JP2013102122A - Magnetic member and manufacturing method for magnetic member - Google Patents

Magnetic member and manufacturing method for magnetic member Download PDF

Info

Publication number
JP2013102122A
JP2013102122A JP2012137953A JP2012137953A JP2013102122A JP 2013102122 A JP2013102122 A JP 2013102122A JP 2012137953 A JP2012137953 A JP 2012137953A JP 2012137953 A JP2012137953 A JP 2012137953A JP 2013102122 A JP2013102122 A JP 2013102122A
Authority
JP
Japan
Prior art keywords
phase
alloy
magnetic
magnetic member
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012137953A
Other languages
Japanese (ja)
Inventor
Toru Maeda
前田  徹
Motoki Nagasawa
基 永沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2012137953A priority Critical patent/JP2013102122A/en
Publication of JP2013102122A publication Critical patent/JP2013102122A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a magnetic member that has excellent magnetic properties and is suitable for being used as a permanent magnet material, and to provide a manufacturing method for the magnetic member.SOLUTION: A magnetic member 1 comprises a surrounding phase 11 in which a Fe-based magnetic phase 10 of a minor axis of 100 nm or less is dispersed and which includes an MA-Fe oxide 12 containing MA and Fe, where MA is an element containing at least one element selected from Ca, Sr, Ba and Y. The magnetic member 1 is obtained as follows. From a solution alloy 30 prepared by a solution treatment of a raw material alloy including MA and Fe, a deposited phase 42 containing at least MA and Fe is deposited. Then, a parent phase 41 of a deposited alloy 40 is separated into the Fe-based magnetic phase 10 and an X alloy phase 51, where X is an element containing at least one element selected from Al, Ni and Co. Finally, an oxidation treatment is performed on a phase separation material 50 containing the Fe-based magnetic phase 10 and the deposited phase 42 to form the MA-Fe oxide 12 from the deposited phase 42. The magnetic member 1 becomes excellent in magnetic properties by surrounding the Fe-based magnetic phase 10 with the MA-Fe oxide 12 as a ferrite magnet component, in addition to the Fe-based magnetic phase 10.

Description

本発明は、永久磁石などの磁石の素材に適した磁性部材、及びその製造方法に関する。特に、磁気特性に優れる磁性部材及びその製造方法に関するものである。   The present invention relates to a magnetic member suitable for a magnet material such as a permanent magnet, and a manufacturing method thereof. In particular, the present invention relates to a magnetic member having excellent magnetic properties and a method for manufacturing the same.

モータや発電機などに利用される永久磁石として、Fe-Al-Ni-Co系合金やFe-Cr-Co系合金などの金属材料からなる金属系磁石、代表的には、特許文献1に記載されるようなアルニコ磁石と呼ばれるものや、酸化鉄を主成分とするフェライト磁石が広く利用されている。また、磁気特性に特に優れる永久磁石として、Nd(ネオジム)やSm(サマリウム)といった希土類元素を含む希土類磁石が利用されている。   As permanent magnets used for motors and generators, metal magnets made of metal materials such as Fe-Al-Ni-Co alloys and Fe-Cr-Co alloys, typically described in Patent Document 1. The so-called alnico magnets and ferrite magnets mainly composed of iron oxide are widely used. Further, rare earth magnets containing rare earth elements such as Nd (neodymium) and Sm (samarium) are used as permanent magnets that are particularly excellent in magnetic properties.

アルニコ磁石などの金属系磁石の代表的な製造工程を図3に示す。Fe-Al-Ni-Co系合金といった原料合金を溶解して鋳造し、得られたインゴット100に溶体化処理を施した後、FeCoといった強磁性体を主体とする強磁性相120と、AlNi相といった弱磁性体(又は非磁性体)を主体とする非磁性相130との2相分離(スピノーダル分解)を行って、磁石400が得られる。強磁性相120は、代表的には、細長い棒状の単磁区粒子、より具体的には短径(幅)が数nm〜数十nmのナノオーダー、長径(長手方向の長さ)が数μm〜十数μm程度のマイクロオーダーといった非常に細長い粒子とすることで、形状磁気異方性によって磁気特性に優れる。非磁性相130は、隣り合う強磁性相120間に磁気相互作用が生じないように介在される。   Fig. 3 shows a typical manufacturing process for metal magnets such as alnico magnets. After melting and casting a raw material alloy such as an Fe-Al-Ni-Co alloy and subjecting the obtained ingot 100 to solution treatment, a ferromagnetic phase 120 mainly composed of a ferromagnetic material such as FeCo, and an AlNi phase The magnet 400 is obtained by performing two-phase separation (spinodal decomposition) with the nonmagnetic phase 130 mainly composed of such a weak magnetic material (or nonmagnetic material). The ferromagnetic phase 120 is typically an elongated rod-like single domain particle, more specifically, a nanometer order of a short diameter (width) of several nanometers to several tens of nanometers, and a long diameter (length in the longitudinal direction) of several μm. It is excellent in magnetic properties due to shape magnetic anisotropy by forming very elongated particles such as micro order of about tens of μm. The nonmagnetic phase 130 is interposed so that no magnetic interaction occurs between the adjacent ferromagnetic phases 120.

特開平10-280011号公報Japanese Patent Laid-Open No. 10-280011

希土類磁石は、磁気特性に優れるものの、SmやNdといった希少な元素を磁性相に含む。SmやNdといった希土類元素は、昨今、資源調達の安定性に劣る点や価格変動の不安定さを考慮すると、使用量の低減が望まれている。また、希土類磁石は、温度に対する磁気特性の変化が大きい。   Rare earth magnets have excellent magnetic properties, but contain rare elements such as Sm and Nd in the magnetic phase. In recent years, the use of rare earth elements such as Sm and Nd is desired to be reduced in view of the inferior stability of resource procurement and the instability of price fluctuations. In addition, rare earth magnets have a large change in magnetic characteristics with respect to temperature.

フェライト磁石やアルニコ磁石は、Feといった比較的資源面に優れる元素を磁性相の主要元素とする。しかし、フェライト磁石は、永久磁石に望まれる磁気特性の一つ:保磁力はある程度高いものの、別の一つ:飽和磁化や残留磁化が希土類磁石に比較して非常に低く、高性能用途に対応することが難しい。   Ferrite magnets and alnico magnets have a relatively excellent resource aspect, such as Fe, as the main element of the magnetic phase. However, ferrite magnets are one of the magnetic properties desired for permanent magnets: although coercivity is somewhat high, another one: saturation magnetization and remanent magnetization are very low compared to rare earth magnets, making them suitable for high-performance applications Difficult to do.

アルニコ磁石などの金属系磁石は、温度に対する安定性に非常に優れる上に、フェライト磁石よりも飽和磁化や残留磁化が高い。しかし、例えば、アルニコ磁石では、主相であるFeCo合金(強磁性相)自体の結晶異方性磁界が低い。そのため、アルニコ磁石の保磁力の発現は、上述の短軸がナノオーダーである形状に起因した形状磁気異方性が主体になるため、アルニコ磁石は、保磁力が比較的低い。また、アルニコ磁石は、AlNiといった非磁性成分を40原子%程度含有することで、希土類磁石と比較すると、飽和磁化や残留磁化が低い。   Metal-based magnets such as alnico magnets are very excellent in temperature stability and have higher saturation magnetization and residual magnetization than ferrite magnets. However, for example, in the Alnico magnet, the crystal anisotropic magnetic field of the FeCo alloy (ferromagnetic phase) itself, which is the main phase, is low. Therefore, the expression of the coercive force of the alnico magnet is mainly due to the shape magnetic anisotropy caused by the shape whose short axis is nano-order, and the alnico magnet has a relatively low coercive force. In addition, the Alnico magnet contains a nonmagnetic component such as AlNi in an amount of about 40 atomic%, so that the saturation magnetization and the residual magnetization are low as compared with the rare earth magnet.

そこで、本発明の目的の一つは、磁気特性に優れる磁性部材を提供することにある。また、本発明の他の目的は、磁気特性に優れる磁性部材を生産性よく製造可能な磁性部材の製造方法を提供することにある。   Accordingly, one of the objects of the present invention is to provide a magnetic member having excellent magnetic properties. Another object of the present invention is to provide a method for producing a magnetic member capable of producing a magnetic member having excellent magnetic properties with high productivity.

本発明者らは、FeCoといったFeを含有する強磁性相を有する金属系磁石を対象として、磁気特性を向上するための構成を検討した。金属系磁石では、上述のように弱磁性体を多く含むことで、磁気特性が低い。そこで、本発明では、弱磁性体の少なくとも一部を磁性体とすること、特に、フェライト磁石成分といった鉄酸化物を含有することを提案する。   The present inventors have studied a configuration for improving magnetic properties for a metal-based magnet having a ferromagnetic phase containing Fe, such as FeCo. A metal-based magnet has a low magnetic property by containing a large amount of weak magnetic material as described above. Therefore, the present invention proposes that at least a part of the weak magnetic material is a magnetic material, and particularly contains an iron oxide such as a ferrite magnet component.

本発明の磁性部材は、Feを主体とするFe基磁性相と、上記Fe基磁性相を取り囲む周囲相とから構成される。上記Fe基磁性相は、その短径が100nm以下である。上記周囲相は、Ca,Sr,Ba及びYから選択される1種以上の元素をMAとするとき、MAとFeとを含有するMA-Fe酸化物を含有する。   The magnetic member of the present invention is composed of an Fe-based magnetic phase mainly composed of Fe and an ambient phase surrounding the Fe-based magnetic phase. The Fe-based magnetic phase has a minor axis of 100 nm or less. The surrounding phase contains MA-Fe oxide containing MA and Fe, where MA is one or more elements selected from Ca, Sr, Ba and Y.

本発明の磁性部材は、強磁性体からなり、ナノオーダーのFe基磁性相の周囲に、バリウムフェライトやストロンチウムフェライトのようなMA-Fe酸化物を含有する。この構成により、本発明の磁性部材は、従来のアルニコ磁石といった金属系磁石の特性、つまり、高い飽和磁化や残留磁化と、フェライト磁石の特性、つまり、高い保磁力との双方を併せ持つことができる。そのため、本発明の磁性部材は、SmやNdといった希少元素を使用することなく、又は希少元素の使用量を低減することができながら、高い飽和磁化や残留磁化、保磁力を有し、永久磁石の素材に好適に利用することができる。   The magnetic member of the present invention is made of a ferromagnetic material and contains an MA-Fe oxide such as barium ferrite or strontium ferrite around the nano-order Fe-based magnetic phase. With this configuration, the magnetic member of the present invention can have both characteristics of a conventional metal magnet such as an alnico magnet, that is, high saturation magnetization and residual magnetization, and characteristics of a ferrite magnet, that is, high coercive force. . Therefore, the magnetic member of the present invention has high saturation magnetization, residual magnetization, and coercive force without using rare elements such as Sm and Nd, or while reducing the amount of rare elements used. It can utilize suitably for the material of.

本発明の磁性部材の一形態として、上記Fe基磁性相が実質的にFeから構成されるFe相、及びCoを50質量%以下含有するFeCo相の少なくとも一方であり、上記周囲相がAl及びNiを主要元素とするAlNi系合金と上記MA-Fe酸化物とを含有し、上記MA-Fe酸化物がMAとFeとAlとを含有する形態が挙げられる。   As one form of the magnetic member of the present invention, the Fe-based magnetic phase is at least one of a Fe phase substantially composed of Fe and a FeCo phase containing 50% by mass or less of Co, and the surrounding phase is Al and Examples include an AlNi-based alloy containing Ni as a main element and the MA-Fe oxide, and the MA-Fe oxide contains MA, Fe, and Al.

上記形態は、例えば、原料合金を溶体化した後に相分離処理を行う、という従来の金属系磁石の製造工程と同様の工程を含む製造方法によって製造可能であり、この製造方法は、工業的な量産が可能であることから、生産性に優れる。   The above-mentioned form can be manufactured by a manufacturing method including a process similar to the manufacturing process of a conventional metal magnet in which a phase separation treatment is performed after solution of a raw material alloy, for example. Because it can be mass-produced, it is excellent in productivity.

本発明の磁性部材の一形態として、上記Fe基磁性相が柱状であり、その長径が1000nm以上である形態が挙げられる。   As an embodiment of the magnetic member of the present invention, there is an embodiment in which the Fe-based magnetic phase is columnar and the major axis is 1000 nm or more.

上記形態は、Fe基磁性相のアスペクト比(短径と長径との比:長径/短径)が十分に大きく、形状磁気異方性によって磁気特性に更に優れる。   In the above embodiment, the aspect ratio of the Fe-based magnetic phase (ratio of minor axis to major axis: major axis / minor axis) is sufficiently large, and the magnetic properties are further improved by the shape magnetic anisotropy.

本発明の磁性部材の一形態として、上記周囲相がAl及びNiを主要元素とするAlNi系合金と上記MA-Fe酸化物とを含有し、上記周囲相におけるFeとAlとの合計原子量に対して、Feの含有量が50原子%超である形態が挙げられる。   As one form of the magnetic member of the present invention, the surrounding phase contains an AlNi-based alloy containing Al and Ni as main elements and the MA-Fe oxide, and the total atomic weight of Fe and Al in the surrounding phase Thus, a form in which the Fe content is more than 50 atomic% can be mentioned.

上記形態は、Fe基磁性相だけでなく、周囲相中にもFeが十分に存在する。この周囲相中のFeが酸化物中に存在してフェライト磁石成分として機能することで、上記形態は、磁気特性に優れる。   In the above-mentioned form, not only the Fe-based magnetic phase but also Fe is sufficiently present in the surrounding phase. Since the Fe in the surrounding phase exists in the oxide and functions as a ferrite magnet component, the above form is excellent in magnetic properties.

本発明の磁性部材の一形態として、上記磁性部材における上記MAの合計含有量が3質量%以上8質量%以下である形態が挙げられる。   As one form of the magnetic member of the present invention, a form in which the total content of MA in the magnetic member is 3% by mass or more and 8% by mass or less can be given.

上記形態は、MAで表わされる元素がフェライト磁石成分として十分に存在し、磁気特性に優れる。   In the above form, the element represented by MA is sufficiently present as a ferrite magnet component, and is excellent in magnetic properties.

上述のようなアルニコ磁石といった金属系磁石とフェライト磁石との双方の磁石特性を併せ持つ磁性部材は、例えば、出発原料に合金を用いる以下の製造方法によって製造することができる。本発明の磁性部材の製造方法は、以下の準備工程、溶体化工程、析出工程、分離工程、及び酸化工程を具える(以下、この製造方法を製法(I)と呼ぶことがある)。
準備工程:Ca,Sr,Ba及びYから選択される1種以上の元素をMA、Al,Ni及びCoから選択される1種以上の元素をXとするとき、MAとFeとXとを含む原料合金を準備する工程。
溶体化工程:上記原料合金に1000℃以上上記原料合金の液相化温度以下の温度で溶体化処理を施す工程。
析出工程:上記溶体化処理が施された溶体化合金から、少なくともMAとFeとを含有するMA-Fe析出相を析出して、FeとXとを含有するFe-X合金中に上記MA-Fe析出相を存在させる工程。
分離工程:上記Fe-X合金を、Feを主体とするFe基磁性相とXを主体とするX合金相とに相分離する工程。
酸化工程:上記分離工程を経た相分離素材に酸化処理を施して、上記MA-Fe析出相からMAとFeとを含有するMA-Fe酸化物を生成する工程。
A magnetic member having both the magnetic characteristics of a metal magnet such as an alnico magnet as described above and a ferrite magnet can be manufactured by the following manufacturing method using an alloy as a starting material, for example. The method for producing a magnetic member of the present invention includes the following preparation step, solution treatment step, precipitation step, separation step, and oxidation step (hereinafter, this production method may be referred to as production method (I)).
Preparatory process: MA, Fe, and X, where MA is one or more elements selected from Ca, Sr, Ba and Y, and X is one or more elements selected from Al, Ni and Co The process of preparing a raw material alloy.
Solution treatment step: a step of subjecting the raw material alloy to a solution treatment at a temperature not lower than 1000 ° C. and not higher than the liquidus temperature of the raw material alloy.
Precipitation step: From the solution-treated alloy subjected to the solution treatment, a MA-Fe precipitation phase containing at least MA and Fe is precipitated, and the MA-Fe is added to the Fe-X alloy containing Fe and X. A step of allowing an Fe precipitate phase to exist.
Separation step: a step of separating the Fe-X alloy into an Fe-based magnetic phase mainly composed of Fe and an X alloy phase mainly composed of X.
Oxidation step: a step of producing an MA-Fe oxide containing MA and Fe from the MA-Fe precipitated phase by subjecting the phase separation material that has undergone the separation step to oxidation treatment.

また、上述の金属系磁石とフェライト磁石との双方の磁石特性を併せ持つ磁性部材は、出発原料に化合物を用いる以下の製造方法によって製造することができる。本発明の磁性部材の製造方法は、以下の準備工程、焼結工程、還元工程、析出工程、分離工程、及び酸化工程を具える(以下、この製造方法を製法(II)と呼ぶことがある)。
準備工程:Ca,Sr,Ba及びYから選択される1種以上の元素をMA、Al,Ni及びCoから選択される1種以上の元素をXとするとき、MAの炭酸化物からなる粉末と、Xの酸化物からなる粉末と、Feの酸化物からなる粉末とを混合した原料粉末を準備する工程。
焼結工程:上記原料粉末を仮焼結した後、本焼結を行って、MAとFeとXとを含有する複合酸化物からなる焼結体を形成する工程。
還元工程:上記焼結体に還元処理を施して、MAとFeとXとを含有するベース合金を形成する工程。
析出工程:上記ベース合金から、少なくともMAとFeとを含有するMA-Fe析出相を析出して、FeとXとを含有するFe-X合金中に上記MA-Fe析出相を存在させる工程。
分離工程:上記Fe-X合金を、Feを主体とするFe基磁性相とXを主体とするX合金相とに相分離する工程。
酸化工程:上記分離工程を経た相分離素材に酸化処理を施して、上記MA-Fe析出相からMAとFeとを含有するMA-Fe酸化物を生成する工程。
Moreover, the magnetic member which has both the magnetic characteristics of the above-mentioned metallic magnet and a ferrite magnet can be manufactured with the following manufacturing methods using a compound as a starting material. The method for producing a magnetic member of the present invention includes the following preparation step, sintering step, reduction step, precipitation step, separation step, and oxidation step (hereinafter, this production method may be referred to as production method (II)). ).
Preparatory step: When one or more elements selected from Ca, Sr, Ba and Y are MA, and one or more elements selected from Al, Ni and Co are X, a powder composed of a carbonate of MA A step of preparing a raw material powder obtained by mixing a powder composed of an oxide of X and a powder composed of an oxide of Fe.
Sintering step: A step of forming a sintered body made of a composite oxide containing MA, Fe, and X by pre-sintering the raw material powder and then performing main sintering.
Reduction step: a step of forming a base alloy containing MA, Fe, and X by subjecting the sintered body to a reduction treatment.
Precipitation step: a step of precipitating the MA-Fe precipitation phase containing at least MA and Fe from the base alloy and causing the MA-Fe precipitation phase to exist in the Fe-X alloy containing Fe and X.
Separation step: a step of separating the Fe-X alloy into an Fe-based magnetic phase mainly composed of Fe and an X alloy phase mainly composed of X.
Oxidation step: a step of producing an MA-Fe oxide containing MA and Fe from the MA-Fe precipitated phase by subjecting the phase separation material that has undergone the separation step to oxidation treatment.

本発明の磁性部材の製造方法では、製法(I)の場合、特定の元素を含む原料合金を用い、この原料合金を溶体化した溶体化合金から析出物を析出させ、製法(II)の場合、特定の元素を含む複数の化合物粉末を用いて複数の元素を含む複合酸化物の焼結体を作製し、この焼結体を還元して得られたベース合金から析出物を析出させ、この析出物と、この析出物の周囲に存在する母相との双方にFeを存在させる。つまり、本発明の磁性部材の製造方法は、析出物及びその周囲に存在する母相の双方がFeを含有する状態を形成する工程を具える。そして、本発明の磁性部材の製造方法では、このFeを含有する母相:Fe-X合金からFe基磁性相を出現させ、Fe基磁性相と上記析出物:MA-Fe析出相とを具える素材に酸化処理を施して、MA-Fe析出相から上記MA-Fe酸化物を生成する。本発明の磁性部材の製造方法:製法(I)は、特定の元素を含む原料合金を用いると共に、従来の金属系磁石の製造工程と同様の工程:溶体化後に相分離するという工程に加えて、析出工程及び酸化工程を具えることで、ナノオーダーの強磁性体からなるFe基磁性相の周囲に、バリウムフェライトやストロンチウムフェライトのようなMA-Fe酸化物を含有する磁性部材を生産性よく製造することができる。本発明の磁性部材の製造方法:製法(II)は、特定の元素を含む複合酸化物を還元したベース合金を作製すると共に、従来の金属系磁石の製造工程と同様に相分離するという工程に加えて、析出工程及び酸化工程を具えることで、ナノオーダーの強磁性体からなるFe基磁性相の周囲に、バリウムフェライトやストロンチウムフェライトのようなMA-Fe酸化物を含有する磁性部材を生産性よく製造することができる。本発明の磁性部材の製造方法は、Fe基磁性相がFe相及びFeCo相の少なくとも一方であり、このFe基磁性相の周囲に、AlNi系合金と上記MA-Fe酸化物相とを含む形態の製造に好適に利用することができる。   In the production method of the magnetic member of the present invention, in the case of the production method (I), in the case of the production method (II), a raw material alloy containing a specific element is used, and precipitates are deposited from the solution alloy obtained by solutionizing this raw material alloy. A composite oxide sintered body containing a plurality of elements is produced using a plurality of compound powders containing specific elements, and precipitates are deposited from a base alloy obtained by reducing the sintered body. Fe is present both in the precipitate and in the parent phase existing around the precipitate. That is, the method for producing a magnetic member of the present invention includes a step of forming a state in which both the precipitate and the parent phase existing around the precipitate contain Fe. In the method for producing a magnetic member of the present invention, the Fe-based magnetic phase is allowed to appear from the Fe-containing parent phase: Fe-X alloy, and the Fe-based magnetic phase and the precipitate: MA-Fe precipitated phase are provided. The material is oxidized to produce the MA-Fe oxide from the MA-Fe precipitate phase. The manufacturing method of the magnetic member of the present invention: The manufacturing method (I) uses a raw material alloy containing a specific element, and is similar to the manufacturing process of a conventional metal magnet: In addition to the process of phase separation after solution treatment By providing a precipitation process and an oxidation process, magnetic members containing MA-Fe oxides such as barium ferrite and strontium ferrite around the Fe-based magnetic phase made of nano-order ferromagnetic materials can be produced with high productivity. Can be manufactured. Manufacturing method of magnetic member of the present invention: The manufacturing method (II) is a process in which a base alloy obtained by reducing a composite oxide containing a specific element is manufactured and phase separation is performed in the same manner as in the manufacturing process of a conventional metal magnet. In addition, by providing a precipitation process and an oxidation process, magnetic members containing MA-Fe oxides such as barium ferrite and strontium ferrite are produced around the Fe-based magnetic phase composed of nano-order ferromagnetic materials. It can be manufactured with good performance. In the method for producing a magnetic member of the present invention, the Fe-based magnetic phase is at least one of an Fe phase and an FeCo phase, and an AlNi-based alloy and the MA-Fe oxide phase are included around the Fe-based magnetic phase. It can utilize suitably for manufacture.

特に、製法(II)では、Ca,Ba,SrといったFeに比較して蒸気圧が高く、揮発し易い金属を化合物の状態で取り扱うため、MAの添加量の制御が行い易い。具体的には、製法(II)では、揮発防止のために溶解炉内の圧力制御を行ったり、揮発分を見込んだ添加量を設定したりすること無く、所定量のMAを複合酸化物に安定して、かつ精度よく含有させられる。また、製法(II)は、Caなどが揮発して溶解炉内を汚染することも無い。更に、製法(II)では、MAの化合物として、MAの炭酸化物を用いることで、大気雰囲気でも取り扱えるため作業性に優れる上に、焼結工程で容易に酸化物に変化できるため、上述の特定の磁性部材の工業的な量産を良好に行える。加えて、製法(II)では、仮焼結を行うことで、炭酸化物を一旦酸化物に変化させてから、本焼結によって複合酸化物に変化できるため、緻密で不純物が少ない複合酸化物を製造できる。更に、製法(II)は、MAの添加量が少ない場合は勿論、多い場合(例えば、5質量%超)でも、上述の特定の磁性部材を良好に製造できる。   In particular, in the production method (II), since the vapor pressure is higher than that of Fe such as Ca, Ba, and Sr and a metal that is easily volatilized is handled in a compound state, the amount of MA added can be easily controlled. Specifically, in the production method (II), a predetermined amount of MA is converted into a complex oxide without controlling the pressure in the melting furnace to prevent volatilization or setting an addition amount with the expectation of volatile matter. It is contained stably and accurately. Further, in the production method (II), Ca and the like are not volatilized and the melting furnace is not contaminated. Furthermore, in the production method (II), by using MA carbonate as the MA compound, it can be handled even in an air atmosphere and is excellent in workability, and can be easily changed to an oxide in the sintering process. Industrial mass production of magnetic members can be performed satisfactorily. In addition, in the production method (II), by performing preliminary sintering, the carbonate can be changed to oxide once after being changed into oxide. Can be manufactured. Furthermore, in the production method (II), the above-mentioned specific magnetic member can be satisfactorily produced not only when the amount of MA added is small but also when it is large (for example, more than 5% by mass).

製法(I)の一形態として、上記溶体化工程の冷却過程に上記析出工程と上記分離工程とを含む形態が挙げられる。上記冷却過程において、上記溶体化合金におけるMA-Fe相の析出温度域の下限温度までの降温速度を5℃/sec以下として冷却することで上記MA-Fe析出相を析出し、残りのFe-X合金の相分離温度領域では、降温速度を0.05℃/sec以上5℃/sec未満として冷却することで上記Fe基磁性相と上記X合金相とに相分離する。   As one form of manufacturing method (I), the form which includes the said precipitation process and the said separation process in the cooling process of the said solution treatment process is mentioned. In the cooling process, the MA-Fe precipitation phase is precipitated by cooling at a cooling rate of 5 ° C / sec or less to the lower limit temperature of the precipitation temperature range of the MA-Fe phase in the solution alloy, and the remaining Fe- In the phase separation temperature region of the X alloy, the Fe-based magnetic phase and the X alloy phase are phase-separated by cooling at a cooling rate of 0.05 ° C./sec or more and less than 5 ° C./sec.

上記形態は、溶体化処理時の加熱温度からの冷却過程において析出工程と分離工程とを行うため、加熱が一度でよく、生産性により優れる。また、上記形態は、析出時の降温速度を特定の範囲に制御して徐冷することで、MA-Fe析出相を十分に析出でき、MAで表わされる元素をFe-X合金中に残存させ難い。かつ、上記形態は、引き続いて起こるFe-X合金の相分離時の降温速度を特定の範囲に制御して徐冷することで、分散相(Fe基磁性相)とX合金相とを十分に、かつ、微細組織をなすように分離して、Alなどの非磁性成分が分散相に含有されることを抑制し、Alなどを含む分散相の存在による磁気特性の低下を抑制することができる。   In the above embodiment, since the precipitation step and the separation step are performed in the cooling process from the heating temperature at the time of the solution treatment, heating may be performed once and the productivity is improved. In the above-mentioned form, the MA-Fe precipitation phase can be sufficiently precipitated by controlling the temperature lowering rate during precipitation to a specific range and gradually cooling, leaving the element represented by MA in the Fe-X alloy. hard. In addition, the above-described form sufficiently controls the temperature drop rate during the subsequent phase separation of the Fe-X alloy to a specific range and gradually cools, thereby sufficiently dispersing the dispersed phase (Fe-based magnetic phase) and the X alloy phase. In addition, it can be separated so as to form a fine structure to suppress the inclusion of non-magnetic components such as Al in the dispersed phase, and the deterioration of magnetic properties due to the presence of the dispersed phase containing Al can be suppressed. .

製法(I)の一形態として、上記準備工程では上記原料合金からなる粉末を成形した粉末成形体を準備する形態が挙げられる。   As one form of manufacturing method (I), the said preparation process WHEREIN: The form which prepares the powder compact which shape | molded the powder which consists of the said raw material alloy is mentioned.

上記形態は、形状の自由度を高められる上に、酸化工程において、粉末成形体を構成する粒子間を酸素の供給路に利用でき、鋳造材(インゴット)を利用した場合に比較して、酸化物を効率よく生成することができる。   In the above-described form, the degree of freedom in shape can be increased, and in the oxidation process, the particles constituting the powder compact can be used as an oxygen supply path, and compared with the case of using a cast material (ingot). A thing can be produced | generated efficiently.

製法(II)の一形態として、上記還元工程の冷却過程に上記析出工程と上記分離工程とを含む形態が挙げられる。上記冷却過程において、上記ベース合金におけるMA-Fe相の析出温度域の下限温度までの降温速度を5℃/sec以下として冷却することで上記MA-Fe析出相を析出し、相分離温度領域では、降温速度を0.05℃/sec以上5℃/sec未満として冷却することで上記Fe基磁性相と上記X合金相とに相分離する。   As one form of manufacturing method (II), the form which includes the said precipitation process and the said separation process in the cooling process of the said reduction | restoration process is mentioned. In the cooling process, the MA-Fe precipitated phase is precipitated by cooling the MA-Fe phase in the base alloy to the lower limit temperature of the precipitation temperature range at a rate of 5 ° C / sec or less. Then, the Fe-based magnetic phase and the X alloy phase are phase-separated by cooling at a temperature drop rate of 0.05 ° C./sec or more and less than 5 ° C./sec.

上記形態も、上述の製法(I)における溶体化工程の冷却過程で析出と相分離とを行う形態と同様の効果を奏する。具体的には、(1)加熱回数を低減できて生産性に優れる、(2)MA-Fe相を十分に析出できる、(3)分散相とX合金とを十分に分離できる。   The above form also has the same effect as the form in which precipitation and phase separation are performed in the cooling process of the solution treatment step in the production method (I). Specifically, (1) the number of heating times can be reduced and the productivity is excellent, (2) the MA-Fe phase can be sufficiently precipitated, and (3) the dispersed phase and the X alloy can be sufficiently separated.

本発明の磁性部材の製造方法の一形態として、上記分離工程では2T以上の磁場を印加して行う形態が挙げられる。   As one form of the manufacturing method of the magnetic member of this invention, the form performed by applying the magnetic field of 2T or more in the said isolation | separation process is mentioned.

上記形態は、Fe基磁性相の長径を十分に長くでき、アスペクト比が大きな柱状にできるため、形状磁気異方性によって磁気特性により優れる磁性部材が得られる。   In the above embodiment, since the major axis of the Fe-based magnetic phase can be made sufficiently long and the aspect ratio can be made into a columnar shape, a magnetic member having excellent magnetic properties due to shape magnetic anisotropy can be obtained.

本発明の磁性部材の製造方法の一形態として、上記酸化処理は酸素を含有する雰囲気下での熱処理とし、上記酸化工程では、上記相分離素材を100MPa以上の静水圧を加えた状態、又は一軸加圧が可能な金型に収納して加圧した状態で上記酸化処理を行う形態が挙げられる。   As one form of the method for producing a magnetic member of the present invention, the oxidation treatment is a heat treatment in an atmosphere containing oxygen, and in the oxidation step, the phase separation material is applied with a hydrostatic pressure of 100 MPa or more, or uniaxial The form which performs the said oxidation process in the state accommodated in the metal mold | die which can be pressurized, and is pressurized is mentioned.

上記形態は、酸化処理を熱処理とすることで、工業的な量産を行い易く、生産性に優れる。かつ、上記形態は、相分離素材に応力を加えた状態で酸化物を生成することで、酸化物の生成による体積膨張をFe基磁性相の変形などにより吸収させることができる。従って、上記形態は、膨張による割れなどが生じ難く、寸法精度や外観に優れる磁性部材を生産性よく製造することができる。   The said form makes it easy to perform industrial mass production by making oxidation treatment into heat processing, and is excellent in productivity. And the said form can absorb the volume expansion by the production | generation of an oxide by the deformation | transformation of a Fe-based magnetic phase, etc. by producing | generating an oxide in the state which applied the stress to the phase-separation raw material. Therefore, the said form cannot produce the crack by expansion | swelling etc. easily, and can manufacture the magnetic member excellent in dimensional accuracy and an external appearance with sufficient productivity.

本発明の磁性部材は、磁気特性に優れる。本発明の磁性部材の製造方法は、磁気特性に優れる磁性部材を生産性よく製造することができる。   The magnetic member of the present invention is excellent in magnetic properties. The method for producing a magnetic member of the present invention can produce a magnetic member having excellent magnetic properties with high productivity.

本発明の磁性部材の一例を示す説明図と、本発明の磁性部材の製造方法(製法(I))の工程説明図である。It is explanatory drawing which shows an example of the magnetic member of this invention, and process explanatory drawing of the manufacturing method (manufacturing method (I)) of the magnetic member of this invention. 本発明の磁性部材の一例を示す説明図と、本発明の磁性部材の製造方法(製法(II))の工程説明図である。It is explanatory drawing which shows an example of the magnetic member of this invention, and process explanatory drawing of the manufacturing method (manufacturing method (II)) of the magnetic member of this invention. 従来のアルニコ磁石を製造する工程を模式的に示す工程説明図である。It is process explanatory drawing which shows typically the process of manufacturing the conventional alnico magnet.

以下、本発明をより詳細に説明する。
[磁性部材]
(全体の組成及び組織)
本発明の磁性部材は、Feと、MA:Ca,Sr,Ba及びYから選択される1種以上の元素と、O(酸素)とを含む組成から構成され、かつ、周囲相内に複数のナノオーダーの分散相が分散した組織から構成される。本発明の磁性部材の主要構成元素である上記金属元素は、製造に使用した原料に依存する。本発明の磁性部材は、分散相と周囲相との双方にFeを含有し、かつ、周囲相中のFeを、MAを含むMA-Fe酸化物として含有することを最大の特徴とする。
Hereinafter, the present invention will be described in more detail.
[Magnetic member]
(Overall composition and organization)
The magnetic member of the present invention is composed of a composition containing Fe, one or more elements selected from MA: Ca, Sr, Ba and Y, and O (oxygen), and a plurality of elements in the surrounding phase. It is composed of a structure in which a nano-order dispersed phase is dispersed. The metal element, which is the main constituent element of the magnetic member of the present invention, depends on the raw material used for production. The magnetic member of the present invention is characterized by containing Fe in both the dispersed phase and the surrounding phase, and containing Fe in the surrounding phase as MA-Fe oxide containing MA.

磁性部材中におけるMAの合計含有量が多いほど、MA-Fe酸化物を十分に含有することができ、3質量%以上であると、MA-Fe酸化物の含有による磁気特性の向上効果を十分に奏することができる。但し、上述の原料に合金を用いる製法(I)を利用して、MAの合計含有量が多い本発明の磁性部材を製造する場合、MAの合計含有量が多過ぎる合金を原料に用いると、以下の点が危惧される。(1)溶解時の揮発量が多くなる。(2)炉内が汚染され易い。(3)MAとXとを含む化合物(例えば、Ca-Al化合物など)が高温の融解状態から冷却固化する際(例えば、溶体化工程での冷却中など)に析出されることで、最終的にMA-Fe-O相が生成されず、又は生成され難くなり、Feを含有しないMA酸化物が生成される恐れがある。(4)上述の化合物にXが利用されることで、分離工程では、スピノーダル分解が十分に起こらず、Fe基磁性相を十分に生成できなくなる恐れがある。これらのことから、磁気特性の低下を招くため、上述の製法(I)を利用する場合、MAの合計含有量は5質量%以下が好ましい。一方、上述の原料に化合物粉末を用いる製法(II)を利用すると、高温の融解状態からの冷却工程がないために上述の不必要な化合物(MAとXを含む化合物)の形成を抑制できる。従って、製法(II)を利用すると、MAの添加量が少ない場合から多い場合の広い範囲に亘って本発明の磁性部材を製造可能である。但し、MAの合計含有量が多過ぎる素材を用いると、酸化工程でMA-Fe酸化物に加えて磁気特性に劣るMAの酸化物も生成され易くなる。従って、上述の製法(II)を利用する場合でも、MAの合計含有量は、8質量%以下が好ましい。   The higher the total content of MA in the magnetic member, the more MA-Fe oxide can be contained. When the content is 3% by mass or more, the effect of improving the magnetic properties due to the inclusion of MA-Fe oxide is sufficient. Can be played. However, when manufacturing the magnetic member of the present invention having a large total content of MA using the manufacturing method (I) using an alloy for the above-mentioned raw material, using an alloy having a large total content of MA as a raw material, The following points are a concern. (1) The amount of volatilization during dissolution increases. (2) The furnace is easily contaminated. (3) When a compound containing MA and X (e.g., Ca-Al compound) is cooled and solidified from a high-temperature molten state (e.g., during cooling in the solution treatment step), the final In this case, the MA-Fe-O phase is not produced or is hardly produced, and there is a possibility that an MA oxide not containing Fe is produced. (4) By using X for the above-mentioned compound, spinodal decomposition does not occur sufficiently in the separation step, and there is a possibility that the Fe-based magnetic phase cannot be generated sufficiently. For these reasons, since the magnetic properties are deteriorated, the total content of MA is preferably 5% by mass or less when the above production method (I) is used. On the other hand, when the production method (II) using the compound powder as the raw material is used, the formation of the unnecessary compound (compound containing MA and X) can be suppressed because there is no cooling step from a high temperature melting state. Therefore, when the production method (II) is used, the magnetic member of the present invention can be produced over a wide range from the case where the amount of MA is small to the large amount. However, if a material having too much total MA content is used, in addition to the MA-Fe oxide in the oxidation step, an oxide of MA inferior in magnetic properties is easily generated. Therefore, even when the above production method (II) is used, the total content of MA is preferably 8% by mass or less.

本発明の磁性部材は、不可避不純物の含有を許容する。不可避不純物の含有量は、例えば、1質量%以下が挙げられる。不可避不純物は、例えば、製造時に利用した潤滑剤(粉末成形体を利用する場合、粉末成形体内に混合した潤滑剤や成形用金型に塗布した潤滑剤、インゴットを利用する場合、鋳造金型に塗布した潤滑剤など)に由来する化合物(BN(窒化ほう素)、MoS(硫化モリブデン)など)などが挙げられる。   The magnetic member of the present invention allows the inclusion of inevitable impurities. As for content of an unavoidable impurity, 1 mass% or less is mentioned, for example. Inevitable impurities include, for example, the lubricant used at the time of manufacture (when using a powder molded body, the lubricant mixed in the powder molded body, the lubricant applied to the molding die, or the ingot, when using the ingot. And compounds derived from the applied lubricant) (BN (boron nitride), MoS (molybdenum sulfide), etc.).

(分散相)
分散相は、Feを含有する強磁性体から構成されるFe基磁性相である。具体的には、実質的にFeから構成されるFe相(Fe:80質量%以上及び不可避不純物)、Feと共に0質量%超50質量%以下の範囲でCoを含有するFeCo相、Fe,Co,Niを含有するFeCoNi相が挙げられる。FeCoの飽和磁化は、2.3T〜2.4T程度であり、Fe:2T程度よりも高く、FeCo相を含有する形態は、磁気特性により優れる。FeCo相におけるCoの含有量は、25質量%以上50質量%以下がより好ましい。その他、Fe基磁性相は、α"Fe16N2を含有する鉄窒化物相が挙げられる。窒素侵入型の鉄窒化物であるα"Fe16N2(正方晶、a=5.72Å、c=6.29Å、結晶記号:I4/mmm)は、磁気特性に非常に優れることが原理計算や薄膜での実験などで報告されており、特に2.3T〜2.8Tという大きな飽和磁化を有するとされている。従って、α"Fe16N2相を含有する形態は、飽和磁化や残留磁化がより高く、磁気特性に更に優れる。分散相:Fe基磁性相は、Fe相、FeCo相、FeCoNi相及びα"Fe16N2相から選択される1種を含有する形態、又は2種以上を含有する形態とすることができる。Fe相、FeCo相、FeCoNi相及びα"Fe16N2相はいずれも、その組成から強磁性体であることが確認できる。
(Dispersed phase)
The dispersed phase is an Fe-based magnetic phase composed of a ferromagnetic material containing Fe. Specifically, an Fe phase substantially composed of Fe (Fe: 80 mass% or more and inevitable impurities), FeCo phase containing Fe in a range of more than 0 mass% and 50 mass% or less together with Fe, Fe, Co And FeCoNi phase containing Ni. The saturation magnetization of FeCo is about 2.3T to 2.4T, higher than about Fe: 2T, and the form containing the FeCo phase is more excellent in magnetic properties. The Co content in the FeCo phase is more preferably 25% by mass or more and 50% by mass or less. Other, Fe group magnetic phase, alpha "iron nitride phase containing Fe 16 N 2 and the like. Iron nitride nitrogen interstitial α" Fe 16 N 2 (tetragonal, a = 5.72Å, c = 6.29 mm, crystal symbol: I4 / mmm) has been reported in principle calculations and thin film experiments, etc., which are very excellent in magnetic properties, especially with a large saturation magnetization of 2.3 T to 2.8 T Yes. Therefore, the form containing α ″ Fe 16 N 2 phase has higher saturation magnetization and remanent magnetization and further excellent magnetic properties. Dispersion phase: Fe-based magnetic phase includes Fe phase, FeCo phase, FeCoNi phase and α ” form containing one selected from Fe 16 N 2 phase, or may be in a form containing two or more. The Fe phase, FeCo phase, FeCoNi phase, and α ″ Fe 16 N 2 phase can all be confirmed to be ferromagnetic from their compositions.

Fe基磁性相の形状は、柱状(棒状)、又は粒状が挙げられ、製造条件によって変化させることができる。Fe基磁性相の短径とは、柱状の場合:短辺の長さ、粒状の場合:最大径をいう。短径が100nm以下、好ましくは50nm以下といったナノオーダーであることで、単磁区構造を安定化でき、磁気特性に優れる。また、短径が10nm以上、更に20nm以上であると、(1)熱による電子運動の揺らぎを受けて自発磁化が消失する現象(超常磁性)の発生に起因する強磁性の低下を防止できる、(2)周囲相に対してFe基磁性相が十分に存在して、磁気特性に優れる、といった効果を奏する。Fe基磁性相が柱状である場合、形状磁気異方性によって、粒状の場合よりも磁気特性に優れる。また、柱状である場合、長径が大きい、具体的には1000nm以上、更に1200nm以上であると、アスペクト比(長径/短径)が十分に大きくなる。アスペクト比が大きいほど、形状磁気異方性によって磁気特性に更に優れることから、アスペクト比は、20以上が好ましい。   The shape of the Fe-based magnetic phase may be columnar (bar-shaped) or granular, and can be changed depending on the production conditions. The minor axis of the Fe-based magnetic phase refers to a columnar shape: the length of the short side, and a granular shape: the maximum diameter. When the minor axis is nano-order such as 100 nm or less, preferably 50 nm or less, the single domain structure can be stabilized and the magnetic properties are excellent. Further, when the minor axis is 10 nm or more, and further 20 nm or more, (1) it is possible to prevent a decrease in ferromagnetism due to the occurrence of a phenomenon (superparamagnetism) in which spontaneous magnetization disappears due to fluctuations in electron motion due to heat, (2) The effect is that the Fe-based magnetic phase is sufficiently present with respect to the surrounding phase and the magnetic properties are excellent. When the Fe-based magnetic phase is columnar, the magnetic properties are superior to the granular case due to shape magnetic anisotropy. In the case of a columnar shape, the aspect ratio (major axis / minor axis) becomes sufficiently large when the major axis is large, specifically, 1000 nm or more, and further 1200 nm or more. The larger the aspect ratio, the better the magnetic properties due to the shape magnetic anisotropy. Therefore, the aspect ratio is preferably 20 or more.

磁性部材中におけるFe基磁性相の含有量は、45体積%〜70体積%程度、好ましくは60体積%〜70体積%程度が挙げられる。この場合、Fe基磁性相が十分に存在すると共に、Fe基磁性相同士が相互に磁気作用が影響し合わないように周囲相が介在することができる。隣り合うFe基磁性相間の距離は5nm以上、更に10nm以上が好ましく、30nm程度以下であると、小型な磁性部材とすることができる。Fe基磁性相間の距離とは、上述の柱状の形態では、隣接するFe基磁性相間におけるFe基磁性相の短径方向に沿った平均距離、粒状の形態では、隣接するFe基磁性相において最も近接する点間の距離とする。   The content of the Fe-based magnetic phase in the magnetic member is about 45% to 70% by volume, preferably about 60% to 70% by volume. In this case, the Fe-based magnetic phase is sufficiently present, and the surrounding phases can be interposed so that the magnetic effects of the Fe-based magnetic phases do not affect each other. The distance between adjacent Fe-based magnetic phases is preferably 5 nm or more, more preferably 10 nm or more, and if it is about 30 nm or less, a small magnetic member can be obtained. The distance between the Fe-based magnetic phases is the average distance along the minor axis direction of the Fe-based magnetic phase between the adjacent Fe-based magnetic phases in the columnar form described above, and is the most in the adjacent Fe-based magnetic phase in the granular form. The distance between adjacent points.

(周囲相)
本発明の磁性部材では、Fe基磁性相がナノコンポジットマグネット(交換スプリングマグネット)の軟磁性体として機能し、周囲相内のMA-Fe酸化物が硬磁性体として機能することで、非常に強力な磁石となり得る。周囲相内におけるMA-Fe酸化物の含有比率が多いほど磁気特性に優れることから、周囲相全体に対してMA-Fe酸化物を33体積%以上含有することが好ましい。周囲相の全体が実質的にMA-Fe酸化物から構成される形態、つまり、Fe基磁性相とMA-Fe酸化物とから実質的に構成される磁性部材は、磁気特性に最も優れる。
(Ambient phase)
In the magnetic member of the present invention, the Fe-based magnetic phase functions as a soft magnetic material of a nanocomposite magnet (exchange spring magnet), and the MA-Fe oxide in the surrounding phase functions as a hard magnetic material, which makes it extremely powerful. Can be a good magnet. The greater the content ratio of MA-Fe oxide in the surrounding phase, the better the magnetic properties. Therefore, it is preferable to contain 33% by volume or more of MA-Fe oxide with respect to the entire surrounding phase. A form in which the entire surrounding phase is substantially composed of MA-Fe oxide, that is, a magnetic member substantially composed of an Fe-based magnetic phase and MA-Fe oxide has the best magnetic properties.

周囲相を構成するMA-Fe酸化物の含有量やMA-Fe酸化物以外の相の組成は、製造条件によって変化する。例えば、上述の析出工程・分離工程・酸化工程を具える製造方法を利用する場合、用意する原料の組成・製造条件によって周囲相の組成を変化でき、周囲相が、MA-Fe酸化物に加えて、AlNi系合金(例えば、この合金内におけるAlNiの割合が80原子%以上、更に90原子%以上で、残部が不可避不純物からなる合金など)、上述のXで表わされる元素を含む酸化物(例えば、NiOなど)などを含有する形態とすることができる。又は、例えば、ナノ鉄粉、又はナノ鉄粉から製造したα"Fe16N2粉末の周囲にMA-Fe酸化物をゾルゲル法などによって被覆し、この粉末を加圧成形して磁性部材を製造すると、周囲相が実質的にMA-Fe酸化物のみから構成された形態とすることができる。 The content of the MA-Fe oxide constituting the surrounding phase and the composition of the phase other than the MA-Fe oxide vary depending on the production conditions. For example, when using a manufacturing method including the above-described precipitation step, separation step, and oxidation step, the composition of the surrounding phase can be changed depending on the composition of the raw material to be prepared and the manufacturing conditions, and the surrounding phase is added to the MA-Fe oxide. AlNi-based alloys (for example, alloys in which the proportion of AlNi in the alloy is 80 atomic% or more, further 90 atomic% or more and the balance is made of inevitable impurities), oxides containing the element represented by the above X ( For example, NiO or the like may be included. Or, for example, nano iron powder, or coating of MA-Fe oxide around the α "Fe 16 N 2 powder produced from nano iron powder by sol-gel method, etc., and press molding this powder to produce a magnetic member Then, it can be set as the form from which the surrounding phase comprised only the MA-Fe oxide substantially.

周囲相に含まれるMA-Fe酸化物がBaやSrを含有する酸化物であると、周囲相がバリウムフェライト成分やストロンチウムフェライト成分を含有することから、この形態は、磁気特性により優れる。周囲相に含まれるMA-Fe酸化物がCaを含有する酸化物である形態は、例えば、原料にCaを含有する合金を用いて、上述した溶体化後に析出工程を具える製造方法:製法(I)や、原料にCaを含有する炭酸化物粉末を用いて、上述した焼結体を還元した後に析出工程を具える製造方法:製法(II)によって磁性部材を製造可能であるため、生産性に優れて好ましい。周囲相に含まれるMA-Fe酸化物がYを含有する酸化物である場合、結晶磁気異方性の大きなイットリウムガーネットを形成でき、強磁性相:Fe基磁性相の磁気異方性を強化できることから、保磁力を増大することができる。   If the MA-Fe oxide contained in the surrounding phase is an oxide containing Ba or Sr, this form is more excellent in magnetic properties because the surrounding phase contains a barium ferrite component or a strontium ferrite component. The form in which the MA-Fe oxide contained in the surrounding phase is an oxide containing Ca is, for example, an alloy containing Ca as a raw material, and a manufacturing method including a precipitation step after the above-mentioned solution treatment: a manufacturing method ( I) and a production method comprising a precipitation step after reducing the sintered body described above using a carbonate powder containing Ca as a raw material: Since a magnetic member can be produced by the production method (II), productivity It is excellent and preferable. When the MA-Fe oxide contained in the surrounding phase is an oxide containing Y, yttrium garnet with large magnetocrystalline anisotropy can be formed, and the magnetic anisotropy of the ferromagnetic phase: Fe-based magnetic phase can be enhanced. Thus, the coercive force can be increased.

MA-Fe酸化物は、MA及びFeに加えて、Laといった希土類元素(Yを除く)を更に含有すると、磁気特性に更に優れる。但し、希少な希土類元素の使用量を低減するため、MA-Fe酸化物中における希土類元素(Yを除く)の含有量は、このMA-Fe酸化物におけるMAの含有量と同等以下であることが好ましい。その他、MA-Fe酸化物は、Al,Ni,Mn,Ti,Cuなどを含有した形態が挙げられる。   When the MA-Fe oxide further contains rare earth elements such as La (excluding Y) in addition to MA and Fe, the magnetic properties are further improved. However, in order to reduce the amount of rare earth elements used, the content of rare earth elements (excluding Y) in the MA-Fe oxide should be equal to or less than the MA content in this MA-Fe oxide. Is preferred. In addition, examples of the MA-Fe oxide include Al, Ni, Mn, Ti, and Cu.

MA-Fe酸化物は、構成元素がMA-Fe-O又はLa-MA-Fe-Oであると、磁気特性に優れて好ましい。MA-Fe酸化物は、MA(Fe,x)12O19、MA(Fe,x)18O27、MA3(Fe,x)5O12、MA(Fe,x)2O4で示されるものが挙げられ(xは、上述のLa,Al,Ni,Mn,Ti,Cuを含む場合、これらの元素とする)、少なくとも1種のMA-Fe酸化物を含有することが好ましい。特に、MA(Fe,x)12O19、MA3(Fe,x)5O12を含むと磁気特性に優れて好ましい。MA-Fe酸化物の構成元素の原子比は、例えば、原料に用いる合金を構成する各元素の含有量や各元素を含む化合物粉末の添加量によって調整可能であり、所望の原子比(例えば、MA(Fe,x)12O19、MA3(Fe,x)5O12)を生成できるように、原料の合金の組成を調整するとよい。 The MA-Fe oxide preferably has excellent magnetic properties when the constituent element is MA-Fe-O or La-MA-Fe-O. MA-Fe oxide is represented by MA (Fe, x) 12 O 19 , MA (Fe, x) 18 O 27 , MA 3 (Fe, x) 5 O 12 , MA (Fe, x) 2 O 4 (When x includes La, Al, Ni, Mn, Ti, and Cu described above, these elements are used), and preferably contains at least one MA-Fe oxide. In particular, it is preferable that MA (Fe, x) 12 O 19 and MA 3 (Fe, x) 5 O 12 are included because of excellent magnetic properties. The atomic ratio of the constituent elements of the MA-Fe oxide can be adjusted by, for example, the content of each element constituting the alloy used as a raw material and the amount of compound powder containing each element, and a desired atomic ratio (for example, The composition of the raw material alloy may be adjusted so that MA (Fe, x) 12 O 19 and MA 3 (Fe, x) 5 O 12 ) can be generated.

周囲相がMA-Fe酸化物に加えてAlNi系合金相を含有する形態では、非磁性元素であるAlが多過ぎると、磁気特性の低下を招くことから、周囲相におけるFeとAlとの合計原子量に対して、Feの含有量が50原子%超、更に55原子%以上、特に60原子%以上であることが好ましい。周囲相中のFeやAlの原子比は、例えば、上述のように原料に用いる合金の組成や相分離条件によって調整することができる。その他、CaなどのMAの合計含有量が多い場合(好ましくは、合計含有量が5質量%以上)、MA-Fe酸化物を生成し易くなることから、周囲相中のFeの含有量を高められる傾向にある。従って、周囲相中のFeやAlの原子比は、MAの合計含有量によっても調整することができる。   In a form in which the surrounding phase contains an AlNi-based alloy phase in addition to the MA-Fe oxide, if there is too much Al, which is a nonmagnetic element, the magnetic properties will be reduced, so the total of Fe and Al in the surrounding phase The Fe content is preferably more than 50 atomic%, more preferably 55 atomic% or more, and particularly preferably 60 atomic% or more with respect to the atomic weight. The atomic ratio of Fe and Al in the surrounding phase can be adjusted by, for example, the composition of the alloy used for the raw material and the phase separation conditions as described above. In addition, when the total content of MA such as Ca is high (preferably, the total content is 5% by mass or more), it is easy to produce MA-Fe oxide, so the Fe content in the surrounding phase is increased. It tends to be. Therefore, the atomic ratio of Fe or Al in the surrounding phase can be adjusted by the total content of MA.

Fe基磁性相の組成・形状・サイズや周囲相の組成の測定・確認は、例えば、磁性部材の断面をとり、この断面の透過型電子顕微鏡:TEMの像やX線回折のピーク強度(ピーク面積)などを利用することができる。その他、組成の分析には、エネルギー分散型X線分光法:EDXを利用することができる。   Measurement and confirmation of the composition, shape and size of the Fe-based magnetic phase and the composition of the surrounding phase include, for example, taking a cross-section of a magnetic member, and a transmission electron microscope of this cross-section: TEM image and peak intensity of X-ray diffraction (peak Area) etc. can be used. In addition, for the analysis of the composition, energy dispersive X-ray spectroscopy: EDX can be used.

(磁気特性)
本発明の磁性部材は、磁気特性に優れ、特に、飽和磁化、残留磁化、保磁力、最大エネルギー積が高い。例えば、残留磁化Brが1T以上、保磁力Hcが150kA/m以上(更に180kA/m以上)、最大エネルギー積(BH)maxが50kJ/m3以上の少なくとも一つを満たす形態が挙げられる。
(Magnetic properties)
The magnetic member of the present invention is excellent in magnetic properties, and particularly has high saturation magnetization, residual magnetization, coercive force, and maximum energy product. For example, there is an embodiment in which the residual magnetization Br is 1 T or more, the coercive force Hc is 150 kA / m or more (further 180 kA / m or more), and the maximum energy product (BH) max is 50 kJ / m 3 or more.

[磁性部材の製造方法]
本発明の磁性部材の製造には、従来のアルニコ磁石といった金属系磁石の製造方法と同様に、溶体化工程及び分離工程を具え、更に析出工程及び酸化工程を具える製法(I):溶解法や、複数種の化合物粉末を用いて作製した複合酸化物を還元して得た合金に、析出、分離、及び酸化を順に施す製法(II):還元法を好適に利用できる。以下、製法(I)の準備工程、溶体化工程、製法(II)の準備工程、焼結工程、還元工程を順に詳細に説明する。析出工程以降の工程は、製法(I)も製法(II)も重複するため、まとめて説明する。
[Method of manufacturing magnetic member]
In the production of the magnetic member of the present invention, as in the conventional method for producing a metal-based magnet such as an alnico magnet, the solution comprises a solution treatment step and a separation step, and further comprises a precipitation step and an oxidation step (I): dissolution method Alternatively, the production method (II): reduction method in which precipitation, separation, and oxidation are sequentially performed on an alloy obtained by reducing a composite oxide produced using a plurality of kinds of compound powders can be suitably used. Hereinafter, the preparation process (I) preparation step, solution treatment process, preparation process (II) preparation process, sintering process, and reduction process will be described in detail. Since the steps after the precipitation step overlap in the production method (I) and the production method (II), they will be described together.

(製法(I):準備工程)
原料合金として、所望のFe基磁性相及びMA-Fe酸化物を含有する周囲相を生成可能な組成の合金、具体的には、Feと、MA:Ca,Sr,Ba及びYから選択される1種以上の元素とを含有する鉄合金を用意する。原料に、Feを40質量%〜55質量%程度含有する鉄合金を利用すると、Fe基磁性相を45体積%〜70体積%程度含む磁性部材を製造できる。原料合金中のMAの合計含有量は、上述のように3質量%以上5質量%以下とすると、準備工程でMAの揮発による炉内の汚染を抑制できる上に、後述の析出工程においてMA-Fe析出相を十分に析出でき、後述の分離工程においてスピノーダル分解を十分に行え、後述の酸化工程においてMA-Fe酸化物を十分に生成できて好ましい。更に、原料に、X:Al,Ni及びCoから選択される1種以上の元素を含有するFe-MA-X合金を利用することで、後述の析出工程においてFeを含有する析出物を良好に析出できる。Xの合計含有量は、例えば、40質量%〜50質量%程度が挙げられる。その他、原料には、Cu,Nb,Ti,Mnから選択される1種以上の元素を合計で5質量%以下の範囲で含有する合金を利用すると、Fe基磁性相におけるFeの含有量を増加したり、Fe基磁性相を微細化・安定化したりする効果によって、磁気特性を向上できる。
(Production method (I): Preparation process)
An alloy having a composition capable of generating a desired Fe-based magnetic phase and an ambient phase containing MA-Fe oxide as a raw material alloy, specifically, selected from Fe, MA: Ca, Sr, Ba and Y An iron alloy containing at least one element is prepared. When an iron alloy containing about 40% to 55% by mass of Fe is used as a raw material, a magnetic member containing about 45% to 70% by volume of an Fe-based magnetic phase can be produced. If the total content of MA in the raw material alloy is 3% by mass or more and 5% by mass or less as described above, it is possible to suppress contamination in the furnace due to MA volatilization in the preparation process, and in the precipitation process described later, MA- It is preferable because the Fe precipitation phase can be sufficiently precipitated, spinodal decomposition can be sufficiently performed in the separation step described later, and MA-Fe oxide can be sufficiently generated in the oxidation step described later. Furthermore, by using a Fe-MA-X alloy containing at least one element selected from X: Al, Ni and Co as a raw material, it is possible to improve the precipitate containing Fe in the precipitation step described later. It can be deposited. As for total content of X, 40 mass%-about 50 mass% are mentioned, for example. In addition, if the alloy contains one or more elements selected from Cu, Nb, Ti, and Mn in a total amount of 5% by mass or less, the Fe content in the Fe-based magnetic phase is increased. And the magnetic properties can be improved by the effect of miniaturizing and stabilizing the Fe-based magnetic phase.

原料合金は、この原料合金からなる粉末(以下、原料合金粉末と呼ぶ)を所望の形状に成形した粉末成形体とすると、形状の自由度が高く、後述の酸化工程において酸化処理を熱処理とする場合、粒子間を酸素の供給路として効率よく酸化を行える。この酸素は、粒子を構成する結晶の粒界を伝って、原料合金の内部まで侵入する。原料合金は、鋳造材(インゴット)を利用することもできる。   The raw material alloy has a high degree of freedom in shape when a powder formed body obtained by forming a powder made of this raw material alloy (hereinafter referred to as a raw material alloy powder) into a desired shape, and the oxidation treatment is a heat treatment in the oxidation step described later. In this case, oxidation can be efficiently performed between the particles as an oxygen supply path. This oxygen penetrates the grain boundaries of the crystals constituting the grains and penetrates into the raw material alloy. As the raw material alloy, a cast material (ingot) can be used.

原料合金粉末は、例えば、上述の原料合金からなる溶解鋳造インゴットや急冷凝固法で得られる箔状体をジョークラッシャー、ジェットミルやボールミルなどの粉砕装置により粉砕したり、ガスアトマイズ法といったアトマイズ法を利用することで製造できる。特に、アトマイズ法を利用すると、平均粒径10μm〜500μmといった粉末を生産性よく製造できて好ましい。アトマイズ法により製造した粉末を所望の大きさとなるように更に粉砕してもよい。粉砕条件や製造条件を適宜変更することで、粉末の粒度分布や粒子の形状を調整することができる。原料合金粉末の平均粒径が10μm〜500μm、特に50μm〜200μmであると、流動性に優れて成形用金型に充填し易い上に成形し易く、大量生産に利用し易い。   The raw material alloy powder can be obtained by, for example, pulverizing a molten cast ingot made of the above-mentioned raw material alloy or a foil-like body obtained by a rapid solidification method with a crushing device such as a jaw crusher, a jet mill or a ball mill, or using an atomizing method such as a gas atomizing method. Can be manufactured. In particular, use of the atomizing method is preferable because a powder having an average particle size of 10 μm to 500 μm can be produced with high productivity. You may further grind | pulverize the powder manufactured by the atomizing method so that it may become a desired magnitude | size. By appropriately changing the pulverization conditions and the production conditions, the particle size distribution of the powder and the shape of the particles can be adjusted. When the raw material alloy powder has an average particle size of 10 μm to 500 μm, particularly 50 μm to 200 μm, it is excellent in fluidity and can be easily filled into a molding die, and can be easily molded and used for mass production.

原料合金粉末は、この合金粉末を構成する各粒子の外周に絶縁材料からなる絶縁被覆を具える形態とすると、電気抵抗が高い磁石が得られ、例えば、この磁石をモータに利用した場合、渦電流損を低減できる。絶縁被覆は、例えば、Si,Al,Tiなどの酸化物の結晶性被膜や非晶質のガラス被膜、y-Fe-O(y=Ba,Sr,Ni,Mnなどの金属元素)といったフェライトやマグネタイト(Fe3O4)といった金属酸化物、シリコーン樹脂といった樹脂、シルセスキオキサン化合物などといった有機無機ハイブリッド化合物からなる被膜が挙げられる。熱伝導性を向上する目的で、Si-N、Si-C系のセラミックス被膜を施してもよい。上記結晶性被膜やガラス被膜、酸化物被膜、セラミックス被膜などは、酸化防止機能を有する場合があり、この場合、成形時などで粒子の酸化を防止できる。上記絶縁被覆とセラミックス被覆との双方を具える形態とする場合、上記粒子の表面に接するように絶縁被覆を具え、その上にセラミックス被覆を具えることが好ましい。絶縁被覆などの被覆を具えた粉末とする場合、加圧成形時の被覆の破損を抑制するために、この粉末を構成する各粒子は球形に近いものが望ましい。絶縁被覆は、粒子間を絶縁できる程度に存在すれば緻密でなくてもよく、緻密に存在しないことで、酸化や窒化(後述)を十分に行える。 When the raw material alloy powder is configured to have an insulating coating made of an insulating material on the outer periphery of each particle constituting the alloy powder, a magnet having high electric resistance is obtained. For example, when this magnet is used in a motor, a vortex Current loss can be reduced. Insulating coatings include, for example, crystalline films of oxides such as Si, Al and Ti, amorphous glass films, ferrites such as y-Fe-O (metal elements such as y = Ba, Sr, Ni, and Mn), Examples thereof include a film made of a metal oxide such as magnetite (Fe 3 O 4 ), a resin such as a silicone resin, and an organic-inorganic hybrid compound such as a silsesquioxane compound. For the purpose of improving thermal conductivity, a Si-N or Si-C ceramic coating may be applied. The crystalline film, glass film, oxide film, ceramic film and the like may have an antioxidant function, and in this case, oxidation of particles can be prevented during molding. In the case of providing both the insulating coating and the ceramic coating, it is preferable to provide the insulating coating so as to contact the surface of the particles and to provide the ceramic coating thereon. When a powder having a coating such as an insulating coating is used, each particle constituting the powder is preferably nearly spherical in order to suppress damage to the coating during pressure molding. The insulating coating does not have to be dense as long as it exists to the extent that the particles can be insulated, and by not being dense, oxidation and nitriding (described later) can be sufficiently performed.

粉末成形体の原料として、粉末成形体の成形後の工程で加熱したり気化させたりすることで除去可能なワックスや樹脂などの成分を上記原料合金粉末に混合させた混合粉末を利用できる。混合粉末を利用すると、上記ワックスなどによって成形用金型と原料合金粉末との間の摩擦を低減したり、上記樹脂によって上記絶縁被覆の破損を防ぐことができ、成形性に優れる。   As a raw material of the powder molded body, a mixed powder obtained by mixing components such as wax and resin that can be removed by heating or vaporizing in the process after the molding of the powder molded body is mixed with the raw material alloy powder. When the mixed powder is used, the friction between the molding die and the raw material alloy powder can be reduced by the wax or the like, or the insulation coating can be prevented from being damaged by the resin, and the moldability is excellent.

原料合金粉末(上述の混合粉末の場合もある)を所望の形状の成形用金型に充填して、適宜な圧力(例えば、0.5GPa〜2.0GPa)で加圧成形することで、所望の形状の粉末成形体が得られる。圧力を高めるほど、相対密度が高い粉末成形体が得られる傾向にあり、例えば、製法(I)では、粉末成形体の相対密度が90%〜95%程度となるように成形することが好ましい。焼結を行う製法(II)では、焼結後の相対密度が90%〜95%程度となるように、粉末成形体の相対密度を調整するとよく、粉末成形体の相対密度は、例えば、50%〜55%程度が挙げられる。成形用金型を加熱した状態で成形すると、加熱により、原料合金粉末の変形性を促進でき、成形時の圧力を低減できる。この成形は、大気雰囲気で行ってもよいが、原料合金粉末に含まれるFeやAlなどの酸化を防止するために、非酸化性雰囲気(例えば、Arなどの不活性雰囲気)や低酸素雰囲気(酸素:100体積ppm以下の真空雰囲気)で行うことが好ましい。この場合、酸化物の介在によるスピノーダル分解の阻害を抑制できる。   Fill the raw material alloy powder (which may be the above-mentioned mixed powder) into a molding die of a desired shape, and press-mold at an appropriate pressure (for example, 0.5 GPa to 2.0 GPa) to obtain the desired shape The powder compact is obtained. As the pressure is increased, a powder molded body having a higher relative density tends to be obtained. For example, in the production method (I), it is preferable to mold the powder molded body so that the relative density is about 90% to 95%. In the production method (II) for sintering, the relative density of the powder compact may be adjusted so that the relative density after sintering is about 90% to 95%. The relative density of the powder compact is, for example, 50 % To about 55%. When the molding die is heated, it is possible to promote the deformability of the raw material alloy powder by heating and to reduce the pressure during molding. This molding may be performed in an air atmosphere, but in order to prevent oxidation of Fe and Al contained in the raw material alloy powder, a non-oxidizing atmosphere (for example, an inert atmosphere such as Ar) or a low oxygen atmosphere ( (Oxygen: vacuum atmosphere of 100 ppm by volume or less) is preferable. In this case, inhibition of spinodal decomposition due to the inclusion of oxide can be suppressed.

(製法(I):溶体化工程)
原料合金(粉末成形体や鋳造材)に溶体化処理を施して、各元素の濃度勾配(偏析)を無くして均質化を図る。加熱温度は、スピノーダル分解が生じる温度以上で行う。加熱温度が高いほど、偏析を低減できるため、1000℃以上とする。加熱温度が高過ぎると液相が生じ、粉末成形体や鋳造材の形状が変化してしまうため好ましくないことから、液相化温度以下とする。溶体化処理の条件は、原料合金の組成に応じて適宜選択することができ、加熱温度:1000℃〜1300℃、加熱時間:10分〜10時間が挙げられる。溶体化処理も、酸化防止のため、上述の非酸化性雰囲気や低酸素雰囲気とすることが好ましい。
(Production method (I): Solution process)
The raw material alloy (powder compact or cast material) is subjected to a solution treatment to eliminate the concentration gradient (segregation) of each element and achieve homogenization. The heating temperature is higher than the temperature at which spinodal decomposition occurs. As the heating temperature is higher, segregation can be reduced. If the heating temperature is too high, a liquid phase is generated and the shape of the powder compact or cast material changes, which is not preferable. The conditions for the solution treatment can be appropriately selected according to the composition of the raw material alloy, and include heating temperature: 1000 ° C. to 1300 ° C., heating time: 10 minutes to 10 hours. The solution treatment is also preferably the above-described non-oxidizing atmosphere or low-oxygen atmosphere in order to prevent oxidation.

(製法(II):準備工程)
製法(II)では、端的に言うと、複合酸化物を作製して還元することで、上述の製法(I)における溶体化工程を経た合金と同様な合金、つまりFe基磁性相及びMA-Fe酸化物を含有する周囲相を生成可能な組成の合金を得る。このような複合酸化物を製造するにあたり、複数種の化合物粉末を用いる。具体的にはFeを含む化合物粉末、MA:Ca,Sr,Ba及びYから選択される1種以上の元素を含む化合物粉末、X:Al,Ni及びCoから選択される1種以上の元素を含有する化合物粉末を用いる。いずれの化合物も、大気雰囲気といった酸素含有雰囲気で焼結して、複合酸化物を形成可能な適宜なものを利用できる。代表的な化合物は、酸化物、炭酸化物、水酸化物、硝酸化物などが挙げられる。特に、Feを含む化合物及びXを含む化合物はいずれも、酸化物が好ましい。Feの酸化物(Fe2O3)、Xの酸化物(例えば、Al2O3,NiO,CoOなど)はいずれも、大気雰囲気下での安定性に優れており、混合作業などを行い易く、複合酸化物も生成し易い上に、入手が容易である(市販品を利用できる)。一方、Ca,Sr,Baの酸化物は、大気雰囲気下で不安定であり、水と反応して水和物や水酸化物を形成し易い。Yの酸化物は、大気雰囲気下で安定しているものの、安定過ぎて、複合酸化物を生成し難い。他方、Ca,Sr,Ba,Yの炭酸化物は、大気雰囲気下での安定性に優れる上に、入手が容易であって利用し易く、更に複合酸化物も生成し易い。従って、工業的生産性を考慮すると、MAの化合物は、炭酸化物が好ましい。MAの酸化物を利用する場合には、水と反応し難いように雰囲気制御したり、混合前後で乾燥したりすることが好ましい。
(Production method (II): preparation process)
In manufacturing method (II), simply speaking, by producing and reducing a composite oxide, an alloy similar to the alloy that has undergone the solution treatment step in manufacturing method (I) described above, that is, an Fe-based magnetic phase and MA-Fe An alloy having a composition capable of producing an ambient phase containing an oxide is obtained. In producing such a complex oxide, a plurality of kinds of compound powders are used. Specifically, a compound powder containing Fe, a compound powder containing one or more elements selected from MA: Ca, Sr, Ba and Y, and one or more elements selected from X: Al, Ni and Co. The contained compound powder is used. Any compound that can be sintered in an oxygen-containing atmosphere such as an air atmosphere to form a composite oxide can be used. Representative compounds include oxides, carbonates, hydroxides, and nitrates. In particular, the compound containing Fe and the compound containing X are preferably oxides. Fe oxides (Fe 2 O 3 ) and X oxides (for example, Al 2 O 3 , NiO, CoO, etc.) are all excellent in stability in the air atmosphere, making it easy to perform mixing operations, etc. In addition, complex oxides are easily generated and are easily available (commercially available products can be used). On the other hand, Ca, Sr, and Ba oxides are unstable in the air atmosphere and easily react with water to form hydrates and hydroxides. Although the oxide of Y is stable in the air atmosphere, it is too stable to form a complex oxide. On the other hand, carbonates of Ca, Sr, Ba, and Y are excellent in stability in the air atmosphere, and are easily available and easy to use, and also complex oxides are easily generated. Therefore, in view of industrial productivity, the MA compound is preferably a carbonate. When using the MA oxide, it is preferable to control the atmosphere so that it does not easily react with water or to dry before and after mixing.

各化合物粉末の配合比は、MA,Fe,Xをそれぞれ所望量含有する合金が得られるように調整する。製法(II)では、Feを含有する化合物粉末を多く利用すると共に、MAを含有する化合物粉末を多く利用すると、上述のようにFe基磁性相を60体積%〜70体積%程度含み、かつMA-Fe酸化物を多く含む磁性部材を製造できる。例えば、原料中のMA,Fe,Xの合計含有量(以下、主要元素合計量と呼ぶ)を100質量%とするとき、主要元素合計量に対するFeの含有量を80質量%以上とすると共に、上記主要元素合計量に対するMAの合計含有量を5質量%以上、好ましくは8質量%以下とすると、磁性部材を100体積%とするとき、MA-Fe酸化物の含有量:15体積%〜25%体積%程度の磁気特性に優れる磁性部材を製造できる。原料中の主要元素合計量を100質量%とするとき、Feの含有量は40質量%程度以上、Xの合計含有量は、例えば、8質量%〜50質量%程度が挙げられる。その他、Cu,Nb,Ti,Mnから選択される1種以上の元素を含有する化合物粉末(例えば、酸化物粉末)を利用すると、上述の製法(I)と同様に、磁気特性を向上できる。原料中の主要元素合計量とCu,Nb,Ti,Mnとの合計量に対して、Cu,Nb,Ti,Mnの合計含有量は、上述のように5質量%以下が好ましい。   The compounding ratio of each compound powder is adjusted so that an alloy containing a desired amount of MA, Fe, and X can be obtained. In the production method (II), when many compound powders containing Fe and many compound powders containing MA are used, the Fe-based magnetic phase is contained in an amount of about 60% to 70% by volume as described above, and MA is used. A magnetic member containing a large amount of -Fe oxide can be produced. For example, when the total content of MA, Fe, and X in the raw material (hereinafter referred to as the main element total amount) is 100% by mass, the Fe content with respect to the main element total amount is 80% by mass or more, When the total content of MA with respect to the total amount of the main elements is 5% by mass or more, preferably 8% by mass or less, when the magnetic member is 100% by volume, the content of MA-Fe oxide: 15% by volume to 25% A magnetic member having excellent magnetic properties of about% volume% can be produced. When the total amount of main elements in the raw material is 100% by mass, the Fe content is about 40% by mass or more, and the total X content is, for example, about 8% by mass to 50% by mass. In addition, when a compound powder (for example, oxide powder) containing one or more elements selected from Cu, Nb, Ti, and Mn is used, the magnetic characteristics can be improved as in the above-described production method (I). As described above, the total content of Cu, Nb, Ti, and Mn is preferably 5% by mass or less with respect to the total amount of main elements in the raw material and the total amount of Cu, Nb, Ti, and Mn.

化合物粉末は種々の大きさのものを利用できる。平均粒径が0.5μm〜10μm程度のものが混合し易く、利用し易い。また、各化合物粉末は、平均粒径が同程度であると混合し易い。混合は、ボールミル、ジェットミルなどの適宜な装置が利用できる。   Compound powders of various sizes can be used. Those having an average particle size of about 0.5 μm to 10 μm are easy to mix and use. Moreover, it is easy to mix each compound powder as an average particle diameter is comparable. For mixing, an appropriate apparatus such as a ball mill or a jet mill can be used.

(製法(II):焼結工程)
混合した原料粉末を適宜な形状に成形した粉末成形体に熱処理:焼結処理を施し、MAとFeとXを含有する複合酸化物:焼結体を得る。粉末成形体は、所望の形状の成形用金型に原料粉末を充填して、適宜な圧力(例えば、0.1MPa〜0.1GPa程度)で加圧成形することで得られる。原料粉末が全て酸化物から構成されている場合、1回の焼結でも、複合酸化物を良好に製造できる。一方、原料粉末に炭酸化物や水酸化物、硝酸化物などの酸化物以外の化合物を含む場合には、加熱によって、CO2やNOxなどのガス、H2O(水)などが生じ、これらのガスや水を含有したり、脱気や蒸発に起因する空孔が生じたりして、緻密な複合酸化物を得難くなる。従って、原料粉末に酸化物以外の化合物を含む場合には、複数回に分けて焼結を行うことが好ましい。例えば、MAの炭酸化物と、Feの酸化物及びXの酸化物とを原料粉末に用いる場合、仮焼結を行い、この工程で炭酸化物からCO2を除去して酸化物とし、次に本焼結(最終焼結)を行って、複合酸化物を生成することが挙げられる。
(Production method (II): Sintering process)
A powder compact obtained by forming the mixed raw material powder into an appropriate shape is subjected to a heat treatment: a sintering treatment to obtain a composite oxide containing MA, Fe, and X: a sintered body. The powder compact can be obtained by filling a raw material powder into a molding die having a desired shape and press-molding it at an appropriate pressure (for example, about 0.1 MPa to 0.1 GPa). When the raw material powder is composed entirely of oxide, the composite oxide can be produced satisfactorily even by one sintering. On the other hand, when the raw material powder contains compounds other than oxides such as carbonates, hydroxides, and nitrates, heating produces gases such as CO 2 and NOx, H 2 O (water), etc. It becomes difficult to obtain a dense complex oxide because it contains gas or water, or voids are generated due to deaeration or evaporation. Therefore, when the raw material powder contains a compound other than an oxide, it is preferable to sinter in multiple steps. For example, when MA carbonate, Fe oxide, and X oxide are used as raw material powder, pre-sintering is performed, and CO 2 is removed from the carbonate in this process to form an oxide. It is possible to generate a composite oxide by performing sintering (final sintering).

仮焼結と本焼結というように複数回の焼結を行って、最終的に複合酸化物からなる焼結体を製造する場合、得られた焼結体を粉砕して再度成形した粉末成形体に、次の焼結を施す、つまり、焼結⇒粉砕⇒成形を繰り返す形態とすると、最終的に緻密な焼結体が得られて好ましい。この形態では、最終焼結までの粉末成形体の形状は任意の形状とすることができ、最終焼結前の粉末成形体を、例えば、最終的に得ようとする磁性部材の形状に応じた形状にすると、ニアネットシェイプの焼結体が得られて好ましい。   When forming a sintered body consisting of complex oxides by conducting multiple times of sintering such as pre-sintering and main sintering, powder forming by grinding and re-molding the obtained sintered body It is preferable that the body is subjected to the following sintering, that is, a form in which sintering → pulverization → molding is repeated, so that a dense sintered body can be finally obtained. In this form, the shape of the powder compact before the final sintering can be any shape, and the powder compact before the final sintering is determined according to the shape of the magnetic member to be finally obtained, for example. The shape is preferable because a sintered body having a near net shape is obtained.

焼結工程の雰囲気は、酸素を含有する雰囲気(好ましくは、酸素の含有量:5体積%以上)とする。特に、大気雰囲気が利用し易く好ましい。加熱温度(焼結温度)は、仮焼結では800℃〜1000℃程度、本焼結では900℃〜1300℃程度、保持時間は、仮焼結及び本焼結のいずれも1時間〜24時間程度が挙げられる。   The atmosphere of the sintering step is an atmosphere containing oxygen (preferably oxygen content: 5% by volume or more). In particular, an air atmosphere is preferable because it is easy to use. The heating temperature (sintering temperature) is about 800 ° C. to 1000 ° C. in the pre-sintering, about 900 ° C. to 1300 ° C. in the main sintering, and the holding time is 1 to 24 hours for both the pre-sintering and the main sintering. Degree.

(製法(II):還元工程)
MAとFeとXを含有する複合酸化物からなる焼結体に還元処理を施して、この複合酸化物から酸素を除去し、MAとFeとXを含有する合金:ベース合金を形成する。還元工程の雰囲気は、代表的には、水素雰囲気、水素とアルゴンや窒素などの不活性ガスとの混合雰囲気といった還元ガス雰囲気が挙げられる。加熱温度(還元温度)は、600℃〜800℃程度、保持時間は、1時間〜12時間程度が挙げられる。上記還元温度は、Feに比較して揮発し易い元素:Ca,Sr,Baが揮発しない温度又は揮発し難い温度であり、還元処理を安定して行える。
(Production method (II): Reduction process)
The sintered body made of the composite oxide containing MA, Fe, and X is subjected to a reduction treatment, oxygen is removed from the composite oxide, and an alloy containing MA, Fe, and X: a base alloy is formed. The reducing process atmosphere typically includes a reducing gas atmosphere such as a hydrogen atmosphere or a mixed atmosphere of hydrogen and an inert gas such as argon or nitrogen. The heating temperature (reduction temperature) is about 600 ° C. to 800 ° C., and the holding time is about 1 hour to 12 hours. The reduction temperature is a temperature at which elements that are more volatile than Fe: Ca, Sr, Ba do not volatilize or are hard to volatilize, and the reduction treatment can be performed stably.

還元されて得られたベース合金は、製法(I)における溶体化合金と同様に、MA,Fe,Xが十分に固溶された状態であり、均質的な合金である。特に、製法(II)では、原料に粉末を用いていることで、溶解鋳造材に溶体化処理を施した溶体化合金に比較して、均質的な成分からなる合金を得易い。また、ベース合金は、粉末成形体を焼結した焼結体を素材とするため、還元工程や後述の酸化工程において、不可避的に生じる気孔を還元ガスや酸素の供給路として利用でき、還元・酸化を効率よく行える。なお、ベース合金に、製法(I)で述べた溶体化処理などを施すこともできる。   The base alloy obtained by the reduction is a homogeneous alloy in which MA, Fe, and X are sufficiently dissolved in the same manner as the solution alloy in the production method (I). In particular, in the production method (II), the use of powder as a raw material makes it easier to obtain an alloy composed of homogeneous components as compared with a solution alloy obtained by subjecting a melt cast material to a solution treatment. In addition, since the base alloy is made of a sintered body obtained by sintering a powder compact, pores inevitably generated in the reduction process and the oxidation process described later can be used as a supply path for a reducing gas and oxygen. Oxidation can be performed efficiently. The base alloy can be subjected to the solution treatment described in the production method (I).

(析出工程)
本発明の磁性部材の製造方法は、溶体化処理が施された溶体化合金(製法(I))から、又は、複合酸化物に還元処理が施されたベース合金(製法(II))から、MAとFeとを含有するMA-Fe析出相を析出させ、析出合金を形成する析出工程を具えることを特徴の一つとする。析出合金は、FeとXとを含有するFe-X合金中、例えば、結晶粒界や結晶粒界の三重点にMA-Fe析出相が分散された組織を有する。この工程は、析出相にも母相にもFeを含有する組織を形成する。原料合金や原料に用いる化合物にXで表わされる元素としてAlを含有するものを利用した場合、析出相は、Alを含有すること、つまり、析出相がMA-Al-Feから構成されることを許容する。この析出は、析出温度域(溶体化合金やベース合金の組成にもよるが、例えば850℃〜950℃程度、650℃〜750℃程度など)に溶体化合金又はベース合金を保持することで行える。例えば、製法(I)では溶体化工程において、溶体化処理の加熱温度からの冷却過程を急冷とした場合(降温速度:5℃/sec超)、再度、析出温度域まで溶体化合金を加熱し、析出温度域を保持した後、急冷することが挙げられる。又は、製法(I)では溶体化処理の加熱温度からの冷却過程に析出工程を含む形態とすると、つまり、少なくとも析出温度域の下限温度まで徐冷して析出物:MA-Fe析出相を析出すると、溶体化工程と析出工程とを連続的に行えて、加熱回数を低減でき、生産性に優れる。上記徐冷は、降温速度を5℃/sec以下、特に1℃/sec以下とすると、上記析出物を十分に生成できて好ましい。例えば、製法(II)では還元工程において、還元処理の加熱温度からの冷却過程を急冷とした場合(降温速度:5℃/sec超)、再度、析出温度域までベース合金を加熱し、析出温度域を保持した後、急冷することが挙げられる。又は、製法(II)では還元処理の加熱温度からの冷却過程に析出工程を含む形態とすると、つまり、少なくとも析出温度域の下限温度まで徐冷して析出物:MA-Fe析出相を析出すると、還元工程と析出工程とを連続的に行えて、加熱回数を低減でき、生産性に優れる。上記徐冷は、降温速度を5℃/sec以下、特に1℃/sec以下とすると、上記析出物を十分に生成できて好ましい。Fe-X合金はFe基磁性相の前駆相となる。また、MA-Fe析出相は、MA-Fe酸化物の前駆相となり、後述する分離工程では実質的に変化しない。
(Precipitation process)
The method for producing a magnetic member of the present invention includes a solution alloy subjected to a solution treatment (production method (I)) or a base alloy obtained by subjecting a composite oxide to a reduction treatment (production method (II)). One of the features is that it comprises a precipitation step of depositing a MA-Fe precipitation phase containing MA and Fe to form a precipitated alloy. The precipitation alloy has a structure in which an MA-Fe precipitation phase is dispersed in, for example, a crystal grain boundary or a triple point of the crystal grain boundary in an Fe-X alloy containing Fe and X. This step forms a structure containing Fe in both the precipitated phase and the parent phase. When using an alloy containing Al as an element represented by X as a raw material alloy or a compound used as a raw material, the precipitated phase should contain Al, that is, the precipitated phase should be composed of MA-Al-Fe. Allow. This precipitation can be performed by holding the solution alloy or base alloy in a precipitation temperature range (for example, about 850 ° C. to 950 ° C. or about 650 ° C. to 750 ° C., although depending on the composition of the solution alloy or base alloy). . For example, in the manufacturing method (I), when the cooling process from the heating temperature of the solution treatment is a rapid cooling in the solution treatment step (temperature decrease rate: over 5 ° C / sec), the solution alloy is heated again to the precipitation temperature range. After the precipitation temperature range is maintained, rapid cooling can be mentioned. Alternatively, in the production method (I), if the cooling process from the heating temperature of the solution treatment includes a precipitation step, that is, at least gradually cooling to the lower limit temperature of the precipitation temperature range to precipitate the precipitate: MA-Fe precipitate phase. Then, the solution treatment step and the precipitation step can be performed continuously, the number of heating times can be reduced, and the productivity is excellent. The slow cooling is preferable when the temperature lowering rate is 5 ° C./sec or less, particularly 1 ° C./sec or less because the precipitate can be sufficiently generated. For example, in the production method (II), in the reduction process, when the cooling process from the heating temperature of the reduction treatment is rapid cooling (temperature decrease rate: over 5 ° C / sec), the base alloy is heated again to the precipitation temperature range, and the precipitation temperature After holding the zone, it can be cooled rapidly. Alternatively, in the production method (II), when the precipitation process is included in the cooling process from the heating temperature of the reduction treatment, that is, the precipitate: MA-Fe precipitate phase is precipitated by gradually cooling to at least the lower limit temperature of the precipitation temperature range. The reduction process and the precipitation process can be performed continuously, the number of heating times can be reduced, and the productivity is excellent. The slow cooling is preferable when the temperature lowering rate is 5 ° C./sec or less, particularly 1 ° C./sec or less because the precipitate can be sufficiently generated. The Fe-X alloy becomes a precursor phase of the Fe-based magnetic phase. Further, the MA-Fe precipitation phase becomes a precursor phase of the MA-Fe oxide and does not substantially change in the separation step described later.

(分離工程)
分離工程は、基本的には従来の金属系磁石の製造方法における相分離工程と同様に行える。この工程は、析出合金の母相:Fe-X合金を主としてナノオーダーのFe基磁性相と、X合金相とに相分離する。より具体的には、析出合金を母相:Fe-X合金の相分離温度域に保持する。相分離温度域は、代表的には平衡状態図や示差熱分析曲線(DTA曲線)から決定される相分離温度の中心温度±50℃の温度域が挙げられ、Fe-X合金の組成にもよるが、例えば550℃〜850℃程度が挙げられる。例えば、析出工程において、析出温度域からの冷却過程を急冷とした場合(降温速度:5℃/sec以上)、再度、相分離温度域まで析出合金を加熱し、相分離温度域を保持した後、急冷することが挙げられる。又は、析出温度域からの冷却過程に分離工程を含む形態とすると、つまり、少なくとも相分離温度域の下限温度まで徐冷して相分離を行うと、析出工程と分離工程とを連続的に行えて、加熱回数を低減でき、生産性に優れる。特に、上述の溶体化工程又は還元工程の冷却過程に析出工程と分離工程とを含む形態とすると、生産性に更に優れる。
(Separation process)
The separation step can be basically performed in the same manner as the phase separation step in the conventional method for producing a metal magnet. In this step, the parent phase of the precipitated alloy: the Fe—X alloy is mainly phase-separated into a nano-order Fe-based magnetic phase and an X alloy phase. More specifically, the precipitated alloy is maintained in the phase separation temperature region of the parent phase: Fe—X alloy. The phase separation temperature range is typically the temperature range of the phase separation temperature center temperature ± 50 ° C determined from the equilibrium diagram and differential thermal analysis curve (DTA curve). However, for example, about 550 ° C. to 850 ° C. may be mentioned. For example, in the precipitation step, when the cooling process from the precipitation temperature range is rapid cooling (temperature decrease rate: 5 ° C./sec or more), after heating the precipitation alloy to the phase separation temperature range again, and maintaining the phase separation temperature range , Rapid cooling. Alternatively, if the cooling process from the precipitation temperature range includes a separation step, that is, if the phase separation is performed by gradually cooling to at least the lower limit temperature of the phase separation temperature range, the precipitation step and the separation step can be performed continuously. Therefore, the number of heating times can be reduced and the productivity is excellent. In particular, when the cooling process of the solution treatment step or the reduction step described above includes a precipitation step and a separation step, the productivity is further improved.

分離工程の徐冷は、降温速度を0.05℃/sec以上とすると、相分離を良好に行えて、生成されたFe基磁性相の成長を抑制して、Fe基磁性相をナノオーダーの単磁区構造にすることができる。降温速度を大きくするほど、上記成長を抑え易く、0.1℃/sec以上、更に0.2℃/sec以上が好ましいが、大き過ぎると相分離が十分に行えなくなることから、降温速度は5℃/sec未満が好ましく、1℃/sec以下、特に0.5℃/sec程度がより好ましい。   In the slow cooling of the separation process, if the temperature drop rate is 0.05 ° C / sec or more, phase separation can be performed well, the growth of the generated Fe-based magnetic phase is suppressed, and the Fe-based magnetic phase is separated into nano-order single domains. Can be structured. The higher the temperature drop rate, the easier it is to suppress the above growth, 0.1 ° C / sec or higher, and more preferably 0.2 ° C / sec or higher. However, if it is too large, phase separation cannot be performed sufficiently. Is preferably 1 ° C./sec or less, and more preferably about 0.5 ° C./sec.

分離工程では、特に相分離温度域での降温中に磁場を印加すると、Fe基磁性相を、短径が100nm以下のナノオーダーであって、長径が1000nm以上といったアスペクト比が非常に大きな柱状体とすることができる。印加する磁場が大きいほど、長径を長くして、アスペクト比を大きくできる。印加する磁場が小さいと、長径が短くなり、磁場を印加しないと、Fe基磁性相を粒状にすることができる。所望のアスペクト比を満たすように、磁場の大きさを選択することができ、2T以上、特に3T以上が好ましく、上限は特に設けない。磁場の印加には、例えば、高温超電導コイルを利用すると、励磁速度が速く、生産性に優れる。   In the separation process, especially when a magnetic field is applied during the temperature drop in the phase separation temperature range, the Fe-based magnetic phase is a columnar body with a very large aspect ratio such as a minor axis of 100 nm or less and a major axis of 1000 nm or more. It can be. The greater the applied magnetic field, the longer the major axis and the larger the aspect ratio. When the applied magnetic field is small, the major axis is shortened, and when the magnetic field is not applied, the Fe-based magnetic phase can be made granular. The magnitude of the magnetic field can be selected so as to satisfy a desired aspect ratio, and is preferably 2T or more, particularly 3T or more, and there is no particular upper limit. For example, when a high-temperature superconducting coil is used to apply the magnetic field, the excitation speed is high and the productivity is excellent.

分離工程は、不活性雰囲気(例えば、Arなどの不活性ガス雰囲気)、減圧雰囲気(標準大気圧よりも圧力が低い真空雰囲気(最終真空度:例えば10Pa以下))で実施することができる。   The separation step can be performed in an inert atmosphere (for example, an inert gas atmosphere such as Ar) or a reduced pressure atmosphere (a vacuum atmosphere having a pressure lower than the standard atmospheric pressure (final vacuum degree: for example, 10 Pa or less)).

相分離反応が進行し、未反応相を十分に低減可能な程度の時間を経過した後には、200℃以下に速やかに冷却すると冷却斑が生じ難く、冷却斑による局部的なFe基磁性相の粗大化を抑制して、この粗大化による磁気特性の低下を防止できる。この冷却には、例えば、加熱状態にある素材を油や水などの液状冷却媒体に浸漬するといった強制冷却手段を利用することができる。   After a phase separation reaction has progressed and a time sufficient to sufficiently reduce the unreacted phase has elapsed, cooling spots are less likely to occur when cooled quickly to 200 ° C. or lower. It is possible to suppress the coarsening and prevent the magnetic characteristics from being deteriorated due to the coarsening. For this cooling, for example, a forced cooling means that immerses a heated material in a liquid cooling medium such as oil or water can be used.

分離工程を経て得られたFe基磁性相のサイズを実質的に変化させないように更に時効処理を行うことができる。時効処理により、Fe基磁性相とX合金相との分離を完全に進行できる。後述する酸化工程が上記時効処理の作用を兼ねていてもよい。   An aging treatment can be further performed so as not to substantially change the size of the Fe-based magnetic phase obtained through the separation step. By the aging treatment, the separation between the Fe-based magnetic phase and the X alloy phase can proceed completely. An oxidation step described later may also serve as the aging treatment.

(酸化工程)
本発明の磁性部材の製造方法は、MA-Fe析出相とFe基磁性相とを含有する相分離素材に酸化処理を施して、Fe基磁性相の周囲に存在するMA-Fe析出相からMA-Fe酸化物を生成することを特徴の一つとする。この酸化処理は、例えば、プラズマ処理とすると、短時間で行えるが、工業的な量産を行う場合には、酸素含有雰囲気での熱処理とすることが好ましい。酸素含有雰囲気は、例えば、オゾン雰囲気とすると、酸化エネルギーを高められ、短時間で酸化が行えるが、酸素濃度が5体積%以上の雰囲気であれば、酸化を十分に行える。特に、大気雰囲気とすると、雰囲気制御が容易で生産性に優れる。加熱温度は、250℃〜550℃程度、保持時間は、0.5時間〜24時間程度が挙げられる。
(Oxidation process)
In the method for producing a magnetic member of the present invention, a phase separation material containing an MA-Fe precipitated phase and an Fe-based magnetic phase is subjected to an oxidation treatment, and the MA-Fe precipitated phase existing around the Fe-based magnetic phase is subjected to MA. -Fe oxide is one of the characteristics. This oxidation treatment can be performed in a short time, for example, as a plasma treatment, but is preferably a heat treatment in an oxygen-containing atmosphere for industrial mass production. When the oxygen-containing atmosphere is, for example, an ozone atmosphere, the oxidation energy can be increased and oxidation can be performed in a short time. However, if the atmosphere has an oxygen concentration of 5% by volume or more, the oxidation can be sufficiently performed. In particular, when an air atmosphere is used, the atmosphere control is easy and the productivity is excellent. The heating temperature is about 250 ° C. to 550 ° C., and the holding time is about 0.5 hours to 24 hours.

酸化工程では、酸化物の生成によって体積膨張が生じ得る。この体積膨張により、磁性部材に割れが生じたり、外観不良が生じたりする。そこで、酸化処理は、相分離素材に応力を加えた状態で行うことが好ましい。例えば、相分離素材を静水圧の印加が可能な成形型に配置した状態や、一軸加圧が可能な金型に収納した状態で酸化処理を行うことが挙げられる。加圧圧力は、100MPa以上が好ましく、大き過ぎるとこの加圧により素材に割れが生じ得るため、300MPa以下が好ましく、100MPa〜200MPa程度が利用し易い。この場合、酸化処理は、上述の酸素含有雰囲気下での熱処理とすると、一度に大量の酸化が行えて好ましい。   In the oxidation process, volume expansion may occur due to the formation of oxides. Due to this volume expansion, the magnetic member is cracked or has a poor appearance. Therefore, the oxidation treatment is preferably performed in a state where stress is applied to the phase separation material. For example, the oxidation treatment may be performed in a state where the phase separation material is disposed in a mold capable of applying a hydrostatic pressure or in a state where the phase separation material is stored in a mold capable of uniaxial pressure. The pressurizing pressure is preferably 100 MPa or more, and if it is too large, cracking may occur in the material due to this pressurization. Therefore, 300 MPa or less is preferable, and about 100 MPa to 200 MPa is easy to use. In this case, it is preferable that the oxidation treatment is a heat treatment in the above-described oxygen-containing atmosphere because a large amount of oxidation can be performed at one time.

(その他の工程)
≪加圧工程≫
酸化工程を経た素材を加圧して、緻密化すると高密度な磁性部材が得られ、磁気特性の向上を図ることができる。このときの圧力は、300MPa〜1GPaが利用し易い。この加圧は、素材が弾性変形しないように、金型を拘束した状態でプレス成形したり、静水圧型の加圧方式を利用したりすることが好ましい。後述する窒化を行う場合には、この加圧工程は窒化後に行うことが好ましい。
(Other processes)
≪Pressure process≫
When the material subjected to the oxidation process is pressurized and densified, a high-density magnetic member can be obtained, and the magnetic characteristics can be improved. The pressure at this time is easily 300 MPa to 1 GPa. This pressurization is preferably performed by press molding in a state where the mold is constrained or a hydrostatic pressure pressurization method is used so that the material does not elastically deform. In the case of performing nitridation described later, this pressurizing step is preferably performed after nitriding.

≪窒化工程≫
原料にCoの含有量が少ない(5質量%以下)の鉄合金を用い、上述した分離工程でFe相を生成した場合、酸化処理後に大気圧超の加圧状態で窒化処理を施して、Fe相からα"Fe16N2相を生成する窒化工程を具えることができる。窒化処理の条件は、窒素元素を含む雰囲気:窒素(N2)雰囲気やアンモニア(NH3)雰囲気などで、加熱温度:200℃〜400℃、保持時間:0.5時間〜100時間が挙げられる。加圧することで、Feの結晶格子が歪み、一定方向の格子間隔を広げられ、広がった格子間にN原子が規則的な方向性を持って優先的に侵入することで、α"Fe16N2を効率よく生成できる。また、原料に粉末成形体を利用し、緻密化を行っていないものでは、粒子間の間隙を窒素の供給路に利用でき、効率よく窒化を行える。この加圧圧力は、70MPa〜300MPaが好ましく、70MPa〜150MPaが利用し易い。加圧には、一軸プレス加圧などが利用できる。この窒化は、上述のMA-Fe析出相の酸化による結晶格子の膨張によって、FeCo相といった金属相とMA-Fe-O相といった酸化物相との間に微小なスペースが生じ、この隙間を利用して窒素が供給されて行われる、と考えられる。
≪Nitriding process≫
When an iron alloy with a low Co content (5% by mass or less) is used as a raw material and the Fe phase is generated in the separation step described above, nitriding is performed in a pressurized state exceeding atmospheric pressure after the oxidation treatment, and Fe A nitriding step for generating an α "Fe 16 N 2 phase from the phase can be provided. The conditions for the nitriding treatment are heating in an atmosphere containing nitrogen element: a nitrogen (N 2 ) atmosphere or an ammonia (NH 3 ) atmosphere. Temperature: 200 ° C. to 400 ° C., holding time: 0.5 hour to 100 hours, pressurization strains the Fe crystal lattice, widens the lattice spacing in a certain direction, and N atoms are ordered between the expanded lattices Α ”Fe 16 N 2 can be efficiently generated by preferential entry with a specific direction. Further, in the case where a powder compact is used as a raw material and is not densified, a gap between particles can be used for a nitrogen supply path, and nitriding can be performed efficiently. The pressurizing pressure is preferably 70 MPa to 300 MPa, and 70 MPa to 150 MPa is easy to use. A uniaxial press pressurization etc. can be utilized for pressurization. In this nitriding, a microscopic space is created between the metal phase such as FeCo phase and the oxide phase such as MA-Fe-O phase due to the expansion of the crystal lattice due to the oxidation of the MA-Fe precipitate phase described above. It is considered that nitrogen is supplied.

(その他の製造方法)
その他、本発明の磁性部材の製造には、上述のようにゾルゲル法などを利用してMA-Fe酸化物を被覆した粉末を成形する製造方法を利用することができる。
(Other manufacturing methods)
In addition, for the production of the magnetic member of the present invention, a production method for forming a powder coated with MA-Fe oxide using the sol-gel method or the like as described above can be used.

以下、試験例を挙げると共に図面を参照して、本発明のより具体的な形態を説明する。図において同一符号は同一名称物を示す。   Hereinafter, more specific embodiments of the present invention will be described with reference to the drawings while giving test examples. In the figure, the same reference numeral indicates the same name.

[試験例]
原料に鉄合金又は化合物粉末を用いて、以下の手順で、マトリクス内に複数の磁性相が分散した組織を有する磁性部材を作製し、磁気特性を調べた。この試験では、試料No.1〜No.12は、鉄合金からなる粉末成形体を用い、準備工程→溶体化工程→析出工程→分離工程→酸化工程という手順で磁性部材を作製した。試料No.13〜No.16は、複数の化合物粉末を用意し、準備工程→焼結工程→還元工程→析出工程→分離工程→酸化工程という手順で磁性部材を作製した。
[Test example]
Using an iron alloy or compound powder as a raw material, a magnetic member having a structure in which a plurality of magnetic phases were dispersed in a matrix was prepared by the following procedure, and the magnetic characteristics were examined. In this test, samples No. 1 to No. 12 used powder molded bodies made of iron alloys, and produced magnetic members in the order of preparation step → solution treatment step → precipitation step → separation step → oxidation step. Samples No. 13 to No. 16 prepared a plurality of compound powders, and produced magnetic members in the order of preparation process → sintering process → reduction process → deposition process → separation process → oxidation process.

(試料No.1〜No.12)
表1に示す組成(質量%)の原料を溶解して、鉄合金の溶湯を作製し(図1(A)参照。図1(A)に示す元素は例示)、平均粒径が80μmの鉄合金粉末をガスアトマイズ法(Ar雰囲気)により作製する。平均粒径は、レーザ回折式粒度分布装置により、積算重量が50%となる粒径(50%粒径)とする。得られた合金粉末を構成する各粒子20pは、表1に示す組成からなる単相組織から構成される。
(Sample No. 1 to No. 12)
A raw material having a composition (mass%) shown in Table 1 was melted to prepare a molten iron alloy (see FIG. 1 (A), elements shown in FIG. 1 (A) are examples), and an iron having an average particle size of 80 μm. Alloy powder is produced by gas atomization method (Ar atmosphere). The average particle size is set to a particle size (50% particle size) with an integrated weight of 50% by a laser diffraction particle size distribution device. Each particle 20p composing the obtained alloy powder is composed of a single-phase structure having the composition shown in Table 1.

作製した合金粉末を圧縮成形し(成形圧力:1GPa)、直径:φ10mm×高さ:10mmの円柱形状の粉末成形体20を作製した。得られた粉末成形体20の相対密度を求めたところ、いずれの試料も92%程度である。相対密度は、市販の密度測定装置を利用して実際の密度を測定すると共に、表1に示す各組成の鉄合金からなる鋳造材の真密度を演算し、実際の密度/真密度を算出することで求められる。   The produced alloy powder was compression-molded (molding pressure: 1 GPa) to produce a cylindrical powder compact 20 having a diameter: φ10 mm × height: 10 mm. When the relative density of the obtained powder compact 20 was determined, all the samples were about 92%. For the relative density, the actual density is measured using a commercially available density measuring device, and the actual density / true density is calculated by calculating the true density of the cast material composed of the iron alloy having each composition shown in Table 1. Is required.

得られた粉末成形体20を真空雰囲気(真空度:5×10-2Pa)で1150℃×1時間の条件で溶体化処理を施して溶体化合金30を得る(図1(B))。この溶体化処理の加熱温度からの冷却過程において、850℃までの温度域を降温速度:2℃/secに制御しながら降温する。この徐冷工程が析出工程に相当する。析出工程及び次の分離工程での降温速度は、溶体化処理に用いた加熱炉内の温度を制御することで調整した。この析出工程により、特定の組成の原料を用いた試料では、析出合金40が得られる(図1(C))。析出合金40は、Fe-X合金(ここでは、Fe-Al-Ni-Co-Cu-Nb合金又はFe-Al-Ni合金)からなる母相41中にMA-Fe(ここでは、(Ca,Ba,Sr,Y)-Al-Fe)から構成される析出相42が分散された組織を有する。析出相42は、母相41の結晶粒界に沿って存在することが好ましく、結晶粒の周囲を囲むように存在することがより好ましい。 The obtained powder compact 20 is subjected to a solution treatment in a vacuum atmosphere (degree of vacuum: 5 × 10 −2 Pa) at 1150 ° C. × 1 hour to obtain a solution alloy 30 (FIG. 1 (B)). In the cooling process from the heating temperature of the solution treatment, the temperature is lowered while controlling the temperature range up to 850 ° C. at a temperature lowering rate of 2 ° C./sec. This slow cooling step corresponds to a precipitation step. The temperature lowering rate in the precipitation step and the next separation step was adjusted by controlling the temperature in the heating furnace used for the solution treatment. By this precipitation step, a precipitated alloy 40 is obtained for a sample using a raw material having a specific composition (FIG. 1 (C)). Precipitated alloy 40 is composed of MA-Fe (here, (Ca, Ca) in a parent phase 41 made of Fe-X alloy (here, Fe-Al-Ni-Co-Cu-Nb alloy or Fe-Al-Ni alloy). The precipitate phase 42 composed of Ba, Sr, Y) -Al-Fe) has a dispersed structure. The precipitated phase 42 is preferably present along the crystal grain boundary of the parent phase 41, and more preferably present so as to surround the periphery of the crystal grain.

析出工程に引き続いて、850℃〜730℃の温度域(表1に示す組成における相分離温度域に相当)を表1に示す降温速度(℃/sec)に制御しながら、かつ表1に示す磁場(T)を印加した状態で降温した。この工程が分離工程に相当する。この分離工程により、上記析出相42を有する試料は、母相41がFe基磁性相10とX合金(ここではAl-Ni-Cu-Nb合金、又はAlNi合金)からなるX合金相51とに分離され、X合金相51内にFe基磁性相10と析出相42とが分散した組織を有する相分離素材50が得られる(図1(D))。なお、試料No.11,No.12は、溶体化処理の加熱温度から650℃までの温度域の降温速度を2℃/secとし、650℃〜300℃の温度域を表1に示す降温速度(℃/sec)とした。   Following the precipitation step, the temperature range from 850 ° C. to 730 ° C. (corresponding to the phase separation temperature range in the composition shown in Table 1) is controlled to the temperature decrease rate (° C./sec) shown in Table 1 and shown in Table 1. The temperature was lowered while a magnetic field (T) was applied. This step corresponds to a separation step. By this separation step, the sample having the precipitated phase 42 is converted into the X alloy phase 51 in which the parent phase 41 is composed of the Fe-based magnetic phase 10 and the X alloy (here, Al-Ni-Cu-Nb alloy or AlNi alloy). A phase-separated material 50 having a structure in which the Fe-based magnetic phase 10 and the precipitated phase 42 are dispersed in the X alloy phase 51 is obtained (FIG. 1D). Samples No. 11 and No. 12 have a temperature drop rate of 2 ° C./sec from the heating temperature of the solution treatment to 650 ° C., and the temperature drop rate shown in Table 1 is the temperature range of 650 ° C. to 300 ° C. (° C./sec).

相分離素材50を成形型に収納し、酸素含有雰囲気(ここでは大気雰囲気)で表1に示す温度(℃)×10時間の条件で熱処理による酸化処理を施して、磁性部材1を得る(図1(E))。成形型は、静水圧の印加が可能なものを用い、表1に示す圧力(MPa)を印加して酸化処理を行った。   The phase separation material 50 is housed in a mold, and is subjected to an oxidation treatment by heat treatment in an oxygen-containing atmosphere (here, an air atmosphere) at a temperature (° C.) × 10 hours shown in Table 1 to obtain the magnetic member 1 (FIG. 1 (E)). The mold used was one that can be applied with hydrostatic pressure, and was subjected to oxidation treatment by applying the pressure (MPa) shown in Table 1.

(試料No.13〜No.16)
Feの酸化物(Fe2O3)からなる粉末、Alの酸化物(α-Al2O3)からなる粉末、Niの酸化物(NiO)からなる粉末、Coの酸化物(CoO)からなる粉末、MA:Ca,Ba,Sr及びYから選択される1種の元素の炭酸化物(MACO3)からなる粉末を用意した(図2(a)参照。図2(a)の元素は例示)。各化合物粉末は、Fe,Al,Ni,MAの合計含有量を100質量%とするとき、Fe,Al,Ni,MAの各元素の含有量が表1に示す量となるように用意した。いずれの化合物粉末も市販の粉末とし、平均粒径が実質的に等しいものを用いた(1μm〜5μm程度)。
(Sample No. 13 to No. 16)
Fe oxide (Fe 2 O 3 ) powder, Al oxide (α-Al 2 O 3 ) powder, Ni oxide (NiO) powder, Co oxide (CoO) A powder made of carbonate (MACO 3 ) of one element selected from powder, MA: Ca, Ba, Sr and Y was prepared (see FIG. 2 (a). The elements in FIG. 2 (a) are examples) . Each compound powder was prepared so that the content of each element of Fe, Al, Ni, and MA would be the amount shown in Table 1 when the total content of Fe, Al, Ni, and MA was 100% by mass. All the compound powders were commercially available powders, and those having an average particle diameter substantially equal (about 1 μm to 5 μm) were used.

用意した酸化物粉末と炭酸化物粉末とを所定の配合比に秤量し、ボールミル(乾式)で混合し、この混合粉末を原料粉末60とする(図2(b))。原料粉末60を所望の形状に圧縮成形し(成形圧力:200kPa)、得られた粉末成形体に、大気雰囲気、900℃×10時間の条件で仮焼結を施した。得られた仮焼結体を粉砕して再度成形し(成形圧力:200kPa)、得られた粉末成形体に、大気雰囲気、1100℃×10時間の条件で本焼結を施した。そして、MA,Fe,Xの複合酸化物:(MA,Fe,X)-Oxからなり、直径:φ10mm×高さ:10mmの円柱形状の焼結体61を得た(図2(c))。得られた焼結体61の相対密度を試料No.1などと同様にして求めたところ、いずれの試料も90%〜95%程度である。   The prepared oxide powder and carbonate powder are weighed to a predetermined mixing ratio and mixed by a ball mill (dry type), and this mixed powder is used as a raw material powder 60 (FIG. 2 (b)). The raw material powder 60 was compression-molded into a desired shape (molding pressure: 200 kPa), and the obtained powder compact was pre-sintered under conditions of 900 ° C. × 10 hours in an air atmosphere. The obtained preliminary sintered body was pulverized and molded again (molding pressure: 200 kPa), and the obtained powder compact was subjected to main sintering under conditions of 1100 ° C. × 10 hours in the air atmosphere. And, a composite oxide of MA, Fe, X: (MA, Fe, X) -Ox, and a cylindrical sintered body 61 having a diameter: φ10 mm × height: 10 mm was obtained (FIG. 2 (c)). . When the relative density of the obtained sintered body 61 was determined in the same manner as in sample No. 1 and the like, all the samples were about 90% to 95%.

得られた焼結体61に、水素気流中、800℃×1時間の条件で還元処理を施して、MA,Fe,Xからなる合金:ベース合金62を得る(図2(d))。この還元処理の加熱温度からの冷却過程(徐冷過程)において、降温速度を制御しながら降温して析出処理を行う。具体的には、還元処理に引き続いて、雰囲気をArに切り替えた後、650℃までの温度域を1℃/secに制御しながら降温した。析出工程及び次の分離工程での降温速度は、還元処理に用いた加熱炉内の温度を制御することで調整した。この析出工程により、Fe-X合金(ここでは、Fe-Al-Ni合金)からなる母相41中にMA-Fe(ここでは、(Ca,Ba,Sr)-Al-Fe)から構成される析出相42が分散された組織を有する析出合金40が得られる(図2(e))。   The obtained sintered body 61 is subjected to a reduction treatment in a hydrogen stream at 800 ° C. for 1 hour to obtain an alloy composed of MA, Fe, and X: a base alloy 62 (FIG. 2 (d)). In the cooling process from the heating temperature of this reduction process (slow cooling process), the temperature is decreased while controlling the temperature decrease rate, and the precipitation process is performed. Specifically, following the reduction treatment, the atmosphere was switched to Ar, and then the temperature was lowered while controlling the temperature range up to 650 ° C. to 1 ° C./sec. The temperature lowering rate in the precipitation step and the next separation step was adjusted by controlling the temperature in the heating furnace used for the reduction treatment. By this precipitation process, MA-Fe (here, (Ca, Ba, Sr) -Al-Fe) is formed in the parent phase 41 made of Fe-X alloy (here, Fe-Al-Ni alloy). A precipitated alloy 40 having a structure in which the precipitated phase 42 is dispersed is obtained (FIG. 2 (e)).

析出工程に引き続いて、650℃〜300℃の温度域(表1に示す組成における相分離温度域を含む)を表1に示す降温速度(℃/sec)に制御しながら、かつ表1に示す磁場(T)を印加した状態で降温した。この工程が分離工程に相当する。この分離工程により、上記析出相42を有する試料は、母相41がFe基磁性相10とX合金(ここではAlNi合金)からなるX合金相51とに分離され、X合金相51内にFe基磁性相10と析出相42とが分散した組織を有する相分離素材50が得られる(図2(D))。   Following the precipitation step, the temperature range from 650 ° C. to 300 ° C. (including the phase separation temperature range in the composition shown in Table 1) is controlled to the temperature drop rate (° C./sec) shown in Table 1, and shown in Table 1. The temperature was lowered while a magnetic field (T) was applied. This step corresponds to a separation step. By this separation step, the sample having the precipitated phase 42 is separated into the parent phase 41 into an Fe-based magnetic phase 10 and an X alloy phase 51 made of an X alloy (here, an AlNi alloy). A phase separation material 50 having a structure in which the base magnetic phase 10 and the precipitated phase 42 are dispersed is obtained (FIG. 2 (D)).

相分離素材50を試料No.1などと同様に、成形型に収納し、酸素含有雰囲気(ここでは大気雰囲気)で表1に示す温度(℃)×10時間、表1に示す圧力(MPa)を印加した熱処理による酸化処理を施して、磁性部材1を得る(図2(E))。   As with sample No. 1, etc., phase separation material 50 is housed in a mold, and the temperature (° C.) × 10 hours shown in Table 1 in an oxygen-containing atmosphere (here air atmosphere), the pressure (MPa) shown in Table 1 The magnetic member 1 is obtained by performing an oxidation treatment by heat treatment to which is applied (FIG. 2 (E)).

Figure 2013102122
Figure 2013102122

得られた各磁性部材について、分離工程における磁場の印加方向に垂直な方向の断面をとり、イオンミリングにより薄片化した後、透過型電子顕微鏡:TEM(50000倍程度)により観察したところ、いずれの試料も、複数のナノオーダーの分散相と、これら分散相を取り囲む周囲相とから構成されていることが確認できた。また、各磁性部材における上記断面のX線回折結果とTEM観察時の電子線回折のスポット解析とから分散相の組成及び周囲相の組成を同定した。その結果を表2に示す。表2に示すようにいずれの試料の分散相もFeを含有する相から構成され、周囲相には、MAを含有する酸化物が存在することが確認できた。特にFeとMAとを含有する酸化物が存在する試料が確認できた。例えば、試料No.5では、図1(E)に概念的に示すように、試料No.13では、図2(E)に概念的に示すように、周囲相11内に複数の柱状のFe基磁性相10が存在すること、周囲相11内にMA-Fe酸化物12(試料No.5,No.13では、Ca-(Fe,Al)-O)が存在することが確認できた。また、試料No.1〜No.10の試料はいずれも、各磁性部材中の分散相の含有量は、45体積%〜60体積%であり、試料No.11〜No.16は70体積%程度であった。   For each magnetic member obtained, the cross section in the direction perpendicular to the direction of application of the magnetic field in the separation step was taken, and after thinning by ion milling, observed with a transmission electron microscope: TEM (about 50000 times) It was confirmed that the sample was also composed of a plurality of nano-order dispersed phases and surrounding phases surrounding these dispersed phases. In addition, the composition of the dispersed phase and the composition of the surrounding phase were identified from the X-ray diffraction results of the cross section of each magnetic member and the spot analysis of electron diffraction during TEM observation. The results are shown in Table 2. As shown in Table 2, it was confirmed that the dispersed phase of any sample was composed of a phase containing Fe, and the oxide containing MA was present in the surrounding phase. In particular, a sample containing an oxide containing Fe and MA was confirmed. For example, in sample No. 5, as conceptually shown in FIG. 1 (E), in sample No. 13, as conceptually shown in FIG. It was confirmed that the base magnetic phase 10 was present and that the MA-Fe oxide 12 (Ca- (Fe, Al) -O in sample No. 5 and No. 13) was present in the surrounding phase 11. In addition, in each of the samples No. 1 to No. 10, the content of the dispersed phase in each magnetic member is 45% to 60% by volume, and the samples No. 11 to No. 16 are 70% by volume. It was about.

TEMでの分析結果及びX線回折結果を利用して、周囲相を構成する酸化物以外の組成を調べたところ、いずれの試料も、実質的にAl-Ni-Cu-Nb合金、又はAlNi合金から構成されていた。また、上記TEMでの分析結果及びX線回折結果を利用して、周囲相におけるFeとAlとの原子比(原子%)を調べた。その結果を表2に示す。   Using TEM analysis results and X-ray diffraction results, the compositions other than the oxides that make up the surrounding phase were examined. All samples were substantially Al-Ni-Cu-Nb alloys or AlNi alloys. Consisted of. In addition, the atomic ratio (atomic%) of Fe and Al in the surrounding phase was investigated using the analysis result by the TEM and the X-ray diffraction result. The results are shown in Table 2.

上記断面のTEM観察像を利用して、分散相の短径(nm)及び長径(nm)を測定した。具体的には、TEM観察像において、分散相の長手方向の長さ(≒長い方の辺の長さ)を長径とし、この長径に直交する長さ(≒短い方の辺の長さ)を短径として各分散相の長径・短径を測定し、TEM観察像内の分散相の平均を表2に示す。短径及び長径の測定は、市販の画像処理装置を用いて、TEM観察像の画像処理像を利用すると容易に行える。   Using the TEM observation image of the cross section, the minor axis (nm) and major axis (nm) of the dispersed phase were measured. Specifically, in the TEM observation image, the length in the longitudinal direction of the dispersed phase (≈the length of the longer side) is the major axis, and the length orthogonal to the major axis (≈the length of the shorter side) is The major axis and minor axis of each dispersed phase were measured as the minor axis, and the average of the dispersed phase in the TEM observation image is shown in Table 2. The measurement of the minor axis and the major axis can be easily performed using a commercially available image processing apparatus and using an image processed image of a TEM observation image.

得られた各磁性部材について、BHトレーサ(理研電子株式会社製DCBHトレーサ)を用いて、残留磁化:Br(T)、保磁力:Hc(kA/m)、最大エネルギー積:(BH)max(kJ/m3)を測定した。その結果を表2に示す。 About each obtained magnetic member, using a BH tracer (DCBH tracer made by Riken Denshi Co., Ltd.), residual magnetization: Br (T), coercive force: Hc (kA / m), maximum energy product: (BH) max ( kJ / m 3 ) was measured. The results are shown in Table 2.

Figure 2013102122
Figure 2013102122

表2に示すように、短径が100nm以下のナノオーダーのFe基磁性相を取り囲む周囲相に、MA:Ca,Sr,Ba及びYから選択される1種以上の元素と、Feとを含有するMA-Fe酸化物を具える試料は、残留磁化や保磁力、最大エネルギー積が大きく、磁気特性に優れることが分かる。具体的には、ここでは、残留磁化:1T以上、保磁力:180kA/m以上、及び最大エネルギー積:50kJ/m3以上の少なくとも一つを満たし、好ましくは、残留磁化:1T以上及び保磁力:180kA/m以上の双方を満たすことが分かる。従って、これらの試料は、希土類元素(Yを除く)を含有しなくても、磁気特性に優れており、永久磁石の素材に好適に利用できると期待できる。 As shown in Table 2, one or more elements selected from MA: Ca, Sr, Ba and Y are contained in the surrounding phase surrounding the nano-order Fe-based magnetic phase with a minor axis of 100 nm or less, and Fe It can be seen that the sample containing the MA-Fe oxide has excellent remanence, coercive force, maximum energy product, and excellent magnetic properties. Specifically, here, at least one of remanent magnetization: 1 T or more, coercive force: 180 kA / m or more, and maximum energy product: 50 kJ / m 3 or more is satisfied. : It is understood that both of 180 kA / m or more are satisfied. Therefore, even if these samples do not contain rare earth elements (excluding Y), they are excellent in magnetic properties and can be expected to be suitably used as a material for permanent magnets.

また、この試験結果から、以下のことがいえる。
(1) Fe基磁性相が柱状であって、その長径が長いほど、磁気特性に優れる。
(2) 周囲相におけるFeの含有量がAlとの対比で50原子%超であると、MA-Fe酸化物が十分に存在し、磁気特性に優れる。
(3) 磁性部材におけるMAの合計含有量が3質量%以上であると、MA-Fe酸化物が十分に存在して、磁気特性に優れる。
Moreover, the following can be said from this test result.
(1) The Fe-based magnetic phase is columnar, and the longer the major axis, the better the magnetic properties.
(2) When the content of Fe in the surrounding phase is more than 50 atomic% in comparison with Al, MA-Fe oxide is sufficiently present and the magnetic properties are excellent.
(3) When the total content of MA in the magnetic member is 3% by mass or more, the MA-Fe oxide is sufficiently present and the magnetic properties are excellent.

(4) 特定の元素を含む原料合金に溶体化処理を施した後、MA-Fe析出相を析出し、更に酸化処理を施すことで、周囲相内にMA-Fe酸化物を具える磁性部材を製造できる。
(5) 分離工程において2T以上の磁場を印加することで、Fe基磁性相をその長径が1000nm以上の柱状とすることができ、形状磁気異方性によって磁気特性に優れる磁性部材を製造できる。
(6) 分離工程において、降温速度を0.05℃/sec以上5℃/sec未満にすることで、Fe基磁性相にAlが含有され難く、酸化工程でこのAlが優先的に酸化されて、Fe基磁性相中にAl酸化物が含有されることによる磁気特性の低下を抑制できる。
(7) 酸化工程において、100MPa以上に加圧した状態で酸化処理を施すことで、割れなどを防止できる。
(4) A magnetic member comprising MA-Fe oxide in the surrounding phase by subjecting a raw material alloy containing a specific element to solution treatment, then precipitating a MA-Fe precipitate phase and further subjecting it to an oxidation treatment. Can be manufactured.
(5) By applying a magnetic field of 2 T or more in the separation step, the Fe-based magnetic phase can be made into a columnar shape having a major axis of 1000 nm or more, and a magnetic member having excellent magnetic properties can be produced by shape magnetic anisotropy.
(6) In the separation step, by setting the temperature drop rate to 0.05 ° C / sec or more and less than 5 ° C / sec, it is difficult for Al to be contained in the Fe-based magnetic phase, and this Al is preferentially oxidized in the oxidation step, and Fe A decrease in magnetic properties due to the inclusion of Al oxide in the base magnetic phase can be suppressed.
(7) In the oxidation step, cracking and the like can be prevented by performing an oxidation treatment in a state where the pressure is increased to 100 MPa or more.

(8) 特定の元素を含む化合物粉末を用いて作製した複合酸化物の焼結体に還元処理を施した後、MA-Fe析出相を析出し、更に酸化処理を施すことで、周囲相内にMA-Fe酸化物を具える磁性部材を製造できる。特に、この製造方法では、MAの含有量を高め易いため(例えば、5質量%以上)、MA-Fe酸化物中のFe比率を高め易く、磁気特性に優れる磁性部材を得易い。また、この製造方法により得られた試料は、原料に用いたMAが最終製品である磁性部材中に残存する割合が試料No.7,No.8に比較して高く、生産性に優れる。原料に合金を用いる製造方法(製法(I))では、試料No.7,No.8のように原料にMAを過剰に用いた場合、溶解時に揮発しなかったMAのうち、10%〜20%程度(体積%)がCa-Al化合物として磁性部材中に析出していると考えられる。   (8) After reducing the composite oxide sintered body prepared using compound powder containing a specific element, the MA-Fe precipitated phase is precipitated, and further oxidized, A magnetic member comprising MA-Fe oxide can be manufactured. In particular, in this production method, the MA content can be easily increased (for example, 5% by mass or more). Therefore, the Fe ratio in the MA-Fe oxide can be easily increased, and a magnetic member having excellent magnetic properties can be easily obtained. In addition, the sample obtained by this manufacturing method has a higher ratio of MA used as a raw material in the magnetic member as the final product compared to samples No. 7 and No. 8, and is excellent in productivity. In the production method using an alloy as a raw material (production method (I)), when MA is excessively used as a raw material as in samples No. 7 and No. 8, 10% to 20% of MA that did not volatilize during dissolution. It is considered that about% (volume%) is precipitated in the magnetic member as a Ca—Al compound.

なお、本発明は、上述した実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で適宜変更することができる。例えば、Fe基磁性相の組成、MA-Fe酸化物の組成、製造条件(溶体化処理、焼結処理、還元処理、酸化処理の加熱温度、加熱時間、降温速度など)、製造方法などを適宜変更することができる。   In addition, this invention is not limited to embodiment mentioned above, In the range which does not deviate from the summary of this invention, it can change suitably. For example, the composition of the Fe-based magnetic phase, the composition of the MA-Fe oxide, the production conditions (solution treatment, sintering treatment, reduction treatment, oxidation treatment heating temperature, heating time, temperature drop rate, etc.), production method, etc. Can be changed.

本発明の磁性部材は、永久磁石、例えば、各種のモータ、特に、ハイブリッド車(HEV)やハードディスクドライブ(HDD)などに具備される高速モータに用いられる永久磁石に好適に利用することができる。その他、本発明の磁性部材は、Fe基磁性相の表皮深さがFe基磁性相の短径に近くなる周波数領域(テラヘルツ領域)までの電磁波干渉・吸収材にも使用できると期待される。本発明の磁性部材の製造方法は、永久磁石の素材に好適な磁性部材の製造に好適に利用することができる。   The magnetic member of the present invention can be suitably used as a permanent magnet, for example, a permanent magnet used in various motors, in particular, a high-speed motor provided in a hybrid vehicle (HEV), a hard disk drive (HDD), or the like. In addition, the magnetic member of the present invention is expected to be usable for electromagnetic interference / absorbing materials up to a frequency region (terahertz region) where the skin depth of the Fe-based magnetic phase is close to the minor axis of the Fe-based magnetic phase. The manufacturing method of the magnetic member of this invention can be utilized suitably for manufacture of the magnetic member suitable for the raw material of a permanent magnet.

1 磁性部材 10 Fe基磁性相 11 周囲相 12 MA-Fe酸化物
20 粉末成形体 20p 粒子 30 溶体化合金
40 析出合金 41 母相 42 析出相 50 相分離素材 51 X合金相
60 原料粉末 61 焼結体 62 ベース合金
100 インゴット 120 強磁性相 130 非磁性相 400 磁石
1 Magnetic member 10 Fe-based magnetic phase 11 Ambient phase 12 MA-Fe oxide
20 Powder compact 20p particle 30 Solution alloy
40 Precipitated alloy 41 Parent phase 42 Precipitated phase 50 Phase separation material 51 X Alloy phase
60 Raw material powder 61 Sintered body 62 Base alloy
100 Ingot 120 Ferromagnetic phase 130 Nonmagnetic phase 400 Magnet

Claims (12)

Feを主体とするFe基磁性相と、前記Fe基磁性相を取り囲む周囲相とから構成される磁性部材であって、
前記Fe基磁性相は、その短径が100nm以下であり、
前記周囲相は、Ca,Sr,Ba及びYから選択される1種以上の元素をMAとするとき、MAとFeとを含有するMA-Fe酸化物を含有する磁性部材。
A magnetic member composed of a Fe-based magnetic phase mainly composed of Fe and a surrounding phase surrounding the Fe-based magnetic phase,
The Fe-based magnetic phase has a minor axis of 100 nm or less,
The surrounding phase is a magnetic member containing an MA-Fe oxide containing MA and Fe, where MA is one or more elements selected from Ca, Sr, Ba and Y.
前記Fe基磁性相は、実質的にFeから構成されるFe相、及びCoを50質量%以下含有するFeCo相の少なくとも一方であり、
前記周囲相は、Al及びNiを主要元素とするAlNi系合金と前記MA-Fe酸化物とを含有し、
前記MA-Fe酸化物は、MAとFeとAlとを含む請求項1に記載の磁性部材。
The Fe-based magnetic phase is at least one of a Fe phase substantially composed of Fe and a FeCo phase containing 50% by mass or less of Co,
The surrounding phase contains an AlNi-based alloy containing Al and Ni as main elements and the MA-Fe oxide,
2. The magnetic member according to claim 1, wherein the MA-Fe oxide contains MA, Fe, and Al.
前記Fe基磁性相は、柱状であり、その長径が1000nm以上である請求項1又は2に記載の磁性部材。   3. The magnetic member according to claim 1, wherein the Fe-based magnetic phase is columnar and has a major axis of 1000 nm or more. 前記周囲相は、Al及びNiを主要元素とするAlNi系合金と前記MA-Fe酸化物とを含有し、
前記周囲相におけるFeとAlとの合計原子量に対して、Feの含有量が50原子%超である請求項1〜3のいずれか1項に記載の磁性部材。
The surrounding phase contains an AlNi-based alloy containing Al and Ni as main elements and the MA-Fe oxide,
The magnetic member according to any one of claims 1 to 3, wherein a content of Fe is more than 50 atomic% with respect to a total atomic weight of Fe and Al in the surrounding phase.
前記MAの合計含有量が3質量%以上8質量%以下である請求項1〜4のいずれか1項に記載の磁性部材。   5. The magnetic member according to claim 1, wherein a total content of the MA is 3% by mass or more and 8% by mass or less. Ca,Sr,Ba及びYから選択される1種以上の元素をMA、Al,Ni及びCoから選択される1種以上の元素をXとするとき、MAとFeとXとを含む原料合金を準備する準備工程と、
前記原料合金に1000℃以上前記原料合金の液相化温度以下の温度で溶体化処理を施す溶体化工程と、
前記溶体化処理が施された溶体化合金から、少なくともMAとFeとを含有するMA-Fe析出相を析出して、FeとXとを含有するFe-X合金中に前記MA-Fe析出相を存在させる析出工程と、
前記Fe-X合金を、Feを主体とするFe基磁性相とXを主体とするX合金相とに相分離する分離工程と、
前記分離工程を経た相分離素材に酸化処理を施して、前記MA-Fe析出相からMAとFeとを含有するMA-Fe酸化物を生成する酸化工程とを具える磁性部材の製造方法。
When one or more elements selected from Ca, Sr, Ba and Y are MA, and one or more elements selected from Al, Ni and Co are X, a raw material alloy containing MA, Fe and X A preparation process to prepare; and
A solution treatment step of subjecting the raw material alloy to a solution treatment at a temperature not lower than 1000 ° C. and not higher than a liquidus temperature of the raw material alloy;
The MA-Fe precipitation phase containing at least MA and Fe is precipitated from the solution-treated alloy subjected to the solution treatment, and the MA-Fe precipitation phase is contained in the Fe-X alloy containing Fe and X. A precipitation step in which
A separation step of separating the Fe-X alloy into an Fe-based magnetic phase mainly composed of Fe and an X alloy phase mainly composed of X;
A method for producing a magnetic member comprising: an oxidation step of subjecting the phase separation material that has undergone the separation step to an oxidation treatment to produce an MA-Fe oxide containing MA and Fe from the MA-Fe precipitated phase.
前記溶体化工程の冷却過程に前記析出工程と前記分離工程とを含み、
前記溶体化合金におけるMA-Fe相の析出温度域の下限温度までの降温速度を5℃/sec以下として冷却することで前記MA-Fe析出相を析出し、相分離温度領域では、降温速度を0.05℃/sec以上5℃/sec未満として冷却することで前記Fe基磁性相と前記X合金相とに相分離する請求項6に記載の磁性部材の製造方法。
Including the precipitation step and the separation step in the cooling step of the solution treatment step,
The MA-Fe precipitation phase is precipitated by cooling the MA-Fe phase in the solution alloy to the lower limit temperature of the precipitation temperature range of 5 ° C / sec or less, and the MA-Fe precipitation phase is precipitated. 7. The method for producing a magnetic member according to claim 6, wherein the Fe-based magnetic phase and the X alloy phase are phase-separated by cooling at 0.05 ° C./sec or more and less than 5 ° C./sec.
前記準備工程では、前記原料合金からなる粉末を成形した粉末成形体を準備する請求項6又は7に記載の磁性部材の製造方法。   8. The method for manufacturing a magnetic member according to claim 6, wherein in the preparation step, a powder molded body obtained by molding a powder made of the raw material alloy is prepared. Ca,Sr,Ba及びYから選択される1種以上の元素をMA、Al,Ni及びCoから選択される1種以上の元素をXとするとき、MAの炭酸化物からなる粉末と、Xの酸化物からなる粉末と、Feの酸化物からなる粉末とを混合した原料粉末を準備する準備工程と、
前記原料粉末を仮焼結した後、本焼結を行って、MAとFeとXとを含有する複合酸化物からなる焼結体を形成する焼結工程と、
前記焼結体に還元処理を施して、MAとFeとXとを含有するベース合金を形成する還元工程と、
前記ベース合金から、少なくともMAとFeとを含有するMA-Fe析出相を析出して、FeとXとを含有するFe-X合金中に前記MA-Fe析出相を存在させる析出工程と、
前記Fe-X合金を、Feを主体とするFe基磁性相とXを主体とするX合金相とに相分離する分離工程と、
前記分離工程を経た相分離素材に酸化処理を施して、前記MA-Fe析出相からMAとFeとを含有するMA-Fe酸化物を生成する酸化工程とを具える磁性部材の製造方法。
When one or more elements selected from Ca, Sr, Ba, and Y are MA, and one or more elements selected from Al, Ni, and Co are X, a powder of MA carbonate, and A preparation step of preparing a raw material powder in which a powder made of an oxide and a powder made of an oxide of Fe are mixed;
After the preliminary sintering of the raw material powder, a main sintering is performed to form a sintered body made of a composite oxide containing MA, Fe and X, and
A reduction step of subjecting the sintered body to a reduction treatment to form a base alloy containing MA, Fe and X;
From the base alloy, a MA-Fe precipitation phase containing at least MA and Fe is precipitated, and a precipitation step in which the MA-Fe precipitation phase is present in an Fe-X alloy containing Fe and X;
A separation step of separating the Fe-X alloy into an Fe-based magnetic phase mainly composed of Fe and an X alloy phase mainly composed of X;
A method for producing a magnetic member comprising: an oxidation step of subjecting the phase separation material that has undergone the separation step to an oxidation treatment to produce an MA-Fe oxide containing MA and Fe from the MA-Fe precipitated phase.
前記還元工程の冷却過程に前記析出工程と前記分離工程とを含み、
前記ベース合金におけるMA-Fe相の析出温度域の下限温度までの降温速度を5℃/sec以下として冷却することで前記MA-Fe析出相を析出し、相分離温度領域では、降温速度を0.05℃/sec以上5℃/sec未満として冷却することで前記Fe基磁性相と前記X合金相とに相分離する請求項9に記載の磁性部材の製造方法。
Including the precipitation step and the separation step in the cooling step of the reduction step,
The MA-Fe precipitation phase is precipitated by cooling the MA-Fe phase in the base alloy to a lower temperature lower than the precipitation temperature range of 5 ° C./sec or less, and in the phase separation temperature region, the temperature reduction rate is 0.05. 10. The method for manufacturing a magnetic member according to claim 9, wherein the Fe-based magnetic phase and the X alloy phase are phase-separated by cooling at a temperature of from 0 ° C./sec to less than 5 ° C./sec.
前記分離工程では、2T以上の磁場を印加して行う請求項6〜10のいずれか1項に記載の磁性部材の製造方法。   11. The method for manufacturing a magnetic member according to claim 6, wherein the separation step is performed by applying a magnetic field of 2T or more. 前記酸化処理は、酸素を含有する雰囲気下での熱処理とし、
前記酸化工程では、前記相分離素材を100MPa以上の静水圧を加えた状態、又は一軸加圧が可能な金型に収納して加圧した状態で前記酸化処理を行う請求項6〜11のいずれか1項に記載の磁性部材の製造方法。
The oxidation treatment is a heat treatment under an atmosphere containing oxygen,
12. The oxidation process according to any one of claims 6 to 11, wherein in the oxidation step, the oxidation treatment is performed in a state where the hydrostatic pressure of 100 MPa or more is applied to the phase separation material, or in a state where the phase separation material is stored in a mold capable of uniaxial pressing. 2. A method for producing a magnetic member according to claim 1.
JP2012137953A 2011-10-17 2012-06-19 Magnetic member and manufacturing method for magnetic member Pending JP2013102122A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012137953A JP2013102122A (en) 2011-10-17 2012-06-19 Magnetic member and manufacturing method for magnetic member

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011228051 2011-10-17
JP2011228051 2011-10-17
JP2012137953A JP2013102122A (en) 2011-10-17 2012-06-19 Magnetic member and manufacturing method for magnetic member

Publications (1)

Publication Number Publication Date
JP2013102122A true JP2013102122A (en) 2013-05-23

Family

ID=48622453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012137953A Pending JP2013102122A (en) 2011-10-17 2012-06-19 Magnetic member and manufacturing method for magnetic member

Country Status (1)

Country Link
JP (1) JP2013102122A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3014637A1 (en) * 2013-06-27 2016-05-04 Regents of the University of Minnesota Iron nitride materials and magnets including iron nitride materials
US10002694B2 (en) 2014-08-08 2018-06-19 Regents Of The University Of Minnesota Inductor including alpha″-Fe16Z2 or alpha″-Fe16(NxZ1-x)2, where Z includes at least one of C, B, or O
US10072356B2 (en) 2014-08-08 2018-09-11 Regents Of The University Of Minnesota Magnetic material including α″-Fe16(NxZ1-x)2 or a mixture of α″-Fe16Z2 and α″-Fe16N2, where Z includes at least one of C, B, or O
WO2018193900A1 (en) * 2017-04-17 2018-10-25 キヤノン株式会社 Composite magnetic material, motor and method for producing composite magnetic material
US10358716B2 (en) 2014-08-08 2019-07-23 Regents Of The University Of Minnesota Forming iron nitride hard magnetic materials using chemical vapor deposition or liquid phase epitaxy
US10573439B2 (en) 2014-08-08 2020-02-25 Regents Of The University Of Minnesota Multilayer iron nitride hard magnetic materials
JP2021139046A (en) * 2020-03-06 2021-09-16 ティッセンクルップ ラッセルシュタイン ゲー エム ベー ハー Sheet metal product for packaging
US11195644B2 (en) 2014-03-28 2021-12-07 Regents Of The University Of Minnesota Iron nitride magnetic material including coated nanoparticles

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3014637A1 (en) * 2013-06-27 2016-05-04 Regents of the University of Minnesota Iron nitride materials and magnets including iron nitride materials
EP3014637A4 (en) * 2013-06-27 2017-05-03 Regents of the University of Minnesota Iron nitride materials and magnets including iron nitride materials
KR101821344B1 (en) 2013-06-27 2018-01-23 리전츠 오브 더 유니버시티 오브 미네소타 Iron nitride materials and magnets including iron nitride materials
US10504640B2 (en) 2013-06-27 2019-12-10 Regents Of The University Of Minnesota Iron nitride materials and magnets including iron nitride materials
US11195644B2 (en) 2014-03-28 2021-12-07 Regents Of The University Of Minnesota Iron nitride magnetic material including coated nanoparticles
US10358716B2 (en) 2014-08-08 2019-07-23 Regents Of The University Of Minnesota Forming iron nitride hard magnetic materials using chemical vapor deposition or liquid phase epitaxy
US10072356B2 (en) 2014-08-08 2018-09-11 Regents Of The University Of Minnesota Magnetic material including α″-Fe16(NxZ1-x)2 or a mixture of α″-Fe16Z2 and α″-Fe16N2, where Z includes at least one of C, B, or O
US10573439B2 (en) 2014-08-08 2020-02-25 Regents Of The University Of Minnesota Multilayer iron nitride hard magnetic materials
US10002694B2 (en) 2014-08-08 2018-06-19 Regents Of The University Of Minnesota Inductor including alpha″-Fe16Z2 or alpha″-Fe16(NxZ1-x)2, where Z includes at least one of C, B, or O
US11214862B2 (en) 2014-08-08 2022-01-04 Regents Of The University Of Minnesota Forming iron nitride hard magnetic materials using chemical vapor deposition or liquid phase epitaxy
WO2018193900A1 (en) * 2017-04-17 2018-10-25 キヤノン株式会社 Composite magnetic material, motor and method for producing composite magnetic material
JP2021139046A (en) * 2020-03-06 2021-09-16 ティッセンクルップ ラッセルシュタイン ゲー エム ベー ハー Sheet metal product for packaging
JP7303234B2 (en) 2020-03-06 2023-07-04 ティッセンクルップ ラッセルシュタイン ゲー エム ベー ハー Sheet metal products for packaging

Similar Documents

Publication Publication Date Title
JP5304907B2 (en) R-Fe-B fine crystal high density magnet
JP4873008B2 (en) R-Fe-B porous magnet and method for producing the same
JP5856953B2 (en) Rare earth permanent magnet manufacturing method and rare earth permanent magnet
JP4831253B2 (en) R-T-Cu-Mn-B sintered magnet
JP5218869B2 (en) Rare earth-iron-nitrogen alloy material, method for producing rare earth-iron-nitrogen alloy material, rare earth-iron alloy material, and method for producing rare earth-iron alloy material
CN105957680B (en) Rare earth cobalt permanent magnet
JP2013102122A (en) Magnetic member and manufacturing method for magnetic member
KR20160117363A (en) R-Fe-B TYPE SINTERED MAGNET AND METHOD FOR MAKING THE SAME
CN105018845A (en) Alloy for R-T-B-based rare earth sintered magnet, process for producing alloy for R-T-B-based rare earth sintered magnet, alloy material for R-T-B-based rare earth sintered magnet, and motor
JP5059955B2 (en) Magnet powder
JP2014150119A (en) Method of manufacturing r-t-b based sintered magnet
JP2009123968A (en) POROUS MATERIAL FOR R-Fe-B BASED PERMANENT MAGNET, AND MANUFACTURING METHOD THEREOF
JP2014216338A (en) R-T-B sintered magnet
CN107408437B (en) Rare earth magnet
JP2012253247A (en) Composite magnetic material and method for manufacturing the same
JP2009260290A (en) Method of manufacturing r-fe-b system anisotropic bulk magnet
JP6733398B2 (en) Method for manufacturing RTB-based sintered magnet
JP6569408B2 (en) Rare earth permanent magnet
JP2020155634A (en) R-t-b based permanent magnet
JP5613856B1 (en) R-T-B system rare earth sintered magnet alloy, R-T-B system rare earth sintered magnet alloy manufacturing method, R-T-B system rare earth sintered magnet alloy material, R-T-B system rare earth Sintered magnet, method for producing RTB-based rare earth sintered magnet, and motor
US8480818B2 (en) Permanent magnet and manufacturing method thereof
JP6623998B2 (en) Method for producing RTB based sintered magnet
JP6691667B2 (en) Method for manufacturing RTB magnet
JP2022008212A (en) R-t-b based permanent magnet and motor
JP2012190893A (en) Magnetic substance and method for manufacturing the same