JP2012190893A - Magnetic substance and method for manufacturing the same - Google Patents

Magnetic substance and method for manufacturing the same Download PDF

Info

Publication number
JP2012190893A
JP2012190893A JP2011051369A JP2011051369A JP2012190893A JP 2012190893 A JP2012190893 A JP 2012190893A JP 2011051369 A JP2011051369 A JP 2011051369A JP 2011051369 A JP2011051369 A JP 2011051369A JP 2012190893 A JP2012190893 A JP 2012190893A
Authority
JP
Japan
Prior art keywords
magnetic
phase
magnetic body
inorganic
separation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011051369A
Other languages
Japanese (ja)
Inventor
Toru Maeda
前田  徹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2011051369A priority Critical patent/JP2012190893A/en
Publication of JP2012190893A publication Critical patent/JP2012190893A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a magnetic substance which can be used for a magnet having a good magnetic characteristic, and a method for manufacturing the same.SOLUTION: The magnetic substance 4 substantially consists of magnetic phases 13 and an inorganic phase 12 interposed between the magnetic phases 13 so as not to generate magnetic interaction between them. The magnetic phase 13 contains more than 80 vol% of α"FeNphase. For example, the inorganic phase 12 consists of CrCo component. Powder consisting of FeCrCo system alloy as a raw material is molded in order to prepare a powder molding part 2, the powder molding part 2 is subjected to a heat treatment to separate into a Fe phase 11 and the inorganic phase 12 mainly containing CrCo component. A phase separation processing member 3 is subjected to a heat treatment under a pressurized state in a nitrogen gas atmosphere in order to nitride Fe in the Fe phase 11, generate a α"FeNphase and obtain the magnetic substance 4. The magnetic substance 4 has good magnetic characteristic, because a main component of the magnetic phase is a α"FeNphase having good magnetic characteristic, and the usage of Co can be reduced because the content of Co is less than 10 atom%.

Description

本発明は、永久磁石に好適に利用できる磁性体、及びその製造方法に関する。特に、磁気特性に優れる磁石への利用に適した磁性体に関するものである。   The present invention relates to a magnetic body that can be suitably used for a permanent magnet, and a method for manufacturing the same. In particular, the present invention relates to a magnetic material suitable for use in a magnet having excellent magnetic properties.

モータや発電機などに利用される永久磁石として、Al-Ni-Co-Fe系合金やFe-Cr-Co系合金などの金属材料からなる金属系磁石、代表的には、アルニコ磁石と呼ばれるものや特許文献1に記載されるFe-Cr-Co系磁石、酸化鉄を主成分とするフェライトからなるフェライト磁石が広く利用されている。また、磁気特性に特に優れる永久磁石として、Nd(ネオジム)やSm(サマリウム)といった希土類元素を含む希土類磁石が利用されている。   As permanent magnets used in motors and generators, metal magnets made of metal materials such as Al-Ni-Co-Fe alloys and Fe-Cr-Co alloys, typically called alnico magnets In addition, a Fe—Cr—Co magnet described in Patent Document 1 and a ferrite magnet made of ferrite containing iron oxide as a main component are widely used. Further, rare earth magnets containing rare earth elements such as Nd (neodymium) and Sm (samarium) are used as permanent magnets that are particularly excellent in magnetic properties.

Fe-Cr-Co系磁石などの金属系磁石は、代表的には鋳造材に、相分離のための熱処理を施して製造される(特許文献1の明細書2ページ左下欄6行目〜12行目参照)。代表的な製造工程を図2に示す。Fe-Cr-Co系合金といった合金溶湯を作製して鋳造し、得られたインゴット100に熱処理を施す。この熱処理により、FeCo相といった強磁性体を主体とする磁性相130と、CrCo相といった弱磁性体(或いは非磁性体)を主体とする無機相120との2相分離(スピノーダル分解)を行って、磁石400が得られる。無機相120は、隣り合う磁性相130間に磁気相互作用が生じないように介在される。上記熱処理は、代表的には、溶体化処理→磁場印加処理(溶体化処理からの冷却工程における所定の温度での処理を含む)→時効処理が挙げられる。磁場印加処理により、上記磁性相130を形状異方性の大きい細長い棒状の単磁区粒子、より具体的には、その幅が数nm〜数十nm程度のナノオーダー、その長さが数μm〜十数μm程度のマイクロオーダーといった、アスペクト比が非常に大きいナノサイズの形状にする。このような細長い棒状の磁性相130を有することで、金属系磁石は高い保磁力を発現し、磁気特性に優れる。   A metal-based magnet such as an Fe-Cr-Co-based magnet is typically manufactured by subjecting a cast material to heat treatment for phase separation (Patent Document 1 specification, page 2, lower left column, lines 6 to 12). See line). A typical manufacturing process is shown in FIG. A molten alloy such as an Fe—Cr—Co alloy is prepared and cast, and the resulting ingot 100 is heat treated. By this heat treatment, two-phase separation (spinodal decomposition) of the magnetic phase 130 mainly composed of a ferromagnetic material such as FeCo phase and the inorganic phase 120 mainly composed of a weak magnetic material (or non-magnetic material) such as CrCo phase is performed. A magnet 400 is obtained. The inorganic phase 120 is interposed so that no magnetic interaction occurs between the adjacent magnetic phases 130. Typically, the heat treatment includes solution treatment → magnetic field application treatment (including treatment at a predetermined temperature in the cooling step from solution treatment) → aging treatment. By applying a magnetic field, the magnetic phase 130 is formed into a long and narrow single-domain particle having a large shape anisotropy, more specifically, a nano-order having a width of several nm to several tens of nm, and a length of A nano-sized shape with a very large aspect ratio, such as a micro-order of about a dozen μm. By having such an elongated rod-like magnetic phase 130, the metal magnet exhibits a high coercive force and is excellent in magnetic properties.

特開昭53-094216号公報JP-A-53-094216

希土類磁石は、磁気特性に優れるものの、温度に対する磁気特性の変化が大きい。また、昨今、希土類元素は、資源調達の安定性に劣る点や価格変動の不安定さを考慮すると、使用量の低減が望まれている。   Although rare earth magnets are excellent in magnetic properties, the magnetic properties vary greatly with temperature. In recent years, the use of rare earth elements has been desired to be reduced in consideration of inferior resource procurement stability and unstable price fluctuations.

フェライト磁石は、希土類磁石よりも磁気特性がかなり低いため、高性能用途に対応できない。   Ferrite magnets have much lower magnetic properties than rare earth magnets and cannot be used for high performance applications.

これに対し、アルニコ磁石やFe-Cr-Co系磁石などの金属系磁石は、フェライト磁石よりも磁気特性に優れる上に、温度に対する安定性に非常に優れる。特に、Fe-Cr-Co系磁石は、アルニコ磁石と同等の磁気特性を有する上に、塑性加工性や切削加工性などに優れることから、形状の自由度が高い。しかし、金属系磁石は、希土類磁石やフェライト磁石に比較すると、コストパフォーマンスに劣ることから、希土類磁石の出現以降、性能向上の取り組みがあまり行われていなかった。金属系磁石の性能を向上するには、上述のナノサイズの磁性相130の飽和磁化をいかに高くできるかという点が重要となる。   On the other hand, metal magnets such as alnico magnets and Fe—Cr—Co magnets are superior in magnetic properties to ferrite magnets and very stable in temperature. In particular, Fe-Cr-Co magnets have the same magnetic characteristics as alnico magnets and are excellent in plastic workability and cutting workability, and thus have a high degree of freedom in shape. However, since metal magnets are inferior in cost performance compared to rare earth magnets and ferrite magnets, efforts have not been made to improve performance since the advent of rare earth magnets. In order to improve the performance of the metal-based magnet, it is important how the saturation magnetization of the nano-sized magnetic phase 130 can be increased.

例えば、磁性相をFe相とする場合、Feの飽和磁化は2T程度であり、上述したナノサイズのFeCoの飽和磁化:2.3T〜2.4T程度よりも低く、磁性相の飽和磁化の更なる向上が望まれる。また、磁性相をFe相とする場合、スピノーダル分解が比較的生じ難く、磁性相と無機相との分離性が相対的に低い。そこで、従来の金属系磁石では、FeCo相を存在させるために、一般に、20原子%以上Coを含有している。しかし、Coも、近年、使用量の低減が望まれていることから、Coの含有量がより少ない材質であって、磁気特性に更に優れる材質の開発が望まれる。   For example, when the magnetic phase is an Fe phase, the saturation magnetization of Fe is about 2T, and the saturation magnetization of the nano-sized FeCo described above is lower than about 2.3T to 2.4T, further improving the saturation magnetization of the magnetic phase. Is desired. Further, when the magnetic phase is an Fe phase, spinodal decomposition is relatively difficult to occur, and the separability between the magnetic phase and the inorganic phase is relatively low. Therefore, conventional metal magnets generally contain 20 atomic% or more of Co in order to make the FeCo phase exist. However, since Co is also desired to be reduced in recent years, it is desired to develop a material having a lower Co content and further excellent magnetic properties.

そこで、本発明の目的の一つは、磁気特性に優れる磁石が得られる磁性体を提供することにある。また、本発明の他の目的は、上記磁性体の製造方法を提供することにある。   Then, one of the objectives of this invention is providing the magnetic body from which the magnet excellent in a magnetic characteristic is obtained. Another object of the present invention is to provide a method for producing the magnetic material.

本発明者は、磁気特性の向上を図ると共に、Coが少ない材質の金属系磁石とするために、磁性相の組成を検討した。上述のようにFeは飽和磁化が低く、磁気特性に劣る。一方、鉄窒化物のうち、窒素侵入型の鉄窒化物であるα”Fe16N2(正方晶、a=5.72Å、c=6.29Å、結晶記号:I4/mmm)は、飽和磁化が2.8T程度と磁気特性に非常に優れることが原理計算や薄膜での実験などで実証されている。そこで、このα”Fe16N2相を磁性相の主成分とする磁性体の製造方法を検討した結果、Coが少ない鉄合金を用意し、相分離熱処理によりナノオーダーのFe相を出現させた後、特定の条件で窒化処理を施してFeを窒化することで、α”Fe16N2相を主体とする磁性相を有する磁性体が得られる、との知見を得た。本発明は、上記知見に基づくものである。 The present inventor has studied the composition of the magnetic phase in order to improve the magnetic characteristics and to make a metal-based magnet made of a material with less Co. As described above, Fe has a low saturation magnetization and is inferior in magnetic properties. On the other hand, among the iron nitrides, α ”Fe 16 N 2 (tetragonal, a = 5.72Å, c = 6.29Å, crystal symbol: I4 / mmm), which is a nitrogen intrusion type iron nitride, has a saturation magnetization of 2.8. It has been proved by the principle calculation and the experiment with a thin film that the T grade and the magnetic property are very excellent.Therefore, a method of manufacturing a magnetic material having the α ″ Fe 16 N 2 phase as a main component of the magnetic phase is examined. As a result, an iron alloy with less Co was prepared, and after a nano-order Fe phase appeared by phase-separation heat treatment, nitriding was performed under specific conditions to nitride Fe, so that α ”Fe 16 N 2 phase The present inventors have obtained the knowledge that a magnetic material having a magnetic phase mainly composed of can be obtained.The present invention is based on the above knowledge.

本発明の磁性体は、鉄窒化物を主体とする磁性相と、上記磁性相間に磁気相互作用が生じないように介在される無機相とにより実質的に構成され、Coの含有量が5原子%以上10原子%未満であり、上記磁性相がα”Fe16N2相を80体積%以上含有することを特徴とする。 The magnetic body of the present invention is substantially composed of a magnetic phase mainly composed of iron nitride and an inorganic phase interposed so that no magnetic interaction occurs between the magnetic phases, and the Co content is 5 atoms. % And less than 10 atomic%, and the magnetic phase contains 80% by volume or more of α ″ Fe 16 N 2 phase.

上記本発明磁性体は、例えば、以下の本発明磁性体の製造方法により製造することができる。本発明の磁性体の製造方法は、鉄合金に熱処理を施して、Fe元素を含む磁性相と、上記磁性相間に磁気相互作用が生じないように介在される無機相とにより実質的に構成される磁性体を製造する方法に係るものであり、以下の準備工程と、分離工程と、窒化工程とを具える。
準備工程:Feを75原子%以上含有すると共に、Fe以外の金属元素を含有し、かつCoを5原子%以上10原子%未満含有する鉄合金からなる素材を準備する工程。
分離工程:上記素材に相分離熱処理を施して、Fe相と、上記金属元素を含む無機材料から構成され、上記Fe相間に介在される無機相とに分離する工程。
窒化工程:上記分離工程により得られた相分離処理材に、以下の条件の窒化熱処理を施して、上記Fe相中のFeを窒化してα”Fe16N2相を生成し、磁性相中のα”Fe16N2相の含有量が80体積%以上である磁性体を製造する工程。
窒化熱処理条件:大気圧超の加圧状態とする。かつ、窒素元素含有ガス雰囲気下で200℃以上400℃以下の温度で加熱する。
The said magnetic body of this invention can be manufactured with the following manufacturing methods of the magnetic body of this invention, for example. The method for producing a magnetic body of the present invention is substantially composed of a magnetic phase containing Fe element by heat treatment of an iron alloy and an inorganic phase interposed so that no magnetic interaction occurs between the magnetic phases. This method relates to a method of manufacturing a magnetic body, and includes the following preparation step, separation step, and nitriding step.
Preparation step: A step of preparing a material made of an iron alloy containing Fe at 75 atomic% or more, containing a metal element other than Fe, and containing Co at 5 atomic% or more and less than 10 atomic%.
Separation step: a step of subjecting the material to a phase separation heat treatment to separate it into an Fe phase and an inorganic phase composed of an inorganic material containing the metal element and interposed between the Fe phases.
Nitriding step: The phase separation material obtained in the separation step is subjected to a nitriding heat treatment under the following conditions to nitride the Fe in the Fe phase to form an α ″ Fe 16 N 2 phase, and in the magnetic phase A step of producing a magnetic material having an α ″ Fe 16 N 2 phase content of 80% by volume or more.
Nitriding heat treatment condition: Pressurized state exceeding atmospheric pressure. And it heats at the temperature of 200 degreeC or more and 400 degrees C or less in nitrogen element containing gas atmosphere.

鉄合金からFe相を分離した後、大気圧下といった非加圧状態で窒化する場合、窒素の反応性を高めるために熱処理時の温度を比較的高温にする必要がある。すると、N原子がc軸方向のFe格子間に方向性を有して侵入する正方晶の鉄窒化物ではなく、N原子が複数方向のFe格子間に侵入して生成される立方晶や六方晶の鉄窒化物:Fe4NやFe3Nが生成される。上記立方晶や六方晶の鉄窒化物は、その磁気特性がFe単体の状態よりも劣る。これに対し、詳細なメカニズムは定かではないが、上述のように加圧状態で窒化すると、相分離処理材中の特定方向のFeの格子に歪みが生じて窒素の侵入路が形成され、Fe格子間にN原子が侵入し難い低温域であっても、N原子がFe格子中に取り込まれ易くなってα”Fe16N2が形成され易くなる、と考えられる。また、α”Fe16N2が形成され易いことで、結果としてFe4Nなどの生成が抑制され、α”Fe16N2を十分に形成できる、と考えられる。 When nitriding in a non-pressurized state such as under atmospheric pressure after separating the Fe phase from the iron alloy, the temperature during the heat treatment needs to be relatively high in order to increase the reactivity of nitrogen. Then, it is not a tetragonal iron nitride in which N atoms intrude into the c-axis direction Fe lattice with directionality, but a cubic crystal or hexagon formed when N atoms enter between Fe lattices in multiple directions. Crystalline iron nitride: Fe 4 N and Fe 3 N are produced. The cubic and hexagonal iron nitrides are inferior in magnetic properties to those of Fe alone. On the other hand, the detailed mechanism is not clear, but when nitriding in a pressurized state as described above, the lattice of Fe in a specific direction in the phase separation treatment material is distorted to form a nitrogen intrusion path, and Fe even at a low temperature region in which the N atom hardly penetrate between lattices, N atoms is in alpha easily incorporated into Fe lattices "easily Fe 16 N 2 is formed, is considered. also, alpha" Fe 16 It is considered that N 2 is easily formed, and as a result, formation of Fe 4 N and the like is suppressed, and α ″ Fe 16 N 2 can be sufficiently formed.

上記本発明製造方法では、磁性相の主成分(80体積%以上)がα”Fe16N2相である磁性体(代表的には上記本発明磁性体)が得られる。磁性相の主成分がα”Fe16N2相であることから、本発明磁性体は、磁性相の主成分がFe相である場合に比較して1.4倍、FeCo相である場合に比較して1.2倍も飽和磁化が大きい。従って、本発明磁性体は、磁性相をFe相とする場合や、磁性相がFeCo相である従来の金属系磁石よりも磁気特性に優れる。かつ、本発明磁性体によれば、磁性相の主成分をα”Fe16N2相とすることで、FeCo相を実質的に生成しないことから、Coの使用量を低減できる。従来のFeCrCo系磁石では、Coの含有量が10原子%〜30原子%程度であり、市販品では、20原子%以上のものが多い。これに対して、本発明磁性体では、Coの含有量が5原子%以上10質量%未満程度であり、従来のFeCrCo系磁石よりもCoが少ない。このように本発明磁性体は、希土類元素やCoなどのいわゆるレアメタルを多量に使用しなくても磁気特性に優れ、永久磁石に好適に利用できると期待される。その他、本発明製造方法は、金属材料を出発材料にして、代表的には粉末冶金法により磁性体を製造することで、任意の形状の磁性体を容易に製造することができ、磁性体の生産性に優れる。 In the production method of the present invention, a magnetic material (typically, the magnetic material of the present invention) in which the main component (80% by volume or more) of the magnetic phase is an α ″ Fe 16 N 2 phase is obtained. Is an α ″ Fe 16 N 2 phase, the magnetic material of the present invention is 1.4 times more saturated than the case where the main component of the magnetic phase is the Fe phase, and 1.2 times more saturated than the case where it is the FeCo phase. Magnetization is large. Therefore, the magnetic body of the present invention is superior in magnetic properties compared to conventional metal magnets in which the magnetic phase is Fe phase or the magnetic phase is FeCo phase. In addition, according to the magnetic body of the present invention, since the main component of the magnetic phase is the α ″ Fe 16 N 2 phase, since the FeCo phase is not substantially generated, the amount of Co used can be reduced. Conventional FeCrCo In the system magnet, the Co content is about 10 atomic% to 30 atomic%, and many commercially available products have a content of 20 atomic% or more, whereas in the magnetic material of the present invention, the Co content is 5%. At least less than 10% by mass and less Co than conventional FeCrCo-based magnets As described above, the magnetic material of the present invention exhibits magnetic properties without using a large amount of rare metals such as rare earth elements and Co. In addition, the production method of the present invention uses a metal material as a starting material, and typically produces a magnetic material by a powder metallurgy method, so that an arbitrary shape can be obtained. The magnetic material can be easily manufactured, and the productivity of the magnetic material is excellent.

本発明磁性体の一形態として、上記無機相がCrCoを主体(80原子%以上)とするCrCo成分を80体積%以上含有する形態が挙げられる。   As one form of the magnetic body of the present invention, there is a form in which the inorganic phase contains 80% by volume or more of a CrCo component mainly composed of CrCo (80 atomic% or more).

本発明磁性体を構成する金属種として、代表的には、FeCrCo系合金(但し、Co:5原子%以上10原子%未満)が挙げられる。本発明磁性体の構成金属がFeCrCo系合金である場合、無機相は、主としてCrCoにより構成され、その含有量が高く不純物が少ないことで、磁性相同士が磁性相互作用を及ぼし合うことを抑制できる。また、構成金属がFeCrCo系合金から構成される形態では、CrCoを主相とする無機相が塑性加工性や切削加工性などに優れることから、形状の自由度が高く、所望の形状の磁性体を得易い。   A typical example of the metal species constituting the magnetic body of the present invention is FeCrCo-based alloy (Co: 5 atomic% or more and less than 10 atomic%). When the constituent metal of the magnetic body of the present invention is an FeCrCo-based alloy, the inorganic phase is mainly composed of CrCo, and its content is high and there are few impurities, so that it is possible to suppress the magnetic phases from exerting magnetic interactions with each other. . In addition, when the constituent metal is composed of an FeCrCo-based alloy, the inorganic phase containing CrCo as the main phase is excellent in plastic workability and cutting workability. Easy to get.

本発明磁性体の一形態として、上記磁性相間の距離が5nm以上である形態が挙げられる。   As one form of the magnetic body of the present invention, a form in which the distance between the magnetic phases is 5 nm or more is mentioned.

本発明において「磁性相間に磁気相互作用(磁気交換相互作用)が生じない」状態として、代表的には、磁性相同士がある程度離れて存在することが挙げられる。上記形態では、磁性相間に磁気相互作用が生じない距離が確保されているため、例えば、磁性相のアスペクト比が大きいことによる高い保磁力が磁気相互作用により低下したり失われたりすることを回避できる。従って、上記形態は、当該磁性相の磁気特性を十分に活用することができる。   In the present invention, a state where “the magnetic interaction (magnetic exchange interaction) does not occur between the magnetic phases” typically means that the magnetic phases are separated from each other to some extent. In the above configuration, since a distance at which no magnetic interaction occurs between the magnetic phases is secured, for example, a high coercive force due to a large aspect ratio of the magnetic phase is prevented from being reduced or lost due to the magnetic interaction. it can. Therefore, the said form can fully utilize the magnetic characteristic of the said magnetic phase.

本発明磁性体の一形態として、上記磁性相の幅が100nm以下である形態が挙げられる。   As one form of the magnetic body of the present invention, a form in which the width of the magnetic phase is 100 nm or less can be mentioned.

上述した金属系磁石では、磁性相の幅がナノオーダーといった非常に微細であると(薄いと)、磁気特性に優れる。従って、上記形態は、磁気特性に優れる。   The metal-based magnet described above has excellent magnetic properties when the width of the magnetic phase is extremely fine (thin), such as nano-order. Therefore, the said form is excellent in a magnetic characteristic.

本発明製造方法の一形態として、上記鉄合金がFeCrCo系合金であり、上記分離工程では、上記素材を1000℃以上に加熱した後、550℃までの冷却工程における降温速度を5.0℃/sec以上とし、550℃〜450℃の温度範囲において当該素材の相分離温度域における降温速度を0.05℃/sec以上5℃/sec以下とする形態が挙げられる。   As one form of the production method of the present invention, the iron alloy is an FeCrCo-based alloy, and in the separation step, after the material is heated to 1000 ° C. or higher, the temperature lowering rate in the cooling step to 550 ° C. is 5.0 ° C./sec or higher. In the temperature range of 550 ° C. to 450 ° C., the temperature drop rate in the phase separation temperature range of the material is 0.05 ° C./sec or more and 5 ° C./sec or less.

相分離温度域及び降温速度の好ましい範囲は、素材の組成により決定される。素材がFeCrCo系合金からなる上記形態は、上述のように特定の温度域を急冷すると共に、相分離温度域においても降温速度を制御することでFe相とCrCo相との分離を良好に行うことができる。   A preferable range of the phase separation temperature range and the temperature decrease rate is determined by the composition of the material. The above-mentioned form made of a FeCrCo-based alloy rapidly cools a specific temperature range as described above, and performs a good separation between the Fe phase and the CrCo phase by controlling the temperature drop rate even in the phase separation temperature range. Can do.

本発明製造方法の一形態として、上記準備工程で準備する上記素材を上記鉄合金からなる粉末を成形した粉末成形体とする形態が挙げられる。   As one form of this invention manufacturing method, the form which makes the said raw material prepared at the said preparatory process the powder compact which shape | molded the powder which consists of the said iron alloy is mentioned.

粉末成形体では、原料粉末を構成する各粒子の粒界が存在し、この粒界は、分離工程後にも存在し得る。そして、加圧によりこの粒界間を広げて微細な隙間を形成し、この隙間を窒化工程において窒素の侵入路に利用すると、作製する磁性体が大型であっても、即ち、粉末成形体が大型であっても、当該成形体はその表層部から内部に至る全域に亘って良好にα”Fe16N2相を生成することができ、α”Fe16N2相の割合が高く、かつα”Fe16N2相が斑なく存在する磁性体を得易い。また、粉末成形体は、相対密度の調整が容易に行えることから、上記形態は、分離工程後や窒化工程後に得ようとする相分離処理材や磁性体の相対密度に応じて、所望の相対密度の素材を容易に用意できる。更に、粉末成形体は、複雑な立体形状でも、特別な加工を行うことなく容易に形成できる。特に、FeCrCo系合金は、上述のように塑性加工性などに優れることから、成形性に優れる。従って、上記形態は、(1)磁気特性に優れる磁性体が得られる、(2)原料の歩留りが高い、(3)形状の自由度が高い、(4)磁性体の相対密度の調整が容易である、という優れた効果を奏する。なお、相対密度とは、真密度に対する実際の密度(百分率)をいう。 In the powder molded body, there are grain boundaries of each particle constituting the raw material powder, and this grain boundary may exist after the separation step. Then, by pressurizing this grain boundary to form a fine gap, and using this gap as a nitrogen ingress path in the nitriding step, even if the magnetic body to be produced is large, that is, the powder compact is Even if it is large, the molded body can generate the α ″ Fe 16 N 2 phase satisfactorily over the entire region from the surface layer to the inside, and the proportion of the α ″ Fe 16 N 2 phase is high, and It is easy to obtain a magnetic body in which the α ”Fe 16 N 2 phase is present without any unevenness. In addition, since the relative density of the powder compact can be easily adjusted, the above form is obtained after the separation process or the nitriding process. The material with the desired relative density can be easily prepared according to the relative density of the phase separation material and magnetic material to be processed, and the powder compact can be easily formed without special processing even in complex three-dimensional shapes. In particular, FeCrCo alloy is excellent in plastic workability as described above, Therefore, the above-mentioned form is (1) a magnetic material having excellent magnetic properties can be obtained, (2) the yield of raw materials is high, (3) the degree of freedom of shape is high, and (4) relative to the magnetic material. It has an excellent effect that the density can be easily adjusted, and the relative density means an actual density (percentage) with respect to the true density.

本発明製造方法の一形態として、上述した粉末成形体を素材に利用する場合に、上記準備工程では、上記相分離処理材の相対密度が94%以下となるように上記素材を準備する形態が挙げられる。   As one form of the manufacturing method of the present invention, when the above-described powder molded body is used as a raw material, the preparation step includes preparing the raw material so that the relative density of the phase separation material is 94% or less. Can be mentioned.

上記相分離処理材の相対密度が94%以下であれば、開気孔を十分に確保できるため、窒化工程において、上述した窒素の侵入路を十分に確保でき、α”Fe16N2相を生成し易い。従って、上記形態は、α”Fe16N2相が高割合な磁性相を有する磁性体を効率よく製造でき、磁気特性に優れる磁性体が得られる。この形態では、上記相分離処理材の相対密度が94%以下となるように粉末成形体の相対密度を調整するとよい。なお、粉末成形体の相対密度と、相分離処理材の相対密度とは、相分離処理時に若干変化するもの、実質的に同程度になる傾向にある。 If the relative density of the phase separation treatment material is 94% or less, sufficient open pores can be secured, so that the above-described nitrogen ingress path can be secured sufficiently in the nitriding process, and an α ″ Fe 16 N 2 phase is generated. Therefore, the above embodiment can efficiently produce a magnetic material having a high proportion of the α ″ Fe 16 N 2 phase, and a magnetic material having excellent magnetic properties can be obtained. In this embodiment, the relative density of the powder compact may be adjusted so that the relative density of the phase separation material is 94% or less. It should be noted that the relative density of the powder compact and the relative density of the phase separation treatment material change slightly during the phase separation treatment and tend to be substantially the same.

本発明製造方法の一形態として、上記窒化工程における加圧を70MPa以上300MPa以下とする形態が挙げられる。   As one mode of the production method of the present invention, a mode in which the pressure in the nitriding step is 70 MPa or more and 300 MPa or less can be mentioned.

上記形態は、70MPa〜300MPaの範囲で加圧することで、相分離処理材を十分に歪ませて、窒素の侵入路を十分に確保できる。従って、上記形態は、窒化工程において効率よく、かつ確実にα”Fe16N2相を生成して、磁気特性に優れる磁性体を製造できる。 In the above-described embodiment, by pressurizing in the range of 70 MPa to 300 MPa, the phase separation treatment material can be sufficiently distorted and a sufficient nitrogen intrusion path can be secured. Therefore, the above embodiment can produce an α ″ Fe 16 N 2 phase efficiently and reliably in the nitriding step, and produce a magnetic material having excellent magnetic properties.

本発明製造方法の一形態として、上述した粉末成形体を素材に利用し、相対密度が94%以下の相分離処理材を製造する場合に、上記窒化工程を経て製造された上記磁性体に300MPa以上の加圧を行って、相対密度が94%超の高密度磁性体にする加圧工程を具える形態が挙げられる。   As one form of the manufacturing method of the present invention, when the above-mentioned powder molded body is used as a raw material and a phase separation treatment material having a relative density of 94% or less is manufactured, the magnetic body manufactured through the nitriding step is 300 MPa The form which comprises the pressurization process which performs the above pressurization and makes it a high-density magnetic body with a relative density over 94% is mentioned.

上記形態は、窒化工程後において低密度な磁性体を緻密化して、最終的に高密度な磁性体とすることができ、磁気特性により優れる磁性体が得られる。   In the above embodiment, the low-density magnetic body can be densified after the nitriding step, and finally a high-density magnetic body can be obtained, and a magnetic body having superior magnetic characteristics can be obtained.

本発明磁性体は、従来の金属系磁石と比較して、磁気特性に優れる。本発明磁性体の製造方法は、上記本発明磁性体を良好に製造することができる。   The magnetic body of the present invention is superior in magnetic properties as compared with conventional metal magnets. The method for producing a magnetic body of the present invention can satisfactorily produce the above-described magnetic body of the present invention.

図1は、試験例で作製した本発明磁性体を製造する工程を模式的に示す工程説明図である。FIG. 1 is a process explanatory view schematically showing a process for producing a magnetic body of the present invention produced in a test example. 図2は、従来の金属系磁石を製造する工程の一例を模式的に示す工程説明図である。FIG. 2 is a process explanatory view schematically showing an example of a process for producing a conventional metal magnet.

以下、本発明をより詳細に説明する。
[磁性体]
(成分)
本発明磁性体は、Feを主成分とし(75原子%以上含有)、Coと、Fe以外の金属元素(Coを除く)とを含有する。但し、Coを5原子%以上10原子%未満含有する。不可避不純物として、粉末成形体の成形や鋳造金型などに利用した潤滑剤に由来する化合物(BN(窒化ほう素)、MoS(硫化モリブデン)など)、製造時に形成されたFe4N,Fe3N,CrNなどの窒化物、原料中の不可避不純物元素の窒化物などを含有することを許容する。本発明磁性体の全体質量に対して、α”Fe16N2以外の窒化鉄、及び窒素化コバルトを除く不可避不純物の含有量は1質量%以下が好ましい。
Hereinafter, the present invention will be described in more detail.
[Magnetic material]
(component)
The magnetic body of the present invention contains Fe as a main component (contains 75 atomic% or more), and contains Co and a metal element other than Fe (excluding Co). However, Co is contained at 5 atomic% or more and less than 10 atomic%. As unavoidable impurities, compounds derived from lubricants (BN (boron nitride), MoS (molybdenum sulfide), etc.) used for molding powder moldings and casting molds, Fe 4 N, Fe 3 formed during production It is allowed to contain nitrides such as N and CrN and nitrides of inevitable impurity elements in the raw material. The content of inevitable impurities excluding iron nitride other than α ″ Fe 16 N 2 and cobalt nitride is preferably 1% by mass or less with respect to the total mass of the magnetic body of the present invention.

上記Feは主として磁性相に含有され、上記Fe以外の金属元素及びCoは主として無機相に含有される。上記Fe及びCo以外の金属元素は、例えば、Cr,Ba,Sr,Pt,希土類元素(Nd,Sm,Ce,Pr,Dy,Tb,Yなど)が挙げられる。Crを含有する形態では、無機相がCrCo成分を主体とする。Cr以外の上記金属元素を含有すると、後述するように高い結晶磁気異方性を有する無機相となる可能性がある。Fe以外の金属元素とCoとの合計含有量は25原子%以下が好ましい。例えば、Crを含有する形態では、Cr:5原子%〜20原子%、Co:5原子%〜10原子%が挙げられる。後述するように無機相の組成によっては、上記金属元素以外に酸素、窒素、ホウ素及び炭素から選択される1種以上の元素を含有する形態とすることができる。上記酸素などの元素の含有量は合計で5原子%〜15原子%が好ましい。   The Fe is mainly contained in the magnetic phase, and the metal elements other than Fe and Co are mainly contained in the inorganic phase. Examples of the metal elements other than Fe and Co include Cr, Ba, Sr, Pt, and rare earth elements (Nd, Sm, Ce, Pr, Dy, Tb, Y, etc.). In the form containing Cr, the inorganic phase is mainly composed of the CrCo component. When the above metal elements other than Cr are contained, there is a possibility that an inorganic phase having high crystal magnetic anisotropy is obtained as described later. The total content of metallic elements other than Fe and Co is preferably 25 atomic% or less. For example, in the form containing Cr, Cr: 5 atom% to 20 atom%, Co: 5 atom% to 10 atom% can be mentioned. As will be described later, depending on the composition of the inorganic phase, in addition to the metal element, one or more elements selected from oxygen, nitrogen, boron and carbon can be contained. The total content of elements such as oxygen is preferably 5 atomic% to 15 atomic%.

本発明磁性体を構成する各元素の含有量は、本発明磁性体の原料に用いる鉄合金の組成を適宜変更することで調整できる。   Content of each element which comprises this invention magnetic body can be adjusted by changing suitably the composition of the iron alloy used for the raw material of this invention magnetic body.

(組織)
≪各相の存在形態≫
本発明磁性体は、磁性相と、この磁性相の主成分とは異なる組成からなる無機相とにより実質的に構成され、複数の磁性相間に無機相が介在された組織により構成される。磁性相の含有量は、60体積%〜70体積%程度、無機相の含有量は、30体積%〜40体積%程度が代表的である。そして、磁性相同士が、相互に磁気作用が影響し合わないように無機相が介在されることで、磁気特性に優れる磁性体となる。磁気相互作用が生じないようにするには、上述のように磁性相同士がある程度離れている、代表的には、磁性相間の距離が5nm以上であることが好ましい。上記距離が長いほど、磁気相互作用が生じ難く、10nm以上がより好ましい。しかし、上記距離の増大は、主たる磁性相として機能しない無機相の増大を招き、磁気特性が低下する上に、無機相の増大による磁性体の大型化を招く。従って、上記磁性相間の距離は、磁性相の最大幅以下、代表的には30nm以下が好ましい。
(Organization)
≪Existence form of each phase≫
The magnetic body of the present invention is substantially composed of a magnetic phase and an inorganic phase having a composition different from the main component of the magnetic phase, and is composed of a structure in which an inorganic phase is interposed between a plurality of magnetic phases. The content of the magnetic phase is typically about 60% to 70% by volume, and the content of the inorganic phase is typically about 30% to 40% by volume. And it becomes a magnetic body excellent in a magnetic characteristic by interposing an inorganic phase so that magnetic actions may not mutually influence magnetic actions between magnetic phases. In order to prevent the magnetic interaction from occurring, it is preferable that the magnetic phases are separated to some extent as described above. Typically, the distance between the magnetic phases is preferably 5 nm or more. As the distance is longer, magnetic interaction is less likely to occur, and 10 nm or more is more preferable. However, the increase in the distance leads to an increase in the inorganic phase that does not function as the main magnetic phase, resulting in a decrease in magnetic properties and an increase in the size of the magnetic material due to the increase in the inorganic phase. Therefore, the distance between the magnetic phases is preferably less than the maximum width of the magnetic phase, typically 30 nm or less.

≪磁性相の形状≫
上記磁性相の形状は、代表的には、棒状、粒状、膜状が挙げられ、製造条件により変化させられる。磁性相の幅とは、棒状の場合:短辺の長さ、粒状の場合:最大径、膜状の場合:厚さをいう。磁性相の幅が100nm以下、好ましくは50nm以下といったナノオーダーであると、単磁区構造を安定化できて磁性相を十分に活用することができる。また、磁性相の幅が10nm以上、更に20nm以上であると、熱による電子運動の揺らぎを受けて自発磁化が消失する現象(超常磁性)の発生に起因する強磁性の低下を防止できる上に、無機相に対する磁性相の相対割合が低下し難い、即ち、磁性相が相対的に十分に存在し易いため、磁気特性が低下し難い、或いは実質的に低下しない。磁性相が棒状であり、その幅に対して長さが大きい、つまりアスペクト比が大きい形態、より具体的には、上記幅が上述のようにナノオーダーで、長さが数μm〜十数μmといったマイクロオーダーである場合(アスペクト比が10以上の場合)、磁気特性に非常に優れて好ましい。膜状の場合も厚さに対して成膜領域(面積)が大きいほど、磁気特性に優れて好ましい。
≪Magnetic phase shape≫
Typical examples of the shape of the magnetic phase include a rod shape, a granular shape, and a film shape, and can be changed according to manufacturing conditions. The width of the magnetic phase means the length of the short side in the case of a rod, the maximum diameter in the case of a granule, and the thickness in the case of a film. When the width of the magnetic phase is nano-order such as 100 nm or less, preferably 50 nm or less, the single domain structure can be stabilized and the magnetic phase can be fully utilized. In addition, if the width of the magnetic phase is 10 nm or more, and further 20 nm or more, it is possible to prevent a decrease in ferromagnetism due to the phenomenon (superparamagnetism) in which spontaneous magnetization disappears due to fluctuations in electron motion due to heat. The relative proportion of the magnetic phase with respect to the inorganic phase is difficult to decrease, that is, the magnetic phase is relatively sufficiently easy to be present, so that the magnetic properties are hardly deteriorated or do not substantially decrease. The magnetic phase is rod-shaped and has a large length with respect to its width, that is, a form with a large aspect ratio, more specifically, the width is nano-order as described above, and the length is several μm to several tens μm In the micro order (when the aspect ratio is 10 or more), the magnetic properties are excellent and preferable. In the case of a film, the larger the film formation region (area) with respect to the thickness, the better the magnetic characteristics.

なお、上記磁性相間の距離とは、磁性相が棒状の場合、磁性相の幅方向に隣接する磁性相間の距離、粒状の場合、隣接する磁性相において最も近接する点間の距離、膜状の場合、磁性相からなる層間に介在する無機相の平均厚さをいう。   The distance between the magnetic phases is the distance between adjacent magnetic phases in the width direction of the magnetic phase when the magnetic phase is rod-shaped, the distance between adjacent points in the adjacent magnetic phase, In this case, it means the average thickness of the inorganic phase interposed between layers made of a magnetic phase.

≪磁性相の組成≫
磁性相は、鉄窒化物の中でも鉄よりも大きな飽和磁化を有し、強磁性体であるα”Fe16N2相を主体とする、具体的には、磁性相を100体積%としてα”Fe16N2相を80体積%以上含有する。磁性相中のα”Fe16N2相の割合が高いほど、磁気特性に優れる磁性体となることから、実質的にα”Fe16N2相のみで構成されることが好ましい。磁性相に含まれる不可避不純物としては、Fe,Fe4N,Fe3Nなどが挙げられる。Feは磁性を有するが、α”Fe16N2よりも磁気特性に劣るため、Feの含有量は少ない方が好ましい。また、Fe4N,Fe3Nなどの磁気特性に劣る化合物はできる限り含まないことが好ましい。
≪Composition of magnetic phase≫
The magnetic phase has a saturation magnetization larger than iron among iron nitrides, and is mainly composed of a ferromagnetic α ″ Fe 16 N 2 phase. Specifically, the magnetic phase is 100 vol% and α ″. Contains Fe 16 N 2 phase at 80 volume% or more. The higher the proportion of the α ″ Fe 16 N 2 phase in the magnetic phase, the better the magnetic material, and therefore it is preferable that the α′Fe 16 N 2 phase is essentially composed of only the α ″ Fe 16 N 2 phase. Examples of inevitable impurities contained in the magnetic phase include Fe, Fe 4 N, and Fe 3 N. Fe has magnetism, but is less magnetic than α ″ Fe 16 N 2 , so it is preferable to have a lower Fe content. In addition, compounds with inferior magnetic properties such as Fe 4 N and Fe 3 N can be used as much as possible. It is preferably not included.

上記磁性相の組成及び後述する無機相の組成や磁性相の形状の確認、磁性相間の距離の測定には、例えば、磁性体の断面をとり、後述するように透過型電子顕微鏡(TEM)の像やX線回折のピーク強度(ピーク面積)を利用することができる。その他、組成の分析には、エネルギー分散型X線分光法(EDX)を利用することができる。なお、素材に粉末成形体を利用した場合、粉末成形体の相対密度や熱処理条件にもよるが、光学顕微鏡観察により、原料粉末を構成していた各粒子の粒界を確認できる場合がある。従って、磁性体を観察した場合に粉末粒子の粒界を確認できることが、粉末成形体を用いたことを示す指標の一つとなり得る。   For the confirmation of the composition of the magnetic phase and the composition of the inorganic phase and the shape of the magnetic phase, which will be described later, and the measurement of the distance between the magnetic phases, for example, take a cross-section of the magnetic material and use a transmission electron microscope (TEM) as described later. The peak intensity (peak area) of an image or X-ray diffraction can be used. In addition, energy dispersive X-ray spectroscopy (EDX) can be used for composition analysis. When a powder compact is used as a raw material, depending on the relative density of the powder compact and heat treatment conditions, the grain boundary of each particle constituting the raw material powder may be confirmed by observation with an optical microscope. Therefore, the fact that the grain boundaries of the powder particles can be confirmed when the magnetic material is observed can be one of the indicators that the powder compact is used.

≪無機相≫
無機相は、上記Fe以外の金属元素(Coを除く)とCoとを含有する相であり、上記磁性相間に介在されて、代表的には、磁性相同士が相互に磁気的に作用し合って連動することを防止する相、即ち、磁気相互作用を分断するための相である。代表的には、無機相は、非磁性体である形態が挙げられる。非磁性体は、例えば、弱磁性体(或いは非磁性体)であるCrCo合金を含む合金成分を主成分とする(無機相を100体積%として70体積%以上含有する)形態が挙げられる。また、無機相中のFeの残存の割合が低いほど磁性相間に磁気相互作用が生じないようにし易い。無機相中の上記合金成分が高いほどFeの残存割合が相対的に低くなる形態になり易いことから、無機相中の上記合金成分は、80体積%以上、更に90体積%以上がより好ましく、実質的にCrCo成分のみで構成されることが好ましい。無機相に含まれる不可避不純物としては、上述した潤滑剤などの残滓が挙げられる。また、CrCo成分は、CrCo合金の割合が高いことが好ましく、80原子%以上、特に90原子%以上が好ましい。CrCo成分に含まれる不可避不純物としては、上述したCrNなどの窒化物、出発原料に含まれる不可避不純物の窒化物や酸化物などが挙げられる。
≪Inorganic phase≫
The inorganic phase is a phase containing a metal element other than Fe (excluding Co) and Co, and is typically interposed between the magnetic phases, and the magnetic phases typically interact with each other magnetically. This is a phase for preventing interlocking, that is, a phase for breaking the magnetic interaction. Typically, the inorganic phase may be in the form of a nonmagnetic material. Examples of the non-magnetic material include a form mainly containing an alloy component including a CrCo alloy which is a weak magnetic material (or non-magnetic material) (containing 70% by volume or more with an inorganic phase being 100% by volume). Also, the lower the proportion of Fe remaining in the inorganic phase, the easier it is to prevent magnetic interaction between the magnetic phases. The higher the alloy component in the inorganic phase, the easier it becomes a form in which the residual ratio of Fe is relatively low. Therefore, the alloy component in the inorganic phase is 80% by volume or more, more preferably 90% by volume or more, It is preferable that it is substantially composed only of a CrCo component. Examples of inevitable impurities contained in the inorganic phase include residues such as the above-described lubricant. The CrCo component preferably has a high proportion of CrCo alloy, preferably 80 atomic% or more, particularly preferably 90 atomic% or more. Examples of inevitable impurities contained in the CrCo component include nitrides such as CrN described above and nitrides and oxides of inevitable impurities contained in the starting material.

その他、無機相がα”Fe16N2以外の磁性体である形態、即ち、主成分がα”Fe16N2相である第一の磁性相と、主成分がα”Fe16N2以外の磁性体であって無機相である第二の磁性相とを有する形態も有り得る。この形態は、第二の磁性相である無機相の構成材質が、主成分をα”Fe16N2相とする第一の磁性相よりも強力な結晶磁気異方性を有し、磁気相互作用の発生距離が第一の磁性相よりも長いような結晶磁気異方性を有する形態である。ここで、第一の磁性相の主成分であるα”Fe16N2相は、硬磁性体及び軟磁性体の双方になり得る。無機相が上述した形態のように非磁性体から構成される場合、α”Fe16N2相は、硬磁性体として機能し、α”Fe16N2相の長手方向に磁区の向きが揃い易い。一方、無機相が磁性体である形態は、第二の磁性相である無機相が硬磁性体として機能し、主成分がα”Fe16N2相である第一の磁性相が、いわゆるナノコンポジットマグネット(交換スプリングマグネット)の軟磁性体として機能することで、非常に強力な磁石となりうる。このような無機相の構成材質は、例えば、希土類磁石(Sm-Co化合物、Nd-Fe-B化合物、Sm-Fe-N化合物など)、フェライト磁石(Ba-Fe-O化合物、Sr-Fe-O化合物など)、Pt-Fe合金磁石、Pt-Co合金磁石などが挙げられる。スピノーダル分解の進行を制御することで、Fe原子の一部を無機相に積極的に残存させて、この残存するFeを利用して上記構成材質や上記構成材質に準ずる材質を生成して第二の磁性相の無機相を構成すると、製造性に優れて好ましい。無機相の構成材質となる元素のうち、Fe以外の元素は、例えば、原料に含有させたり、スピノーダル分解後窒化処理前、又は窒化処理後に、相分離処理材などを構成する粒子間の空隙を利用して所望の元素や化合物を拡散させることで存在させることができる。また、相分離処理材などに適当な熱処理を施したり、化学反応させたりすることで、無機相に所望の元素や化合物を優先的に侵入させてもよい。なお、無機相が硬磁性体、第一の磁性相が軟磁性体として機能する形態では、第一の磁性相が棒状であると、形状に起因する硬磁性の発揮による不具合が危惧されるため、第一の磁性相は、球状又は膜状が好ましいと考えられる。 Other inorganic phase alpha "form of a magnetic material other than Fe 16 N 2, i.e., the main component is alpha" and the first magnetic phase is Fe 16 N 2 phase, the main component is α "Fe 16 N 2 except And a second magnetic phase, which is an inorganic phase, which may be a magnetic material of which the constituent material of the inorganic phase, which is the second magnetic phase, is mainly composed of an α ″ Fe 16 N 2 phase. The crystal magnetic anisotropy is stronger than that of the first magnetic phase, and the magnetic magnetic anisotropy is such that the generation distance of the magnetic interaction is longer than that of the first magnetic phase. Here, the α ″ Fe 16 N 2 phase, which is the main component of the first magnetic phase, can be both a hard magnetic material and a soft magnetic material. The inorganic phase is composed of a non-magnetic material as described above. In this case, the α ″ Fe 16 N 2 phase functions as a hard magnetic material, and the orientation of the magnetic domains is easily aligned in the longitudinal direction of the α ″ Fe 16 N 2 phase. On the other hand, the form in which the inorganic phase is a magnetic material is The inorganic phase, which is the second magnetic phase, functions as a hard magnetic material, and the first magnetic phase, whose main component is the α ”Fe 16 N 2 phase, functions as a soft magnetic material for the so-called nanocomposite magnet (exchange spring magnet). By doing so, it can be a very powerful magnet. The constituent materials of such inorganic phases include, for example, rare earth magnets (Sm—Co compounds, Nd—Fe—B compounds, Sm—Fe—N compounds, etc.), ferrite magnets (Ba—Fe—O compounds, Sr—Fe—). O compound), Pt—Fe alloy magnet, Pt—Co alloy magnet and the like. By controlling the progress of the spinodal decomposition, a part of Fe atoms is actively left in the inorganic phase, and the remaining Fe is used to generate the constituent material and a material equivalent to the constituent material. The inorganic phase of the magnetic phase is preferably excellent in manufacturability. Among the elements constituting the constituent material of the inorganic phase, for example, elements other than Fe are included in the raw material, and after the spinodal decomposition before nitriding treatment, or after nitriding treatment, voids between particles constituting the phase separation treatment material etc. It can be present by diffusing desired elements and compounds. In addition, a desired element or compound may be preferentially invaded into the inorganic phase by subjecting the phase separation material or the like to an appropriate heat treatment or a chemical reaction. In the form in which the inorganic phase functions as a hard magnetic body and the first magnetic phase functions as a soft magnetic body, if the first magnetic phase is rod-shaped, there is a risk of problems due to the exertion of hard magnetism due to the shape, It is considered that the first magnetic phase is preferably spherical or film-like.

[製造方法]
(準備工程)
本発明製造方法では、原料として、所望の磁性相及び無機相を生成可能な組成の鉄合金からなる素材を用意する。特に、本発明製造方法では、Feを75原子%以上含有する鉄合金(例えば、FeCrCo系合金(Fe:75原子%〜90原子%)など)を利用することで、磁性相が60体積%〜70体積%の磁性体を製造できる。また、本発明製造方法では、上記鉄合金のCoの含有量を5原子%以上10原子%未満とする。素材の形態は、例えば、従来のFeCrCo系磁石などの金属系磁石の製造で利用されていたような鋳造材を利用することができる。しかし、形状の自由度を高める観点や開気孔を存在させて後述する窒化工程で対象を効率よく窒化するには、素材は、粉末の形態、代表的には所望の組成の鉄合金からなる粉末を成形した粉末成形体を利用することが好ましい。
[Production method]
(Preparation process)
In the production method of the present invention, a raw material made of an iron alloy having a composition capable of generating a desired magnetic phase and inorganic phase is prepared as a raw material. In particular, in the production method of the present invention, an iron alloy containing 75 atomic% or more of Fe (for example, FeCrCo alloy (Fe: 75 atomic% to 90 atomic%) or the like) is used, so that the magnetic phase is 60 vol% to A 70% by volume magnetic material can be produced. In the production method of the present invention, the content of Co in the iron alloy is 5 atomic% or more and less than 10 atomic%. As the form of the material, for example, a casting material used in the manufacture of a metal magnet such as a conventional FeCrCo magnet can be used. However, in order to efficiently nitride a target in the nitriding process described later in the view of increasing the degree of freedom of the shape or in the presence of open pores, the material is a powder form, typically a powder made of an iron alloy having a desired composition It is preferable to use a powder molded body obtained by molding.

素材を粉末成形体とする場合、利用する粉末は、例えば、所望の鉄合金からなる溶解鋳造インゴットや急冷凝固法で得られる箔状体をジョークラッシャー、ジェットミルやボールミルなどの粉砕装置により粉砕したり、ガスアトマイズ法といったアトマイズ法を利用することで製造できる。特に、アトマイズ法を利用すると、平均粒径10μm〜500μmといった粉末を生産性良く製造できて好ましい。アトマイズ法により製造した粉末を所望の大きさとなるように更に粉砕してもよい。粉砕条件や製造条件を適宜変更することで、粉末の粒度分布や粒子の形状を調整することができる。平均粒径が10μm〜500μm、特に50μm〜200μmの粉末は、流動性に優れて金型に充填し易い上に成形し易く、大量生産に利用し易い。   When the raw material is a powder compact, the powder to be used is, for example, a melt cast ingot made of a desired iron alloy or a foil obtained by a rapid solidification method is pulverized by a pulverizer such as a jaw crusher, a jet mill or a ball mill. Or by using an atomizing method such as a gas atomizing method. In particular, use of the atomizing method is preferable because a powder having an average particle size of 10 μm to 500 μm can be produced with high productivity. You may further grind | pulverize the powder manufactured by the atomizing method so that it may become a desired magnitude | size. By appropriately changing the pulverization conditions and the production conditions, the particle size distribution of the powder and the shape of the particles can be adjusted. A powder having an average particle size of 10 μm to 500 μm, particularly 50 μm to 200 μm, is excellent in fluidity and easy to be filled in a mold, and is easy to mold and can be used for mass production.

上記粉末は、各粒子の外周に絶縁材料からなる絶縁被覆を具える形態とすると、電気抵抗が高い磁石が得られ、例えば、この磁石をモータに利用した場合、渦電流損を低減できる。絶縁被覆は、例えば、Si,Al,Tiなどの酸化物の結晶性被膜や非晶質のガラス被膜、Me-Fe-O(Me=Ba,Sr,Ni,Mnなどの金属元素)といったフェライトやマグネタイト(Fe3O4)といった金属酸化物、シリコーン樹脂といった樹脂、シルセスキオキサン化合物などといった有機無機ハイブリッド化合物からなる被膜が挙げられる。熱伝導性を向上する目的で、Si-N、Si-C系のセラミックス被覆を施してもよい。上記結晶性被膜やガラス被膜、酸化物被膜、セラミックス被膜などは、酸化防止機能を有する場合があり、この場合、成形時などで粒子の酸化を防止できる。上記絶縁被覆とセラミックス被覆との双方を具える形態では、上記粒子の表面に接するように絶縁被覆を具え、その上にセラミックス被覆を具えることが好ましい。絶縁被覆などの被覆を具えた粉末とする場合、圧縮成形時の被覆の破損を抑制するために、当該粉末を構成する各粒子は球形に近いものが望ましい。 If the powder is provided with an insulating coating made of an insulating material on the outer periphery of each particle, a magnet having high electrical resistance can be obtained. For example, when this magnet is used in a motor, eddy current loss can be reduced. Insulating coatings include, for example, crystalline films of oxides such as Si, Al, Ti, amorphous glass films, ferrites such as Me-Fe-O (Me = Ba, Sr, Ni, Mn, etc.) Examples thereof include a film made of a metal oxide such as magnetite (Fe 3 O 4 ), a resin such as a silicone resin, and an organic-inorganic hybrid compound such as a silsesquioxane compound. For the purpose of improving thermal conductivity, Si-N or Si-C ceramic coating may be applied. The crystalline film, glass film, oxide film, ceramic film and the like may have an antioxidant function, and in this case, oxidation of particles can be prevented during molding. In the form of providing both the insulating coating and the ceramic coating, it is preferable to provide the insulating coating so as to be in contact with the surface of the particles and to provide the ceramic coating thereon. When a powder having a coating such as an insulating coating is used, each particle constituting the powder is preferably nearly spherical in order to suppress damage to the coating during compression molding.

上記粉末に、粉末成形体の成形後の工程で加熱したり気化させたりすることで除去可能なワックスや樹脂などの成分を混合させた混合粉末を粉末成形体の原料に利用することができる。混合粉末を用いるとワックス等により金型と粉末との間の摩擦を低減したり、樹脂により上記絶縁被覆の破損を防ぐことができると共に、高密度の粉末成形体を成形した場合でも、成形後上記ワックスなどを除去してから相分離処理を施すことで、開気孔が十分に存在する相分離処理材を得ることができる。   A mixed powder obtained by mixing a component such as a wax or a resin that can be removed by heating or vaporizing in the step after molding of the powder molded body can be used as a raw material of the powder molded body. When mixed powder is used, the friction between the mold and the powder can be reduced by wax or the like, and the insulation coating can be prevented from being damaged by the resin. By performing the phase separation treatment after removing the wax and the like, a phase separation treatment material having sufficient open pores can be obtained.

上記粉末(上記混合粉末でもよい)を所望の形状の金型に充填して、上記粉末及び金型を実質的に加熱しない場合(連続成形によって金型が自己発熱したときの到達温度(一般に80℃程度)以下の場合)には、適宜な圧力(例えば、0.5GPa〜2.0GPa)で加圧成形することで、所望の形状の粉末成形体が得られる。圧力を高めるほど、相対密度が高い粉末成形体が得られる傾向にある。しかし、相対密度が高過ぎると、窒化工程で窒素の侵入路を十分に確保することが難しくなってα”Fe16N2相の生成を十分に行えない恐れがある。従って、粉末成形体を利用する場合は、上述のように分離工程で得られる相分離処理材の相対密度が94%以下となるように粉末成形体の相対密度を調整することが好ましい。上記相分離処理材の相対密度は低過ぎると磁性相の比率の低下を招くことから、90%以上が好ましい。その他、成形時、成形用金型を適宜加熱することで粉末の変形を促進できるため、圧力を上記範囲に高めることなく成形できる。粉末成形体の形成は、大気雰囲気で行うことができる。但し、非酸化性雰囲気(例えば、Arなどの粉末成形体の構成元素と反応しない不活性雰囲気)、或いは低酸素雰囲気(酸素:100体積ppm以下)で成形すると、粉末成形体の酸化を防止できる。ここで、原料粉末に含まれるFeなどの構成元素が酸化するとスピノーダル分解が阻害される傾向にある。従って、粉末成形体の酸化を防止することで、酸化による磁気特性の低下を抑制できて好ましい。 When the above-mentioned powder (which may be the above mixed powder) is filled into a mold having a desired shape and the powder and the mold are not substantially heated (the temperature reached when the mold self-heats by continuous molding (generally 80 In the case of the following), a powder molded body having a desired shape is obtained by pressure molding at an appropriate pressure (for example, 0.5 GPa to 2.0 GPa). As the pressure is increased, a powder compact having a higher relative density tends to be obtained. However, if the relative density is too high, it may be difficult to secure a sufficient nitrogen ingress path in the nitriding process, and the α ”Fe 16 N 2 phase may not be sufficiently generated. When used, it is preferable to adjust the relative density of the powder compact so that the relative density of the phase separation treatment material obtained in the separation step is 94% or less as described above. If it is too low, the ratio of the magnetic phase will be reduced, so 90% or more is preferable.In addition, since the deformation of the powder can be promoted by appropriately heating the molding die during molding, the pressure is increased to the above range. The powder compact can be formed in an air atmosphere, provided that it is a non-oxidizing atmosphere (for example, an inert atmosphere that does not react with constituent elements of the powder compact such as Ar), or a low oxygen atmosphere. (Oxygen: 100 vol ppm or less) In this case, oxidation of the powder compact can be prevented, and if the constituent elements such as Fe contained in the raw material powder are oxidized, the spinodal decomposition tends to be inhibited. It is preferable because it can suppress a decrease in magnetic properties due to oxidation.

素材に鋳造材(インゴット)を用いる場合、上記混合粉末を用いる場合よりも開気孔を形成し難いものの、例えば、素材の製造にあたり、原料溶湯よりも高融点な材質からなる部材(発泡金属など)を原料溶湯に混合し、適宜な化学的方法により当該部材を除去することで、開気孔を有する相分離処理材が得られると考えられる。或いは、開気孔を形成することに代えて、窒素透過性材料からなる部材を原料溶湯に混合した素材を利用することが考えられる。   When using a cast material (ingot) as a raw material, it is more difficult to form open pores than when using the above mixed powder, but, for example, a member made of a material having a higher melting point than the raw material melt (foam metal, etc.) It is considered that a phase separation treatment material having open pores can be obtained by mixing the material with molten raw material and removing the member by an appropriate chemical method. Alternatively, instead of forming open pores, it is conceivable to use a material in which a member made of a nitrogen permeable material is mixed with a raw material melt.

(分離工程)
分離工程は、基本的には従来の金属系磁石の製造方法における相分離のための熱処理と同様に行うことができる。代表的には、素材の組成に応じた温度に加熱して組成の均質化を図る溶体化工程(溶体化処理を行う工程)と、上記溶体化温度からの冷却過程で、素材の組成に応じた相分離温度域に保持する(或いは冷却する)相分離工程(相分離処理を行う工程)とを具える形態が挙げられる。上記相分離温度域における熱処理工程で適宜、磁場を印加してもよい。相分離工程の後、更に時効工程を行ってもよい。
(Separation process)
The separation step can be basically performed in the same manner as the heat treatment for phase separation in the conventional method for producing a metal magnet. Typically, depending on the composition of the material, in the solution treatment step (step of solution treatment) for heating to a temperature according to the composition of the material to homogenize the composition and the cooling process from the solution treatment temperature. And a phase separation step (step of performing a phase separation treatment) that is maintained (or cooled) in a phase separation temperature range. A magnetic field may be appropriately applied in the heat treatment step in the phase separation temperature range. An aging step may be further performed after the phase separation step.

上記溶体化は、素材を構成する各元素の濃度勾配(偏析)を無くすことを目的とし、スピノーダル分解が生じる温度以上で行う。加熱温度が高いほど、偏析を低減できるため、1000℃以上が好ましい。上記鉄合金の組成に応じて、溶体化の加熱温度、及び加熱時間を選択するとよい。上記鉄合金がFeCrCo系合金である場合、加熱温度:700℃〜1200℃、加熱時間:10分〜10時間が挙げられる。   The solution treatment is performed at a temperature higher than that at which spinodal decomposition occurs for the purpose of eliminating the concentration gradient (segregation) of each element constituting the material. As the heating temperature is higher, segregation can be reduced. Depending on the composition of the iron alloy, the solution heating temperature and the heating time may be selected. When the said iron alloy is a FeCrCo type-alloy, heating temperature: 700 degreeC-1200 degreeC, heating time: 10 minutes-10 hours are mentioned.

上記鉄合金がFeCrCo系合金である場合、上記溶体化工程後、溶体化工程の加熱温度から特定の温度、具体的には相分離温度域の上限近傍の温度である550℃までの降温速度を制御し、急冷することが好ましい。溶体化工程の加熱温度から550℃までの温度域を徐冷した場合、濃度勾配が生じて、600℃付近の比較的高温域で2相分離が開始する恐れがある。また、600℃付近で生成された各分解相が粗大化した結果、磁気特性の低下を招く恐れがある。上記温度域の降温速度を5.0℃/sec以上とすることで、上記濃度勾配の発生を抑制でき、降温速度が大きいほど上記効果が得られる。従って、上記急冷時の降温速度は、5℃/sec以上、特に7.5℃/sec以上が好ましい。降温速度を5.0℃/sec以上とするには、ファンなどを用いたり(空冷)、冷却ガスを導入したり、炉の加熱ゾーンから素材を移動させて水冷銅板や水冷ジャケットなどの冷却部に素材を配置させたりすることが挙げられる。ファンの出力、冷却ガスの流量、水冷ジャケットなどの冷却部の温度や距離などを調整することで降温速度を調整できる。   When the iron alloy is an FeCrCo-based alloy, after the solution treatment step, the temperature lowering rate from the heating temperature of the solution treatment step to a specific temperature, specifically, the temperature near the upper limit of the phase separation temperature range is increased to 550 ° C. It is preferable to control and quench. When the temperature range from the heating temperature in the solution treatment step to 550 ° C. is gradually cooled, a concentration gradient occurs, and two-phase separation may start in a relatively high temperature range around 600 ° C. Further, as a result of coarsening of the respective decomposed phases generated at around 600 ° C., there is a risk of deteriorating magnetic properties. By setting the temperature decrease rate in the above temperature range to 5.0 ° C./sec or more, the generation of the concentration gradient can be suppressed, and the above effect can be obtained as the temperature decrease rate increases. Accordingly, the rate of temperature drop during the rapid cooling is preferably 5 ° C./sec or more, particularly 7.5 ° C./sec or more. To lower the temperature drop rate to 5.0 ° C / sec or more, use a fan (air cooling), introduce cooling gas, or move the material from the furnace heating zone to the cooling part such as water-cooled copper plate or water-cooled jacket For example. The temperature drop rate can be adjusted by adjusting the fan output, the flow rate of the cooling gas, the temperature and distance of the cooling section such as the water cooling jacket.

また、素材の組成に応じた相分離温度域(例えば、550℃〜450℃の温度範囲に含まれる温度域)においても、降温速度を制御することが好ましい。相分離温度域は、代表的には平衡状態図や示差熱分析曲線(DTA曲線)から決定される相分離温度の中心温度±50℃の温度域が挙げられる。FeCrCo系合金では、相分離温度の中心温度が500℃程度である。   In addition, it is preferable to control the temperature lowering rate even in a phase separation temperature range (for example, a temperature range included in a temperature range of 550 ° C. to 450 ° C.) according to the composition of the material. The phase separation temperature range typically includes a temperature range of the center temperature ± 50 ° C. of the phase separation temperature determined from an equilibrium diagram or a differential thermal analysis curve (DTA curve). In the FeCrCo alloy, the center temperature of the phase separation temperature is about 500 ° C.

降温速度を0.05℃/sec以上とすると、相分離を良好に行える上に、分離されて形成されたFe相の成長を抑制して、上述のようにナノオーダーといった微細な形状にすることができ、磁気特性に優れる磁性相を形成できる。降温速度を大きくするほど、上記成長を抑え易く、0.1℃/sec以上、特に0.2℃/sec以上が好ましいが、大き過ぎると相分離が十分に行えなくなることから、降温速度は5℃/sec以下が好ましく、1℃/sec以下、特に0.5℃/sec以下がより好ましい。本発明製造方法では、このように相分離温度域の降温速度(徐冷条件)を上記特定の範囲に積極的に制御することを提案する。降温速度を例えば、1℃/sec以下とするには、ヒータの出力を調整するなどして上記炉内の温度を調整することが挙げられる。降温速度を例えば1℃/sec超とするには、上述のようにファンや冷却ガス、水冷銅板や水冷ジャケットなどを用い、ファンの出力、冷却ガスの流量、水冷ジャケットなどの温度や距離などを調整することが挙げられる。この相分離により、Fe相が主としてFeで構成され(好ましくは実質的にFeのみ)、無機相が主としてCrCo成分などにより構成された相分離処理材を形成できる。上記Fe相は、磁性相の前駆体となる。   When the temperature drop rate is 0.05 ° C / sec or more, phase separation can be performed satisfactorily and growth of the separated Fe phase can be suppressed to achieve a nano-order fine shape as described above. A magnetic phase having excellent magnetic properties can be formed. The higher the rate of temperature drop, the easier it is to suppress the above growth, 0.1 ° C / sec or higher, especially 0.2 ° C / sec or higher is preferable, but if it is too large, phase separation cannot be performed sufficiently, so the temperature drop rate is 5 ° C / sec or lower. Is preferably 1 ° C./sec or less, more preferably 0.5 ° C./sec or less. In the production method of the present invention, it is proposed to positively control the temperature lowering rate (slow cooling condition) in the phase separation temperature region in the specific range as described above. In order to set the temperature drop rate to 1 ° C./sec or less, for example, the temperature in the furnace may be adjusted by adjusting the output of the heater. For example, in order to set the cooling rate to over 1 ° C / sec, the fan, cooling gas, water-cooled copper plate, water-cooling jacket, etc. are used as described above. To adjust. By this phase separation, it is possible to form a phase separation material in which the Fe phase is mainly composed of Fe (preferably substantially only Fe) and the inorganic phase is mainly composed of a CrCo component or the like. The Fe phase becomes a precursor of the magnetic phase.

特に、上記相分離温度域での降温中、上述のように磁場を印加すると、Fe相を、上述した幅がナノオーダー、長さがマイクロオーダーといったアスペクト比が非常に大きなナノサイズの棒状とすることができ、磁場を印加しないと粒状とすることができる。後述する窒化工程では、分離工程で形成されたFe相の形状が実質的に維持されて磁性相の形状になる。従って、分離工程では、所望の形状の磁性相が得られるように分離工程の条件を選択して、所望の形状のFe相を形成するとよい。Fe相の幅や長さは、印加する磁場の大きさにより調整することができる。また、素材の組成に応じて印加する磁場の大きさを選択することができる。このナノサイズの棒状のFe相を後述するように窒化することで、磁気特性に優れるナノサイズの棒状の磁性相を具える磁性体を製造することができる。   In particular, when the magnetic field is applied as described above during the temperature drop in the phase separation temperature range, the Fe phase is made into a nano-sized rod having a very large aspect ratio such as the above-described width of nano-order and length of micro-order. It can be made granular if no magnetic field is applied. In the nitriding step described later, the shape of the Fe phase formed in the separation step is substantially maintained and becomes the shape of the magnetic phase. Therefore, in the separation process, it is preferable to select the conditions of the separation process so that a magnetic phase having a desired shape is obtained and to form an Fe phase having a desired shape. The width and length of the Fe phase can be adjusted by the magnitude of the applied magnetic field. Further, the magnitude of the magnetic field to be applied can be selected according to the composition of the material. By nitriding the nano-sized rod-shaped Fe phase as described later, a magnetic body having a nano-sized rod-shaped magnetic phase having excellent magnetic properties can be produced.

上記分離工程は、不活性雰囲気(例えば、Arなどの不活性ガス雰囲気)、減圧雰囲気(標準の大気圧よりも圧力が低い真空雰囲気)で実施することができる。最終真空度は、例えば、10Pa以下が挙げられる。なお、1000℃超といった高温域での溶体化処理と、相分離処理とを独立して行う場合には、相分離処理のみを大気中で行うことができる。   The separation step can be performed in an inert atmosphere (for example, an inert gas atmosphere such as Ar) or a reduced pressure atmosphere (a vacuum atmosphere whose pressure is lower than the standard atmospheric pressure). The final degree of vacuum is, for example, 10 Pa or less. In addition, when performing the solution treatment in a high-temperature range over 1000 degreeC and a phase-separation process independently, only a phase-separation process can be performed in air | atmosphere.

上記分離工程では、所定の加熱時間(相分離反応が進行し、未反応相が十分に低減される時間)を終了した後、できるだけ速やかに200℃以下に冷却することが好ましい。こうすることで、分離工程を経た素材(相分離処理材)内に冷却斑が生じ難く、冷却斑によって局部的にナノサイズの磁性相が粗大化して磁気特性が低下するという不具合を防止できる。従って、上述のように相分離温度域の降温速度を制御することに加えて、相分離温度域を通過後には、冷却速度を速めることを提案する。例えば、加熱した素材を油や水などの液状冷却媒体に浸漬する、といった強制冷却手段を利用したクエンチを行うことが挙げられる。   In the separation step, it is preferable to cool to 200 ° C. or less as soon as possible after completing a predetermined heating time (a time during which the phase separation reaction proceeds and the unreacted phase is sufficiently reduced). By doing so, it is difficult to produce cooling spots in the material (phase separation treatment material) that has undergone the separation step, and it is possible to prevent a problem that the nano-sized magnetic phase is locally coarsened by the cooling spots and the magnetic properties are deteriorated. Therefore, in addition to controlling the rate of temperature drop in the phase separation temperature region as described above, it is proposed to increase the cooling rate after passing through the phase separation temperature region. For example, quenching using forced cooling means such as immersing a heated material in a liquid cooling medium such as oil or water can be mentioned.

上記分離工程を経て得られた分解相のサイズを実質的に変化させないように更に時効処理を行うと、Fe相と無機相(代表的にはCrCo)との分離を完全に進行できて好ましい。後述する窒化工程が上記時効処理の作用を兼ねていてもよい。また、上述のように無機相にFeを残存させたい場合、時効条件を調整することによりFeの残存量を調整することもできる。   It is preferable to further perform an aging treatment so as not to substantially change the size of the decomposed phase obtained through the separation step, since the separation of the Fe phase and the inorganic phase (typically CrCo) can proceed completely. A nitriding step to be described later may also serve as the aging treatment. Moreover, when it is desired to leave Fe in the inorganic phase as described above, the remaining amount of Fe can be adjusted by adjusting the aging conditions.

(窒化工程)
窒化工程において窒素元素を含む雰囲気は、窒素(N2)のみの単一雰囲気、或いはアンモニア(NH3)雰囲気、或いは窒素(N2)やアンモニアといった窒素を含むガスと、Arといった不活性ガスや水素(H2)といった窒素を含まないガスとの混合ガスの雰囲気が挙げられる。水素を含む雰囲気とすると、窒化工程で上記相分離処理材の酸化防止に効果がある。窒化工程における加熱温度を200℃〜400℃とすることで、上記相分離処理材と窒素元素とが反応し易く、上記相分離処理材中のFe相がα”Fe16N2を生成し易い上に、ナノサイズの磁性相が粗大化することを防止できる。保持時間は0.5時間〜100時間が挙げられる。
(Nitriding process)
The atmosphere containing nitrogen element in the nitriding step is a single atmosphere of only nitrogen (N 2 ), an ammonia (NH 3 ) atmosphere, a gas containing nitrogen such as nitrogen (N 2 ) or ammonia, an inert gas such as Ar, An atmosphere of a mixed gas with a gas not containing nitrogen such as hydrogen (H 2 ) can be given. The atmosphere containing hydrogen is effective in preventing oxidation of the phase separation material in the nitriding step. By setting the heating temperature in the nitriding step to 200 ° C. to 400 ° C., the phase separation treatment material and the nitrogen element easily react, and the Fe phase in the phase separation treatment material easily generates α ″ Fe 16 N 2. In addition, the nano-sized magnetic phase can be prevented from coarsening, and the retention time can be 0.5 to 100 hours.

特に、本発明製造方法では、上記窒化処理を大気圧超の加圧状態で行うことを最大の特徴とする。上述のように加圧することで、相分離処理材中のナノサイズのFe相の結晶格子が歪み、一定方向の格子間隔が広がる。この広がった格子間にN原子が規則的な方向性を持って優先的に侵入する。この結果、400℃以下の低温域であっても、所望の磁性相:α”Fe16N2という結晶構造を安定的に形成できる。このように分離工程で形成したFe相を十分に窒化でき、α”Fe16N2相を効率よく生成できると共に、Feの過剰窒化(N原子によるFe原子の置換)を抑制して磁気特性に劣るFe4NやFe3Nなどの化合物の形成を抑制できる。圧力は、上述のように70MPa〜300MPaが好ましく、70MPa〜150MPaが利用し易い。加圧の方法は、粉末成形時と同様の一軸プレス加圧、適宜な圧力媒体を利用した等方加圧のいずれも利用できる。また、加圧は、Fe相の一方向の格子間を拡大するように行うことが好ましい。具体的には素材の圧縮方向に直交する1軸方向に素材が膨張可能となるように、即ち、この1軸方向が膨張方向(非拘束方向)となるように行うことが好ましい。圧力を150MPa以下とすると、原子が移動する塑性変形が実質的に生じず、格子が膨張する弾性変形が生じるだけであるため、格子間を良好に拡大できる上に、素材の崩壊を防止できる。なお、素材に引張り応力を印加する処理を施しても、格子間を拡大できると期待される。 In particular, the production method of the present invention is characterized in that the nitriding treatment is performed in a pressurized state exceeding atmospheric pressure. By applying pressure as described above, the crystal lattice of the nano-sized Fe phase in the phase separation material is distorted, and the lattice spacing in a certain direction is widened. N atoms invade preferentially between these extended lattices with a regular orientation. As a result, a desired magnetic phase: α ″ Fe 16 N 2 can be stably formed even in a low temperature range of 400 ° C. or lower. The Fe phase formed in this way can be sufficiently nitrided. , Α ”Fe 16 N 2 phase can be generated efficiently, and formation of compounds such as Fe 4 N and Fe 3 N with poor magnetic properties is suppressed by suppressing excessive nitriding of Fe (substitution of Fe atoms by N atoms) it can. As described above, the pressure is preferably 70 MPa to 300 MPa, and 70 MPa to 150 MPa is easy to use. As the method of pressurization, any of uniaxial press pressurization as in powder molding and isotropic pressurization using an appropriate pressure medium can be used. Further, the pressurization is preferably performed so as to expand the lattice in one direction of the Fe phase. Specifically, it is preferable that the material is expanded in a uniaxial direction orthogonal to the compression direction of the material, that is, the uniaxial direction is an expansion direction (unconstrained direction). When the pressure is 150 MPa or less, plastic deformation in which atoms move does not substantially occur, and only elastic deformation in which the lattice expands occurs. Therefore, the space between the lattices can be expanded well and the collapse of the material can be prevented. Note that it is expected that the space between the lattices can be expanded even if a treatment for applying a tensile stress to the material is performed.

なお、窒化処理を大気圧で行った場合にも鉄窒化物を生成できる。しかし、反応温度を高くする必要があるため、N原子が過剰にFe格子中に取り込まれる確率が大きくなってFe4Nといった磁気特性に劣る化合物が形成され易くなり、磁気特性に劣る磁性体が得られ易い。 Note that iron nitride can also be generated when the nitriding treatment is performed at atmospheric pressure. However, since it is necessary to increase the reaction temperature, the probability of excessive incorporation of N atoms into the Fe lattice increases, and a compound having poor magnetic properties such as Fe 4 N is likely to be formed. It is easy to obtain.

(加圧工程)
上記窒化工程を経た磁性体を上述のように緻密化するために加圧すると、磁気特性により優れる磁性体(高密度磁性体)とすることができる。圧力は、300MPa〜1GPaが利用し易い。この加圧は、上述の窒化工程と異なり、弾性変形しないように、金型を拘束した状態でプレス成形したり、静水圧型の加圧方式を利用したりすることが好ましい。
(Pressurization process)
When the magnetic body that has undergone the nitriding step is pressed to make it dense as described above, a magnetic body (high-density magnetic body) that has superior magnetic properties can be obtained. A pressure of 300 MPa to 1 GPa is easy to use. Unlike the above-described nitriding step, this pressurization is preferably performed by press molding in a state in which the mold is constrained so as not to be elastically deformed, or a hydrostatic pressure pressurization method is used.

(その他の製造方法)
α”Fe16N2相が膜状である磁性相を有する磁性体を製造するには、無機材料(無機相の欄で述べたように、非磁性でも磁性を有するものでもよい)からなる基板にα”Fe16N2を成膜したり、Fe成膜した後上述した窒化工程を行ったりすることが挙げられる。特に、α”Fe16N2の成膜→無機材料の成膜、Feの成膜→窒化→無機材料の成膜を繰り返し行うことで、磁気特性に優れる磁性体が得られる。α”Fe16N2やFeの成膜、無機材料の成膜には、公知の成膜方法が利用できる。上記Feの成膜→窒化の工程は、窒素混入雰囲気下でのプラズマによるスパッタ法のような成膜方法を利用して、一工程としてもよい。基板は、α”Fe16N2結晶の格子面との整合性が高い結晶構造を有する材質からなるものを用いることが好ましい。このような基板として、例えば、Si,Ti,Al,Mgなどの酸化物からなるものが挙げられる。成膜する無機材料の材質は、例えば、Si,Ti,Al,Mgなどの酸化物、希土類磁石(Sm-Co化合物、Nd-Fe-B化合物、Sm-Fe-N化合物など)、フェライト磁石(Ba-Fe-O化合物、Sr-Fe-O化合物など)、Pt-Fe合金磁石、Pt-Co合金磁石などが挙げられる。α”Fe16N2相の膜厚は、上述のように30nm以下が好ましく、無機相の膜厚は、上述のように5nm以上α”Fe16N2相の膜厚以下が好ましい。但し、磁性体の生産性を考慮すると、上述した粉末成形体などを素材に用いることが好ましい。
(Other manufacturing methods)
In order to produce a magnetic body having a magnetic phase in which the α ”Fe 16 N 2 phase is a film, a substrate made of an inorganic material (which may be non-magnetic or magnetic as described in the inorganic phase column) In addition, α ″ Fe 16 N 2 is formed, or the above-described nitriding step is performed after forming Fe. In particular, by repeatedly performing α ″ Fe 16 N 2 film formation → inorganic material film formation, Fe film formation → nitridation → inorganic material film formation, a magnetic material having excellent magnetic properties can be obtained.α ″ Fe 16 Known film formation methods can be used for N 2 and Fe film formation and inorganic material film formation. The Fe film formation → nitridation step may be a single step using a film formation method such as sputtering by plasma in an atmosphere containing nitrogen. It is preferable to use a substrate made of a material having a crystal structure with high consistency with the lattice plane of α ″ Fe 16 N 2 crystal. Examples of such a substrate include Si, Ti, Al, and Mg. Examples of the inorganic material to be formed include oxides such as Si, Ti, Al, and Mg, rare earth magnets (Sm-Co compounds, Nd-Fe-B compounds, Sm-Fe -N compounds, etc.), ferrite magnets (Ba-Fe-O compounds, Sr-Fe-O compounds, etc.), Pt-Fe alloy magnets, Pt-Co alloy magnets, etc. α ”Fe 16 N two- phase film The thickness is preferably 30 nm or less as described above, and the film thickness of the inorganic phase is preferably 5 nm or more and the film thickness of the α ″ Fe 16 N 2 phase as described above. However, considering the productivity of the magnetic material, It is preferable to use the above-mentioned powder molded body or the like as a material.

以下、試験例を挙げて、本発明のより具体的な実施形態を説明する。
[試験例]
FeCrCo合金からなる磁性体を作製し、磁気特性を調べた。ここでは、FeCrCo合金からなる粉末成形体を素材に利用して、準備工程→分離工程→窒化工程という手順で作製した。
Hereinafter, more specific embodiments of the present invention will be described with reference to test examples.
[Test example]
A magnetic material made of FeCrCo alloy was fabricated and the magnetic properties were investigated. Here, a powder molded body made of an FeCrCo alloy was used as a raw material, and it was produced by a procedure of preparation step → separation step → nitriding step.

Fe元素を75原子%以上含有する鉄合金:Fe-17.5原子%Cr-7.5原子%Co(Coの含有量:約8質量%)の溶湯を作製し(図1(I))、平均粒径が80μmの鉄合金粉末をガスアトマイズ法(Ar雰囲気)により作製する。上記平均粒径は、レーザ回折式粒度分布装置により、積算重量が50%となる粒径(50%粒径)とする。得られた合金粉末を構成する各粒子1は(図1(II))、上記組成からなる単相組織から構成される。   An iron alloy containing 75 atomic% or more of Fe element: A molten metal of Fe-17.5 atomic% Cr-7.5 atomic% Co (Co content: about 8 mass%) was prepared (Fig. 1 (I)), and the average particle size Is produced by gas atomization method (Ar atmosphere). The average particle size is set to a particle size (50% particle size) with an integrated weight of 50% by a laser diffraction particle size distribution device. Each particle 1 constituting the obtained alloy powder (FIG. 1 (II)) is composed of a single-phase structure having the above composition.

上記FeCrCo合金粉末を圧縮成形し(成形圧力:1GPa)、直径:φ10mm×高さ:10mmの円柱形状の粉末成形体2を作製した(図1(III))。得られた粉末成形体2の相対密度を求めたところ、92%である。相対密度は、市販の密度測定装置を利用して実際の密度を測定すると共に、Fe-17.5原子%Cr-7.5原子%Coからなる溶湯を用いた鋳造材の真密度を演算し、実際の密度/真密度を算出することで求められる。   The FeCrCo alloy powder was compression-molded (molding pressure: 1 GPa) to produce a cylindrical powder compact 2 having a diameter: φ10 mm × height: 10 mm (FIG. 1 (III)). The relative density of the obtained powder compact 2 was determined to be 92%. The relative density is measured using a commercially available density measuring device, and the true density of the cast material using the molten metal consisting of Fe-17.5 atomic% Cr-7.5 atomic% Co is calculated. / Calculated by calculating true density.

得られた粉末成形体2を酸素濃度:10体積ppm以下の高純度Arガス(Ar:99.9999%以上(体積割合))中で1150℃まで昇温し、1150℃×1時間の加熱を行い(溶体化処理)、上記加熱温度からの冷却工程において、550℃までを降温速度:5.0℃/secで急冷する。この降温速度は、溶体化処理に用いた加熱炉内に冷却ガスを導入することで調整した。この急冷後、540℃〜480℃の温度域(Fe-17.5原子%Cr-7.5原子%Coの相分離温度域)を降温速度:0.5℃/秒に制御しながら磁界印加中で降温する(16MA/m(20kOe))。この降温速度は、溶体化処理に用いた加熱炉内の温度を制御することで調整した。この分離工程により、Feを含むFe相11と、CrCo成分を含む無機相12という2相を有する相分離処理材3(低密度焼結体)を得る。   The obtained powder compact 2 was heated to 1150 ° C. in high-purity Ar gas (Ar: 99.9999% or more (volume ratio)) with an oxygen concentration of 10 volume ppm or less, and heated at 1150 ° C. for 1 hour ( In the cooling step from the above heating temperature, the solution is rapidly cooled to 550 ° C. at a rate of temperature decrease of 5.0 ° C./sec. This temperature drop rate was adjusted by introducing a cooling gas into the heating furnace used for the solution treatment. After this rapid cooling, the temperature is lowered while applying a magnetic field while controlling the temperature range of 540 ° C to 480 ° C (phase separation temperature range of Fe-17.5 atomic% Cr-7.5 atomic% Co) to the temperature decreasing rate: 0.5 ° C / second (16MA / m (20kOe)). This temperature drop rate was adjusted by controlling the temperature in the heating furnace used for the solution treatment. By this separation step, a phase separation treatment material 3 (low density sintered body) having two phases of Fe phase 11 containing Fe and inorganic phase 12 containing CrCo component is obtained.

得られた相分離処理材3の断面をとり、この断面を光学顕微鏡(100倍)で観察したところ、原料に用いた粉末を構成する各粒子の粒界10が認められ、粒子間の三重点部分(図示せず)に隙間20が観察された。また、相分離処理材3において、上記降温時の磁界の印加方向と垂直方向の断面をとり、イオンミリングにより薄片化した後、透過型電子顕微鏡:TEM(50000倍程度)により観察したところ、各粒内には、図1(IV)に概念的に示すように棒状のFe相11間に無機相12が介在されていることが確認できた。なお、図1の粒界10の形状は模式であり、実際の形状とは異なる。また、相分離処理材3の断面のX線回折結果とTEM観察時の電子線回折のスポット解析とから上記各相の組成を同定したところ、Fe相11はFeを含有しており、無機相12は、CrCoを含有している(無機相100体積%に対して85体積%)ことが確認された。更に、得られた相分離処理材3の相対密度が粉末成形体2と実質的に同様であることが確認された。   Taking a cross section of the obtained phase separation treatment material 3, and observing this cross section with an optical microscope (100 times), the grain boundary 10 of each particle constituting the powder used as a raw material is recognized, the triple point between the particles A gap 20 was observed in the portion (not shown). Further, in the phase separation treatment material 3, the cross section in the direction perpendicular to the direction of application of the magnetic field at the time of temperature reduction was taken, and after thinning by ion milling, observed with a transmission electron microscope: TEM (about 50000 times), each In the grains, it was confirmed that an inorganic phase 12 was interposed between rod-shaped Fe phases 11 as conceptually shown in FIG. 1 (IV). Note that the shape of the grain boundary 10 in FIG. 1 is a model and is different from the actual shape. Further, when the composition of each of the above phases was identified from the X-ray diffraction result of the cross section of the phase separation treatment material 3 and the spot analysis of the electron diffraction at the time of TEM observation, the Fe phase 11 contained Fe, and the inorganic phase 12 was confirmed to contain CrCo (85% by volume relative to 100% by volume of the inorganic phase). Furthermore, it was confirmed that the relative density of the obtained phase-separated material 3 was substantially the same as that of the powder compact 2.

得られた相分離処理材3を1軸加圧のホットプレス炉に挿入し、窒素雰囲気中、100MPaの加圧下で350℃×5時間の熱処理を施して、磁性体4を得た(図1(V))。   The obtained phase separation treatment material 3 was inserted into a uniaxially pressurized hot press furnace and subjected to heat treatment at 350 ° C. for 5 hours under a pressure of 100 MPa in a nitrogen atmosphere to obtain a magnetic body 4 (FIG. 1). (V)).

得られた磁性体4の断面をとり、この断面を光学顕微鏡(100倍)で観察したところ、原料に用いた粉末を構成する各粒子の粒界10が認められ、上記の相分離処理材3で確認された三重点部分の隙間20が維持された状態であることが確認された。また、磁性体4に対して、相分離処理材3の観察と同様に上記降温時の磁界の印加方向と垂直方向の断面をとり、TEMでの分析及びX線回折を行った結果、磁性相13は、α”Fe16N2相を主体とする相(磁性相100体積%に対して93体積%(≧80体積%以上))であり、無機相12は、CrCo成分を主体とする相を維持していること(無機相100体積%に対して85体積%)が確認された。なお、磁性相13の粉末材料中の含有量は70体積%、無機相12の含有量は30体積%である。 Taking a cross section of the obtained magnetic body 4, and observing this cross section with an optical microscope (100 times), the grain boundary 10 of each particle constituting the powder used as the raw material is recognized, the phase separation treatment material 3 It was confirmed that the gap 20 of the triple point portion confirmed in (2) was maintained. In addition, as with the observation of the phase-separation treatment material 3, the magnetic body 4 was subjected to a cross section in the direction perpendicular to the direction in which the magnetic field was applied when the temperature was lowered, and as a result of TEM analysis and X-ray diffraction, 13 is a phase mainly composed of α ″ Fe 16 N 2 phase (93% by volume (≧ 80% by volume or more) with respect to 100% by volume of magnetic phase), and inorganic phase 12 is a phase mainly composed of CrCo component. (85% by volume with respect to 100% by volume of the inorganic phase) was confirmed, the content of the magnetic phase 13 in the powder material was 70% by volume, and the content of the inorganic phase 12 was 30% by volume. %.

上記断面TEM観察像を利用して、磁性相13の幅及び長さ、磁性相13間の距離を測定したところ、磁性相13の幅は、観察像中の磁性相全体の平均で25nm(100nm以下)のナノオーダーであり、長さは、0.3μm〜3μmのマイクロオーダーであり、アスペクト比が非常に大きなナノサイズの棒状である。上記磁性相間の距離は、観察像中の磁性相全体の平均で11nm(5nm以上)であり、磁性相13間に磁気相互作用が生じないように無機相12が介在されていることが確認できた。   Using the cross-sectional TEM observation image, the width and length of the magnetic phase 13 and the distance between the magnetic phases 13 were measured, and the width of the magnetic phase 13 was 25 nm (100 nm on average in the entire magnetic phase in the observation image. The nano-order of the following), the length is in the micro-order of 0.3 μm to 3 μm, and the nano-sized rod has a very large aspect ratio. The distance between the magnetic phases is 11 nm (5 nm or more) on average in the entire magnetic phase in the observed image, and it can be confirmed that the inorganic phase 12 is interposed so that no magnetic interaction occurs between the magnetic phases 13. It was.

得られた磁性体4の磁気特性を、BHトレーサ(理研電子株式会社製DCBHトレーサ)を用いて調べたところ、固有保磁力iHc:1.02kOe(81.2kA/m)、残留磁化Br(T):1.25Tであった。   When the magnetic properties of the obtained magnetic body 4 were examined using a BH tracer (DCBH tracer manufactured by Riken Denshi Co., Ltd.), the intrinsic coercivity iHc: 1.02 kOe (81.2 kA / m), residual magnetization Br (T): It was 1.25T.

更に、得られた磁性体4に対して、静水圧プレスで400MPaの圧力で加圧して、緻密化を行った。加圧後に得られた磁性体(高密度磁性体)を上述と同様にして光学顕微鏡により組織観察を行ったところ、三重点部分の空隙が低減していることが確認された。また、得られた磁性体(高密度磁性体)の相対密度を上述と同様にして測定したところ、相対密度が99%に向上していた。   Further, the obtained magnetic body 4 was pressed at a pressure of 400 MPa with an isostatic press to perform densification. When the structure of the magnetic body (high-density magnetic body) obtained after pressurization was observed with an optical microscope in the same manner as described above, it was confirmed that the void at the triple point portion was reduced. Further, when the relative density of the obtained magnetic body (high density magnetic body) was measured in the same manner as described above, the relative density was improved to 99%.

得られた磁性体(高密度磁性体)の磁気特性を、BHトレーサ(理研電子株式会社製DCBHトレーサ)を用いて調べたところ、固有保磁力iHc:1.11kOe(88.3kA/m)、残留磁化Br(T):1.36Tと磁気特性が向上していた。   When the magnetic properties of the obtained magnetic material (high-density magnetic material) were examined using a BH tracer (DCBH tracer manufactured by Riken Denshi Co., Ltd.), the intrinsic coercivity iHc: 1.11 kOe (88.3 kA / m), residual magnetization Br (T): 1.36T and magnetic properties were improved.

上述のように、Coの含有量が10原子%未満である鉄合金に対して、スピノーダル分離処理を施した後、加圧状態で窒化処理を施すことで、α”Fe16N2相を主たる磁性相とする磁性体が得られることが分かる。また、この磁性体は、磁気特性に優れることが分かる。更に、この磁性体を緻密化することで、磁気特性をより向上できることが分かる。 As described above, an iron alloy having a Co content of less than 10 atomic% is subjected to spinodal separation treatment and then subjected to nitriding treatment in a pressurized state, thereby mainly producing an α ″ Fe 16 N 2 phase. It can be seen that a magnetic material having a magnetic phase can be obtained, that the magnetic material has excellent magnetic properties, and that the magnetic properties can be further improved by densifying the magnetic material.

なお、上述した実施形態は、本発明の要旨を逸脱することなく、適宜変更することが可能であり、上述した構成に限定されるものではない。例えば、磁性相におけるα”Fe16N2相の含有量、無機相の組成、磁性相間の距離、磁性相の大きさ・形状、素材を構成する鉄合金の組成、製造条件(加熱温度、加熱時間、降温速度など)などを適宜変更することができる。 The above-described embodiment can be appropriately changed without departing from the gist of the present invention, and is not limited to the above-described configuration. For example, the content of α ”Fe 16 N 2 phase in the magnetic phase, the composition of the inorganic phase, the distance between the magnetic phases, the size and shape of the magnetic phase, the composition of the iron alloy constituting the material, the production conditions (heating temperature, heating Time, temperature drop rate, etc.) can be appropriately changed.

本発明磁性体は、永久磁石、例えば、各種のモータ、特に、ハイブリッド車(HEV)やハードディスクドライブ(HDD)などに具備される高速モータに用いられる永久磁石に好適に利用することができる。その他、本発明磁性体は、磁性相の表皮深さが磁性相の幅に近くなる周波数領域(テラヘルツ領域)までの電磁波干渉・吸収材にも使用できると期待される。本発明磁性体の製造方法は、上記本発明磁性体の製造に好適に利用することができる。   The magnetic body of the present invention can be suitably used as a permanent magnet, for example, a permanent magnet used in various motors, in particular, a high-speed motor provided in a hybrid vehicle (HEV), a hard disk drive (HDD), or the like. In addition, the magnetic body of the present invention is expected to be usable for electromagnetic wave interference / absorbing materials up to a frequency region (terahertz region) where the skin depth of the magnetic phase is close to the width of the magnetic phase. The manufacturing method of the magnetic body of the present invention can be suitably used for manufacturing the magnetic body of the present invention.

1 粒子 2 粉末成形体 3 相分離処理材 4 磁性体
10 粒界 11 Fe相 12 無機相 13 磁性相 20 隙間
100 インゴット 120 無機相 130 磁性相 400 磁石
1 Particle 2 Powder compact 3 Phase separation material 4 Magnetic material
10 Grain boundary 11 Fe phase 12 Inorganic phase 13 Magnetic phase 20 Crevice
100 Ingot 120 Inorganic phase 130 Magnetic phase 400 Magnet

Claims (10)

鉄窒化物を主体とする磁性相と、前記磁性相間に磁気相互作用が生じないように介在される無機相とにより実質的に構成され、
Coの含有量が5原子%以上10原子%未満であり、
前記磁性相は、α”Fe16N2相を80体積%以上含有することを特徴とする磁性体。
Substantially composed of a magnetic phase mainly composed of iron nitride and an inorganic phase interposed so as not to cause magnetic interaction between the magnetic phases;
Co content is 5 atomic% or more and less than 10 atomic%,
The magnetic phase is characterized in that it contains at least 80% by volume of α ″ Fe 16 N 2 phase.
前記無機相は、CrCoを主体とするCrCo成分を80体積%以上含有することを特徴とする請求項1に記載の磁性体。   2. The magnetic body according to claim 1, wherein the inorganic phase contains 80% by volume or more of a CrCo component mainly composed of CrCo. 前記磁性相間の距離が5nm以上であることを特徴とする請求項1又は2に記載の磁性体。   3. The magnetic body according to claim 1, wherein a distance between the magnetic phases is 5 nm or more. 前記磁性相の幅が100nm以下であることを特徴とする請求項1〜3のいずれか1項に記載の磁性体。   4. The magnetic body according to claim 1, wherein the width of the magnetic phase is 100 nm or less. 鉄合金に熱処理を施して、Fe元素を含む磁性相と、前記磁性相間に磁気相互作用が生じないように介在される無機相とにより実質的に構成される磁性体を製造する磁性体の製造方法であって、
Fe元素を75原子%以上含有すると共に、Fe以外の金属元素を含有し、かつCoを5原子%以上10原子%未満含有する鉄合金からなる素材を準備する準備工程と、
前記素材に相分離熱処理を施して、Fe相と、前記金属元素を含む無機材料から構成され、前記Fe相間に介在される無機相とに分離する分離工程と、
前記分離工程により得られた相分離処理材に、大気圧超の加圧状態で、かつ窒素元素含有ガス雰囲気下で200℃以上400℃以下の温度で窒化熱処理を施して、前記Fe相中のFeを窒化してα”Fe16N2相を生成し、磁性相中のα”Fe16N2相の含有量が80体積%以上である磁性体を製造する窒化工程とを具えることを特徴とする磁性体の製造方法。
Manufacture of a magnetic body that heat-treats an iron alloy to manufacture a magnetic body substantially composed of a magnetic phase containing an Fe element and an inorganic phase interposed so that no magnetic interaction occurs between the magnetic phases. A method,
A preparatory step of preparing a material made of an iron alloy containing Fe element in an amount of 75 atomic% or more, a metal element other than Fe, and Co in an amount of 5 atomic% or more and less than 10 atomic%;
A phase separation heat treatment is performed on the material, and a separation step of separating an Fe phase and an inorganic phase composed of an inorganic material containing the metal element and interposed between the Fe phases;
The phase separation treated material obtained by the separation step is subjected to a nitriding heat treatment at a temperature of 200 ° C. or more and 400 ° C. or less in a pressurized state exceeding atmospheric pressure and in a nitrogen element-containing gas atmosphere. Nitriding Fe to produce an α ″ Fe 16 N 2 phase by nitriding Fe, and producing a magnetic body in which the content of α ″ Fe 16 N 2 phase in the magnetic phase is 80% by volume or more. A method for producing a magnetic material.
前記鉄合金は、FeCrCo系合金であり、
前記分離工程では、前記素材を1000℃以上に加熱した後、550℃までの冷却工程における降温速度を5.0℃/sec以上とし、550℃〜450℃の温度範囲において当該素材の相分離温度域における降温速度を0.05℃/sec以上5℃/sec以下とすることを特徴とする請求項5に記載の磁性体の製造方法。
The iron alloy is a FeCrCo alloy,
In the separation step, after the material is heated to 1000 ° C. or higher, the rate of temperature decrease in the cooling step to 550 ° C. is 5.0 ° C./sec or more, and in the temperature range of 550 ° C. to 450 ° C. in the phase separation temperature range of the material. 6. The method for producing a magnetic body according to claim 5, wherein the temperature lowering rate is 0.05 ° C./sec or more and 5 ° C./sec or less.
前記準備工程で準備する前記素材は、前記鉄合金からなる粉末を成形した粉末成形体であることを特徴とする請求項5又は6に記載の磁性体の製造方法。   7. The method for producing a magnetic body according to claim 5, wherein the material prepared in the preparation step is a powder compact obtained by molding a powder made of the iron alloy. 前記準備工程では、前記相分離処理材の相対密度が94%以下となるように前記素材を準備することを特徴とする請求項7に記載の磁性体の製造方法。   8. The method of manufacturing a magnetic body according to claim 7, wherein in the preparation step, the material is prepared so that a relative density of the phase separation material is 94% or less. 前記窒化工程における加圧は、70MPa以上300MPa以下とすることを特徴とする請求項5〜8のいずれか1項に記載の磁性体の製造方法。   9. The method of manufacturing a magnetic body according to claim 5, wherein the pressurization in the nitriding step is 70 MPa or more and 300 MPa or less. 前記窒化工程を経て製造された前記磁性体に300MPa以上の加圧を行って、相対密度が94%超の高密度磁性体にする加圧工程を具えることを特徴とする請求項8に記載の磁性体の製造方法。   9. The pressing process according to claim 8, further comprising pressing the magnetic body manufactured through the nitriding process to a pressure of 300 MPa or more to obtain a high-density magnetic body having a relative density of more than 94%. Of manufacturing a magnetic material.
JP2011051369A 2011-03-09 2011-03-09 Magnetic substance and method for manufacturing the same Withdrawn JP2012190893A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011051369A JP2012190893A (en) 2011-03-09 2011-03-09 Magnetic substance and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011051369A JP2012190893A (en) 2011-03-09 2011-03-09 Magnetic substance and method for manufacturing the same

Publications (1)

Publication Number Publication Date
JP2012190893A true JP2012190893A (en) 2012-10-04

Family

ID=47083766

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011051369A Withdrawn JP2012190893A (en) 2011-03-09 2011-03-09 Magnetic substance and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP2012190893A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160012944A (en) * 2014-07-25 2016-02-03 도요타 지도샤(주) Method of manufacturing rare earth magnet
JP2017126755A (en) * 2013-02-07 2017-07-20 リージェンツ オブ ザ ユニバーシティ オブ ミネソタ Iron nitride permanent magnet and technique for forming iron nitride permanent magnet

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017126755A (en) * 2013-02-07 2017-07-20 リージェンツ オブ ザ ユニバーシティ オブ ミネソタ Iron nitride permanent magnet and technique for forming iron nitride permanent magnet
US10692635B2 (en) 2013-02-07 2020-06-23 Regents Of The University Of Minnesota Iron nitride permanent magnet and technique for forming iron nitride permanent magnet
US11217371B2 (en) 2013-02-07 2022-01-04 Regents Of The University Of Minnesota Iron nitride permanent magnet and technique for forming iron nitride permanent magnet
KR20160012944A (en) * 2014-07-25 2016-02-03 도요타 지도샤(주) Method of manufacturing rare earth magnet
KR101664726B1 (en) 2014-07-25 2016-10-12 도요타 지도샤(주) Method of manufacturing rare earth magnet

Similar Documents

Publication Publication Date Title
CN102918611B (en) The manufacture method of rare-earth permanent magnet and rare-earth permanent magnet
JP5218869B2 (en) Rare earth-iron-nitrogen alloy material, method for producing rare earth-iron-nitrogen alloy material, rare earth-iron alloy material, and method for producing rare earth-iron alloy material
JP5572673B2 (en) R-T-B system rare earth sintered magnet alloy, R-T-B system rare earth sintered magnet alloy manufacturing method, R-T-B system rare earth sintered magnet alloy material, R-T-B system rare earth Sintered magnet, method for producing RTB-based rare earth sintered magnet, and motor
JP5196080B2 (en) Rare earth magnet manufacturing method
JP5754232B2 (en) Manufacturing method of high coercive force NdFeB magnet
CN105957680B (en) Rare earth cobalt permanent magnet
JP6409867B2 (en) Rare earth permanent magnet
JP2013102122A (en) Magnetic member and manufacturing method for magnetic member
JP2008231535A (en) R-t-b based alloy, method for producing r-t-b based alloy, fine powder for r-t-b based rare earth metal permanent magnet, and r-t-b based rare earth metal permanent magnet
Huang et al. Optimal design of sintered Ce 9 Nd 21 Fe bal B 1 magnets with a low-melting-point (Ce, Nd)-rich phase
CN109940139A (en) R-T-B system rare-earth sintered magnet alloy and R-T-B system rare-earth sintered magnet
JP2014130888A (en) R-t-b-based sintered magnet and method for producing the same
JP2012253247A (en) Composite magnetic material and method for manufacturing the same
JP6569408B2 (en) Rare earth permanent magnet
JP5613856B1 (en) R-T-B system rare earth sintered magnet alloy, R-T-B system rare earth sintered magnet alloy manufacturing method, R-T-B system rare earth sintered magnet alloy material, R-T-B system rare earth Sintered magnet, method for producing RTB-based rare earth sintered magnet, and motor
JP2012195392A (en) Method of manufacturing r-t-b permanent magnet
JP2013115156A (en) Method of manufacturing r-t-b-based permanent magnet
JP2014160729A (en) Manufacturing method of magnetic member and magnetic member
JP2012190893A (en) Magnetic substance and method for manufacturing the same
JP2012190892A (en) Magnetic substance and method for manufacturing the same
JP6863008B2 (en) Method for manufacturing RTB-based rare earth sintered magnet alloy and RTB-based rare earth sintered magnet
JP4483630B2 (en) Manufacturing method of rare earth sintered magnet
JP2016169438A (en) R-t-b-based rare earth sintered magnet and alloy for r-t-b-based rare earth sintered magnet
JP2020155633A (en) R-t-b based permanent magnet
JP2004137582A (en) Sintered rare earth magnet and its production method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140513