JP6569408B2 - Rare earth permanent magnet - Google Patents

Rare earth permanent magnet Download PDF

Info

Publication number
JP6569408B2
JP6569408B2 JP2015178815A JP2015178815A JP6569408B2 JP 6569408 B2 JP6569408 B2 JP 6569408B2 JP 2015178815 A JP2015178815 A JP 2015178815A JP 2015178815 A JP2015178815 A JP 2015178815A JP 6569408 B2 JP6569408 B2 JP 6569408B2
Authority
JP
Japan
Prior art keywords
main phase
rare earth
permanent magnet
coercive force
earth permanent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015178815A
Other languages
Japanese (ja)
Other versions
JP2017054983A (en
Inventor
啓司 武田
啓司 武田
靖 榎戸
靖 榎戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2015178815A priority Critical patent/JP6569408B2/en
Publication of JP2017054983A publication Critical patent/JP2017054983A/en
Application granted granted Critical
Publication of JP6569408B2 publication Critical patent/JP6569408B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Description

本発明は、希土類永久磁石に関し、特に希土類元素の一部および全部にPrを含む高い磁気異方性を利用した永久磁石に関する。 The present invention relates to a rare earth permanent magnet, and more particularly to a permanent magnet using high magnetic anisotropy containing Pr in a part and all of a rare earth element.

希土類元素とFeやCoなどの遷移金属元素の金属間化合物を主成分とする希土類磁石は、高い結晶磁気異方性を有しているため、高性能な永久磁石として、民生、産業、輸送機器などに広く用いられている。近年、各種電気機器の小形化の要求が高まり、それに応えるためにさらに高い磁気特性を有する高性能の永久磁石が求められている。 Rare earth magnets mainly composed of intermetallic compounds of rare earth elements and transition metal elements such as Fe and Co have high crystal magnetic anisotropy, so that they can be used as high-performance permanent magnets in consumer, industrial and transportation equipment. Widely used in In recent years, there has been an increasing demand for miniaturization of various electric devices, and in order to meet the demand, a high-performance permanent magnet having higher magnetic properties is required.

正方晶R14B化合物を主相とする希土類永久磁石(Rは希土類元素、TはFeまたはその一部がCoによって置換されたFe)は優れた磁気特性を有することが知られており、1982年の発明(特許文献1)以来、代表的な高性能永久磁石である。 It is known that a rare earth permanent magnet (R is a rare earth element, T is Fe or Fe partially substituted by Co) having excellent magnetic properties, and the main phase is a tetragonal R 2 T 14 B compound. Since the invention in 1982 (Patent Document 1), it is a typical high-performance permanent magnet.

希土類元素RがNd、Pr、Dy、Ho、TbからなるR−T−B系永久磁石は異方性磁界Haが大きく永久磁石材料として好ましい。中でも希土類元素RをNdとしたNd−Fe−B系永久磁石は、飽和磁化Is、キュリー温度Tc、異方性磁界Haのバランスが良いため広く用いられている。 An R-T-B type permanent magnet in which the rare earth element R is made of Nd, Pr, Dy, Ho, and Tb has a large anisotropic magnetic field Ha and is preferable as a permanent magnet material. Among these, Nd—Fe—B permanent magnets in which the rare earth element R is Nd are widely used because they have a good balance of saturation magnetization Is, Curie temperature Tc, and anisotropic magnetic field Ha.

また、特許文献2では、TbCu型結晶構造を有するR−T化合物を主相とする永久磁石において、主相中のFe濃度が高く、飽和磁束密度の高い磁性材料が提案されている。 Patent Document 2 proposes a magnetic material having a high Fe concentration in the main phase and a high saturation magnetic flux density in a permanent magnet having an R—T compound having a TbCu 7- type crystal structure as a main phase.

さらに、特許文献3では、ThMn12型結晶構造を有するR−T化合物を主相とする、永久磁石中で最も主相中のFe濃度が高い磁性材料が提案されている。非特許文献1には、主相粒子の結晶構造がThMn12型であるNd(Fe0.93Co0.02Mo0.0512薄膜において1.62Tの高い飽和磁束密度、693kA/mの高い保磁力が報告されている。 Further, Patent Document 3 proposes a magnetic material having the highest Fe concentration in the main phase among the permanent magnets, the main phase being an RT compound having a ThMn 12 type crystal structure. Non-Patent Document 1 discloses a high saturation magnetic flux density of 1.62 T in an Nd (Fe 0.93 Co 0.02 Mo 0.05 ) 12 N y thin film having a crystal structure of main phase particles of ThMn 12 type, 693 kA / A high coercive force of m has been reported.

一方で、最近需要が伸びている電気自動車、ハイブリッド自動車の駆動用モーター等、永久磁石を更なる広範囲の用途に使用するためには高温でも十分な磁気特性を持つことが必要で、高温における高い磁気特性を実現するためには、室温において高保磁力である必要がある。しかし、現状のNdを主要原料とするR−T−B系永久磁石では保磁力の大きさが十分ではなく、希少で高価な重希土類を使用する必要がある。 On the other hand, in order to use permanent magnets for a wider range of applications, such as drive motors for electric vehicles and hybrid vehicles, for which demand has been increasing recently, it is necessary to have sufficient magnetic properties even at high temperatures. In order to realize magnetic characteristics, it is necessary to have a high coercive force at room temperature. However, the present R—T—B system permanent magnets mainly made of Nd do not have a sufficient coercive force, and it is necessary to use rare and expensive heavy rare earths.

特開昭59−46008号公報JP 59-46008 A 特開平6−172936号公報JP-A-6-172936 特開平4−346202号公報JP-A-4-346202

Journal of Applied Physics、75巻、6009頁、1994年Journal of Applied Physics, 75, 6009, 1994

本発明はこうした状況を認識してなされたものであり、希土類永久磁石において、高保磁力な希土類永久磁石を提供することを目的とする。 The present invention has been made in view of these circumstances, and an object of the present invention is to provide a rare earth permanent magnet having a high coercive force as a rare earth permanent magnet.

上述した課題を解決し、目的を達成するために、本発明の希土類永久磁石は、主相粒子中の3価のPr原子数をP3、4価のPr原子数をP4としたときの存在比率P4/(P3+P4)を、P4/(P3+P4)≧0.1であることを特徴とする。これにより、4価のPr由来の磁気異方性の向上という作用が得られる。その結果、高い保磁力を持つ希土類永久磁石を得ることができる。 In order to solve the above-described problems and achieve the object, the rare earth permanent magnet of the present invention has an abundance ratio when the number of trivalent Pr atoms in the main phase particles is P3 and the number of tetravalent Pr atoms is P4. P4 / (P3 + P4) is characterized by P4 / (P3 + P4) ≧ 0.1. Thereby, the effect | action of the improvement of the magnetic anisotropy derived from tetravalent Pr is acquired. As a result, a rare earth permanent magnet having a high coercive force can be obtained.

本発明の希土類永久磁石は、主相粒子がNdFe14B型結晶構造(空間群P4/mnm)を有するR−T−X化合物であり、RはPrを必須とするY、La、Ce、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、YbおよびLuの1種以上からなる希土類元素、TはFeまたはFeおよびCoを必須とする1種以上の遷移金属元素、XはBまたはBとその一部をBe、CもしくはSiで置換した元素であることが好ましい。これにより、4価のPr由来の磁気異方性の向上という作用が得られ、その結果、主相粒子がNdFe14B型結晶構造の高い保磁力を持つ希土類永久磁石を得ることができる。 The rare earth permanent magnet of the present invention is an R-T-X compound in which the main phase particles have an Nd 2 Fe 14 B type crystal structure (space group P4 2 / mnm), and R is Y, La, in which Pr is essential. Ce, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu, a rare earth element, T is one or more transition metal elements essential to Fe, Fe, and Co , X is preferably B or an element obtained by substituting B and a part thereof with Be, C, or Si. As a result, the effect of improving the magnetic anisotropy derived from tetravalent Pr is obtained, and as a result, a rare earth permanent magnet having a high coercive force in which the main phase particles have an Nd 2 Fe 14 B type crystal structure can be obtained. .

本発明の希土類永久磁石は、主相粒子がTbCu型結晶構造(空間群P6/mmm)を有するR−T化合物であり、RはPrを必須とするY、La、Ce、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、YbおよびLuの1種以上からなる希土類元素、TはFeまたはFeおよびCoを必須とする1種以上の遷移金属元素であることが好ましい。これにより、4価のPr由来の磁気異方性の向上という作用が得られる。その結果、主相粒子がTbCu型結晶構造の高い保磁力を持つ希土類永久磁石を得ることができる。 The rare earth permanent magnet of the present invention is an RT compound in which the main phase particles have a TbCu 7 type crystal structure (space group P6 / mmm), and R is Y, La, Ce, Nd, Sm, in which Pr is essential. Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu are preferably one or more rare earth elements, and T is preferably one or more transition metal elements essentially comprising Fe or Fe and Co. Thereby, the effect | action of the improvement of the magnetic anisotropy derived from tetravalent Pr is acquired. As a result, it is possible to obtain a rare earth permanent magnet whose main phase particles have a TbCu 7 type crystal structure and a high coercive force.

前記TbCu型結晶構造(空間群P6/mmm)を有するR−T化合物であって、主相粒子が、さらに侵入元素Z(ZはN、H、Be、Cの1種以上からなる元素)を含むことが好ましい。侵入元素Zによって磁気異方性の向上という作用が得られる。その結果、保磁力の向上を得ることができる。 An RT compound having the TbCu 7- type crystal structure (space group P6 / mmm), wherein the main phase particles further include an intrusion element Z (Z is an element composed of one or more of N, H, Be, and C). It is preferable to contain. The intrusion element Z provides an effect of improving magnetic anisotropy. As a result, the coercive force can be improved.

前記TbCu型結晶構造(空間群P6/mmm)を有するR−T化合物であって、主相粒子が、Rの一部をZrで置換したことが好ましい。Zr置換によって磁気異方性の向上という作用が得られる。その結果、保磁力の向上を得ることができる。 It is an RT compound having the TbCu 7- type crystal structure (space group P6 / mmm), and the main phase particles preferably have R partially substituted with Zr. The effect of improving magnetic anisotropy is obtained by Zr substitution. As a result, the coercive force can be improved.

本発明の希土類永久磁石は、主相粒子がThMn12型結晶構造(空間群I4/mmm)を有するR−T化合物であり、RはPrを必須とするY、La、Ce、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、YbおよびLuの1種以上からなる希土類元素、TはFeまたはFeおよびCoを必須とする1種以上の遷移金属元素、またはその一部をM(Ti、V、Cr、Mo、W、Zr、Hf、Nb、Ta、Al、Si、Cu、Zn、Ga、Geの1種以上)で置換した元素であることが好ましい。これにより、4価のPr由来の磁気異方性の向上という作用が得られる。その結果、主相粒子がThMn12型結晶構造の高い保磁力を持つ希土類永久磁石を得ることができる。 The rare earth permanent magnet of the present invention is an RT compound in which the main phase particles have a ThMn 12 type crystal structure (space group I4 / mmm), and R is Y, La, Ce, Nd, Sm, in which Pr is essential. Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and a rare earth element composed of one or more of Lu, T is one or more transition metal elements essential for Fe or Fe and Co, or a part thereof An element substituted with M (one or more of Ti, V, Cr, Mo, W, Zr, Hf, Nb, Ta, Al, Si, Cu, Zn, Ga, and Ge) is preferable. Thereby, the effect | action of the improvement of the magnetic anisotropy derived from tetravalent Pr is acquired. As a result, it is possible to obtain a rare earth permanent magnet whose main phase particles have a ThMn 12 crystal structure and a high coercive force.

前記ThMn12型結晶構造(空間群I4/mmm)を有するR−T化合物であって、主相粒子が、さらに侵入元素Z(ZはN、H、Be、Cの1種以上からなる元素)を含むことが好ましい。侵入元素Zによって磁気異方性の向上という作用が得られる。その結果、保磁力の向上を得ることができる。 An RT compound having the ThMn 12 type crystal structure (space group I4 / mmm), wherein the main phase particles are further intrusive elements Z (Z is an element composed of one or more of N, H, Be, and C). It is preferable to contain. The intrusion element Z provides an effect of improving magnetic anisotropy. As a result, the coercive force can be improved.

本発明の希土類永久磁石は、主相粒子中の3価のPr原子数および4価のPr原子数の存在比率は電子エネルギー損失分光(EELS:Electron Energy−Loss Spectroscopy)によって算出されることが好ましい。 In the rare earth permanent magnet of the present invention, the ratio of the number of trivalent Pr atoms and the number of tetravalent Pr atoms in the main phase particles is preferably calculated by electron energy loss spectroscopy (EELS: Electron Energy-Loss Spectroscopy). .

本発明によれば、元素の組み合わせにより最近接元素とPrとの原子間距離を調整することでPrは4価の状態となり、4価のPrの高い磁気異方性を利用した高い保磁力を有する永久磁石が実現できる。 According to the present invention, by adjusting the interatomic distance between the nearest element and Pr by the combination of elements, Pr becomes a tetravalent state, and has a high coercive force utilizing the high magnetic anisotropy of tetravalent Pr. A permanent magnet can be realized.

以下、本発明の好適な実施の形態を詳述する。なお、実施の形態は発明を限定するものではなく例示であり、実施の形態に記述されるすべての特徴やその組み合わせは必ずしも発明の本質的なものであるとは限らない。 Hereinafter, preferred embodiments of the present invention will be described in detail. The embodiments do not limit the invention but are exemplifications, and all features and combinations described in the embodiments are not necessarily essential to the invention.

本実施形態において、Pr元素の4f軌道に電子が2個入った状態はイオン結晶における3価のPrと類似した電子構造をもつことから3価のPr状態とし、一方、Pr元素の4f軌道に電子が1個入った状態はイオン結晶における4価のPrと類似した電子構造をもつことから4価のPr状態と定義する。 In the present embodiment, the state in which two electrons enter the 4f orbit of the Pr element is a trivalent Pr state because it has an electronic structure similar to that of the trivalent Pr in the ionic crystal, while the Pr element has the 4f orbital. A state in which one electron is contained is defined as a tetravalent Pr state because it has an electronic structure similar to that of tetravalent Pr in an ionic crystal.

本発明者らは、希土類永久磁石において結晶内のPrと周辺元素との原子間距離の調整により、Prの4f軌道に電子が1個入った状態が安定化し、4価のPr状態に起因する高い磁気異方性を有する永久磁石が得られることを見出した。 In the rare earth permanent magnet, the inventors have stabilized the state in which one electron has entered the 4f orbit of Pr by adjusting the interatomic distance between Pr in the crystal and surrounding elements, and this is caused by the tetravalent Pr state. It has been found that a permanent magnet having high magnetic anisotropy can be obtained.

希土類永久磁石においてPr元素中の電子は伝導電子として振る舞うが、Pr周辺元素との距離を調整することで、4f電子が1個入って、4f電子系において対称軸方向に最も大きく収縮した扁平形状の4f軌道が安定化した状態を実現できると本発明者らは考える。 In the rare earth permanent magnet, the electrons in the Pr element behave as conduction electrons, but by adjusting the distance from the Pr peripheral element, one 4f electron enters and a flat shape that contracts the most in the direction of the symmetry axis in the 4f electron system. The present inventors consider that a state in which the 4f orbit is stabilized can be realized.

希土類永久磁石において対称軸方向に最も大きく収縮した扁平形状電子雲となる、Pr4f軌道に1個の電子が存在する状態、すなわち4価のPr状態の発現により高い磁気異方性が期待できる。 High magnetic anisotropy can be expected due to the presence of one electron in the Pr4f orbit, that is, the expression of a tetravalent Pr state, which is a flat electron cloud that is most contracted in the direction of the symmetry axis in the rare earth permanent magnet.

すなわち、Prと周辺元素との原子間距離を調整し、Pr4f軌道に1個の電子を安定化させることで高い磁気異方性を有する希土類永久磁石が実現できる。 That is, a rare earth permanent magnet having high magnetic anisotropy can be realized by adjusting the interatomic distance between Pr and peripheral elements and stabilizing one electron in the Pr4f orbit.

さらに本発明者らは、P4/(P3+P4)≧0.1の範囲で4価状態のPrを実現することによって高い保磁力を示す永久磁石が得られることを見出した。P4/(P3+P4)が0.1より小さいと、室温においても保磁力の向上が認められなかった。これは4価状態のPrの存在量が十分でなく、4価状態のPrの高い一軸磁気異方性の効果が十分に得られないためと発明者らは考える。 Furthermore, the present inventors have found that a permanent magnet exhibiting a high coercive force can be obtained by realizing a tetravalent Pr in the range of P4 / (P3 + P4) ≧ 0.1. When P4 / (P3 + P4) is less than 0.1, no improvement in coercive force was observed even at room temperature. The inventors consider that this is because the amount of Pr in the tetravalent state is not sufficient, and the effect of high uniaxial magnetic anisotropy of the tetravalent Pr is not sufficiently obtained.

本実施形態における希土類永久磁石の主相は、Pr−Fe系、Pr−Fe−N系、Pr−Fe−B系、Pr−Co系、Pr−Co−N系、Pr−Co−B系を含有するものが挙げられるが、これらに何ら制限されるものではなく、Prの一部を他の希土類元素で置換してもよく、2種以上を併用して希土類永久磁石を形成してもよい。また、本実施形態における希土類永久磁石の主相の結晶構造は、NdFe14B型結晶構造(空間群P4/mnm)、TbCu型結晶構造(空間群P6/mmm)、ThMn12型結晶構造(空間群I4/mmm)、CaCu型結晶構造(空間群P6/mmm)、Zn17Th型結晶構造(空間群R−3m)、NdFe17型結晶構造(空間群P6/mcm)等が挙げられるが、これらに何ら制限されるものではなく、2種以上を併用して希土類永久磁石を形成してもよい。 The main phase of the rare earth permanent magnet in this embodiment is Pr—Fe, Pr—Fe—N, Pr—Fe—B, Pr—Co, Pr—Co—N, or Pr—Co—B. Although what is contained is mentioned, it is not restrict | limited at all to these, A part of Pr may be substituted with another rare earth element, and a rare earth permanent magnet may be formed by using 2 or more types together. . Further, the crystal structure of the main phase of the rare earth permanent magnet in the present embodiment is Nd 2 Fe 14 B type crystal structure (space group P4 2 / mnm), TbCu 7 type crystal structure (space group P6 / mmm), ThMn 12 type. Crystal structure (space group I4 / mmm), CaCu 5 type crystal structure (space group P6 / mmm), Zn 17 Th 2 type crystal structure (space group R-3m), Nd 5 Fe 17 type crystal structure (space group P6 3 However, the present invention is not limited to these, and a rare earth permanent magnet may be formed by using two or more kinds in combination.

本実施形態の1つである、主相粒子がNdFe14B型結晶構造(空間群P4/mnm)を有するR−T−X化合物について具体的に述べる。本実施形態においてNdFe14B型結晶構造(空間群P4/mnm)を有するR−T−X化合物を、以下ではNdFe14B型R−T−X化合物と記載する。 An R-T-X compound in which the main phase particles have an Nd 2 Fe 14 B type crystal structure (space group P4 2 / mnm), which is one of the embodiments, will be specifically described. In the present embodiment, an R-T-X compound having an Nd 2 Fe 14 B-type crystal structure (space group P4 2 / mnm) is hereinafter referred to as an Nd 2 Fe 14 B-type R-T-X compound.

NdFe14B型R−T−X化合物のRは、Prを必須とするY、La、Ce、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、YbおよびLuの1種以上からなる希土類元素である。Prは4f軌道に1個の電子が存在する状態、すなわち4価状態の発現により高い磁気異方性が期待できる。すなわち、Pr量の増加によって高い磁気異方性が期待でき、永久磁石の高保磁力化が可能となる。なお、全希土類元素に占めるPrの割合としては、好ましくは少なくとも50at%以上であること、より好ましくは75at%以上であることである。 R of the Nd 2 Fe 14 B type R-T-X compound is 1 of Y, La, Ce, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu, which requires Pr. It is a rare earth element composed of more than seeds. Pr can be expected to have high magnetic anisotropy due to the presence of one electron in the 4f orbit, that is, the expression of a tetravalent state. That is, high magnetic anisotropy can be expected by increasing the amount of Pr, and the coercivity of the permanent magnet can be increased. The ratio of Pr in the total rare earth elements is preferably at least 50 at% or more, more preferably 75 at% or more.

NdFe14B型R−T−X化合物のRの量は、6at%以上35at%以下が好ましい。Rの量が6at%未満であると、主相の生成が十分でなく、軟磁性を持つα−Feなどが析出し、保磁力が著しく低下する。一方、Rが35at%を超えると主相の体積比率が低下し、飽和磁束密度が低下する。 The amount of R in the Nd 2 Fe 14 B type RTX compound is preferably 6 at% or more and 35 at% or less. When the amount of R is less than 6 at%, the main phase is not sufficiently generated, and α-Fe having soft magnetism is precipitated, and the coercive force is remarkably lowered. On the other hand, when R exceeds 35 at%, the volume ratio of the main phase decreases, and the saturation magnetic flux density decreases.

NdFe14B型R−T−X化合物のTは、FeまたはFeおよびCoを必須とする1種以上の遷移金属元素である。Tの量はRとXの残部からなる。適切な量のCoを加えることで飽和磁束密度を向上させることができる。また、Co量の増加によってキュリー温度を向上させることができ、温度上昇に対する保磁力の低下を小さく抑えることが可能となる。また、Co量の増加によって希土類永久磁石の耐食性を向上させることができる。過剰なCo量の増加は飽和磁束密度の低下を招くが保磁力を増加させる傾向があり、Co量全域において高い磁気異方性の希土類永久磁石の実現が可能である。 T in the Nd 2 Fe 14 B-type R—T—X compound is one or more transition metal elements in which Fe or Fe and Co are essential. The amount of T consists of the remainder of R and X. The saturation magnetic flux density can be improved by adding an appropriate amount of Co. Further, the Curie temperature can be improved by increasing the amount of Co, and the decrease in coercive force with respect to the temperature rise can be suppressed to a small level. Further, the corrosion resistance of the rare earth permanent magnet can be improved by increasing the amount of Co. An excessive increase in the amount of Co causes a decrease in saturation magnetic flux density but tends to increase the coercive force, and it is possible to realize a rare earth permanent magnet having high magnetic anisotropy over the entire Co amount.

NdFe14B型R−T−X化合物のXは、BまたはBとその一部をBe、CもしくはSiで置換した元素である。Xの量は3at%以上15at%以下が望ましい。XがBのとき、Prと最近接元素との原子間距離が最適値をとり4価のPr状態の発現が期待できるため、Xに占めるBの割合は大きい方が望ましい。 X in the Nd 2 Fe 14 B type RTX compound is an element obtained by substituting B or B and a part thereof with Be, C or Si. The amount of X is desirably 3 at% or more and 15 at% or less. When X is B, the interatomic distance between Pr and the nearest element takes an optimum value, and the expression of a tetravalent Pr state can be expected. Therefore, it is desirable that the ratio of B in X is larger.

また、本実施形態の1つである、主相粒子がTbCu型結晶構造(空間群P6/mmm)を有するR−T化合物について具体的に述べる。本実施形態においてTbCu型結晶構造(空間群P6/mmm)を有するR−T化合物を、以下ではTbCu型R−T化合物と記載する。 Further, an RT compound in which the main phase particles have a TbCu 7 type crystal structure (space group P6 / mmm), which is one of the present embodiments, will be specifically described. In the present embodiment, an RT compound having a TbCu 7 type crystal structure (space group P6 / mmm) is hereinafter referred to as a TbCu 7 type RT compound.

TbCu型R−T化合物のRは、Prを必須とするY、La、Ce、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、YbおよびLuの1種以上からなる希土類元素とする。Prは4f軌道に1個の電子が存在する状態、すなわち4価状態の発現により高い磁気異方性が期待できる。すなわち、Pr量の増加によって高い磁気異方性が期待でき、永久磁石の高保磁力化が可能となる。なお、全希土類元素に占めるPrの割合としては、好ましくは少なくとも50at%以上であること、より好ましくは75at%以上であることである。 R in the TbCu 7 type RT compound is a rare earth composed of one or more of Y, La, Ce, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu, which require Pr. Elemental. Pr can be expected to have high magnetic anisotropy due to the presence of one electron in the 4f orbit, that is, the expression of a tetravalent state. That is, high magnetic anisotropy can be expected by increasing the amount of Pr, and the coercivity of the permanent magnet can be increased. The ratio of Pr in the total rare earth elements is preferably at least 50 at% or more, more preferably 75 at% or more.

TbCu型R−T化合物のRの量は、6.3at%以上37.5at%以下が好ましい。Rの量が6.3at%未満であると、主相の生成が十分でなく、軟磁性を持つα−Feなどが析出し、保磁力が著しく低下する。一方、Rが37.5at%を超えると主相の体積比率が低下し、飽和磁束密度が低下する。 The amount of R in the TbCu 7 type RT compound is preferably 6.3 at% or more and 37.5 at% or less. When the amount of R is less than 6.3 at%, the main phase is not sufficiently generated, and α-Fe having soft magnetism is precipitated, and the coercive force is remarkably lowered. On the other hand, when R exceeds 37.5 at%, the volume ratio of the main phase decreases, and the saturation magnetic flux density decreases.

TbCu型R−T化合物のTは、FeまたはFeおよびCoを必須とする1種以上の遷移金属元素とする。また、Co量の増加によって希土類永久磁石の耐食性を向上させることができる。 T in the TbCu 7 type RT compound is one or more transition metal elements that essentially require Fe or Fe and Co. Further, the corrosion resistance of the rare earth permanent magnet can be improved by increasing the amount of Co.

TbCu型R−T化合物は、侵入元素Zを含んでもよく、ZはN、H、Be、Cの1種以上からなる元素とする。Zの量は0at%以上10at%以下が望ましい。Zが結晶格子内に侵入することで保磁力を向上させることができる。これは、侵入元素によって結晶磁気異方性が向上するためと考えられる。 The TbCu 7 type RT compound may contain an interstitial element Z, where Z is an element composed of one or more of N, H, Be, and C. The amount of Z is preferably 0 at% or more and 10 at% or less. The coercive force can be improved by the penetration of Z into the crystal lattice. This is presumably because the magnetocrystalline anisotropy is improved by the intruding elements.

TbCu型R−T化合物のRの一部をZrで置換してもよい。Zrの置換はR総量に対して0at%より大きく、50at%以下が望ましい。かかる範囲とすることで、飽和磁束密度を向上させることができる。これは、Zrの置換によってFeの3d電子の局在化が促進されるためと考えられる。 A part of R of the TbCu 7 type RT compound may be substituted with Zr. Zr substitution is preferably greater than 0 at% and less than 50 at% relative to the total amount of R. By setting it as this range, a saturation magnetic flux density can be improved. This is presumably because the substitution of Zr promotes the localization of Fe 3d electrons.

また、本実施形態の1つである、主相粒子がThMn12型結晶構造(空間群I4/mmm)を有するR−T化合物について具体的に述べる。本実施形態においてThMn12型結晶構造(空間群I4/mmm)を有するR−T化合物を、以下ではThMn12型R−T化合物と記載する。 In addition, an RT compound in which the main phase particles have a ThMn 12 type crystal structure (space group I4 / mmm), which is one of the embodiments, will be specifically described. In the present embodiment, an RT compound having a ThMn 12 type crystal structure (space group I4 / mmm) is hereinafter referred to as a ThMn 12 type RT compound.

ThMn12型R−T化合物のRは、Prを必須とするY、La、Ce、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、YbおよびLuの1種以上からなる希土類元素とする。Prは4f軌道に1個の電子が存在する状態、すなわち4価状態の発現により高い磁気異方性が期待できる。すなわち、Pr量の増加によって高い磁気異方性が期待でき、永久磁石の高保磁力化が可能となる。なお、全希土類元素に占めるPrの割合としては、好ましくは少なくとも50at%以上であること、より好ましくは75at%以上であることである。 R of the ThMn 12 type RT compound is a rare earth composed of one or more of Y, La, Ce, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu, which require Pr. Elemental. Pr can be expected to have high magnetic anisotropy due to the presence of one electron in the 4f orbit, that is, the expression of a tetravalent state. That is, high magnetic anisotropy can be expected by increasing the amount of Pr, and the coercivity of the permanent magnet can be increased. The ratio of Pr in the total rare earth elements is preferably at least 50 at% or more, more preferably 75 at% or more.

ThMn12型R−T化合物のRの量は、4.2at%以上25.0at%以下が好ましい。Rの量が4.2at%未満であると、主相の生成が十分でなく、軟磁性を持つα−Feなどが析出し、保磁力が著しく低下する。一方、Rが25.0at%を超えると主相の体積比率が低下し、飽和磁束密度が低下する。かかる範囲とすることで、飽和磁束密度を向上させることができる。 The amount of R in the ThMn 12 type RT compound is preferably 4.2 at% or more and 25.0 at% or less. When the amount of R is less than 4.2 at%, the main phase is not sufficiently generated, α-Fe or the like having soft magnetism is precipitated, and the coercive force is remarkably lowered. On the other hand, when R exceeds 25.0 at%, the volume ratio of the main phase decreases and the saturation magnetic flux density decreases. By setting it as this range, a saturation magnetic flux density can be improved.

ThMn12型R−T化合物のTは、FeまたはFeおよびCoを必須とする1種以上の遷移金属元素、またはその一部をM(Ti、V、Cr、Mo、W、Zr、Hf、Nb、Ta、Al、Si、Cu、Zn、Ga、Geの1種以上)で置換した元素とする。適切な量のCoを加えることで飽和磁束密度を向上させることができる。また、Co量の増加によって希土類永久磁石の耐食性を向上させることができる。M量はT総量に対して0.4at%以上25at%以下が望ましい。MがT総量に対して0.4at%未満では軟磁性を持つRFe17やα−Feが析出して主相の体積比率が低下し、25at%を超えると飽和磁束密度が著しく低下する。 T of the ThMn 12 type RT compound is one or more transition metal elements essential for Fe or Fe and Co, or a part thereof is M (Ti, V, Cr, Mo, W, Zr, Hf, Nb , Ta, Al, Si, Cu, Zn, Ga, and Ge). The saturation magnetic flux density can be improved by adding an appropriate amount of Co. Further, the corrosion resistance of the rare earth permanent magnet can be improved by increasing the amount of Co. The M amount is preferably 0.4 at% or more and 25 at% or less with respect to the total T amount. When M is less than 0.4 at% with respect to the total amount of T, soft magnetic R 2 Fe 17 and α-Fe precipitate and the volume ratio of the main phase decreases, and when it exceeds 25 at%, the saturation magnetic flux density significantly decreases. .

ThMn12型R−T化合物は、侵入元素Zを含んでもよく、ZはN、H、Be、Cの1種以上からなる元素とする。Zの量は0at%以上14at%以下が望ましい。Zが結晶格子内に侵入することで保磁力を向上させることができる。これは、侵入元素によって結晶磁気異方性が向上するためと考えられる。 The ThMn 12 type RT compound may contain an intruding element Z, and Z is an element composed of one or more of N, H, Be, and C. The amount of Z is preferably 0 at% or more and 14 at% or less. The coercive force can be improved by the penetration of Z into the crystal lattice. This is presumably because the magnetocrystalline anisotropy is improved by the intruding elements.

本実施形態に係るすべての希土類永久磁石は、他の元素の含有を許容する。例えば、Bi、Sn、Ag等の元素を適宜含有させることができる。また、希土類元素は原料に由来する不純物を含んでもよい。 All rare earth permanent magnets according to this embodiment allow the inclusion of other elements. For example, elements such as Bi, Sn, and Ag can be appropriately contained. Further, the rare earth element may contain impurities derived from the raw material.

以下、本件発明の製造方法の好適な例について説明する。
焼結磁石の製造方法の一例について説明する。まず、所望の組成を有する希土類永久磁石が得られるような原料合金を準備する。原料合金は、真空又は不活性ガス、望ましくはAr雰囲気中でストリップキャスト法、その他公知の溶解法により作製することができる。ストリップキャスト法は、原料金属をArガス雰囲気などの非酸化雰囲気中で溶解して得た溶湯を回転するロールの表面に噴出させる。ロールで急冷された溶湯は、薄板または薄片(鱗片)状に急冷凝固される。この急冷凝固された合金は、結晶粒径が1μm〜50μmの均質な組織を有している。原料合金は、ストリップキャスト法に限らず、高周波誘導溶解等の溶解法によって得ることができる。なお、溶解後の偏析を防止するため、例えば水冷銅板に傾注して凝固させることができる。また、還元拡散法によって得られた合金を原料合金として用いることもできる。
Hereinafter, preferred examples of the production method of the present invention will be described.
An example of a method for manufacturing a sintered magnet will be described. First, a raw material alloy capable of obtaining a rare earth permanent magnet having a desired composition is prepared. The raw material alloy can be produced by a strip casting method or other known melting methods in a vacuum or an inert gas, preferably in an Ar atmosphere. In the strip casting method, a molten metal obtained by melting a raw metal in a non-oxidizing atmosphere such as an Ar gas atmosphere is ejected onto the surface of a rotating roll. The melt rapidly cooled by the roll is rapidly solidified in the form of a thin plate or flakes (scales). This rapidly solidified alloy has a homogeneous structure with a crystal grain size of 1 μm to 50 μm. The raw material alloy can be obtained not only by the strip casting method but also by a melting method such as high frequency induction melting. In order to prevent segregation after dissolution, for example, it can be solidified by pouring into a water-cooled copper plate. An alloy obtained by the reduction diffusion method can also be used as a raw material alloy.

原料合金として、1種類の合金から永久磁石を作成するいわゆるシングル合金法の適用を基本とするが、主相粒子である主体とする主相合金(低R合金)と、低R合金よりRを多く含み、粒界の形成に有効に寄与する合金(高R合金)とを用いる所謂混合法を適用することもできる。 As a raw material alloy, it is based on the application of a so-called single alloy method in which a permanent magnet is made from one type of alloy, but the main phase alloy (low R alloy) that is the main phase particles and R from the low R alloy. A so-called mixing method using an alloy (a high R alloy) that contains a large amount and contributes effectively to the formation of grain boundaries can also be applied.

原料合金は粉砕工程に供される。混合法による場合には、低R合金及び高R合金は別々に又は一緒に粉砕される。粉砕工程には、粗粉砕工程と微粉砕工程とがある。まず、原料合金を、粒径数百μm程度になるまで粗粉砕する。粗粉砕は、スタンプミル、ジョークラッシャー、ブラウンミル等を用い、不活性ガス雰囲気中にて行なうことが望ましい。粗粉砕に先立って、原料合金に水素を吸蔵させた後に放出させることにより粉砕を行なうことが効果的である。水素放出処理は、焼結磁石として不純物となる水素を減少させることを目的として行われる。水素吸蔵のための加熱保持の温度は、200℃以上、望ましくは350℃以上とする。保持時間は、保持温度との関係、原料合金の厚さ等によって変わるが、少なくとも30分以上、望ましくは1時間以上とする。水素放出処理は、真空中又はArガスフローにて行う。なお、水素吸蔵処理、水素放出処理は必須の処理ではない。この水素粉砕を粗粉砕と位置付けて、機械的な粗粉砕を省略することもできる。 The raw material alloy is subjected to a grinding process. In the case of the mixing method, the low R alloy and the high R alloy are pulverized separately or together. The pulverization process includes a coarse pulverization process and a fine pulverization process. First, the raw material alloy is coarsely pulverized until the particle size becomes about several hundred μm. The coarse pulverization is desirably performed in an inert gas atmosphere using a stamp mill, a jaw crusher, a brown mill or the like. Prior to coarse pulverization, it is effective to perform pulverization by allowing hydrogen to be stored in the raw material alloy and then releasing it. The hydrogen releasing treatment is performed for the purpose of reducing hydrogen as an impurity as a sintered magnet. The heating and holding temperature for storing hydrogen is 200 ° C. or higher, preferably 350 ° C. or higher. The holding time varies depending on the relationship with the holding temperature, the thickness of the raw material alloy, etc., but is at least 30 minutes or longer, preferably 1 hour or longer. The hydrogen release treatment is performed in a vacuum or Ar gas flow. The hydrogen storage process and the hydrogen release process are not essential processes. This hydrogen pulverization can be regarded as coarse pulverization, and mechanical coarse pulverization can be omitted.

粗粉砕工程後、微粉砕工程に移る。微粉砕には主にジェットミルが用いられ、粒径数百μm程度の粗粉砕粉末を、平均粒径2.5μm〜6μm、望ましくは3μm〜5μmとする。ジェットミルは、高圧の不活性ガスを狭いノズルより開放して高速のガス流を発生させ、この高速のガス流により粗粉砕粉末を加速し、粗粉砕粉末同士の衝突やターゲットあるいは容器壁との衝突を発生させて粉砕する方法である。 After the coarse pulverization process, the process proceeds to the fine pulverization process. A jet mill is mainly used for fine pulverization, and a coarsely pulverized powder having a particle size of about several hundreds of μm has an average particle size of 2.5 μm to 6 μm, preferably 3 μm to 5 μm. The jet mill releases a high-pressure inert gas from a narrow nozzle to generate a high-speed gas flow, accelerates the coarsely pulverized powder with this high-speed gas flow, collides with the coarsely pulverized powder, and collides with the target or the container wall. It is a method of generating a collision and crushing.

微粉砕には湿式粉砕を用いても良い。湿式粉砕にはボールミルや湿式アトライタなどが用いられ、粒径数百μm程度の粗粉砕粉末を、平均粒径1.5μm〜5μm、望ましくは2μm〜4.5μmとする。湿式粉砕では適切な分散媒の選択により、磁石粉が酸素に触れることなく粉砕が進行するため、酸素濃度が低い微粉末が得られる。 Wet grinding may be used for fine grinding. A ball mill, a wet attritor, or the like is used for the wet pulverization, and the coarsely pulverized powder having a particle size of about several hundreds of μm has an average particle size of 1.5 μm to 5 μm, preferably 2 μm to 4.5 μm. In the wet pulverization, by selecting an appropriate dispersion medium, the pulverization proceeds without the magnet powder coming into contact with oxygen, so that a fine powder having a low oxygen concentration can be obtained.

成形時の潤滑及び配向性の向上を目的とした脂肪酸又は脂肪酸の誘導体や炭化水素、例えばステアリン酸系やオレイン酸系であるステアリン酸亜鉛、ステアリン酸カルシウム、ステアリン酸アルミニウム、ステアリン酸アミド、オレイン酸アミド、エチレンビスイソステアリン酸アミド、炭化水素であるパラフィン、ナフタレン等を微粉砕時に0.01wt%〜0.3wt%程度添加することができる。 Fatty acids or fatty acid derivatives and hydrocarbons for the purpose of improving lubrication and orientation during molding, such as zinc stearate, calcium stearate, aluminum stearate, stearamide, oleamide, stearic acid or oleic acid Further, ethylene bisisostearic acid amide, hydrocarbon paraffin, naphthalene and the like can be added in an amount of about 0.01 wt% to 0.3 wt% during pulverization.

微粉砕粉は磁場中成形に供される。磁場中成形における成形圧力は0.3ton/cm〜3ton/cm(30MPa〜300MPa)の範囲とすればよい。成形圧力は成形開始から終了まで一定であってもよく、漸増または漸減してもよく、あるいは不規則変化してもよい。成形圧力が低いほど配向性は良好となるが、成形圧力が低すぎると成形体の強度が不足してハンドリングに問題が生じるので、この点を考慮して上記範囲から成形圧力を選択する。磁場中成形で得られる成形体の最終的な相対密度は、通常、40%〜60%である。 The finely pulverized powder is subjected to molding in a magnetic field. The molding pressure in the magnetic field molding may be in the range of 0.3 ton / cm 2 to 3 ton / cm 2 (30 MPa to 300 MPa). The molding pressure may be constant from the beginning to the end of molding, may be gradually increased or gradually decreased, or may vary irregularly. The lower the molding pressure is, the better the orientation is. However, if the molding pressure is too low, the strength of the molded body is insufficient and handling problems occur. Therefore, the molding pressure is selected from the above range in consideration of this point. The final relative density of the molded body obtained by molding in a magnetic field is usually 40% to 60%.

印加する磁場は、960kA/m〜1600kA/m程度とすればよい。印加する磁場は静磁場に限定されず、パルス状の磁場とすることもできる。また、静磁場とパルス状磁場を併用することもできる。 The applied magnetic field may be about 960 kA / m to 1600 kA / m. The applied magnetic field is not limited to a static magnetic field, and may be a pulsed magnetic field. A static magnetic field and a pulsed magnetic field can also be used in combination.

成形体は焼結工程に供される。焼結は真空又は不活性ガス雰囲気中にて行われる。焼結保持温度および焼結保持時間は、結晶構造、組成、粉砕方法、平均粒径と粒度分布の違い等、諸条件により調整する必要があるが、凡そ700℃〜1200℃、20時間以上でしかるべき保持時間経過の後に降温させる。上述の焼結工程の際、容易軸と垂直な方向に2.0GPa以上の圧力で加圧することは配向方向と直角方向の縮率の差を増大させるために有効である。このようにして、組成中に含まれるPrと隣接原子間の距離が変化することにより、構造的に4価のPr状態が最も安定となり、本件発明の特徴であるPrの高い磁気異方性が発現されるものと発明者らは考える。 The formed body is subjected to a sintering process. Sintering is performed in a vacuum or an inert gas atmosphere. The sintering holding temperature and sintering holding time need to be adjusted according to various conditions such as crystal structure, composition, pulverization method, difference in average particle size and particle size distribution, etc., but about 700 ° C. to 1200 ° C. for 20 hours or more. The temperature is lowered after an appropriate holding time. In the above-described sintering step, pressurization with a pressure of 2.0 GPa or more in a direction perpendicular to the easy axis is effective in increasing the difference in shrinkage between the orientation direction and the perpendicular direction. In this way, by changing the distance between Pr contained in the composition and adjacent atoms, the tetravalent Pr state is structurally most stable, and the high magnetic anisotropy of Pr, which is a feature of the present invention, is obtained. The inventors consider that it is expressed.

焼結後、得られた焼結体に時効処理を施すことができる。 After sintering, the obtained sintered body can be subjected to an aging treatment.

次に、ボンド磁石の製造方法の一例について説明する。先ず焼結磁石の製造方法で得られた焼結体を粉砕する。粉砕工程は[0048]、[0049]、[0050]に記載の方法が適用できる。 Next, an example of a method for manufacturing a bonded magnet will be described. First, the sintered body obtained by the method for producing a sintered magnet is pulverized. The method described in [0048], [0049], and [0050] can be applied to the pulverization step.

侵入元素ZがNやHである場合、この段階で窒化処理もしくは水素化処理することができる。本焼結体粉末を0.001気圧〜10気圧の窒素ガスもしくは水素ガス中、200℃〜1000℃の温度下で0.1時間〜100時間熱処理する。熱処理の雰囲気は、窒素ガス、水素ガスを混合してもよく、さらにアンモニア等の窒素化合物ガスを用いてもよい。 When the intruding element Z is N or H, nitriding treatment or hydrogenation treatment can be performed at this stage. The sintered body powder is heat-treated in a nitrogen gas or a hydrogen gas at 0.001 to 10 atmospheres at a temperature of 200 to 1000 ° C. for 0.1 to 100 hours. The atmosphere for the heat treatment may be a mixture of nitrogen gas and hydrogen gas, or a nitrogen compound gas such as ammonia.

その後、樹脂を含む樹脂バインダーと本焼結体粉末とを例えば加圧ニーダー等の加圧混練機で混練して、樹脂バインダーと本焼結体粉末とを含むボンド磁石用コンパウンド(組成物)を調製する。樹脂は、エポキシ樹脂、フェノール樹脂等の熱硬化性樹脂や、スチレン系、オレフィン系、ウレタン系、ポリエステル系、ポリアミド系のエラストマー、アイオノマー、エチレンプロピレン共重合体(EPM)、エチレン−エチルアクリレート共重合体等の熱可塑性樹脂がある。なかでも、圧縮成形をする場合に用いる樹脂は、熱硬化性樹脂が好ましく、エポキシ樹脂又はフェノール樹脂がより好ましい。また、射出成形をする場合に用いる樹脂は熱可塑性樹脂が好ましい。また、ボンド磁石用コンパウンドには、必要に応じて、カップリング剤やその他の添加材を加えてもよい。 Thereafter, the resin binder containing the resin and the main sintered body powder are kneaded by a pressure kneader such as a pressure kneader, for example, and a bond magnet compound (composition) containing the resin binder and the main sintered body powder is obtained. Prepare. Resins include thermosetting resins such as epoxy resins and phenol resins, styrene, olefin, urethane, polyester and polyamide elastomers, ionomers, ethylene propylene copolymer (EPM), ethylene-ethyl acrylate copolymer There are thermoplastic resins such as coalescence. Among them, the resin used for compression molding is preferably a thermosetting resin, and more preferably an epoxy resin or a phenol resin. The resin used for injection molding is preferably a thermoplastic resin. Moreover, you may add a coupling agent and another additive to the compound for bonded magnets as needed.

また、ボンド磁石における本焼結体粉末と樹脂との含有比率は、本焼結体粉末100wt%に対して、樹脂を例えば0.5wt%以上20wt%以下含むことが好ましい。本焼結体粉末100wt%に対して、樹脂の含有量が0.5wt%未満であると、保形性が損なわれる傾向があり、樹脂が20wt%と超えると、十分に優れた磁気特性が得られ難くなる傾向がある。 Moreover, it is preferable that the content ratio of the main sintered body powder and the resin in the bonded magnet includes, for example, 0.5 wt% or more and 20 wt% or less of the resin with respect to 100 wt% of the main sintered body powder. If the resin content is less than 0.5 wt% with respect to 100 wt% of the sintered body powder, shape retention tends to be impaired, and if the resin content exceeds 20 wt%, sufficiently excellent magnetic properties are obtained. It tends to be difficult to obtain.

上述のボンド磁石用コンパウンドを調製した後、このボンド磁石用コンパウンドを射出成形することにより、本焼結体粉末と樹脂とを含むボンド磁石を得ることができる。射出成形によりボンド磁石を作製する場合、ボンド磁石用コンパウンドを、必要に応じてバインダー(熱可塑性樹脂)の溶融温度まで加熱し、流動状態とした後、このボンド磁石用コンパウンドを所定の形状を有する金型内に射出して成形を行う。その後、冷却し、金型から所定形状を有する成形品(ボンド磁石)を取り出す。このようにしてボンド磁石が得られる。ボンド磁石の製造方法は、上述の射出成形による方法に限定されるものではなく、例えばボンド磁石用コンパウンドを圧縮成形することにより本焼結体粉末と樹脂とを含むボンド磁石を得るようにしてもよい。圧縮成形によりボンド磁石を作製する場合、上述のボンド磁石用コンパウンドを調製した後、このボンド磁石用コンパウンドを所定の形状を有する金型内に充填し、圧力を加えて金型から所定形状を有する成形品(ボンド磁石)を取り出す。金型にてボンド磁石用コンパウンドを成形し、取り出す際には、機械プレスや油圧プレス等の圧縮成形機を用いて行なわれる。その後、加熱炉や真空乾燥炉などの炉に入れて熱をかけることにより硬化させることで、ボンド磁石が得られる。 After preparing the above-described bonded magnet compound, the bonded magnet compound can be obtained by injection molding the bonded magnet compound and including the sintered body powder and the resin. When producing a bonded magnet by injection molding, the bonded magnet compound is heated to the melting temperature of the binder (thermoplastic resin) as necessary to obtain a fluid state, and then the bonded magnet compound has a predetermined shape. Injection into the mold and molding. Then, it cools and the molded article (bond magnet) which has a predetermined shape is taken out from a metal mold | die. In this way, a bonded magnet is obtained. The manufacturing method of the bonded magnet is not limited to the above-described injection molding method. For example, a bonded magnet containing the sintered body powder and the resin may be obtained by compression molding a bonded magnet compound. Good. In the case of producing a bonded magnet by compression molding, after preparing the above-mentioned bonded magnet compound, the bonded magnet compound is filled into a mold having a predetermined shape, and pressure is applied to form the predetermined shape from the mold. Take out the molded product (bonded magnet). When forming and taking out a bonded magnet compound with a mold, a compression molding machine such as a mechanical press or a hydraulic press is used. Then, a bonded magnet is obtained by making it harden | cure by putting in furnaces, such as a heating furnace and a vacuum drying furnace, and applying heat.

成形して得られるボンド磁石の形状は特に限定されるものではなく、用いる金型の形状に応じて、例えば平板状、柱状、断面形状がリング状等、ボンド磁石の形状に応じて変更することができる。また、得られたボンド磁石は、その表面上に酸化層や樹脂層等の劣化を防止するためにめっきや塗装を施すようにしてもよい。 The shape of the bonded magnet obtained by molding is not particularly limited, and depending on the shape of the mold to be used, for example, the plate shape, the columnar shape, the cross-sectional shape may be changed according to the shape of the bonded magnet, such as a ring shape. Can do. Further, the obtained bonded magnet may be plated or painted on the surface in order to prevent deterioration of the oxide layer, the resin layer, and the like.

ボンド磁石用コンパウンドは目的とする所定の形状に成形する際、磁場を印加して成形して得られる成形体を一定方向に配向させるようにしてもよい。これにより、ボンド磁石が特定方向に配向するので、より磁性の強い異方性ボンド磁石が得られる。 When the bonded magnet compound is molded into a desired predetermined shape, a molded body obtained by molding by applying a magnetic field may be oriented in a certain direction. Thereby, since a bonded magnet orientates in a specific direction, an anisotropic bonded magnet with stronger magnetism is obtained.

以上、本件発明を好適に実施するための製造方法に関する形態を説明したが、次いで、本件発明の希土類永久磁石について、主相粒子中の組成およびPr価数を分析する方法について説明する。 As mentioned above, although the form regarding the manufacturing method for implementing this invention suitably was demonstrated, next, the method of analyzing the composition in a main phase particle | grain and Pr valence about the rare earth permanent magnet of this invention is demonstrated.

主相粒子中の組成は、エネルギー分散型X線分光法(EDS:Energy Dispersive Spectroscopy)にて決定することが可能である。試料である焼結磁石もしくはボンド磁石をX線回折法(XRD:X−Ray Diffractometry)によって主たる生成相が狙いの結晶構造に帰属されることを確認した後に、焼結磁石もしくはボンド磁石を集束イオンビーム(FIB:Focused Ion Beam)装置にて厚さ100nmの薄片状に加工し、走査透過電子顕微鏡(STEM:Scanning Transmission Electron Microscope)に備えられたEDS装置にて主相粒子の中央近傍を分析し、薄膜補正機能を用いることによって主相粒子の組成を定量化できる。EDS装置で検出困難な元素がある場合は、赤外線吸収法や質量分析法を用いて補完することができる。 The composition in the main phase particles can be determined by energy dispersive X-ray spectroscopy (EDS: Energy Dispersive Spectroscopy). After confirming that the main generated phase is assigned to the target crystal structure by X-ray diffraction (XRD), the sintered magnet or bonded magnet is then focused on the focused magnet. It is processed into a thin piece with a thickness of 100 nm using a focused ion beam (FIB) apparatus, and the vicinity of the center of the main phase particles is analyzed using an EDS apparatus provided in a scanning transmission electron microscope (STEM). The composition of the main phase particles can be quantified by using the thin film correction function. If there is an element that is difficult to detect with an EDS apparatus, it can be supplemented by using an infrared absorption method or mass spectrometry.

主相粒子中のPr原子数をPT、3価のPr原子数をP3、4価のPr原子数をP4としたときの存在比率P4/(P3+P4)はSTEMに備え付けられた電子エネルギー損失分光(EELS:Electron Energy−Loss Spectroscopy)装置を用いることにより決定することが可能である。 The abundance ratio P4 / (P3 + P4) when the number of Pr atoms in the main phase particles is PT, the number of trivalent Pr atoms is P3, and the number of tetravalent Pr atoms is P4 is the electron energy loss spectroscopy provided in the STEM ( It can be determined by using an EELS (Electron Energy-Loss Spectroscopy) apparatus.

STEMにて主相粒子の観察可能な位置に調整し、加速電圧300kV設定で観察位置に電子線を絞り照射することでEELSスペクトルを得る。標準試料PrO、PrPOはイオン性結晶であり、それぞれのPrの価数は4価、3価である。これらの標準試料のEELSスペクトルを用いることで主相粒子中の存在比率P4/(P3+P4)は算出することができる(Applied Physics Letters、68巻、3817頁、1996年参照)。 An EELS spectrum is obtained by adjusting to a position where main phase particles can be observed with STEM, and irradiating the observation position with an electron beam at an acceleration voltage of 300 kV. The standard samples PrO 2 and PrPO 4 are ionic crystals, and the valence of each Pr is tetravalent or trivalent. By using the EELS spectrum of these standard samples, the abundance ratio P4 / (P3 + P4) in the main phase particles can be calculated (see Applied Physics Letters, 68, 3817, 1996).

標準試料PrO、PrPOのEELSスペクトルそれぞれのM4、M5ピークの比率をM4(4+)/M5(4+)、M4(3+)/M5(3+)、主相粒子のスペクトルのM4、M5ピークの比率をM4/M5と定義し、[数式1]、[数式2]を用いて比較することによりP4/(P3+P4)を算出することが可能である。 The ratio of the M4 and M5 peaks of the EELS spectra of the standard samples PrO 2 and PrPO 4 is M4 (4 +) / M5 (4+), M4 (3 +) / M5 (3+), and the M4 and M5 peaks of the main phase particle spectrum It is possible to calculate P4 / (P3 + P4) by defining the ratio as M4 / M5 and comparing using [Formula 1] and [Formula 2].

[数式1]
M4/M5=P4/(P3+P4)×M4(4+)/M5(4+)+P3/(P3+P4)×M4(3+)/M5(3+)
[Formula 1]
M4 / M5 = P4 / (P3 + P4) × M4 (4 +) / M5 (4 +) + P3 / (P3 + P4) × M4 (3 +) / M5 (3+)

[数式2]
P3+P4=PT
[Formula 2]
P3 + P4 = PT

主相粒子がNdFe14B型結晶構造(空間群P4/mnm)を有するR−T−X化合物の実施例を説明する。以下、実施例および比較例に基づき、本発明をさらに具体的に説明するが、本発明は以下の実施例に何ら限定されるものではない。 Examples of R-T-X compounds in which main phase particles have an Nd 2 Fe 14 B type crystal structure (space group P4 2 / mnm) will be described. Hereinafter, the present invention will be described more specifically based on Examples and Comparative Examples, but the present invention is not limited to the following Examples.

[実施例1〜実施例18、比較例1〜比較例15]
主相粒子の組成(Pr1−aFe14Xが表1の組成となるように、Prメタル、Rメタル、FeメタルおよびXを所定量秤量し、ストリップキャスト法にて薄板状のPr−R−Fe−X合金を作製した。この合金を水素気流中にて攪拌しながら熱処理することにより粗粉末にした後に、潤滑剤としてオレイン酸アミドを添加し、ジェットミルを用いて非酸化雰囲気中にて微粉末(平均粒径3μm)にした。得られた微粉末を金型(開口寸法:20mm×18mm)に充填し、加圧方向と直角方向に磁場を1600kA/m印加しながら2.0ton/cmの圧力にて1軸加圧成形した。得られた成形体を最適焼結温度まで昇温し、容易軸と垂直な方向に1.0GPa〜10.0GPaの加圧下で700℃〜1200℃の焼結温度で15時間〜30時間保持した後に室温まで冷却させ、次いで、800℃−1時間、600℃−1時間の時効処理を行い、焼結磁石を得た。各実施例、比較例の製造条件、BHトレーサーにて測定した焼結磁石の磁気特性を表1に示す。
[Example 1 to Example 18, Comparative Example 1 to Comparative Example 15]
A predetermined amount of Pr metal, R metal, Fe metal and X are weighed so that the composition of the main phase particles (Pr 1-a R a ) 2 Fe 14 X has the composition shown in Table 1, and a thin plate is formed by strip casting. Pr-R-Fe-X alloy was prepared. This alloy was heat-treated while stirring in a hydrogen stream, and then coarse powder was added. Then, oleic acid amide was added as a lubricant, and fine powder (average particle size 3 μm) in a non-oxidizing atmosphere using a jet mill. I made it. The obtained fine powder is filled into a mold (opening size: 20 mm × 18 mm), and uniaxial pressure molding is performed at a pressure of 2.0 ton / cm 2 while applying a magnetic field of 1600 kA / m in a direction perpendicular to the pressing direction. did. The obtained molded body was heated up to the optimum sintering temperature and held at a sintering temperature of 700 ° C. to 1200 ° C. under a pressure of 1.0 GPa to 10.0 GPa in a direction perpendicular to the easy axis for 15 hours to 30 hours. After cooling to room temperature, an aging treatment was performed at 800 ° C. for 1 hour and 600 ° C. for 1 hour to obtain a sintered magnet. Table 1 shows the manufacturing conditions of each example and comparative example, and the magnetic properties of the sintered magnet measured with a BH tracer.

得られた焼結磁石を磁化容易軸である成形時の磁場印加方向と垂直に切断し、XRDによって主たる生成相がNdFe14B型結晶構造(空間群P4/mnm)に帰属されることを確認した。次いで、FIB装置にて厚さ100nmの薄片状に加工した後に、STEMに備えられたEDS装置にて主相粒子の中央近傍分析し、薄膜補正機能を用いて主相粒子の組成を定量化した。なお、EDS装置は軽元素に対する感度が低いためBの定量化は困難である。そこで、あらかじめXRDによって確認した、主たる生成相がNdFe14B型結晶構造(空間群P4/mnm)であることを根拠として、B以外の元素の組成比を以って主相粒子の組成を決定した。次いで、STEMにて主相粒子の観察可能な位置に調整し、EELSスペクトルを得た。各主相粒子の組成およびEELSスペクトルから算出されたP4/(P3+P4)を表1に示す。 The obtained sintered magnet is cut perpendicularly to the direction of magnetic field application during molding, which is an easy magnetization axis, and the main generated phase is attributed to the Nd 2 Fe 14 B type crystal structure (space group P4 2 / mnm) by XRD. It was confirmed. Next, after processing into a 100 nm-thick flake with an FIB apparatus, analysis was performed near the center of the main phase particles with an EDS apparatus provided in the STEM, and the composition of the main phase particles was quantified using a thin film correction function. . In addition, since the EDS apparatus has low sensitivity to light elements, it is difficult to quantify B. Therefore, based on the fact that the main generation phase, which has been confirmed in advance by XRD, is the Nd 2 Fe 14 B type crystal structure (space group P4 2 / mnm), the composition ratio of the main phase particles The composition was determined. Subsequently, it adjusted to the position which can observe a main phase particle | grain with STEM, and obtained the EELS spectrum. Table 1 shows the composition of each main phase particle and P4 / (P3 + P4) calculated from the EELS spectrum.

また、各主相粒子組成に対して、Prが3価状態の場合の保磁力HcJの予想値、および予想値からの実験値の増加率を算出した。算出のため、下記条件で焼結磁石を作製した。主相粒子の組成がPrFe14B、YFe14B、GdFe14B、CeFe14B、NdFe14B、DyFe14Bとなるようにし、焼結圧力を加えず、その他の作製条件は実施例1と同じとした。作製したPrFe14B焼結磁石を[0065]と同様の方法でPrの価数を評価した結果、P4/(P3+P4)は0.1未満、つまり3価状態が主であった。 In addition, for each main phase particle composition, the predicted value of the coercive force HcJ when Pr is in the trivalent state and the rate of increase of the experimental value from the predicted value were calculated. For the calculation, a sintered magnet was produced under the following conditions. The composition of the main phase particles is Pr 2 Fe 14 B, Y 2 Fe 14 B, Gd 2 Fe 14 B, Ce 2 Fe 14 B, Nd 2 Fe 14 B, Dy 2 Fe 14 B, and the sintering pressure is set In addition, the other production conditions were the same as in Example 1. As a result of evaluating the valence of Pr for the produced Pr 2 Fe 14 B sintered magnet in the same manner as in [0065], P4 / (P3 + P4) was less than 0.1, that is, the trivalent state was mainly used.

これらの焼結磁石のBHトレーサーによる保磁力HcJ測定結果(比較例1〜6)を用いて、実施例12〜18、比較例14、15の主相粒子組成に対応する保磁力HcJの予想値を算出した。計算は、主相粒子組成と保磁力HcJが線形に対応すると仮定し、[数式3]を用いた。ここで、主相粒子組成は(Pr1−aFe14B、PrFe14Bの保磁力HcJはHcJ(Pr)、RFe14Bの保磁力HcJはHcJ(R)と定義する。この計算結果に対する実験値の比率を3価状態のPrが主である場合のHcJ(組成予想値)からの増加率として表1に示す。 Using the coercive force HcJ measurement results (Comparative Examples 1 to 6) of these sintered magnets with a BH tracer, predicted values of coercive force HcJ corresponding to the main phase particle compositions of Examples 12 to 18 and Comparative Examples 14 and 15 Was calculated. In the calculation, [Formula 3] was used assuming that the main phase particle composition and the coercive force HcJ correspond linearly. Here, the main phase particle composition is (Pr 1-a R a ) 2 Fe 14 B, Pr 2 Fe 14 B has a coercive force HcJ of HcJ (Pr), and R 2 Fe 14 B has a coercive force HcJ of HcJ (R). It is defined as The ratio of the experimental value to the calculation result is shown in Table 1 as the rate of increase from HcJ (composition expected value) when Pr in the trivalent state is main.

[数式3]
HcJ(組成予想値)=(1−a)×HcJ(Pr)+a×HcJ(R)
[Formula 3]
HcJ (predicted composition value) = (1-a) × HcJ (Pr) + a × HcJ (R)

[実施例1〜3、比較例7]
PrFe14Bに対し、焼結温度のみを800℃〜1200℃まで変化させた。焼結温度が850℃〜1200℃の場合(実施例1〜3)、P4/(P3+P4)が高く保磁力HcJも高い値をもつが、焼結温度が800℃の場合(比較例7)、P4/(P3+P4)が低く、保磁力HcJも低下した。焼結温度により縮率が変化し、4価のPr状態が安定化されることで主相粒子において高保磁力が発現することが分かった。
[Examples 1 to 3, Comparative Example 7]
To Pr 2 Fe 14 B, is varied only sintering temperature to 800 ° C. to 1200 ° C.. When the sintering temperature is 850 ° C. to 1200 ° C. (Examples 1 to 3), P4 / (P3 + P4) is high and the coercive force HcJ is also high, but when the sintering temperature is 800 ° C. (Comparative Example 7), P4 / (P3 + P4) was low, and the coercive force HcJ was also reduced. It was found that the shrinkage changes depending on the sintering temperature and the tetravalent Pr state is stabilized, so that a high coercive force appears in the main phase particles.

[実施例1、4、5、比較例8]
PrFe14Bに対し、焼結時間のみを15h〜30hまで変化させた。焼結時間が20h以上の場合(実施例1、4、5)、P4/(P3+P4)、保磁力HcJともにも高い値をもち、焼結時間長時間化につれてP4/(P3+P4)、保磁力HcJともにも増加した。一方、焼結時間が15hの場合(比較例8)、焼結時間20h以上の場合と比較し、P4/(P3+P4)、保磁力HcJともに低い値となった。これにより十分な焼結時間により縮率の違いが顕著となり、4価のPr状態の安定化が促進され、主相粒子が高保磁力化することが分かった。
[Examples 1, 4, 5 and Comparative Example 8]
For Pr 2 Fe 14 B, only the sintering time was changed from 15 h to 30 h. When the sintering time is 20 hours or more (Examples 1, 4, and 5) (P4 / (P3 + P4)), the coercive force HcJ has a high value. As the sintering time becomes longer, P4 / (P3 + P4), the coercive force HcJ. Both increased. On the other hand, when the sintering time was 15 h (Comparative Example 8), both P4 / (P3 + P4) and coercive force HcJ were lower than when the sintering time was 20 h or longer. As a result, it was found that the difference in the shrinkage ratio was remarkable due to a sufficient sintering time, the stabilization of the tetravalent Pr state was promoted, and the main phase particles were increased in coercive force.

[実施例5、比較例9]
PrFe14Bに対し、焼結時間を30hで焼結温度のみ750℃、1050℃を変化させた。焼結温度750℃の場合(比較例9)は1050℃の場合(実施例5)と比較し、P4/(P3+P4)、保磁力HcJともに著しく低下した。このことから十分な焼結温度、焼結時間によって縮率の変化が起こり、主相粒子で4価のPr状態が安定化され保磁力の増加が起こることが分かった。
[Example 5, Comparative Example 9]
For Pr 2 Fe 14 B, the sintering time was changed to 750 ° C. and 1050 ° C. only for the sintering time at 30 h. When the sintering temperature was 750 ° C. (Comparative Example 9), both P4 / (P3 + P4) and coercive force HcJ were remarkably reduced as compared with the case of 1050 ° C. (Example 5). From this, it was found that the shrinkage ratio changed with sufficient sintering temperature and sintering time, the tetravalent Pr state was stabilized in the main phase particles, and the coercive force increased.

[実施例1、6〜8、比較例10]
PrFe14Bに対し、焼結圧力のみを1.0GPa〜10.0GPaまで変化させた。焼結圧力が2.0GPa〜10.0GPaの場合(実施例1、6〜8)、P4/(P3+P4)、保磁力HcJともに高い値を有し、焼結圧力の増大に伴いP4/(P3+P4)、保磁力HcJともに増大傾向を示した。一方、焼結圧力が1.0GPaの場合(比較例10)、焼結圧力を加えない場合、等方的に3.0GPaを加えた場合も検討したが、ともにP4/(P3+P4)は0.1未満となり、高い保磁力は得られなかった。
[Examples 1, 6-8, Comparative Example 10]
For Pr 2 Fe 14 B, only the sintering pressure was changed from 1.0 GPa to 10.0 GPa. When the sintering pressure is 2.0 GPa to 10.0 GPa (Examples 1 and 6 to 8), P4 / (P3 + P4) has a high coercive force HcJ, and as the sintering pressure increases, P4 / (P3 + P4). ) And the coercive force HcJ showed an increasing tendency. On the other hand, the case where the sintering pressure was 1.0 GPa (Comparative Example 10), the case where the sintering pressure was not applied, and the case where 3.0 GPa was applied isotropically were examined, but both P4 / (P3 + P4) were 0.00. It was less than 1, and a high coercive force was not obtained.

[実施例1、9〜11、比較例11〜13]
上記実施例および比較例において、Xに占めるBの割合が大きければ、Xの全量がBの場合と同等の保磁力HcJが得られ、P4/(P3+P4)も大きな値を示した。一方、Xの全量をB以外の元素(Be、C、Si)とした場合には保磁力HcJは著しく小さく、P4/(P3+P4)も小さな値となった。このことから、Xに占めるBの一部がB以外の元素(Be、C、Si)であっても、4価のPrに起因する高い保磁力が得られることが分かった。
[Examples 1 and 9 to 11, Comparative Examples 11 to 13]
In the above examples and comparative examples, if the proportion of B in X is large, a coercive force HcJ equivalent to the case where the total amount of X is B was obtained, and P4 / (P3 + P4) also showed a large value. On the other hand, when the total amount of X is an element other than B (Be, C, Si), the coercive force HcJ is remarkably small, and P4 / (P3 + P4) is also a small value. From this, it was found that even if a part of B in X is an element other than B (Be, C, Si), a high coercive force due to tetravalent Pr can be obtained.

[実施例1、12〜15、比較例14、15]
上記実施例および比較例において、Rの置換量aが少ないほど、つまりPr量が多いほどP4/(P3+P4)が高く、希土類元素組成比から予想される保磁力HcJの値より大きな値となった。ただし、a=0.75(比較例14、15)の場合はP4/(P3+P4)、保磁力HcJの値がともに著しく低下した。このことからPr価数状態の変化が主相内の磁気異方性に寄与し、HcJ(組成予想値)以上の保磁力の増加を担っていることが分かった。
[Examples 1, 12 to 15, Comparative Examples 14 and 15]
In the above Examples and Comparative Examples, the smaller the R substitution amount a, that is, the larger the Pr amount, the higher P4 / (P3 + P4), which was larger than the value of the coercive force HcJ predicted from the rare earth element composition ratio. . However, in the case of a = 0.75 (Comparative Examples 14 and 15), the values of P4 / (P3 + P4) and coercive force HcJ were remarkably reduced. From this, it was found that the change in the Pr valence state contributes to the magnetic anisotropy in the main phase, and is responsible for the increase in coercive force of HcJ (composition expected value) or more.

[実施例13、15〜18]
上記実施例および比較例において、何れのR元素についても4価のPr状態が確認され、HcJ(組成予想値)より大きな値となった。このことからPrが含まれればRの元素によらず高い磁気異方性を有した永久磁石が得られ、中でも特に、R=Y、Gd、CeはHcJ(組成予想値)からの増加率が高いことが分かった。

Figure 0006569408
[Examples 13, 15-18]
In the above Examples and Comparative Examples, a tetravalent Pr state was confirmed for any R element, which was a value larger than HcJ (composition expected value). Therefore, if Pr is contained, a permanent magnet having a high magnetic anisotropy can be obtained regardless of the element of R, and in particular, R = Y, Gd, and Ce have an increase rate from HcJ (composition expected value). I found it expensive.
Figure 0006569408

次いで、主相粒子がTbCu型結晶構造(空間群P6/mmm)を有するR−T化合物の実施例を説明する。以下、実施例および比較例に基づき、本発明をさらに具体的に説明するが、本発明は以下の実施例に何ら限定されるものではない。 Next, examples of the RT compound in which the main phase particles have a TbCu 7 type crystal structure (space group P6 / mmm) will be described. Hereinafter, the present invention will be described more specifically based on Examples and Comparative Examples, but the present invention is not limited to the following Examples.

[実施例19〜26、比較例16〜19]
主相粒子の組成がPrFeとなるようにPrメタル、Feメタルを所定量秤量し、ストリップキャスト法にて薄板状のPr−Fe合金を作製した。この合金を水素気流中にて攪拌しながら熱処理することにより粗粉末にした後に、潤滑剤としてオレイン酸アミドを添加し、ジェットミルを用いて非酸化雰囲気中にて微粉末(平均粒径3μm)にした。得られた微粉末を金型(開口寸法:20mm×18mm)に充填し、加圧方向と直角方向に磁場を1600kA/m印加しながら2.0ton/cmの圧力にて1軸加圧成形した。得られた成形体を最適焼結温度まで昇温し、容易軸と垂直な方向に1.0GPa〜10.0GPaの加圧下で700℃〜950℃の焼結温度で15時間〜30時間保持した後に室温まで冷却させ、次いで、600℃−1時間の時効処理を行い、焼結磁石を得た。各実施例、比較例の製造条件を表2に示す。
[Examples 19 to 26, Comparative Examples 16 to 19]
A predetermined amount of Pr metal and Fe metal were weighed so that the composition of the main phase particles was PrFe 7, and a thin plate-like Pr—Fe alloy was produced by strip casting. This alloy was heat-treated while stirring in a hydrogen stream, and then coarse powder was added. Then, oleic acid amide was added as a lubricant, and fine powder (average particle size 3 μm) in a non-oxidizing atmosphere using a jet mill. I made it. The obtained fine powder is filled into a mold (opening size: 20 mm × 18 mm), and uniaxial pressure molding is performed at a pressure of 2.0 ton / cm 2 while applying a magnetic field of 1600 kA / m in a direction perpendicular to the pressing direction. did. The obtained molded body was heated to the optimum sintering temperature and held at a sintering temperature of 700 ° C. to 950 ° C. for 15 hours to 30 hours under a pressure of 1.0 GPa to 10.0 GPa in a direction perpendicular to the easy axis. After cooling to room temperature, an aging treatment was performed at 600 ° C. for 1 hour to obtain a sintered magnet. Table 2 shows the production conditions of each example and comparative example.

得られた焼結磁石の磁気特性は、BHトレーサーを用い、容易軸方向に±5600kA/mの磁界を加えて測定した。なお、磁束密度は+4800kA/m印加時と+5600kA/mT印加時で±5%の範囲内にあることを確認したうえで、+5600kA/m印加時の値を飽和磁束密度とした。このようにして測定した飽和磁束密度と保磁力HcJを表2に示す。 The magnetic properties of the obtained sintered magnet were measured by applying a magnetic field of ± 5600 kA / m in the easy axis direction using a BH tracer. The magnetic flux density was confirmed to be within a range of ± 5% when +4800 kA / m was applied and when +5600 kA / mT was applied, and the value when +5600 kA / m was applied was defined as the saturation magnetic flux density. Table 2 shows the saturation magnetic flux density and the coercive force HcJ thus measured.

得られた焼結磁石をXRDによって主たる生成相がTbCu型結晶構造(空間群P6/mmm)に帰属されることを確認した。次いで、焼結磁石をFIBにて厚さ100nmの薄片状に加工した後に、STEMに備えられたEDSにて主相粒子の中央近傍分析し、主相粒子の組成を定量化した。次いで、STEMにて主相粒子の観察可能な位置に調整し、EELSスペクトルを得た。各主相粒子の組成およびEELSスペクトルから算出されたP4/(P3+P4)を表2に示す。

Figure 0006569408
It was confirmed by XRD that the resulting sintered magnet was assigned to a TbCu 7 type crystal structure (space group P6 / mmm) as a main product phase. Next, after processing the sintered magnet into a flake shape having a thickness of 100 nm with FIB, the vicinity of the center of the main phase particles was analyzed with EDS provided in the STEM to quantify the composition of the main phase particles. Subsequently, it adjusted to the position which can observe a main phase particle | grain with STEM, and obtained the EELS spectrum. Table 2 shows the composition of each main phase particle and P4 / (P3 + P4) calculated from the EELS spectrum.
Figure 0006569408

[実施例19〜21、比較例16]
PrFeに対し、焼結温度のみを700℃〜950℃まで変化させた。焼結温度が750℃〜950℃の場合(実施例19〜21)、P4/(P3+P4)が高く保磁力HcJも高い値をもつが、焼結温度が700℃の場合(比較例16)、P4/(P3+P4)が低く、保磁力HcJも低下した。焼結温度により縮率が変化し、4価のPr状態が安定化されることで主相粒子において高保磁力が発現することが分かった。
[Examples 19 to 21, Comparative Example 16]
For PrFe 7 , only the sintering temperature was changed from 700 ° C to 950 ° C. When the sintering temperature is 750 ° C. to 950 ° C. (Examples 19 to 21), P4 / (P3 + P4) is high and the coercive force HcJ is also high, but when the sintering temperature is 700 ° C. (Comparative Example 16), P4 / (P3 + P4) was low, and the coercive force HcJ was also reduced. It was found that the shrinkage changes depending on the sintering temperature and the tetravalent Pr state is stabilized, so that a high coercive force appears in the main phase particles.

[実施例19、22、23、比較例17]
PrFeに対し、焼結時間のみを15h〜30hまで変化させた。焼結時間が20h以上の場合(実施例19、22、23)、P4/(P3+P4)、保磁力HcJともにも高い値を示したが、焼結時間を長時間化しても飽和するような振舞いであった。一方、焼結時間が15hの場合(比較例17)、焼結時間20h以上の場合と比較し、P4/(P3+P4)、保磁力HcJともに低い値となった。これにより十分な焼結時間により縮率の違いが顕著となり、4価のPr状態の安定化が促進され、主相粒子が高保磁力化することが分かった。
[Examples 19, 22, 23, Comparative Example 17]
For PrFe 7 , only the sintering time was changed from 15 h to 30 h. When the sintering time was 20 hours or more (Examples 19, 22, and 23), P4 / (P3 + P4) showed a high value for both coercive forces HcJ, but the behavior was saturated even if the sintering time was increased. Met. On the other hand, when the sintering time was 15 h (Comparative Example 17), both P4 / (P3 + P4) and coercive force HcJ were lower than when the sintering time was 20 h or longer. As a result, it was found that the difference in the shrinkage ratio was remarkable due to a sufficient sintering time, the stabilization of the tetravalent Pr state was promoted, and the main phase particles were increased in coercive force.

[実施例23、比較例18]
PrFeに対し、焼結時間を30hで焼結温度のみ650℃、850℃に変化させた。焼結温度650℃の場合(比較例18)は850℃の場合(実施例23)と比較し、P4/(P3+P4)、保磁力HcJともに著しく低下した。このことから十分な焼結温度、焼結時間によって縮率の変化が起こり、主相粒子で4価のPr状態が安定化され保磁力の増加が起こることが分かった。
[Example 23, Comparative Example 18]
For PrFe 7 , the sintering time was changed to 650 ° C. and 850 ° C. only for 30 hours with a sintering time. When the sintering temperature was 650 ° C. (Comparative Example 18), both P4 / (P3 + P4) and coercive force HcJ were significantly reduced as compared with the case of 850 ° C. (Example 23). From this, it was found that the shrinkage ratio changed with sufficient sintering temperature and sintering time, the tetravalent Pr state was stabilized in the main phase particles, and the coercive force increased.

[実施例19、24〜26、比較例19]
PrFeに対し、焼結圧力のみを1.0GPa〜10.0GPaまで変化させた。焼結圧力が2.0GPa以上の場合(実施例19、24〜26)、P4/(P3+P4)、保磁力HcJともに高い値を有し、焼結圧力の増大に伴いP4/(P3+P4)、保磁力HcJともに増大傾向を示した。一方、焼結圧力が1.0GPaの場合(比較例19)、焼結圧力を加えない場合、等方的に3.0GPaを加えた場合も検討したが、ともにP4/(P3+P4)は0.1未満となり、高い保磁力は得られなかった。
[Examples 19, 24 to 26, Comparative Example 19]
For PrFe 7 , only the sintering pressure was changed from 1.0 GPa to 10.0 GPa. When the sintering pressure is 2.0 GPa or more (Examples 19, 24 to 26), P4 / (P3 + P4) has a high coercive force HcJ, and as the sintering pressure increases, P4 / (P3 + P4) The magnetic force HcJ showed an increasing tendency. On the other hand, the case where the sintering pressure was 1.0 GPa (Comparative Example 19), the case where the sintering pressure was not applied, and the case where 3.0 GPa was applied isotropically were also examined, but P4 / (P3 + P4) was 0. It was less than 1, and a high coercive force was not obtained.

[実施例27〜37、比較例20〜28]
主相粒子の組成(Pr1−b)Feが表3の窒素元素または水素元素を除く組成となるように、Prメタル、Rメタル、Feメタルを所定量秤量し、ストリップキャスト法にて薄板状のPr−R−Fe合金を作製した。この合金から[0084]と同様の方法で焼結体を得た。ただし、各実施例、比較例に対応する焼結体の製造条件は、表3に記載のとおりである。さらに、この焼結体を水素気流中にて攪拌しながら熱処理することにより粗粉末にした後に、潤滑剤としてオレイン酸アミドを添加し、ジェットミルを用いて非酸化雰囲気中にて微粉末(平均粒径3μm)にした。必要に応じて、この微粉末を1気圧の窒素ガスもしくは水素ガス中、400℃の温度下で10時間熱処理した。その後、微粉末とパラフィンとをケースに詰め、パラフィンを融解させた状態で磁場を1600kA/m印加して微粉末を配向させてボンド磁石を成形した。
[Examples 27 to 37, Comparative Examples 20 to 28]
Pr metal, R metal, and Fe metal are weighed in predetermined amounts so that the composition of the main phase particles (Pr 1 -b R b ) Fe 7 has a composition excluding nitrogen element or hydrogen element in Table 3, and strip casting is used. A thin plate-like Pr—R—Fe alloy was prepared. A sintered body was obtained from this alloy in the same manner as in [0084]. However, the manufacturing conditions of the sintered compact corresponding to each Example and a comparative example are as showing in Table 3. Furthermore, after this sintered body was heat-treated with stirring in a hydrogen stream, it was made into a coarse powder, oleic acid amide was added as a lubricant, and a fine powder (averaged in a non-oxidizing atmosphere using a jet mill) The particle size was 3 μm). If necessary, this fine powder was heat-treated in nitrogen gas or hydrogen gas at 1 atm at a temperature of 400 ° C. for 10 hours. Thereafter, fine powder and paraffin were packed in a case, and a magnetic field was applied at 1600 kA / m in a state where the paraffin was melted to orient the fine powder to form a bonded magnet.

得られたボンド磁石は、前述のTbCu型R−T化合物焼結磁石と同条件でBHトレーサー、XRD、EDS、EELSの評価を行った。尚、主相粒子に侵入元素Zが含まれる場合は、赤外線吸収法を行いその結果を加味して主相粒子の組成を算出した。結果を表3に示す。 The obtained bonded magnet was evaluated for BH tracer, XRD, EDS, and EELS under the same conditions as the above-mentioned TbCu 7 type RT compound sintered magnet. In the case where the main phase particle contains the intruding element Z, the composition of the main phase particle was calculated by performing the infrared absorption method and taking the result into consideration. The results are shown in Table 3.

また、各主相粒子組成に対して、Prが3価状態の場合の保磁力HcJの予想値、および予想値からの実験値の増加率を算出した。算出のため、下記条件でボンド磁石を作製した。主相粒子の組成がPrFe0.6、YFe0.6、GdFe0.6、CeFe0.6、NdFe0.6、DyFe0.6となるようにし、焼結圧力を加えず、その他の作製条件は実施例28と同じとした。作製したPrFe0.6ボンド磁石を[0086]と同様の方法でPrの価数を評価した結果、P4/(P3+P4)は0.1未満、つまり3価状態が主であった。 In addition, for each main phase particle composition, the predicted value of the coercive force HcJ when Pr is in the trivalent state and the rate of increase of the experimental value from the predicted value were calculated. For calculation, a bonded magnet was produced under the following conditions. The composition of the main phase particles is PrFe 7 N 0.6 , YFe 7 N 0.6 , GdFe 7 N 0.6 , CeFe 7 N 0.6 , NdFe 7 N 0.6 , DyFe 7 N 0.6 The other production conditions were the same as in Example 28, with no sintering pressure applied. As a result of evaluating the valence of Pr for the produced PrFe 7 N 0.6 bonded magnet in the same manner as in [0086], P4 / (P3 + P4) was less than 0.1, that is, the trivalent state was mainly used.

これらのボンド磁石のBHトレーサーによる保磁力HcJ測定結果(比較例20〜25)を用いて、実施例30〜36、比較例26、27の主相粒子組成に対応する保磁力HcJの予想値を算出した。計算は、主相粒子組成と保磁力HcJが線形に対応すると仮定し、[数式4]を用いた。ここで、主相粒子組成は(Pr1−b)Fe0.6、PrFe0.6の保磁力HcJはHcJ(Pr)、RFe0.6の保磁力HcJはHcJ(R)と定義する。この計算結果に対する実験値の比率を3価状態のPrが主である場合のHcJ(組成予想値)からの増加率として表3に示す。 Using the coercive force HcJ measurement results (Comparative Examples 20 to 25) of these bonded magnets with a BH tracer, the predicted values of the coercive force HcJ corresponding to the main phase particle compositions of Examples 30 to 36 and Comparative Examples 26 and 27 were calculated. Calculated. In the calculation, [Formula 4] was used assuming that the main phase particle composition and the coercive force HcJ correspond linearly. Here, the main phase particle composition is (Pr 1-b R b ) Fe 7 N 0.6 , the coercive force HcJ of PrFe 7 N 0.6 is HcJ (Pr), and the coercive force HcJ of RFe 7 N 0.6 is It is defined as HcJ (R). The ratio of the experimental value to the calculation result is shown in Table 3 as the rate of increase from HcJ (predicted composition value) when Pr in the trivalent state is main.

[数式4]
HcJ(組成予想値)=(1−b)×HcJ(Pr)+b×HcJ(R)

Figure 0006569408
[Formula 4]
HcJ (predicted composition value) = (1−b) × HcJ (Pr) + b × HcJ (R)
Figure 0006569408

[実施例19、27]
PrFeに対し、焼結磁石とボンド磁石を作製した。焼結磁石の場合(実施例19)、ボンド磁石の場合(実施例27)ともにP4/(P3+P4)が高く保磁力HcJも高い値を示した。このことから、焼結磁石、ボンド磁石ともに4価のPrに起因する高い保磁力が得られることが分かった。
[Examples 19 and 27]
A sintered magnet and a bonded magnet were prepared for PrFe 7 . In the case of the sintered magnet (Example 19) and the case of the bonded magnet (Example 27), P4 / (P3 + P4) was high and the coercive force HcJ was also high. From this, it was found that both the sintered magnet and the bonded magnet can obtain a high coercive force due to tetravalent Pr.

[実施例27〜29]
PrFeに対し、ボンド化前に窒化処理したものと水素化処理したものを作製した。窒化したボンド磁石の場合(実施例28)、水素化処理したボンド磁石の場合(実施例29)、ともにP4/(P3+P4)が高く保磁力HcJも高い値を示した。このことから、侵入元素Z導入後も4価のPrに起因する高い保磁力が得られることが分かった。さらに侵入元素がない場合(実施例27)と比較し、侵入元素Zを導入することによって保磁力が向上することが分かった。
[Examples 27 to 29]
PrFe 7 was prepared by nitriding before hydrogenation and by hydrogenation. In the case of the nitrided bond magnet (Example 28) and the hydrogenated bond magnet (Example 29), both P4 / (P3 + P4) were high and the coercive force HcJ was also high. From this, it was found that a high coercive force due to tetravalent Pr can be obtained even after introduction of the intruding element Z. Further, it was found that the coercive force was improved by introducing the intruding element Z as compared with the case without the intruding element (Example 27).

[実施例28、30〜33、比較例26、27]
上記実施例および比較例において、Rの置換量bが少ないほど、つまりPr量が多いほどP4/(P3+P4)が高く、希土類元素組成比から予想される保磁力HcJの値より大きな値となった。ただし、b=0.75(比較例26、27)の場合はP4/(P3+P4)、保磁力HcJの値がともに著しく低下した。このことからPr価数状態の変化が主相内の磁気異方性に寄与し、HcJ(組成予想値)以上の保磁力の増加を担っていることが分かった。
[Examples 28, 30 to 33, Comparative examples 26 and 27]
In the above Examples and Comparative Examples, the smaller the R substitution amount b, that is, the larger the Pr amount, the higher P4 / (P3 + P4), which was larger than the value of the coercive force HcJ predicted from the rare earth element composition ratio. . However, in the case of b = 0.75 (Comparative Examples 26 and 27), both the values of P4 / (P3 + P4) and coercive force HcJ were significantly reduced. From this, it was found that the change in the Pr valence state contributes to the magnetic anisotropy in the main phase, and is responsible for the increase in coercive force of HcJ (composition expected value) or more.

[実施例31、33〜36]
上記実施例および比較例において、何れのR元素についても4価のPr状態が確認され、HcJ(組成予想値)より大きな値となった。このことからRの元素によらず4価のPrに起因する高い磁気異方性を有した永久磁石が得られ、中でも特に、R=CeはHcJ(組成予想値)からの増加率が高いことが分かった。
[Examples 31, 33 to 36]
In the above Examples and Comparative Examples, a tetravalent Pr state was confirmed for any R element, which was a value larger than HcJ (composition expected value). From this, a permanent magnet having high magnetic anisotropy resulting from tetravalent Pr can be obtained regardless of the element of R, and in particular, R = Ce has a high increase rate from HcJ (predicted composition value). I understood.

[実施例35、37、比較例28]
実施例35に対し、希土類元素の一部をZrに置換したボンド磁石を作製した。主相粒子組成が実施例37に記載の組成となるようにし、作製条件は実施例35と同じとした。また比較のため、焼結圧力を加えず、その他の作製条件が実施例37と同じになるようにして、Prが3価状態の場合のボンド磁石も作製した(比較例28)。Zr置換した場合(実施例37)においても、高いP4/(P3+P4)比率を持ち、保磁力HcJもPr3価状態の場合(比較例28)よりも高い値を示した。このことから、Zrの置換の有無に関わらず4価のPrに起因する高い保磁力が得られることが分かった。さらにZr置換しない場合(実施例35)よりもZr置換した場合(実施例37)は、保磁力HcJ、飽和磁束密度ともに向上することが分かった。
[Examples 35 and 37, Comparative Example 28]
A bonded magnet in which a part of the rare earth element was substituted with Zr for Example 35 was produced. The main phase particle composition was set to the composition described in Example 37, and the production conditions were the same as in Example 35. For comparison, a bonded magnet was also produced in the case where Pr was in a trivalent state without applying sintering pressure and the other production conditions were the same as in Example 37 (Comparative Example 28). Even when Zr substitution was performed (Example 37), it had a high P4 / (P3 + P4) ratio, and the coercive force HcJ was also higher than that in the case of the Pr trivalent state (Comparative Example 28). From this, it was found that a high coercive force due to tetravalent Pr can be obtained regardless of whether or not Zr is substituted. Further, it was found that both the coercive force HcJ and the saturation magnetic flux density were improved when Zr substitution was performed (Example 37) than when Zr substitution was not performed (Example 35).

次に、主相粒子がThMn12型結晶構造(空間群I4/mmm)を有するR−T化合物の実施例を説明する。以下、実施例および比較例に基づき、本発明をさらに具体的に説明するが、本発明は以下の実施例に何ら限定されるものではない。 Next, an example of the RT compound in which the main phase particles have a ThMn 12 type crystal structure (space group I4 / mmm) will be described. Hereinafter, the present invention will be described more specifically based on Examples and Comparative Examples, but the present invention is not limited to the following Examples.

[実施例38〜45、比較例29〜32]
主相粒子の組成がPrFe11TiとなるようにPrメタル、Feメタル、Tiメタルを所定量秤量し、ストリップキャスト法にて薄板状のPr−Fe−Ti合金を作製した。この合金を水素気流中にて攪拌しながら熱処理することにより粗粉末にした後に、潤滑剤としてオレイン酸アミドを添加し、ジェットミルを用いて非酸化雰囲気中にて微粉末(平均粒径3μm)にした。得られた微粉末を金型(開口寸法:20mm×18mm)に充填し、加圧方向と直角方向に磁場を1600kA/m印加しながら2.0ton/cmの圧力にて1軸加圧成形した。得られた成形体を最適焼結温度まで昇温し、容易軸と垂直な方向に1.0GPa〜10.0GPaの加圧下で750℃〜1050℃の焼結温度で15時間〜30時間保持した後に室温まで冷却させ、次いで、600℃−1時間の時効処理を行い、焼結磁石を得た。各実施例、比較例の製造条件を表4に示す。
[Examples 38 to 45, Comparative Examples 29 to 32]
A predetermined amount of Pr metal, Fe metal, and Ti metal were weighed so that the composition of the main phase particles was PrFe 11 Ti, and a thin plate-like Pr—Fe—Ti alloy was prepared by strip casting. This alloy was heat-treated while stirring in a hydrogen stream, and then coarse powder was added. Then, oleic acid amide was added as a lubricant, and fine powder (average particle size 3 μm) in a non-oxidizing atmosphere using a jet mill. I made it. The obtained fine powder is filled into a mold (opening size: 20 mm × 18 mm), and uniaxial pressure molding is performed at a pressure of 2.0 ton / cm 2 while applying a magnetic field of 1600 kA / m in a direction perpendicular to the pressing direction. did. The obtained molded body was heated to the optimum sintering temperature, and held at a sintering temperature of 750 ° C. to 1050 ° C. for 15 hours to 30 hours under a pressure of 1.0 GPa to 10.0 GPa in a direction perpendicular to the easy axis. After cooling to room temperature, an aging treatment was performed at 600 ° C. for 1 hour to obtain a sintered magnet. Table 4 shows the production conditions of each example and comparative example.

得られた焼結磁石の磁気特性は、BHトレーサーを用い、容易軸方向に±5600kA/mの磁界を加えて測定した。なお、磁束密度は+4800kA/m印加時と+5600kA/mT印加時で±5%の範囲内にあることを確認したうえで、+5600kA/m印加時の値を飽和磁束密度とした。このようにして測定した飽和磁束密度と保磁力HcJを表4に示す。 The magnetic properties of the obtained sintered magnet were measured by applying a magnetic field of ± 5600 kA / m in the easy axis direction using a BH tracer. The magnetic flux density was confirmed to be within a range of ± 5% when +4800 kA / m was applied and when +5600 kA / mT was applied, and the value when +5600 kA / m was applied was defined as the saturation magnetic flux density. Table 4 shows the saturation magnetic flux density and the coercive force HcJ thus measured.

得られた焼結磁石をXRDによって主たる生成相がThMn12型結晶構造(空間群I4/mmm)に帰属されることを確認した。次いで、焼結磁石をFIBにて厚さ100nmの薄片状に加工した後に、STEMに備えられたEDSにて主相粒子の中央近傍分析し、主相粒子の組成を定量化した。次いで、STEMにて主相粒子の観察可能な位置に調整し、EELSスペクトルを得た。各主相粒子の組成およびEELSスペクトルから算出されたP4/(P3+P4)を表4に示す。

Figure 0006569408
It was confirmed by XRD that the resulting sintered magnet was attributed to a ThMn 12 type crystal structure (space group I4 / mmm) by XRD. Next, after processing the sintered magnet into a flake shape having a thickness of 100 nm with FIB, the vicinity of the center of the main phase particles was analyzed with EDS provided in the STEM to quantify the composition of the main phase particles. Subsequently, it adjusted to the position which can observe a main phase particle | grain with STEM, and obtained the EELS spectrum. Table 4 shows the composition of each main phase particle and P4 / (P3 + P4) calculated from the EELS spectrum.
Figure 0006569408

[実施例38〜40、比較例29]
PrFe11Tiに対し、焼結温度のみを800℃〜1050℃まで変化させた。焼結温度が850℃〜1050℃の場合(実施例38〜40)、P4/(P3+P4)が高く保磁力HcJも高い値をもつが、焼結温度が800℃の場合(比較例29)、P4/(P3+P4)が低く、保磁力HcJも低下した。焼結温度により縮率が変化し、4価のPr状態が安定化されることで主相粒子において高保磁力が発現することが分かった。
[Examples 38 to 40, Comparative Example 29]
Only the sintering temperature was changed from 800 ° C. to 1050 ° C. with respect to PrFe 11 Ti. When the sintering temperature is 850 ° C. to 1050 ° C. (Examples 38 to 40), P4 / (P3 + P4) is high and the coercive force HcJ is also high, but when the sintering temperature is 800 ° C. (Comparative Example 29), P4 / (P3 + P4) was low, and the coercive force HcJ was also reduced. It was found that the shrinkage changes depending on the sintering temperature and the tetravalent Pr state is stabilized, so that a high coercive force appears in the main phase particles.

[実施例38、41、42、比較例30]
PrFe11Tiに対し、焼結時間のみを15h〜30hまで変化させた。焼結時間が20h以上の場合(実施例38、41、42)、P4/(P3+P4)、保磁力HcJともにも高い値を示したが、焼結時間を長時間化しても飽和するような振舞いであった。一方、焼結時間が15hの場合(比較例30)、焼結時間20h以上の場合と比較し、P4/(P3+P4)、保磁力HcJともに低い値となった。これにより十分な焼結時間により縮率の違いが顕著となり、4価のPr状態の安定化が促進され、主相粒子が高保磁力化することが分かった。
[Examples 38, 41, and 42, Comparative Example 30]
For the PrFe 11 Ti, only the sintering time was changed from 15 h to 30 h. When the sintering time was 20 hours or more (Examples 38, 41, and 42), P4 / (P3 + P4) and coercive force HcJ both showed high values, but the behavior was saturated even when the sintering time was prolonged. Met. On the other hand, when the sintering time was 15 h (Comparative Example 30), both P4 / (P3 + P4) and coercive force HcJ were lower than when the sintering time was 20 h or longer. As a result, it was found that the difference in the shrinkage ratio was remarkable due to a sufficient sintering time, the stabilization of the tetravalent Pr state was promoted, and the main phase particles were increased in coercive force.

[実施例42、比較例31]
PrFe11Tiに対し、焼結時間を30hで焼結温度のみ750℃、950℃に変化させた。焼結温度750℃の場合(比較例31)は950℃の場合(実施例42)と比較し、P4/(P3+P4)、保磁力HcJともに著しく低下した。このことから十分な焼結温度、焼結時間によって縮率の変化が起こり、主相粒子で4価のPr状態が安定化され保磁力の増加が起こることが分かった。
[Example 42, comparative example 31]
With respect to PrFe 11 Ti, the sintering time was changed to 750 ° C. and 950 ° C. only for 30 hours. When the sintering temperature was 750 ° C. (Comparative Example 31), both P4 / (P3 + P4) and the coercive force HcJ were significantly reduced as compared with the case of 950 ° C. (Example 42). From this, it was found that the shrinkage ratio changed with sufficient sintering temperature and sintering time, the tetravalent Pr state was stabilized in the main phase particles, and the coercive force increased.

[実施例38、43〜45、比較例32]
PrFe11Tiに対し、焼結圧力のみを1.0GPa〜10.0GPaまで変化させた。焼結圧力が2.0GPa以上の場合(実施例38、43〜45)、P4/(P3+P4)、保磁力HcJともに高い値を有し、焼結圧力の増大に伴いP4/(P3+P4)、保磁力HcJともに増大傾向を示した。一方、焼結圧力が1.0GPaの場合(比較例32)、焼結圧力を加えない場合、等方的に3.0GPaを加えた場合も検討したが、ともにP4/(P3+P4)は0.1未満となり、高い保磁力は得られなかった。
[Examples 38, 43 to 45, Comparative Example 32]
Only the sintering pressure was changed from 1.0 GPa to 10.0 GPa with respect to PrFe 11 Ti. When the sintering pressure is 2.0 GPa or more (Examples 38 and 43 to 45), P4 / (P3 + P4) has a high coercive force HcJ, and as the sintering pressure increases, P4 / (P3 + P4) The magnetic force HcJ showed an increasing tendency. On the other hand, the case where the sintering pressure was 1.0 GPa (Comparative Example 32), the case where the sintering pressure was not applied, and the case where 3.0 GPa was applied isotropically were also examined, but P4 / (P3 + P4) was 0. It was less than 1, and a high coercive force was not obtained.

[実施例46〜55、比較例33〜40]
主相粒子の組成(Pr1−c)Fe11Tiが表5の窒素元素または水素元素を除く組成となるように、Prメタル、Rメタル、Feメタル、Tiメタルを所定量秤量し、ストリップキャスト法にて薄板状のPr−R−Fe−Ti合金を作製した。この合金から[0102]と同様の方法で焼結体を得た。ただし、各実施例、比較例に対応する焼結体の製造条件は、表5に記載のとおりである。さらに、この焼結体を水素気流中にて攪拌しながら熱処理することにより粗粉末にした後に、潤滑剤としてオレイン酸アミドを添加し、ジェットミルを用いて非酸化雰囲気中にて微粉末(平均粒径3μm)にした。必要に応じて、この微粉末を1気圧の窒素ガスもしくは水素ガス中、400℃の温度下で10時間熱処理した。その後、微粉末とパラフィンとをケースに詰め、パラフィンを融解させた状態で磁場を1600kA/m印加して微粉末を配向させてボンド磁石を成形した。
[Examples 46 to 55, Comparative Examples 33 to 40]
A predetermined amount of Pr metal, R metal, Fe metal, and Ti metal are weighed so that the composition of the main phase particles (Pr 1-c R c ) Fe 11 Ti has a composition excluding the nitrogen element or hydrogen element of Table 5. A thin plate-like Pr—R—Fe—Ti alloy was produced by strip casting. A sintered body was obtained from this alloy in the same manner as in [0102]. However, the manufacturing conditions of the sintered compact corresponding to each Example and a comparative example are as showing in Table 5. Furthermore, after this sintered body was heat-treated with stirring in a hydrogen stream, it was made into a coarse powder, oleic acid amide was added as a lubricant, and a fine powder (averaged in a non-oxidizing atmosphere using a jet mill) The particle size was 3 μm). If necessary, this fine powder was heat-treated in nitrogen gas or hydrogen gas at 1 atm at a temperature of 400 ° C. for 10 hours. Thereafter, fine powder and paraffin were packed in a case, and a magnetic field was applied at 1600 kA / m in a state where the paraffin was melted to orient the fine powder to form a bonded magnet.

得られたボンド磁石は、前述のThMn12型R−T化合物焼結磁石と同条件でBHトレーサー、XRD、EDS、EELSの評価を行った。尚、主相粒子に侵入元素Zが含まれる場合は、赤外線吸収法を行いその結果を加味して主相粒子の組成を算出した。結果を表5に示す。 The obtained bonded magnet was evaluated for BH tracer, XRD, EDS, and EELS under the same conditions as the ThMn 12 type RT compound sintered magnet described above. In the case where the main phase particle contains the intruding element Z, the composition of the main phase particle was calculated by performing the infrared absorption method and taking the result into consideration. The results are shown in Table 5.

また、各主相粒子組成に対して、Prが3価状態の場合の保磁力HcJの予想値、および予想値からの実験値の増加率を算出した。算出のため、下記条件でボンド磁石を作製した。主相粒子の組成がPrFe11TiN1.5、YFe11TiN1.5、GdFe11TiN1.5、CeFe11TiN1.5、NdFe11TiN1.5、DyFe11TiN1.5となるようにし、焼結圧力を加えず、その他の作製条件は実施例47と同じとした。作製したPrFe11TiN1.5ボンド磁石を[0104]と同様の方法でPrの価数を評価した結果、P4/(P3+P4)は0.1未満、つまり3価状態が主であった。 In addition, for each main phase particle composition, the predicted value of the coercive force HcJ when Pr is in the trivalent state and the rate of increase of the experimental value from the predicted value were calculated. For calculation, a bonded magnet was produced under the following conditions. The composition of the main phase particles is PrFe 11 TiN 1.5 , YFe 11 TiN 1.5 , GdFe 11 TiN 1.5 , CeFe 11 TiN 1.5 , NdFe 11 TiN 1.5 , DyFe 11 TiN 1.5. The other fabrication conditions were the same as in Example 47, with no sintering pressure applied. As a result of evaluating the valence of Pr for the produced PrFe 11 TiN 1.5 bonded magnet in the same manner as in [0104], P4 / (P3 + P4) was less than 0.1, that is, the trivalent state was mainly.

これらのボンド磁石のBHトレーサーによる保磁力HcJ測定結果(比較例33〜38)を用いて、実施例49〜55、比較例39、40の主相粒子組成に対応する保磁力HcJの予想値を算出した。計算は、主相粒子組成と保磁力HcJが線形に対応すると仮定し、[数式5]を用いた。ここで、主相粒子組成は(Pr1−c)Fe11TiN1.5、PrFe11TiN1.5の保磁力はHcJ(Pr)、RFe11TiN1.5の保磁力はHcJ(R)と定義する。この計算結果に対する実験値の比率を3価状態のPrが主である場合のHcJ(組成予想値)からの増加率として表5に示す。 Using the coercive force HcJ measurement results (comparative examples 33 to 38) of these bonded magnets with a BH tracer, the predicted values of coercive force HcJ corresponding to the main phase particle compositions of Examples 49 to 55 and Comparative Examples 39 and 40 were calculated. Calculated. In the calculation, [Formula 5] was used assuming that the main phase particle composition and the coercive force HcJ correspond linearly. Here, the main phase particle composition (Pr 1-c R c) Fe 11 TiN 1.5, the coercivity HcJ (Pr), the coercive force of the RFe 11 TiN 1.5 of PrFe 11 TiN 1.5 is HcJ ( R). The ratio of the experimental value to the calculation result is shown in Table 5 as the rate of increase from HcJ (predicted composition value) when Pr in the trivalent state is main.

[数式5]
HcJ(組成予想値)=(1−c)×HcJ(Pr)+c×HcJ(R)

Figure 0006569408
[Formula 5]
HcJ (predicted composition value) = (1-c) × HcJ (Pr) + c × HcJ (R)
Figure 0006569408

[実施例38、46]
PrFe11Tiに対し、焼結磁石とボンド磁石を作製した。焼結磁石の場合(実施例38)の場合、ボンド磁石の場合(実施例46)ともにP4/(P3+P4)が高く保磁力HcJも高い値を示した。このことから、焼結磁石、ボンド磁石ともに4価のPrに起因する高い保磁力が得られることがわかった。
[Examples 38 and 46]
Sintered magnets and bonded magnets were prepared for PrFe 11 Ti. In the case of the sintered magnet (Example 38), in the case of the bonded magnet (Example 46), P4 / (P3 + P4) was high and the coercive force HcJ was also high. From this, it was found that both the sintered magnet and the bonded magnet can obtain a high coercive force due to tetravalent Pr.

[実施例46〜48]
PrFe11Tiに対し、ボンド化前に窒化処理したものと水素化処理したものを作製した。窒化したボンド磁石の場合(実施例47)、水素化処理したボンド磁石の場合(実施例48)、ともにP4/(P3+P4)が高く保磁力HcJも高い値を示した。このことから、侵入元素NやHを導入後も4価のPrに起因する高い保磁力が得られることが分かった。さらに侵入元素がない場合(実施例46)と比較し、侵入元素を導入することによって保磁力が向上することが分かった。
[Examples 46 to 48]
PrFe 11 Ti was prepared by nitriding before hydrogenation and by hydrogenation. In the case of the nitrided bond magnet (Example 47) and in the case of the hydrogenated bond magnet (Example 48), both P4 / (P3 + P4) were high and the coercive force HcJ was also high. From this, it was found that a high coercive force due to tetravalent Pr can be obtained even after introducing the intruding elements N and H. Further, it was found that the coercive force was improved by introducing the intruding element as compared with the case without the intruding element (Example 46).

[実施例47、49〜52、比較例39、40]
上記実施例および比較例において、Rの置換量cが少ないほど、つまりPr量が多いほどP4/(P3+P4)が高く、希土類元素組成比から予想される保磁力HcJの値より大きな値となった。ただし、c=0.75(比較例39、40)の場合はP4/(P3+P4)、保磁力HcJの値がともに著しく低下した。このことからPr価数状態の変化が主相内の磁気異方性に寄与し、HcJ(組成予想値)以上の保磁力の増加を担っていることが分かった。
[Examples 47 and 49 to 52, Comparative Examples 39 and 40]
In the above Examples and Comparative Examples, the smaller the R substitution amount c, that is, the larger the Pr amount, the higher P4 / (P3 + P4), which was larger than the coercive force HcJ value expected from the rare earth element composition ratio. . However, in the case of c = 0.75 (Comparative Examples 39 and 40), the values of P4 / (P3 + P4) and coercive force HcJ were remarkably reduced. From this, it was found that the change in the Pr valence state contributes to the magnetic anisotropy in the main phase, and is responsible for the increase in coercive force of HcJ (composition expected value) or more.

[実施例50、52〜55]
上記実施例および比較例において、何れのR元素についても4価のPr状態が確認され、HcJ(組成予想値)より大きな値となった。このことからRの元素によらず4価のPrに起因する高い磁気異方性を有した永久磁石が得られ、中でも特に、R=Y、Gd、CeはHcJ(組成予想値)からの増加率が高いことが分かった。
[Examples 50, 52 to 55]
In the above Examples and Comparative Examples, a tetravalent Pr state was confirmed for any R element, which was a value larger than HcJ (composition expected value). From this, a permanent magnet having high magnetic anisotropy resulting from tetravalent Pr can be obtained regardless of the element of R, and in particular, R = Y, Gd, and Ce are increased from HcJ (expected composition value). It turns out that the rate is high.

Claims (7)

主相粒子中の3価のPr原子数をP3、4価のPr原子数をP4としたときの存在比率P4/(P3+P4)が、P4/(P3+P4)≧0.1であることを特徴とする希土類永久磁石であって、主相粒子がNdFe14B型結晶構造を有するR−T−X化合物であり、RはPrを必須とするY、La、Ce、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、YbおよびLuの1種以上からなる希土類元素、TはFeまたはFeおよびCoを必須とする1種以上の遷移金属元素、XはBまたはBとその一部をBe、CもしくはSiで置換した元素であることを特徴とする希土類永久磁石。 The existence ratio P4 / (P3 + P4) is P4 / (P3 + P4) ≧ 0.1 when the number of trivalent Pr atoms in the main phase particle is P3 and the number of tetravalent Pr atoms is P4. a rare earth permanent magnet, an R-T-X compound main phase particles have a Nd 2 Fe 14 B crystal structure, R represents an essential component Pr Y, La, Ce, Nd , Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu, a rare earth element, T is one or more transition metal elements essential to Fe or Fe and Co, X is B or B and its A rare earth permanent magnet which is an element partially substituted with Be, C or Si. 主相粒子中の3価のPr原子数をP3、4価のPr原子数をP4としたときの存在比率P4/(P3+P4)が、P4/(P3+P4)≧0.1であることを特徴とする希土類永久磁石であって、主相粒子がTbCu型結晶構造を有するR−T化合物であり、RはPrを必須とするY、La、Ce、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、YbおよびLuの1種以上からなる希土類元素、TはFeまたはFeおよびCoを必須とする1種以上の遷移金属元素であることを特徴とする希土類永久磁石。 The existence ratio P4 / (P3 + P4) is P4 / (P3 + P4) ≧ 0.1 when the number of trivalent Pr atoms in the main phase particle is P3 and the number of tetravalent Pr atoms is P4. a rare earth permanent magnet, an R-T compounds main phase particles have a the TbCu 7 crystal structure, Y R is essentially containing Pr, La, Ce, Nd, Sm, Eu, Gd, Tb, Dy , Ho, Er, Tm, Yb and Lu, a rare earth element, wherein T is one or more transition metal elements essentially comprising Fe or Fe and Co. 請求項に記載の希土類永久磁石であって、前記主相粒子が、さらに侵入元素Z(ZはN、H、Be、Cの1種以上からなる元素)を含むことを特徴とする希土類永久磁石。 3. The rare earth permanent magnet according to claim 2 , wherein the main phase particles further contain an intruding element Z (Z is an element composed of one or more of N, H, Be, and C). magnet. 請求項又は請求項に記載の希土類永久磁石であって、前記主相粒子が、Rの一部をZrで置換したことを特徴とする希土類永久磁石。 A rare earth permanent magnet according to claim 2 or claim 3, rare earth permanent magnets, characterized in that the main phase grains, by replacing part of the R in Zr. 主相粒子中の3価のPr原子数をP3、4価のPr原子数をP4としたときの存在比率P4/(P3+P4)が、P4/(P3+P4)≧0.1であることを特徴とする希土類永久磁石であって、主相粒子がThMn12型結晶構造を有するR−T化合物であり、RはPrを必須とするY、La、Ce、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、YbおよびLuの1種以上からなる希土類元素、TはFeまたはFeおよびCoを必須とする1種以上の遷移金属元素、またはその一部をM(Ti、V、Cr、Mo、W、Zr、Hf、Nb、Ta、Al、Si、Cu、Zn、Ga、Geの1種以上)で置換した元素であることを特徴とする希土類永久磁石。 The existence ratio P4 / (P3 + P4) is P4 / (P3 + P4) ≧ 0.1 when the number of trivalent Pr atoms in the main phase particle is P3 and the number of tetravalent Pr atoms is P4. a rare earth permanent magnet, an R-T compounds main phase particles have a ThMn 12 type crystal structure, Y R is essentially containing Pr, La, Ce, Nd, Sm, Eu, Gd, Tb, Dy , Ho, Er, Tm, Yb and Lu, a rare earth element, T is Fe or one or more transition metal elements essential to Fe and Co, or a part thereof is M (Ti, V, Cr , Mo, W, Zr, Hf, Nb, Ta, Al, Si, Cu, Zn, Ga, and Ge). 請求項に記載の希土類永久磁石であって、前記主相粒子が、さらに侵入元素Z(ZはN、H、Be、Cの1種以上からなる元素)を含むことを特徴とする希土類永久磁石。 6. The rare earth permanent magnet according to claim 5 , wherein the main phase particles further contain an intruding element Z (Z is an element composed of one or more of N, H, Be, and C). magnet. 請求項1から請求項6のいずれかに記載の希土類永久磁石であって、主相粒子中の3価のPr原子数および4価のPr原子数の存在比率は電子エネルギー損失分光によって算出されることを特徴とする希土類永久磁石。

The rare earth permanent magnet according to any one of claims 1 to 6, wherein the abundance ratio of trivalent Pr atoms and tetravalent Pr atoms in the main phase particles is calculated by electron energy loss spectroscopy. A rare earth permanent magnet.

JP2015178815A 2015-09-10 2015-09-10 Rare earth permanent magnet Active JP6569408B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015178815A JP6569408B2 (en) 2015-09-10 2015-09-10 Rare earth permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015178815A JP6569408B2 (en) 2015-09-10 2015-09-10 Rare earth permanent magnet

Publications (2)

Publication Number Publication Date
JP2017054983A JP2017054983A (en) 2017-03-16
JP6569408B2 true JP6569408B2 (en) 2019-09-04

Family

ID=58320985

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015178815A Active JP6569408B2 (en) 2015-09-10 2015-09-10 Rare earth permanent magnet

Country Status (1)

Country Link
JP (1) JP6569408B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111575598B (en) * 2019-02-19 2021-11-05 有研稀土新材料股份有限公司 Yttrium-added rare earth permanent magnet material and preparation method thereof
CN110957091B (en) * 2019-11-21 2021-07-13 厦门钨业股份有限公司 Neodymium-iron-boron magnet material, raw material composition, preparation method and application
JP7435134B2 (en) 2020-03-26 2024-02-21 株式会社プロテリアル Manufacturing method of RTB based sintered magnet
CN113782290B (en) * 2021-09-07 2023-06-02 钢铁研究总院 Double-main-phase high-magnetic energy product magnet with high Ce content and preparation method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5515223A (en) * 1978-07-18 1980-02-02 Seiko Epson Corp Anisotropy rare earth class magnet manufacturing method
JP3219865B2 (en) * 1991-10-16 2001-10-15 株式会社東芝 Magnetic materials, permanent magnets and bonded magnets
JP2003017308A (en) * 2001-06-27 2003-01-17 Nissan Motor Co Ltd High resistance magnet and method of fabricating the magnet
JP5532745B2 (en) * 2009-08-21 2014-06-25 大同特殊鋼株式会社 Magnetic anisotropic magnet and manufacturing method thereof
US10529474B2 (en) * 2014-04-15 2020-01-07 Tdk Corporation Rare-earth permanent magnet

Also Published As

Publication number Publication date
JP2017054983A (en) 2017-03-16

Similar Documents

Publication Publication Date Title
JP6409867B2 (en) Rare earth permanent magnet
US10325704B2 (en) Rare earth magnet
JP5218869B2 (en) Rare earth-iron-nitrogen alloy material, method for producing rare earth-iron-nitrogen alloy material, rare earth-iron alloy material, and method for producing rare earth-iron alloy material
JP6330907B2 (en) Method for producing rare earth magnet compact
WO2017033266A1 (en) Magnet particles and magnet molding using same
JP5708889B2 (en) R-T-B permanent magnet
JP5464289B1 (en) R-T-B sintered magnet
JP2016152246A (en) Rare earth based permanent magnet
JP5708887B2 (en) R-T-B permanent magnet
JP6569408B2 (en) Rare earth permanent magnet
CN107408437B (en) Rare earth magnet
JP2013102122A (en) Magnetic member and manufacturing method for magnetic member
US10020102B2 (en) R-T-B based permanent magnet and rotating machine
JP6380738B2 (en) R-T-B permanent magnet, raw alloy for R-T-B permanent magnet
JP2012253247A (en) Composite magnetic material and method for manufacturing the same
JP6330254B2 (en) R-T-B sintered magnet
CN111261353B (en) R-T-B based permanent magnet
JPWO2018101410A1 (en) Rare earth permanent magnet
JP6511844B2 (en) RTB based sintered magnet
JP6468435B2 (en) R-T-B sintered magnet
JP6919788B2 (en) Rare earth sintered magnet
WO2017191790A1 (en) Rare-earth permanent magnet, and method for manufacturing same
JP4618437B2 (en) Method for producing rare earth permanent magnet and raw material alloy thereof
CN113614864B (en) R-T-B permanent magnet and method for manufacturing same
JP4506973B2 (en) Method for producing rare earth sintered magnet, method for grinding raw alloy powder for sintered magnet

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20160714

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190312

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190313

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190408

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190709

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190722

R150 Certificate of patent or registration of utility model

Ref document number: 6569408

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150