017-03-10 | 2019-11-07 | 国立研究開発法人産業技術総合研究所 | Magnet powder containing Sm-Fe-N-based crystal particles, sintered magnet produced therefrom, and production method thereof |
JP6813443B2 (en) * | 2017-06-30 | 2021-01-13 | トヨタ自動車株式会社 | Rare earth magnet manufacturing method |
JP7025230B2 (en) * | 2017-06-30 | 2022-02-24 | トヨタ自動車株式会社 | Rare earth magnets and their manufacturing methods |
JP7095524B2 (en) * | 2018-09-21 | 2022-07-05 | トヨタ自動車株式会社 | Manufacturing method of rare earth magnets |
JP7088069B2 (en) * | 2019-02-15 | 2022-06-21 | トヨタ自動車株式会社 | Manufacturing method of magnetic powder |
WO2020203739A1 (en) | 2019-04-05 | 2020-10-08 | 国立研究開発法人産業技術総合研究所 | Sm-fe-n-based magnet powder, sm-fe-n-based sintered magnet, and production method therefor |
WO2021045192A1 (en) * | 2019-09-05 | 2021-03-11 | 富士フイルム株式会社 | Composition, polarizer layer, layered product, and image display device |
JP7338510B2 (en) * | 2020-02-27 | 2023-09-05 | トヨタ自動車株式会社 | Method for manufacturing rare earth magnet |
JP7360052B2 (en) | 2020-06-19 | 2023-10-12 | 日亜化学工業株式会社 | Manufacturing method of anisotropic magnetic powder and anisotropic magnetic powder |
JP7529556B2 (en) | 2020-12-17 | 2024-08-06 | トヨタ自動車株式会社 | Rare earth magnet and its manufacturing method |
CN115472409A (en) | 2021-06-10 | 2022-12-13 | 日亚化学工业株式会社 | Method for producing SmFeN-based rare earth magnet |
JPWO2023048003A1 (en) | 2021-09-27 | 2023-03-30 | ||
CN115881415A (en) | 2021-09-27 | 2023-03-31 | 日亚化学工业株式会社 | Method for producing SmFeN-based rare earth magnet |
CN116072411A (en) | 2021-11-01 | 2023-05-05 | 丰田自动车株式会社 | Rare earth magnet and method for producing same |
JP7440478B2 (en) | 2021-11-24 | 2024-02-28 | トヨタ自動車株式会社 | Rare earth magnet and its manufacturing method |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04360501A (en) * | 1991-06-07 | 1992-12-14 | Daido Steel Co Ltd | Manufacture of rare earth magnet |
JPH0677025A (en) * | 1992-08-25 | 1994-03-18 | Minebea Co Ltd | Manufacture of rare earth element-iron-nitrogen permanent magnet |
JP2004071854A (en) * | 2002-08-07 | 2004-03-04 | Hitachi Metals Ltd | Anisotropic sheet magnet and its manufacturing method |
JP2005223263A (en) * | 2004-02-09 | 2005-08-18 | Sumitomo Metal Mining Co Ltd | Method for manufacturing rare earth permanent magnet and resulting rare earth permanent magnet |
JP5059929B2 (en) * | 2009-12-04 | 2012-10-31 | 住友電気工業株式会社 | Magnet powder |
JP5218869B2 (en) * | 2011-05-24 | 2013-06-26 | 住友電気工業株式会社 | Rare earth-iron-nitrogen alloy material, method for producing rare earth-iron-nitrogen alloy material, rare earth-iron alloy material, and method for producing rare earth-iron alloy material |
JP2012246174A (en) * | 2011-05-27 | 2012-12-13 | Sumitomo Electric Ind Ltd | Method for manufacturing iron nitride material, and iron nitride material |
JP2013110225A (en) * | 2011-11-18 | 2013-06-06 | Sumitomo Electric Ind Ltd | Magnetic member and manufacturing method therefor |
JP2015142119A (en) * | 2014-01-30 | 2015-08-03 | 住友電気工業株式会社 | Method for manufacturing rare earth magnet |
-
2014
- 2014-06-24 WO PCT/JP2014/066713 patent/WO2015198396A1/en active Application Filing
-
2015
- 2015-06-23 JP JP2016529610A patent/JP6330907B2/en active Active
- 2015-06-23 WO PCT/JP2015/068091 patent/WO2015199096A1/en active Application Filing
Also Published As
Publication number | Publication date |
---|---|
WO2015198396A1 (en) | 2015-12-30 |
JPWO2015199096A1 (en) | 2017-04-20 |
WO2015199096A1 (en) | 2015-12-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6330907B2 (en) | Method for producing rare earth magnet compact | |
JP6439876B2 (en) | Magnet particle and magnet molded body using the same | |
JP6409867B2 (en) | Rare earth permanent magnet | |
JP6484994B2 (en) | Sm-Fe-N magnet molded body and method for producing the same | |
EP3291249B1 (en) | Manganese bismuth-based sintered magnet having improved thermal stability and preparation method therefor | |
US5352301A (en) | Hot pressed magnets formed from anisotropic powders | |
JP5218869B2 (en) | Rare earth-iron-nitrogen alloy material, method for producing rare earth-iron-nitrogen alloy material, rare earth-iron alloy material, and method for producing rare earth-iron alloy material | |
JP2006019521A (en) | Method and apparatus for manufacturing magnetically anisotropic rare earth sintered magnet | |
JP6447380B2 (en) | SmFeN-based metal bond magnet compact with high specific resistance | |
EP3288043A1 (en) | Anisotropic complex sintered magnet containing manganese bismuth and pressureless sintering method therefor | |
JP2016152246A (en) | Rare earth based permanent magnet | |
JP2596835B2 (en) | Rare earth anisotropic powder and rare earth anisotropic magnet | |
JP2012253247A (en) | Composite magnetic material and method for manufacturing the same | |
JP6613730B2 (en) | Rare earth magnet manufacturing method | |
JP4819103B2 (en) | Manufacturing method and manufacturing apparatus for magnetic anisotropic rare earth sintered magnet | |
US9324485B2 (en) | Material for anisotropic magnet and method of manufacturing the same | |
JP6569408B2 (en) | Rare earth permanent magnet | |
JP2001210508A (en) | Method of manufacturing arc segment magnet, ring magnet, and rare earth sintered magnet | |
JP3540438B2 (en) | Magnet and manufacturing method thereof | |
JP4282016B2 (en) | Manufacturing method of rare earth sintered magnet | |
JP2020053440A (en) | Method of manufacturing rare earth magnet | |
JP2015026795A (en) | Powder for magnets, rare earth magnet, method for manufacturing powder for magnets, and method for manufacturing rare earth magnet | |
WO2017191790A1 (en) | Rare-earth permanent magnet, and method for manufacturing same | |
JP4506981B2 (en) | Manufacturing method of rare earth sintered magnet | |
JP2006328517A (en) | Method for producing rare earth alloy powder molding |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A529 | Written submission of copy of amendment under article 34 pct |
Free format text: JAPANESE INTERMEDIATE CODE: A5211 Effective date: 20161207 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20161207 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20171003 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20171026 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20180327 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20180409 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 6330907 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |