JP2012253247A - Composite magnetic material and method for manufacturing the same - Google Patents

Composite magnetic material and method for manufacturing the same Download PDF

Info

Publication number
JP2012253247A
JP2012253247A JP2011125799A JP2011125799A JP2012253247A JP 2012253247 A JP2012253247 A JP 2012253247A JP 2011125799 A JP2011125799 A JP 2011125799A JP 2011125799 A JP2011125799 A JP 2011125799A JP 2012253247 A JP2012253247 A JP 2012253247A
Authority
JP
Japan
Prior art keywords
powder
alloy
iron
temperature
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011125799A
Other languages
Japanese (ja)
Inventor
Toru Maeda
前田  徹
Asako Watanabe
麻子 渡▲辺▼
Motoki Nagasawa
基 永沢
Asayuki Ishimine
朝之 伊志嶺
Takeshi Kato
武志 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2011125799A priority Critical patent/JP2012253247A/en
Publication of JP2012253247A publication Critical patent/JP2012253247A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a composite magnetic material which excels in magnetic properties and is suitable as a material for magnets, and to provide a method for manufacturing the same.SOLUTION: Granulated powders made by mixing nano iron powders, multiphase powders containing a hydrogen compound of a rare earth element and an iron-containing material, and a binder are pressure-molded. The pressure molding is carried out while performing exhaust at 0.9 atmospheres or less and a temperature of ±20°C of a decomposition temperature of the binder. Heat treatment (dehydrogenation) of the obtained first molded body is performed under a reduced-pressure atmosphere at a temperature equal to or higher than a recombination temperature to form a recombination alloy containing a rare earth element and Fe from the multiphase powders, and heat treatment (nitriding) of the obtained second molded body is performed under a nitrogen atmosphere at a temperature of 200°C to 450°C to form α''FeNfrom the nano iron powders and a rare earth-iron-nitrogen alloy from the recombination alloy. Both heat treatments are performed by applying a strong magnetic field. A magnetic field is applied in the nitriding treatment to form α''FeN, and orientation directions of easy axes of magnetization in the rare earth-iron-nitrogen alloy and α''FeNare uniformed.

Description

本発明は、永久磁石などの磁性部材の素材に適した複合磁性材、及びその製造方法に関する。特に、磁気特性に優れる複合磁性材に関するものである。   The present invention relates to a composite magnetic material suitable for a material of a magnetic member such as a permanent magnet, and a manufacturing method thereof. In particular, the present invention relates to a composite magnetic material having excellent magnetic properties.

モータや発電機などに利用される永久磁石として、希土類磁石が広く利用されている。希土類磁石は、Nd(ネオジム)-Fe(鉄)-B(ホウ素)といったR-Fe-B系合金(R:希土類元素)からなる焼結磁石やボンド磁石が代表的である。ボンド磁石では、Nd-Fe-B系合金からなる磁石よりも更に磁気特性に優れるものとして、Sm(サマリウム)-Fe-N(窒素)系合金からなる磁石が検討されている。   Rare earth magnets are widely used as permanent magnets used in motors and generators. Typical rare earth magnets include sintered magnets and bonded magnets made of an R—Fe—B alloy (R: rare earth element) such as Nd (neodymium) —Fe (iron) —B (boron). As a bonded magnet, a magnet made of an Sm (samarium) -Fe—N (nitrogen) alloy has been studied as one having superior magnetic properties as compared with a magnet made of an Nd—Fe—B alloy.

焼結磁石は、形状の自由度が低い。ボンド磁石は、代表的には、R-Fe-B系合金やSm-Fe-N系合金からなる合金粉末と結合樹脂とを混合した混合物を圧縮成形したり、射出成形することで製造されることから、形状の自由度が高く、所望の形状に対応することができる。   Sintered magnets have a low degree of freedom in shape. Bond magnets are typically manufactured by compression-molding or injection-molding a mixture of an alloy powder composed of an R-Fe-B alloy or Sm-Fe-N alloy and a binder resin. Therefore, the degree of freedom of shape is high, and it is possible to cope with a desired shape.

一方、磁気記録媒体などの素材に、粒径がナノオーダーの球状の窒化鉄や短軸がナノオーダーの柱状の窒化鉄からなるナノ粉末と、樹脂や有機物などの結合剤との混合物を樹脂などからなる支持フィルムに塗布したテープ状の窒化鉄材が利用されている(特許文献1参照)。この窒化鉄として、飽和磁化が非常に高く、磁気特性に非常に優れるα"型のFe16N2(原理計算や薄膜による実験において飽和磁化:2.8T程度、正方晶、a=5.72Å、c=6.29Å、結晶記号:I4/mmm)が利用されている。 On the other hand, for materials such as magnetic recording media, a mixture of nano-powder made of spherical iron nitride with a particle size of nano-order or columnar iron nitride with a short axis of nano-order and a binder such as resin or organic resin A tape-shaped iron nitride material applied to a support film made of the above is used (see Patent Document 1). As this iron nitride, α ”type Fe 16 N 2 with very high saturation magnetization and excellent magnetic properties (saturation magnetization: about 2.8 T in tetragonal calculations, thin film experiments, tetragonal, a = 5.72Å, c = 6.29mm, crystal symbol: I4 / mmm).

特開2007-335592号公報JP 2007-335592 A

しかし、従来の希土類磁石では、磁力が小さい。従って、磁気特性により優れる素材の開発が望まれる。   However, the conventional rare earth magnet has a small magnetic force. Therefore, it is desired to develop a material having better magnetic properties.

上述のボンド磁石に利用される合金粉末では、HDDR処理(Hydrogenation−Disproportionation−Desorption−Recombination、HD:水素化及び不均化、DR:脱水素及び再結合)を施して、保磁力を高めることが行われている。しかし、ボンド磁石は、結合樹脂といった介在物が存在することで磁性相の割合が低く、磁性相の割合が少ないことで磁気特性に劣る。   The alloy powders used in the above-mentioned bonded magnets can be treated with HDRR (Hydrogenation-Disproportionation-Desorption-Recombination, HD: hydrogenation and disproportionation, DR: dehydrogenation and recombination) to increase the coercive force. Has been done. However, the bonded magnet has a low magnetic phase ratio due to the presence of inclusions such as a binding resin, and has poor magnetic properties due to a low magnetic phase ratio.

一方、上述したα"Fe16N2を含む窒化鉄材を磁石の素材に利用すれば、磁気特性に優れる永久磁石が得られると期待される。しかし、従来の窒化鉄材は、上述のように結合剤や支持フィルムなどが存在することで、磁気特性に劣り、磁石といった磁性部材の素材に適用することが困難である。 On the other hand, if the iron nitride material containing α ″ Fe 16 N 2 described above is used as a magnet material, it is expected that a permanent magnet having excellent magnetic properties will be obtained. However, conventional iron nitride materials are bonded as described above. Due to the presence of the agent, the support film, etc., the magnetic properties are inferior, and it is difficult to apply to a material of a magnetic member such as a magnet.

また、上述したナノ粉末を原料粉末に利用する場合、ナノ粒子の結晶方位を特定の方向に配向させて成形すると、磁気特性をより向上することができる。しかし、ナノ粉末は、一般に凝集し易く、表面エネルギーが高い。そのため、ナノ粒子の結晶方位を特定の方向に配向させて成形することが難しい。凝集により粗大化すると、磁気特性が低下する。   Moreover, when using the nanopowder described above as a raw material powder, the magnetic properties can be further improved by forming the nanoparticle with the crystal orientation in a specific direction. However, nanopowder generally tends to aggregate and has high surface energy. For this reason, it is difficult to shape the crystal orientation of the nanoparticles in a specific direction. When coarsening is caused by aggregation, the magnetic properties are lowered.

そこで、本発明の目的の一つは、磁気特性に優れる複合磁性材を提供することにある。また、本発明の他の目的は、上記複合磁性材の製造方法を提供することにある。   Accordingly, one of the objects of the present invention is to provide a composite magnetic material having excellent magnetic properties. Another object of the present invention is to provide a method for producing the composite magnetic material.

上述のR-Fe-B系合金やSm-Fe-N系合金などの希土類元素とFeとを含有する合金と、α"Fe16N2との双方を含む複合磁性材を磁石の素材に利用すれば、磁気特性に優れる永久磁石が得られる、と期待される。また、磁気特性を高めるためには、(1)磁性相の割合を高めること、(2)配向組織として磁気異方性による効果を得ること、が考えられる。そこで、本発明者らは、このような複合磁性材を得るための原料、及びその製造方法を検討した。 Use of composite magnetic materials containing both rare earth elements and Fe, such as R-Fe-B alloys and Sm-Fe-N alloys mentioned above, and α "Fe 16 N 2 as magnet materials It is expected that permanent magnets with excellent magnetic properties will be obtained, and in order to improve the magnetic properties, (1) increase the proportion of the magnetic phase, and (2) the orientation structure will depend on magnetic anisotropy. In view of this, the present inventors have studied a raw material for obtaining such a composite magnetic material and a method for producing the same.

形状の自由度が高く、かつ焼結することなく磁性相の割合を高めるためには、ボンド磁石のような結合樹脂を利用せず、成形性に優れる粉末を利用することが望まれる。しかし、上述した希土類磁石の原料粉末に用いられるSm-Fe-N系合金やNd-Fe-B系合金などからなる合金粉末や、上記合金粉末にHDDR処理を施した処理粉末は、硬くて変形能が小さく、圧縮成形時の成形性に劣る。本発明者らは、成形性に優れる粉末を種々検討した結果、Sm-Fe-N系合金やNd-Fe-B系合金などのように、希土類元素とFeとが結合したものではなく、希土類元素とFeとが結合せず、言わば希土類元素成分とFe成分とが独立的に存在する多相組織の粉末とすると、変形能が高く成形性に優れるとの知見を得た。また、この特定の多相組織を有する粉末の成形体に、特定の条件の熱処理(再結合のための熱処理、及び適宜窒化処理)を施すことで、Sm-Fe-N系合金やNd-Fe-B系合金といった、希土類元素とFeとを含有し、磁気特性に優れる合金材が得られるとの知見を得た。更に、上記熱処理時に、特定の磁場を印加することで、結晶方位を配向させられて、配向組織が得られるとの知見を得た。特に、窒化処理によりSm-Fe-N系合金といった希土類-鉄-窒素系合金を生成する場合、特定の磁場を印加することで、結晶格子の任意の格子軸(a軸,b軸,c軸)のうち、一軸方向(例えば、c軸方向)に沿って並ぶFe原子-Fe原子間を磁歪により歪ませることができ、この歪ませた(引き伸ばした)Fe原子-Fe原子間に選択的にN原子を配置させることで、理想状態の原子比を有する希土類-鉄-窒素系合金が得られるとの知見を得た。そして、上記特定の多相組織を有する粉末は、希土類元素とFeとを含有する合金に特定の熱処理を施すことで製造することができるとの知見を得た。   In order to increase the degree of magnetic phase without sintering and having a high degree of freedom in shape, it is desirable to use a powder excellent in moldability without using a binder resin such as a bonded magnet. However, alloy powders such as Sm-Fe-N alloys and Nd-Fe-B alloys used for the above-mentioned rare earth magnet raw powders, and processed powders obtained by applying HDDR treatment to the above alloy powders are hard and deformed. Low performance and inferior moldability during compression molding. As a result of various investigations on powders having excellent formability, the present inventors have found that rare earth elements and Fe are not bonded, such as Sm-Fe-N alloys and Nd-Fe-B alloys, but rare earth elements. It was found that if a powder having a multiphase structure in which the element and Fe do not bond, that is, the rare earth element component and the Fe component exist independently, the deformability is high and the moldability is excellent. In addition, the powder compact having a specific multiphase structure is subjected to heat treatment under specific conditions (heat treatment for recombination and, optionally, nitriding treatment), so that Sm-Fe-N alloys and Nd-Fe It was found that an alloy material containing rare earth elements and Fe, such as an -B alloy, and having excellent magnetic properties can be obtained. Furthermore, the knowledge that a crystal orientation was orientated by applying a specific magnetic field at the time of the heat treatment to obtain an oriented structure was obtained. In particular, when a rare earth-iron-nitrogen alloy such as an Sm-Fe-N alloy is produced by nitriding, an arbitrary lattice axis (a-axis, b-axis, c-axis) is applied by applying a specific magnetic field. ) Can be distorted by magnetostriction between Fe atoms and Fe atoms aligned along a uniaxial direction (for example, c-axis direction), and selectively between the distorted (stretched) Fe atoms and Fe atoms. It was found that a rare earth-iron-nitrogen alloy having an ideal atomic ratio can be obtained by arranging N atoms. And the knowledge that the powder which has the said specific multiphase structure | tissue can be manufactured by giving specific heat processing to the alloy containing rare earth elements and Fe was acquired.

一方、α"Fe16N2を主成分とするナノ粉末は、原料に、ナノオーダーの純鉄粉(主としてα鉄からなる粉末)に窒化処理を施すことで得られる。従って、上記特定の多相組織を有する粉末と、このナノオーダーの純鉄粉とを混合した成形体に、窒化処理を含む熱処理を施すことで、上記多相組織の粉末からは、最終的に希土類元素とFeとを含有する合金(再結合合金や窒素を含有する合金)が得られ、純鉄粉からは、α"Fe16N2を生成することができる、と考えられる。特に、本発明者らは、α"Fe16N2の生成にあたり、特定の磁場を印加することで、鉄の基本格子(体心立方格子:bcc)の任意の格子軸(a軸,b軸,c軸)のうち、一軸方向(例えば、c軸方向)に沿って並ぶFe原子-Fe原子間を磁歪により歪ませることができ、この歪ませた(引き伸ばした)Fe原子-Fe原子間に選択的にN原子を配置させることで、α"Fe16N2を効率よく生成できるとの知見を得た。 On the other hand, nano-powder containing α ″ Fe 16 N 2 as a main component can be obtained by subjecting raw material to nitriding treatment on nano-order pure iron powder (powder mainly composed of α-iron). By applying a heat treatment including nitriding treatment to a molded body in which a powder having a phase structure and this nano-order pure iron powder are mixed, a rare-earth element and Fe are finally obtained from the powder having a multi-phase structure. It is considered that an alloy (a recombination alloy or an alloy containing nitrogen) is obtained, and α "Fe 16 N 2 can be generated from pure iron powder. In particular, the present inventors applied a specific magnetic field in the production of α ”Fe 16 N 2 , so that any lattice axis (a axis, b axis) of the basic lattice of iron (body-centered cubic lattice: bcc) , c axis) can be distorted by magnetostriction between Fe atoms and Fe atoms arranged along one axis direction (for example, c axis direction), and between these distorted (stretched) Fe atoms and Fe atoms. We obtained knowledge that α "Fe 16 N 2 can be efficiently generated by selectively arranging N atoms.

そして、窒化処理時に特定の磁場を印加することで、希土類元素とFeとを含む合金の結晶の配向方向と、α"Fe16N2の結晶の配向方向とを揃えられるとの知見を得た。 And by applying a specific magnetic field during nitriding treatment, we obtained knowledge that the orientation direction of the crystal of the alloy containing rare earth elements and Fe can be aligned with the orientation direction of the crystal of α "Fe 16 N 2 .

しかし、上記ナノオーダーの純鉄粉は、凝集し易く、上述の特定の多相組織を有する粉末との混合時に粗大化し易い。粗大化した純鉄粉を窒化した場合、磁気特性に優れる窒化鉄が得られない。   However, the nano-order pure iron powder is easy to aggregate and easily coarsen when mixed with the powder having the specific multiphase structure described above. When the coarsened pure iron powder is nitrided, iron nitride having excellent magnetic properties cannot be obtained.

本発明者らは、上記特定の多相組織を有する粉末と、上記ナノオーダーの純鉄粉とを混合するにあたり、特定のバインダを更に混合し、このバインダを含む混合物により作製した造粒粉を成形型に充填し、特定の温度に加熱しながら脱気してバインダを除去しつつ成形することで、凝集を防止できる上に成形性に優れる、との知見を得た。本発明は、これらの知見に基づくものである。   In mixing the powder having the specific multiphase structure and the nano-order pure iron powder, the present inventors further mixed a specific binder, and the granulated powder produced by the mixture containing the binder. It was found that by filling the mold and degassing while heating to a specific temperature and molding while removing the binder, aggregation can be prevented and the moldability is excellent. The present invention is based on these findings.

本発明の複合磁性材の製造方法は、複数の磁性体を含む複合磁性材を製造する方法に係るものであり、以下の準備工程と、造粒工程と、成形工程と、脱水素工程と、窒化工程とを具える。
準備工程:原料粉末として、以下のナノ鉄粉と、多相粉末とを準備する工程。
ナノ鉄粉は、Feを主成分とし、短軸の平均長さが100nm以下である柱状粒子からなる粉末である。多相粉末は、希土類元素の水素化合物の相とFeを含有する鉄含有物の相とを含有する多相粒子からなる粉末である。
造粒工程:分解温度が240℃以下であるバインダと上記原料粉末とを混合して、造粒粉を形成する工程。
成形工程:上記造粒粉を成形型に充填した後、上記成形型内を0.9気圧以下に排気しながら、以下の温度に加熱した状態で加圧成形して第一成形体を形成する工程。
成形工程における上記温度は、{(上記バインダの分解温度)−20}℃以上{(上記バインダの分解温度)+20}℃以下とする。
脱水素工程:上記第一成形体に、100Pa以下の減圧雰囲気中、上記多相粒子の再結合温度以上の温度で熱処理を施して、上記多相粒子から水素を分離し、上記希土類元素と上記鉄含有物とが結合した再結合合金を生成し、上記再結合合金を含む第二成形体を形成する工程。
窒化工程:上記第二成形体に、窒素元素を含み、酸素濃度が200質量ppm以下の雰囲気中、200℃以上450℃以下の温度で熱処理を施して、上記ナノ鉄粉からα"Fe16N2を生成し、α"Fe16N2を含む複合磁性材を形成する工程。
そして、上記脱水素工程の熱処理は、上記第一成形体に2T以上の磁場を印加して行い、上記窒化工程の熱処理は、上記第二成形体に、上記脱水素工程における磁場の印加方向と同じ方向に、3T以上の磁場を印加して行う。
The method for producing a composite magnetic material of the present invention relates to a method for producing a composite magnetic material containing a plurality of magnetic bodies, and includes the following preparation step, granulation step, molding step, dehydrogenation step, A nitriding step.
Preparation process: The process of preparing the following nano iron powder and multiphase powder as raw material powder.
Nano iron powder is a powder composed of columnar particles containing Fe as a main component and having an average minor axis length of 100 nm or less. The multiphase powder is a powder composed of multiphase particles containing a phase of a rare earth element hydrogen compound and a phase of an iron-containing material containing Fe.
Granulation step: A step of mixing a binder having a decomposition temperature of 240 ° C. or lower and the raw material powder to form a granulated powder.
Molding step: a step of forming a first molded body by filling the granulated powder into a molding die and then press-molding the molding die in a state heated to the following temperature while evacuating the molding die to 0.9 atm or less.
The temperature in the molding step is set to {(decomposition temperature of the binder) −20} ° C. or more and {(decomposition temperature of the binder) +20} ° C. or less.
Dehydrogenation step: In the reduced pressure atmosphere of 100 Pa or less, the first molded body is subjected to a heat treatment at a temperature equal to or higher than the recombination temperature of the multiphase particles to separate hydrogen from the multiphase particles, and the rare earth element and the above The process of producing | generating the recombination alloy couple | bonded with the iron containing material and forming the 2nd molded object containing the said recombination alloy.
Nitriding step: The second molded body is subjected to heat treatment at a temperature of 200 ° C. or higher and 450 ° C. or lower in an atmosphere containing nitrogen element and an oxygen concentration of 200 mass ppm or less, and α′Fe 16 N from the nano iron powder. 2 is a process for forming a composite magnetic material containing α "Fe 16 N 2 .
The heat treatment in the dehydrogenation step is performed by applying a magnetic field of 2 T or more to the first molded body, and the heat treatment in the nitriding step is performed on the second molded body in the direction in which the magnetic field is applied in the dehydrogenation process. Apply a magnetic field of 3T or more in the same direction.

なお、バインダにおける分解温度は、大気圧(1気圧≒0.1MPa)の状態で当該バインダの示差熱・熱重量曲線(TG/DTA)を求め、当該バインダの重量の減少が始まる温度(重量減少開始温度)をいい、ここでは、オフセット温度を利用する。オフセット温度:Toは、以下のように求める。まず、上述のようにして求めたTG曲線において、図2に示すようにバインダの重量の減少が始まる温度を通り、X軸に平行な直線L1をとる。原料粉末に用いる鉄窒化物粒子の重量に対するバインダの添加量の重量割合をX(wt%)、バインダの初期重量をM1とするとき、直線L1に平行であって、直線L1から初期重量:M1の(5×X)wt%小さい重量をとる直線L2をとる。更に、TG曲線とこの直線L2との交点における接線L3をとる。そして、直線L1と接線L3との交点をとり、この交点の温度をオフセット温度TOとする。 The decomposition temperature in the binder is the temperature at which the binder begins to lose weight (TG / DTA) after the differential thermal / thermogravimetric curve (TG / DTA) of the binder is obtained at atmospheric pressure (1 atm ≒ 0.1 MPa). Temperature), and here, offset temperature is used. Offset temperature: T o is determined as follows. First, in the TG curve obtained as described above, as the temperature at which the reduction of the weight of the binder starts, as shown in FIG. 2, it takes the straight line L 1 parallel to the X axis. The weight ratio of the amount of the binder to the weight of the iron nitride particles used in the raw material powder X (wt%), when the initial weight of the binder M1, which is parallel to the straight line L 1, the initial weight from the straight line L 1 : Take a straight line L 2 which takes (5 × X) wt% smaller weight of M1. Further, a tangent line L 3 at the intersection of the TG curve and the straight line L 2 is taken. Then, taking the intersection of the straight line L 1 and the tangent line L 3, the temperature of the intersection point and the offset temperature T O.

上記本発明複合磁性材の製造方法により、以下の特定の配向組織を有する本発明複合磁性材が得られる。具体的には、本発明の複合磁性材は、上記本発明製造方法により得られたものであり、希土類元素とFeとを含有する合金を主成分とする複数の合金粒子と、α"Fe16N2を主成分とする複数の鉄窒化物粒子とから構成された成形体からなる。この複合磁性材は、上記合金粒子について行ったX線回折の極点図分析における磁化容易軸の配向方向と、上記鉄窒化物粒子について行ったX線回折の極点図分析における磁化容易軸の配向方向とがなす立体角が10°以内である。 According to the method for producing a composite magnetic material of the present invention, the composite magnetic material of the present invention having the following specific orientation structure can be obtained. Specifically, the composite magnetic material of the present invention is obtained by the above-described production method of the present invention, and includes a plurality of alloy particles mainly composed of an alloy containing a rare earth element and Fe, α ″ Fe 16 The composite magnetic material is formed of a plurality of iron nitride particles mainly composed of N 2. The composite magnetic material includes an orientation direction of an easy axis in a pole figure analysis of X-ray diffraction performed on the alloy particles. The solid angle formed by the orientation direction of the easy magnetization axis in the pole figure analysis of the X-ray diffraction performed on the iron nitride particles is within 10 °.

或いは、本発明の複合磁性材として、希土類元素とFeとを含有する合金を主成分とする複数の合金粒子と、α"Fe16N2を主成分とする複数の鉄窒化物粒子とから構成された成形体からなり、上記鉄窒化物粒子が柱状で、その短軸の平均長さが100nm以下であり、上記合金粒子間に少なくとも一つの上記鉄窒化物粒子を介在したものが挙げられる。この複合磁性材は、上記合金粒子について行ったX線回折の極点図分析における磁化容易軸の配向方向と、上記鉄窒化物粒子について行ったX線回折の極点図分析における磁化容易軸の配向方向とがなす立体角が10°以内である。 Alternatively, the composite magnetic material of the present invention is composed of a plurality of alloy particles whose main component is an alloy containing rare earth elements and Fe and a plurality of iron nitride particles whose main component is α ”Fe 16 N 2. And the iron nitride particles having a columnar shape, the short axis having an average length of 100 nm or less, and at least one iron nitride particle interposed between the alloy particles. This composite magnetic material has an orientation direction of the easy axis in the pole figure analysis of X-ray diffraction performed on the alloy particles, and an orientation direction of the easy axis in the pole figure analysis of X-ray diffraction performed on the iron nitride particles. The solid angle formed by is within 10 °.

本発明複合磁性材は、高い保磁力を有する上記合金粒子間に、高い飽和磁化を有する上記鉄窒化物粒子が介在した成形体から構成されている。また、本発明複合磁性材は、上記合金粒子内部の結晶の磁気容易軸と上記鉄窒化物粒子内部の結晶の磁気容易軸とが一定の方向に揃って配向している。このように本発明複合磁性材は、Sm-Fe-N系合金などの希土類元素とFeとを含む合金の高い保磁力と、α"Fe16N2の高い飽和磁化とを、磁気容易軸の配向方向を共通化することで両立し、磁気特性に優れる。 The composite magnetic material of the present invention is composed of a molded body in which the iron nitride particles having high saturation magnetization are interposed between the alloy particles having high coercive force. In the composite magnetic material of the present invention, the easy magnetic axis of the crystal inside the alloy particle and the easy magnetic axis of the crystal inside the iron nitride particle are aligned in a certain direction. As described above, the composite magnetic material of the present invention has a high coercive force of an alloy containing rare earth elements and Fe, such as an Sm-Fe-N alloy, and a high saturation magnetization of α "Fe 16 N 2 . By using a common orientation direction, both are compatible and excellent in magnetic properties.

本発明製造方法は、Sm-Fe-N系合金などの希土類元素とFeとを含む合金成分とα"Fe16N2成分との双方を含む複合磁性材を製造できる。また、本発明製造方法は、原料粉末に、成形性に優れる多相粉末を利用することで、結合樹脂などを用いることなく所望の形状の成形体が得られ、かつ、希土類元素とFeとを含む合金成分やα”Fe16N2成分といった磁性相の割合が高い成形体を得ることができる。原料粉末に利用するナノ鉄粉は、超微粒であることで、多相粉末の変形を阻害することもない。更に、本発明製造方法は、原料粉末にナノ鉄粉を利用しながらも、バインダと共に混合した造粒粉を利用することで、当該バインダの介在により凝集を効果的に抑制できる。そのため、ナノ鉄粉により生成されるα"Fe16N2もナノオーダーにすることができる。また、このバインダは、成形時、特定の温度に加熱すると共に排気することで容易に除去できるため、バインダが残存し難く、本発明製造方法は、磁性相の割合が高い複合磁性材が得られる。更に、凝集を防止することで、多相粒子の周囲に均一的にナノ鉄粉を存在させられ、この状態で加圧成形することで、多相粒子間にナノ鉄粉を介在できる。この介在されたナノ鉄粉からα"Fe16N2を生成することで、本発明製造方法は、上記バインダを実質的に含有せず、かつ磁気特性に優れるα"Fe16N2を主成分とする鉄窒化物粒子が磁気特性に優れる合金粒子に支持された複合磁性材を製造できる。 The production method of the present invention can produce a composite magnetic material containing both an alloy component containing a rare earth element such as an Sm—Fe—N-based alloy and Fe and an α ″ Fe 16 N 2 component. Uses a multi-phase powder with excellent moldability as a raw material powder, so that a molded body having a desired shape can be obtained without using a binder resin or the like, and an alloy component containing a rare earth element and Fe or α ″ A molded body having a high magnetic phase ratio such as Fe 16 N 2 component can be obtained. The nano iron powder used for the raw material powder is an ultrafine particle and does not hinder the deformation of the multiphase powder. Further, the production method of the present invention can effectively suppress aggregation by using the granulated powder mixed with the binder while using the nano iron powder as the raw material powder. Therefore, α "Fe 16 N 2 produced by nano iron powder can also be in the nano order. Also, since this binder can be easily removed by heating to a specific temperature and exhausting during molding, Since the binder hardly remains, the production method of the present invention provides a composite magnetic material having a high magnetic phase ratio, and further, by preventing aggregation, the nano iron powder can be uniformly present around the multiphase particles. In this state, nano iron powder can be interposed between multiphase particles by press molding. By producing α "Fe 16 N 2 from the intervened nano iron powder, the production method of the present invention is It is possible to produce a composite magnetic material in which iron nitride particles containing α ″ Fe 16 N 2 as a main component, which does not substantially contain a binder and have excellent magnetic properties, are supported by alloy particles having excellent magnetic properties.

かつ、本発明製造方法は、脱水素工程において多相粉末から再結合合金を生成するにあたり、特定の強磁場を印加することで、当該合金の結晶の磁化容易軸を一定の方向(例えば、磁場の印加方向)に揃えられる(以下、この揃えられた方向を配向軸と呼ぶ)。また、この強磁場の印加により、ナノ鉄粉の磁化容易軸も一定の方向(例えば、磁場の印加方向)に揃えられる。つまり、上記再結合合金の配向方向とナノ鉄粉の配向方向とを同じ方向にすることができる。そして、本発明製造方法は、窒化工程においてナノ鉄粉からα"Fe16N2を生成するにあたり、脱水素工程のときと同じ方向に特定の強磁場を印加することで、脱水素工程で揃えられた配向軸をそのまま維持することができる、或いは、配向軸による立体角をより小さくすることができる。このように本発明製造方法は、窒化処理後の合金の結晶の配向方向と、α”Fe16N2を主成分とする鉄窒化物の結晶の配向方向とを同じ方向に揃えられ、特定の配向性を有する複合磁性材を製造できる。 In addition, when producing a recombination alloy from a multiphase powder in the dehydrogenation step, the production method of the present invention applies a specific strong magnetic field so that the easy axis of magnetization of the crystal of the alloy is in a certain direction (for example, a magnetic field (The application direction is referred to as an orientation axis hereinafter). In addition, by applying this strong magnetic field, the easy axis of magnetization of the nano iron powder is aligned in a certain direction (for example, the application direction of the magnetic field). That is, the orientation direction of the recombination alloy and the orientation direction of the nano iron powder can be made the same direction. The production method of the present invention applies a specific strong magnetic field in the same direction as in the dehydrogenation process to produce α "Fe 16 N 2 from the nano iron powder in the nitriding process, thereby aligning the dehydrogenation process. The orientation axis thus formed can be maintained as it is, or the solid angle due to the orientation axis can be made smaller. In this way, the production method of the present invention uses the orientation direction of the crystal of the alloy after nitriding treatment and α ″ A composite magnetic material having a specific orientation can be manufactured in which the orientation direction of the crystal of iron nitride mainly composed of Fe 16 N 2 is aligned in the same direction.

また、本発明製造方法は、窒化工程においてナノ鉄粉からα"Fe16N2を生成するにあたり、特定の強磁場を印加することで、鉄の基本格子を一方向に歪ませて、この歪ませたFe原子-Fe原子間をN原子の配置位置とすることができる。つまり、本発明製造方法は、N原子の侵入方向を規制することができるため、α"Fe16N2を生産性よく製造できる。更に、窒化工程において特定の強磁場を印加することで、希土類-鉄-窒素系合金を生成する場合も結晶格子を一方向に歪ませて、N原子の侵入方向を規制できるため、本発明製造方法は、理想状態の原子比を有する希土類-鉄-窒素系合金を生成することができる。 In addition, the production method of the present invention distorts the basic lattice of iron in one direction by applying a specific strong magnetic field when generating α "Fe 16 N 2 from nano iron powder in the nitriding step. The position between the Fe atom and the Fe atom can be set as the arrangement position of the N atom.In other words, the production method of the present invention can regulate the penetration direction of the N atom, so that α "Fe 16 N 2 can be produced. Can be manufactured well. Furthermore, when a rare earth-iron-nitrogen alloy is produced by applying a specific strong magnetic field in the nitriding process, the crystal lattice can be distorted in one direction and the penetration direction of N atoms can be regulated. The method can produce a rare earth-iron-nitrogen based alloy with an ideal atomic ratio.

更に、本発明製造方法は、窒化処理時の雰囲気を低酸素雰囲気とすることで、ナノ鉄粉や再結合合金の酸化を防止して、α"Fe16N2を効率よく生成したり、希土類-鉄-窒素系合金を効率よく生成したりすることができる。 Furthermore, the production method of the present invention prevents the oxidation of nano iron powder or recombination alloy by making the atmosphere during the nitriding treatment a low oxygen atmosphere, thereby efficiently generating α "Fe 16 N 2 , -An iron-nitrogen alloy can be produced efficiently.

以上から、本発明製造方法は、磁性相の割合が高く、α"Fe16N2を含有し、かつ、特定の配向組織(合金粒子の結晶の配向方向と鉄窒化物粒子の結晶の配向方向とが揃った組織)を有することで、磁気特性に優れる複合磁性材(代表的には本発明複合磁性材)を製造することができる。また、本発明製造方法は、再結合合金の組成によっては、希土類-鉄-窒素系合金の生成と、α"Fe16N2の生成とを同時に行えることから、上記複合磁性材を生産性よく製造することができる。 From the above, the production method of the present invention has a high magnetic phase ratio, contains α ″ Fe 16 N 2 , and has a specific orientation structure (the orientation direction of the crystal of the alloy particles and the orientation direction of the crystals of the iron nitride particles). A composite magnetic material having excellent magnetic properties (typically, the composite magnetic material of the present invention) can be produced by the composition of the recombination alloy. Can simultaneously produce a rare earth-iron-nitrogen alloy and α ″ Fe 16 N 2 , so that the composite magnetic material can be produced with high productivity.

本発明製造方法の一形態として、上記多相粉末の平均粒径が10μm以上である形態が挙げられる。   As one form of the production method of the present invention, a form in which the average particle diameter of the multiphase powder is 10 μm or more can be mentioned.

上記形態は、多相粉末が取り扱い易い上に、成形性に優れる。また、上記形態は、多相粒子がナノ鉄粉に対して十分に大きく、多相粒子の表面にナノ鉄粉の粒子を存在させ易い。   The above form is easy to handle the multiphase powder and is excellent in moldability. Moreover, the said form has multi-phase particle | grains large enough with respect to nano iron powder, and it is easy to make the particle | grains of nano iron powder exist on the surface of multi-phase particle.

本発明製造方法の一形態として、上記ナノ鉄粉におけるFeの含有量が80体積%以上である形態が挙げられる。   As one form of this invention manufacturing method, the form whose content of Fe in the said nano iron powder is 80 volume% or more is mentioned.

Feの含有量が多い(純度が高い)ナノ鉄粉を原料に用いることで、鉄窒化物粒子中のα"Fe16N2の含有量も多くする(純度を高める)ことができる。その結果、複合磁性材の飽和磁化を高めたり、配向性を高めたりすることができる。従って、上記形態は、磁気特性により優れる複合磁性材を製造することができる。 By using nano iron powder with high Fe content (high purity) as a raw material, the content of α "Fe 16 N 2 in iron nitride particles can also be increased (purity increased). Thus, the saturation magnetization of the composite magnetic material can be increased, and the orientation can be improved, so that the above-described embodiment can produce a composite magnetic material having more excellent magnetic properties.

本発明製造方法において、上記多相粉末は、希土類元素とFeとを含む合金に、水素元素を含む雰囲気中、当該合金の不均化温度以上の温度で熱処理を施して得られものが挙げられる。上記合金は、RE=Y,La,Pr,Nd,Sm,Dy及びCeから選択される1種以上の元素、Me=Fe又はFeとCo,Ni,Mn及びTiから選択される1種以上の元素、x=2.0〜2.2とするとき、RExMe14B,RExMe14C,RExMe17及びREx/2Me12から選択される1種以上が挙げられる。また、本発明複合磁性材の一形態として、上記合金は、RE=Y,La,Pr,Nd,Sm,Dy及びCeから選択される1種以上の元素、Me=Fe又はFeとCo,Ni,Mn及びTiから選択される1種以上の元素、x=1.5〜3.5とするとき、RE2Me14B,RE2Me14C,RE2Me17Nx,RE1Me12Nx及びRE1Me12から選択される1種以上である形態が挙げられる。 In the production method of the present invention, the multiphase powder is obtained by subjecting an alloy containing a rare earth element and Fe to a heat treatment at a temperature equal to or higher than the disproportionation temperature of the alloy in an atmosphere containing a hydrogen element. . The alloy is one or more elements selected from RE = Y, La, Pr, Nd, Sm, Dy and Ce, and one or more elements selected from Me = Fe or Fe and Co, Ni, Mn and Ti. When the element is x = 2.0 to 2.2, one or more selected from RE x Me 14 B, RE x Me 14 C, RE x Me 17 and RE x / 2 Me 12 may be mentioned. Further, as one form of the composite magnetic material of the present invention, the above alloy is one or more elements selected from RE = Y, La, Pr, Nd, Sm, Dy and Ce, Me = Fe or Fe and Co, Ni , one or more elements selected from Mn and Ti, when the x = 1.5~3.5, RE 2 Me 14 B, RE 2 Me 14 C, RE 2 Me 17 N x, RE 1 Me 12 N x and RE 1 or more in a form selected from 1 Me 12 thereof.

上記形態の本発明製造方法は、特定の組成の多相粉末を利用することで、RE2Me14B,RE2Me14C,RE2Me17Nx,RE1Me12Nx,RE1Me12(x=1.5〜3.5)といった磁気特性に優れる合金成分を含有する複合磁性材が得られる。上記形態の本発明複合磁性材は、上述のように磁気特性に優れる合金成分を含有することで、磁性特性に優れる。 The production method of the present invention of the above-mentioned form uses RE 2 Me 14 B, RE 2 Me 14 C, RE 2 Me 17 N x , RE 1 Me 12 N x , RE 1 by using a multiphase powder having a specific composition. A composite magnetic material containing an alloy component having excellent magnetic properties such as Me 12 (x = 1.5 to 3.5) can be obtained. The composite magnetic material of the present invention having the above configuration is excellent in magnetic properties by containing an alloy component having excellent magnetic properties as described above.

本発明製造方法の一形態として、上記窒化工程では、上記再結合合金を窒化して、希土類元素とFeとを含む希土類-鉄-窒素系合金を生成する形態が挙げられる。   As one form of the manufacturing method of the present invention, in the nitriding step, a form in which the recombination alloy is nitrided to generate a rare earth-iron-nitrogen based alloy containing a rare earth element and Fe can be mentioned.

上記希土類-鉄-窒素系合金は、例えば、RE2Me17NxといったSm-Fe-N系合金が挙げられる。上記形態は、磁気特性に優れる希土類-鉄-窒素系合金を含有することで、磁気特性に更に優れる複合磁性材を製造することができる。 Examples of the rare earth-iron-nitrogen alloy include Sm—Fe—N alloys such as RE 2 Me 17 N x . The said form contains the rare earth-iron-nitrogen alloy which is excellent in a magnetic characteristic, The composite magnetic material which is further excellent in a magnetic characteristic can be manufactured.

本発明製造方法の一形態として、上記バインダはその融点が90℃以下である形態が挙げられる。   As one form of the manufacturing method of the present invention, the binder has a melting point of 90 ° C. or less.

上記形態は、比較的低い温度でバインダを溶融・軟化状態にし易く、造粒時の作業性に優れる。   The said form is easy to make a binder a molten and softened state at comparatively low temperature, and is excellent in the workability | operativity at the time of granulation.

本発明製造方法の一形態として、上記造粒工程では、酸素濃度が3000質量ppm以下の低酸素雰囲気下とし、{(上記バインダの融点)+5}℃以上の温度から室温にまで冷却して造粒を行う形態が挙げられる。なお、バインダにおける融点とは、以下のように求める。大気圧(1気圧≒0.1MPa)の状態で当該バインダの示差走査熱量曲線(DSC)を求め、図3に示すように熱量変化ピーク点における接線Lp1をとる。熱量変化ピーク値をYとするとき、接線Lp1に平行で、Yだけ離れた直線Lp2をとる。この直線Lp2に平行で、直線Lp2からピーク点の方向に(Y/2)だけ離れた直線Lp3をとる。DSCと直線Lp3との交点をとり、低温側の交点(図3では左側の交点)における接線Lp4をとる。そして、直線Lp2と接線Lp4との交点をとり、この交点の温度をオフセット温度TOpとする。 As one form of the production method of the present invention, in the granulation step, a low oxygen atmosphere with an oxygen concentration of 3000 ppm by mass or less is used, and the product is cooled from {(melting point of the binder) +5} ° C. to room temperature. The form which performs a grain is mentioned. In addition, melting | fusing point in a binder is calculated | required as follows. The differential scanning calorimetry curve (DSC) of the binder is obtained in the state of atmospheric pressure (1 atm.apprxeq.0.1 MPa), and a tangent L p1 at the peak of heat amount change is taken as shown in FIG. When the heat quantity change peak value is Y, a straight line L p2 parallel to the tangent L p1 and separated by Y is taken. The straight line L p2 in parallel, taking the direction of the peak point from the straight line L p2 the (Y / 2) apart by a straight line L p3. The intersection of the DSC and the straight line L p3 is taken, and the tangent L p4 at the intersection on the low temperature side (the intersection on the left side in FIG. 3) is taken. Then, an intersection point between the straight line L p2 and the tangent line L p4 is taken, and the temperature of this intersection point is set as an offset temperature T Op .

多相粉末は希土類元素を含有することで酸化し易く、ナノ鉄粉も酸化し易い。上記形態は、低酸素雰囲気下とすることで、原料粉末の酸化を効果的に防止でき、磁気特性に優れる複合磁性材を製造することができる。また、バインダの融点よりも高い温度とすることで原料粉末とバインダとを容易に混合でき、かつ、上記温度から室温に冷却することで、造粒粉を形成し易いことから、上記形態は、造粒粉の製造性に優れる。   The multiphase powder easily oxidizes by containing a rare earth element, and the nano iron powder easily oxidizes. The said form can manufacture the composite magnetic material which can prevent the oxidation of raw material powder effectively and is excellent in a magnetic characteristic by setting it as a low-oxygen atmosphere. In addition, since the raw material powder and the binder can be easily mixed by setting the temperature to be higher than the melting point of the binder, and by cooling from the above temperature to room temperature, it is easy to form granulated powder. Excellent productivity of granulated powder.

本発明製造方法の一形態として、上記脱水素工程及び上記窒化工程の少なくとも一方の工程において上記磁場の印加は、高温超電導磁石を用いて行う形態が挙げられる。   As one mode of the production method of the present invention, there is a mode in which the magnetic field is applied using a high-temperature superconducting magnet in at least one of the dehydrogenation step and the nitridation step.

上記形態は、2T以上や3T以上といった強磁場を大きな空間に対して安定して印加できる。また、上記形態は、磁場の変動を高速で行えるため、熱処理時間を短縮したり、熱処理時における結晶構造の変動に合わせて、適切な磁場強度を設定し易かったりするため、複合磁性材の生産性を高められる。   In the above embodiment, a strong magnetic field such as 2T or more or 3T or more can be stably applied to a large space. In addition, since the magnetic field can be changed at high speed in the above form, the heat treatment time can be shortened, and it is easy to set an appropriate magnetic field strength in accordance with the change in the crystal structure during the heat treatment. Increases sex.

本発明複合磁性材の一形態として、上記成形体の飽和磁化が1.5T以上、及び上記成形体の保磁力が10kOe(800kA/m)以上の少なくとも一方を満たす形態が挙げられる。   As an embodiment of the composite magnetic material of the present invention, there is an embodiment in which the molded body satisfies at least one of saturation magnetization of 1.5 T or more and coercivity of the molded body of 10 kOe (800 kA / m) or more.

上記形態は、飽和磁化や保磁力が高いことから、永久磁石といった磁石の素材に好適に利用することができる。   Since the said form has high saturation magnetization and a coercive force, it can be utilized suitably for the raw materials of magnets, such as a permanent magnet.

本発明複合磁性材の一形態として、上記成形体の相対密度が90%以上である形態が挙げられる。   One form of the composite magnetic material of the present invention is a form in which the relative density of the molded body is 90% or more.

上記形態は、成形体の相対密度が十分に高いため、磁性相の割合も高く、磁気特性に優れる。   In the above-mentioned form, since the relative density of the molded body is sufficiently high, the ratio of the magnetic phase is also high, and the magnetic properties are excellent.

本発明複合磁性材の一形態として、上記合金粒子における合金成分の含有量が90体積%以上である形態が挙げられる。   As one form of the composite magnetic material of the present invention, a form in which the content of the alloy component in the alloy particles is 90% by volume or more can be mentioned.

上記形態は、複合磁性材を構成する合金粒子中の合金成分の含有量が多い(純度が高い)ことで、磁気特性に優れる。   The said form is excellent in a magnetic characteristic because there is much content (the purity is high) of the alloy component in the alloy particle which comprises a composite magnetic material.

本発明複合磁性材は、磁気特性に優れる。本発明複合磁性材の製造方法は、上記本発明複合磁性材を生産性よく製造できる。   The composite magnetic material of the present invention is excellent in magnetic properties. The method for producing the composite magnetic material of the present invention can produce the composite magnetic material of the present invention with high productivity.

図1は、本発明複合磁性材の製造方法の一例を示す工程説明図である。FIG. 1 is a process explanatory view showing an example of a method for producing a composite magnetic material of the present invention. 図2は、バインダの分解温度を説明する説明図である。FIG. 2 is an explanatory diagram for explaining the decomposition temperature of the binder. 図3は、バインダの融点を説明する説明図である。FIG. 3 is an explanatory diagram for explaining the melting point of the binder.

以下、本発明をより詳細に説明する。
[複合磁性材の製造方法]
(準備工程)
本発明製造方法では、二種類の粉末:ナノ鉄粉及び多相粉末を原料に用いることを特徴の一つとする。
Hereinafter, the present invention will be described in more detail.
[Method of manufacturing composite magnetic material]
(Preparation process)
One feature of the production method of the present invention is that two types of powder: nano-iron powder and multiphase powder are used as raw materials.

{ナノ鉄粉}
ナノ鉄粉は、Feを主成分とする柱状の鉄粒子により構成され、当該鉄粒子の短軸の平均長さが100nm以下のものとする。Feを主成分とする、とは、Feの含有量(純度)が75体積%以上であることをいう。鉄粒子中のFeの含有量は、多いほど(純度が高いほど)α"Fe16N2を生成し易く、鉄窒化物粒子中のα"Fe16N2の含有量(純度)を高められ、複合磁性材の配向性や飽和磁化を高められることから、80体積%以上、更に85体積%以上、特に90体積%以上が好ましい。鉄粒子の表面に酸化処理や被覆処理を適宜施して酸化層を具えるナノ鉄粉とし、窒化工程に至るまでの間に過度に酸化することを防止して、Feの含有量が多い状態を維持することが好ましい。この酸化層の厚さは、数原子程度でよく、この程度の極薄い酸化層であれば、窒化工程において十分に窒化処理を行える。
{Nano iron powder}
The nano iron powder is composed of columnar iron particles containing Fe as a main component, and the average length of the minor axis of the iron particles is 100 nm or less. “Fe as a main component” means that the Fe content (purity) is 75% by volume or more. The content of Fe in the iron particles, an elevated the more (as high purity) alpha "easily generate Fe 16 N 2, alpha iron nitride particles" content of Fe 16 N 2 (Purity) From the viewpoint of enhancing the orientation and saturation magnetization of the composite magnetic material, it is preferably 80% by volume or more, more preferably 85% by volume or more, and particularly preferably 90% by volume or more. The surface of the iron particles is appropriately subjected to oxidation treatment and coating treatment to form nano iron powder with an oxide layer, which prevents excessive oxidation during the nitriding process and has a high Fe content. It is preferable to maintain. The thickness of the oxide layer may be about several atoms, and such an extremely thin oxide layer can sufficiently perform nitriding in the nitriding step.

短軸の長さがナノオーダーである柱状のナノ鉄粉の製造には、公知の製造方法を利用することができる。例えば、共沈法、逆ミセル法、ゾルゲル法などを利用することができる。共沈法を利用した場合、ナノオーダーの酸化鉄(ヘマタイト:Fe2O3)を還元することでナノ鉄粉が得られ、逆ミセル法を利用した場合、鉄カルボニル:Fe(CO)5から合成することでナノ鉄粉が得られる。ナノ鉄粉は、実質的にα鉄から構成される。製造条件を調整することで柱状にしたり、ナノ鉄粉の短軸の長さやナノ鉄粉の長軸の長さを変化できる。ナノ鉄粉の製造にあたり、初期結晶を生成させたり粒子サイズを増大させたりする際に、外部磁場や電場を印加すると、結晶の成長方向を制御することができる。また、結晶粒径は、反応時の温度を低くすると、或いは反応時間を短くすると、小さくなる傾向にある。従って、磁場や電場により成長方向を制御した状態で、反応温度や反応時間を調整することで、結晶を柱状にしたり、短軸の長さを短くしたり、長軸の長さを長くしたりすることができる。所望の大きさに結晶が成長した時点で、親水基を有するカップリング剤などを投入して、生成する酸化鉄や鉄の表層に存在する酸素-鉄結合の末端を修飾することで、成長を止めることできる。外部磁場や電場は、直流印加でもよいし、交流印加でもよい。親水基を有するカップリング剤は、例えば、シランカップリング剤、不飽和脂肪酸(オレイン酸、リノール酸など)などが挙げられる。 A well-known manufacturing method can be utilized for manufacture of the columnar nano iron powder whose length of a short axis is nano order. For example, a coprecipitation method, a reverse micelle method, a sol-gel method, or the like can be used. When the coprecipitation method is used, nano iron powder can be obtained by reducing nano-order iron oxide (hematite: Fe 2 O 3 ), and when reverse micelle method is used, iron carbonyl: Fe (CO) 5 By synthesizing, nano iron powder can be obtained. Nano iron powder is substantially composed of alpha iron. It can be made columnar by adjusting the manufacturing conditions, or the length of the short axis of the nano iron powder and the length of the long axis of the nano iron powder can be changed. In producing the nano iron powder, the crystal growth direction can be controlled by applying an external magnetic field or electric field when generating an initial crystal or increasing the particle size. The crystal grain size tends to decrease when the temperature during the reaction is lowered or when the reaction time is shortened. Therefore, by adjusting the reaction temperature and reaction time with the growth direction controlled by a magnetic field or electric field, the crystal can be made columnar, the length of the short axis can be shortened, or the length of the long axis can be increased. can do. When a crystal grows to a desired size, a coupling agent having a hydrophilic group is added to modify the end of the oxygen-iron bond existing in the iron oxide or iron surface layer to be grown. You can stop. The external magnetic field and electric field may be applied with direct current or applied with alternating current. Examples of the coupling agent having a hydrophilic group include silane coupling agents and unsaturated fatty acids (oleic acid, linoleic acid, etc.).

ナノ鉄粉の短軸の平均長さが100nm超では、生成されるα"Fe16N2も大きくなり、形状磁気異方性による磁気特性の向上効果が得られ難く、保磁力の低下を招く。また、ナノ鉄粉が小さいほど、粒子の表層部と内部との窒化の進行具合の差が小さくなり、過剰な窒化を防止できるため、α"Fe16N2の含有量を多くする(純度を高める)ことができる。更に、ナノ鉄粉が小さいほど、ナノ鉄粉を構成する各鉄粒子が単結晶になり易く、鉄粒子内部の結晶を実質的に全て配向できるため、窒化鉄粒子の配向性を向上できる。その結果、高い保磁力を有するなど磁気特性に優れる複合磁性材が得られる。一方、ナノ鉄粉が大きいと、鉄粒子が磁場を受け易くなることから、鉄粒子自体としては配向し易くなるといえる。但し、ナノ鉄粉が大きくなると、各鉄粒子が多結晶になり易く、各鉄粒子内部の結晶の配向がランダムになり易い。そのため、ナノ鉄粉の短軸の平均長さを100nm以下の範囲で大きくする場合には、各鉄粒子内の各結晶がそれぞれ配向するように印加する磁場の大きさを調整する(大きくする)ことが好ましい。ナノ鉄粉の短軸の平均長さは、例えば、80nm以下、更に50nm以下、特に20nm以下とすることができる。 When the average length of the short axis of nano iron powder exceeds 100 nm, the generated α ”Fe 16 N 2 also becomes large, and it is difficult to obtain the effect of improving magnetic properties due to shape magnetic anisotropy, leading to a decrease in coercive force. In addition, the smaller the nano iron powder, the smaller the difference in the nitriding progress between the surface layer part and the inside of the particle, and the excessive nitriding can be prevented, so the content of α "Fe 16 N 2 is increased (purity) Can be enhanced). Furthermore, the smaller the nano iron powder, the easier it is for each iron particle constituting the nano iron powder to become a single crystal and substantially all the crystals inside the iron particle can be oriented, so the orientation of the iron nitride particles can be improved. As a result, a composite magnetic material having a high coercive force and excellent magnetic properties can be obtained. On the other hand, when the nano iron powder is large, the iron particles are easily subjected to a magnetic field, so that the iron particles themselves can be easily oriented. However, when nano iron powder becomes large, each iron particle tends to be polycrystalline, and the orientation of crystals inside each iron particle tends to be random. Therefore, when the average length of the minor axis of the nano iron powder is increased within a range of 100 nm or less, the magnitude of the magnetic field applied is adjusted (increased) so that each crystal in each iron particle is oriented. It is preferable. The average length of the minor axis of the nano iron powder can be, for example, 80 nm or less, 50 nm or less, particularly 20 nm or less.

短軸が短くかつ長軸が長い鉄粒子、即ち、アスペクト比(長軸/短軸)が大きい鉄粒子を利用すると、アスペクト比が大きな鉄窒化物粒子が得られ易い。従って、鉄粒子のアスペクト比は、2以上が好ましい。アスペクト比は、上述のように初期結晶の生成時や粒子サイズを増大させる時に外部磁場や電場を印加し、この外部磁場の大きさや電場の大きさを調整することで制御することができる。外部磁場や電場を大きくすると、アスペクト比を大きくし易い。外部磁場や電場の大きさが一定である場合、反応温度や反応時間によって粒径が異なるものの、アスペクト比は概ね一定になる。   When iron particles having a short minor axis and a long major axis, that is, iron particles having a large aspect ratio (long axis / short axis) are used, iron nitride particles having a large aspect ratio are easily obtained. Therefore, the aspect ratio of the iron particles is preferably 2 or more. As described above, the aspect ratio can be controlled by applying an external magnetic field or an electric field at the time of generating an initial crystal or increasing the particle size, and adjusting the magnitude of the external magnetic field or the electric field. Increasing the external magnetic field or electric field makes it easier to increase the aspect ratio. When the magnitude of the external magnetic field or electric field is constant, the particle size varies depending on the reaction temperature and reaction time, but the aspect ratio is generally constant.

{多相粉末}
多相粉末は、水素不均化分解状態にあり、希土類元素の水素化合物の相とFeを含有する鉄含有物の相とを含有する多相粒子からなる粉末とする。この多相粉末は、Sc(スカンジウム),Y(イットリウム),ランタノイド及びアクチノイドから選択される1種以上の希土類元素とFeとを含有する合金(以下、出発合金と呼ぶ)を、水素元素を含む雰囲気中、当該合金の不均化温度以上の温度で熱処理(水素化)を施して得られる。
{Multiphase powder}
The multiphase powder is in a hydrogen disproportionation decomposition state, and is a powder composed of multiphase particles containing a rare earth element hydrogen compound phase and an iron-containing material phase containing Fe. This multiphase powder includes an element containing one or more rare earth elements selected from Sc (scandium), Y (yttrium), lanthanoid and actinoid and Fe (hereinafter referred to as a starting alloy) containing a hydrogen element. It is obtained by performing heat treatment (hydrogenation) at a temperature equal to or higher than the disproportionation temperature of the alloy in the atmosphere.

出発合金は、希土類元素と、Feと、B,C及びNから選択される1種の元素とを含む合金、更にこの合金にFe以外の金属元素を含む合金、といった希土類-鉄-ホウ素系合金、希土類-鉄-炭素系合金、希土類-鉄-窒素系合金が挙げられる。或いは、出発合金は、希土類元素とFeとを含む合金や、更にこの合金にFe以外の金属元素を含む合金であって、窒化処理により希土類-鉄-窒素系合金となる希土類-鉄系合金が挙げられる。より具体的な出発合金は、RE=Y,La(ランタン),Pr(プラセオジム),Nd,Sm,Dy(ジスプロシウム)及びCe(セリウム)から選択される1種以上の元素、Me=Feのみ、又はCo(コバルト),Ni(ニッケル),Mn(マンガン)及びTi(チタニウム)から選択される1種以上の元素とFe、x=2.0〜2.2とするとき、RExMe14B,RExMe14C,RExMe17及びREx/2Me12から選択される1種以上が挙げられる。より具体的には、RExMe14Bは、Nd2Fe14B、Nd2(Co1Fe13)B、RExMe14Cは、Nd2Fe14C、RExMe17は、Sm2Fe17、Y2Fe17、REx/2Me12は、Sm1(Ti1Fe11)、Sm1(Mn1Fe11)、Y1(Ti1Fe11)、Y1(Mn1Fe11)が挙げられる。MeにおけるFeとその他の元素:Co,Ni,Mn,Tiとの含有比率は連続的に変化させることができる。その他、出発合金は、多相組織から再結合合金組織に変化する際に結晶の成長を制御するような元素(例えば、Cu,Al,Cr,Ga,Nbなど)を含むものを許容する。 The starting alloy is a rare earth-iron-boron alloy such as an alloy containing a rare earth element, Fe, and one element selected from B, C, and N, and an alloy containing a metal element other than Fe in the alloy. , Rare earth-iron-carbon alloys, and rare earth-iron-nitrogen alloys. Alternatively, the starting alloy is an alloy containing a rare earth element and Fe, or an alloy containing a metal element other than Fe in the alloy, and a rare earth-iron-nitrogen alloy that becomes a rare earth-iron-nitrogen alloy by nitriding treatment. Can be mentioned. More specific starting alloy is one or more elements selected from RE = Y, La (lanthanum), Pr (praseodymium), Nd, Sm, Dy (dysprosium) and Ce (cerium), only Me = Fe, Or one or more elements selected from Co (cobalt), Ni (nickel), Mn (manganese) and Ti (titanium) and Fe, where x = 2.0 to 2.2, RE x Me 14 B, RE x Me One or more selected from 14 C, RE x Me 17 and RE x / 2 Me 12 may be mentioned. More specifically, RE x Me 14 B is Nd 2 Fe 14 B, Nd 2 (Co 1 Fe 13 ) B, RE x Me 14 C is Nd 2 Fe 14 C, RE x Me 17 is Sm 2 Fe 17 , Y 2 Fe 17 , RE x / 2 Me 12 are Sm 1 (Ti 1 Fe 11 ), Sm 1 (Mn 1 Fe 11 ), Y 1 (Ti 1 Fe 11 ), Y 1 (Mn 1 Fe 11 ). The content ratio of Fe and other elements: Co, Ni, Mn, Ti in Me can be changed continuously. In addition, the starting alloy is allowed to contain an element (for example, Cu, Al, Cr, Ga, Nb, etc.) that controls crystal growth when changing from a multiphase structure to a recombined alloy structure.

出発合金に、SmとFeとを含有する合金を用いると、磁気特性に優れるSm-Fe-N系合金を含む複合磁性材が得られる。特に、出発合金にSm1(Ti1Fe11)といったSm-Ti-Fe系合金を利用すると、(1)Sm2Fe17を利用した場合に比較して、希土類元素に対して相対的に鉄含有物の割合を高められて成形性により優れる多相粉末が得られる、(2)熱処理(脱水素)後の窒化処理を安定して行い易い、(3)磁性相の割合が高い成形体が得られる、(4)Smの使用量を抑制できる、といった優れた効果を奏する。 When an alloy containing Sm and Fe is used as the starting alloy, a composite magnetic material containing an Sm—Fe—N alloy having excellent magnetic properties can be obtained. In particular, when an Sm-Ti-Fe alloy such as Sm 1 (Ti 1 Fe 11 ) is used as the starting alloy, (1) compared to the case where Sm 2 Fe 17 is used, the iron is relatively less than the rare earth element. A multi-phase powder that is excellent in moldability by increasing the content ratio can be obtained, (2) it is easy to stably perform nitriding after heat treatment (dehydrogenation), and (3) a molded body having a high magnetic phase ratio. There are excellent effects such as (4) the amount of Sm used can be reduced.

出発合金は、粉末にしたもの(以下、出発合金粉末と呼ぶ)が利用し易い。出発合金粉末は、溶解鋳造インゴットや急冷凝固法で得られた箔状体をジョークラッシャー、ジェットミル、ボールミルなどの粉砕装置により粉砕したり、ガスアトマイズ法などのアトマイズ法により形成したり、アトマイズ法により製造した粉末を更に粉砕したりすることにより得られる。ガスアトマイズ法では、非酸化性雰囲気とすると、実質的に酸素を含有しない粉末(酸素濃度:500質量ppm以下)を製造できる。出発合金粉末の製造には、公知の粉末の製造方法を利用できる。また、粉砕の条件や製造条件を適宜変更することで、出発合金粉末の粒度分布や当該粉末を構成する粒子(以下、出発合金粒子と呼ぶ)の形状を調整できる。出発合金粒子は、球状のものが代表的であるが、異形状粒子や薄片などを利用してもよい。アトマイズ法を利用すると、真球度が高く、成形時の充填性に優れた粉末を製造し易い。出発合金粒子は多結晶体でも単結晶体でもよい。多結晶体からなる粒子に適宜熱処理を加えて単結晶体からなる粒子とすることができる。   As the starting alloy, powdered powder (hereinafter referred to as starting alloy powder) is easy to use. The starting alloy powder can be obtained by crushing a foil-like body obtained by a melt casting ingot or a rapid solidification method with a crushing device such as a jaw crusher, jet mill, or ball mill, or by an atomizing method such as a gas atomizing method, or by an atomizing method. It can be obtained by further pulverizing the produced powder. In the gas atomization method, when a non-oxidizing atmosphere is used, a powder containing substantially no oxygen (oxygen concentration: 500 mass ppm or less) can be produced. A known powder production method can be used for the production of the starting alloy powder. In addition, the particle size distribution of the starting alloy powder and the shape of the particles constituting the powder (hereinafter referred to as starting alloy particles) can be adjusted by appropriately changing the pulverization conditions and the manufacturing conditions. The starting alloy particles are typically spherical, but irregularly shaped particles or flakes may be used. When the atomizing method is used, it is easy to produce a powder having a high sphericity and excellent filling properties at the time of molding. The starting alloy particles may be polycrystalline or single crystal. The particles made of a polycrystal can be appropriately heat treated to form particles made of a single crystal.

熱処理(水素化)時に実質的に大きさを変えないように出発合金粉末に当該熱処理(水素化)を施した場合、出発合金粉末の大きさと熱処理(水素化)後に得られる多相粉末の大きさとが実質的に同じになる。多相粉末は、特に、その平均粒径が10μm以上であると、ナノ鉄粉に対して十分に大きいことで、ナノ鉄粉に成形性を阻害されず、成形時に密度を高め易くなり、相対密度が高い粉末成形体(第一成形体)を得易い。なお、多相粉末は、鉄含有物を含有することで成形性に優れるため、例えば、多相粉末の平均粒径を100μm程度にすることができる。この場合、出発合金粉末も100μm程度の粗大なものが利用できるため、粉砕工程を短縮したり(例えば、粗粉砕のみとしたり)、溶融噴霧法といったアトマイズ法を利用したり出来、出発合金粉末の生産性の向上や製造コストの低減を図ることができる。但し、多相粉末が大き過ぎると、成形型への充填率の低下を招くため、平均粒径は500μm以下が好ましく、30μm以上200μm以下が利用し易い。このような大きさの多相粉末が得られるように、出発合金粉末の大きさを調整するとよい。   When the starting alloy powder is subjected to the heat treatment (hydrogenation) so that the size is not substantially changed during the heat treatment (hydrogenation), the size of the starting alloy powder and the size of the multiphase powder obtained after the heat treatment (hydrogenation) And become substantially the same. In particular, when the average particle size is 10 μm or more, the multiphase powder is sufficiently large with respect to the nano iron powder, so that the nano iron powder does not impair the moldability, and it is easy to increase the density during molding. It is easy to obtain a powder compact with high density (first compact). In addition, since multiphase powder is excellent in a moldability by containing an iron-containing material, for example, the average particle diameter of multiphase powder can be about 100 μm. In this case, since the coarse starting alloy powder of about 100 μm can be used, the pulverization process can be shortened (for example, only coarse pulverization), or an atomizing method such as a melt spraying method can be used. Productivity can be improved and manufacturing costs can be reduced. However, if the multiphase powder is too large, the filling rate of the mold is reduced, so that the average particle size is preferably 500 μm or less, and more preferably 30 μm or more and 200 μm or less. The size of the starting alloy powder may be adjusted so that a multiphase powder having such a size can be obtained.

熱処理(水素化)における水素元素を含む雰囲気は、水素(H2)のみの単一雰囲気、或いは水素(H2)とArやN2といった不活性ガスとの混合雰囲気が挙げられる。熱処理(水素化)時の温度は、出発合金の不均化反応が進行する温度、即ち不均化温度以上とする。不均化反応とは、希土類元素の優先水素化により、希土類元素の水素化合物と、Fe(或いはFe及び鉄化合物)とに分離する反応であり、この反応が生じる下限温度を不均化温度と呼ぶ。上記不均化温度は、出発合金の組成や希土類元素の種類により異なる。例えば、出発合金がSm2Fe17,Sm1(Ti1Fe11)、Sm1(Mn1Fe11)などの場合、600℃以上、Nd2Fe14B、Nd2(Co1Fe13)B、Nd2Fe14Cなどの場合、650℃以上が挙げられる。熱処理(水素化)時の温度を不均化温度近傍とすると、希土類元素の水素化合物が層状になり易く、当該温度を不均化温度+100℃以上に高めると、希土類元素の水素化合物が粒状になり易い。熱処理(水素化)時の温度は、高めるほど鉄化合物の相のマトリックス化が進行して成形性に優れる多相粉末が得られるが、高過ぎると出発合金粉末の溶融固着などの不具合が発生するため、1100℃以下が好ましい。熱処理(水素化)時の温度は、出発合金がSm2Fe17,Sm1(Ti1Fe11)、Sm1(Mn1Fe11)などの場合、700℃以上900℃以下、Nd2Fe14B、Nd2(Co1Fe13)B、Nd2Fe14Cなど場合、750℃以上900℃以下の比較的低めにすると、後述する相間の間隔が小さい微細な組織となり易い。熱処理(水素化)時の保持時間は、0.5時間以上5時間以下が挙げられる。この熱処理(水素化)は、上述したHDDR処理の不均化工程までの処理に相当し、公知の不均化条件を適用することができる。 Examples of the atmosphere containing hydrogen element in the heat treatment (hydrogenation) include a single atmosphere containing only hydrogen (H 2 ), or a mixed atmosphere of hydrogen (H 2 ) and an inert gas such as Ar or N 2 . The temperature during the heat treatment (hydrogenation) is set to a temperature at which the disproportionation reaction of the starting alloy proceeds, that is, the disproportionation temperature or higher. The disproportionation reaction is a reaction that separates a rare earth element hydrogen compound and Fe (or Fe and iron compound) by preferential hydrogenation of the rare earth element, and the lower limit temperature at which this reaction occurs is defined as the disproportionation temperature. Call. The disproportionation temperature varies depending on the composition of the starting alloy and the type of rare earth element. For example, if the starting alloy is Sm 2 Fe 17 , Sm 1 (Ti 1 Fe 11 ), Sm 1 (Mn 1 Fe 11 ), etc., 600 ° C. or higher, Nd 2 Fe 14 B, Nd 2 (Co 1 Fe 13 ) B In the case of Nd 2 Fe 14 C, etc., 650 ° C. or higher is mentioned. If the temperature during the heat treatment (hydrogenation) is close to the disproportionation temperature, the rare earth element hydrogen compound tends to be layered, and if the temperature is increased to a disproportionation temperature + 100 ° C or higher, the rare earth element hydrogen compound becomes granular Easy to be. The higher the temperature during the heat treatment (hydrogenation), the more the phase of the iron compound is matrixed, and a multiphase powder with excellent formability is obtained, but if it is too high, problems such as melting and fixing of the starting alloy powder occur. Therefore, 1100 ° C. or lower is preferable. When the starting alloy is Sm 2 Fe 17 , Sm 1 (Ti 1 Fe 11 ), Sm 1 (Mn 1 Fe 11 ), etc., the temperature during the heat treatment (hydrogenation) is 700 ° C. or more and 900 ° C. or less, Nd 2 Fe 14 In the case of B, Nd 2 (Co 1 Fe 13 ) B, Nd 2 Fe 14 C, etc., if the temperature is made relatively low at 750 ° C. or more and 900 ° C. or less, a fine structure with a small interval between phases will be easily obtained. Examples of the holding time during the heat treatment (hydrogenation) include 0.5 hours or more and 5 hours or less. This heat treatment (hydrogenation) corresponds to the above-described processing up to the disproportionation step of the HDDR processing, and known disproportionation conditions can be applied.

熱処理(水素化)には、一般的な加熱炉の他、ロータリーキルン炉といった揺動式炉を利用することができる。揺動式炉を利用すると、鋳造塊などの比較的大きな素材を利用しても、水素化の進行に伴って脆化により粉砕され、粉末になる。   For heat treatment (hydrogenation), a swing furnace such as a rotary kiln furnace can be used in addition to a general heating furnace. When a rocking furnace is used, even if a relatively large material such as a cast ingot is used, it is pulverized by embrittlement as the hydrogenation proceeds, and becomes powder.

熱処理(水素化)により得られた多相粒子は、鉄含有物の含有量が60体積%以上であると、硬質である希土類元素の水素化合物が相対的に少なくなり(40体積%未満)、成形性に優れて好ましい。鉄含有物が多過ぎると最終的に磁気特性の低下を招くことから、多相粒子中の鉄含有物の含有量は、90体積%以下が好ましい。希土類元素の水素化合物の含有量は、0体積%超とし、10体積%以上40体積%未満が好ましい。   Multiphase particles obtained by heat treatment (hydrogenation), when the content of iron-containing material is 60% by volume or more, there are relatively few hard rare earth element hydrogen compounds (less than 40% by volume), It is preferable because of excellent moldability. If the amount of iron-containing material is too large, the magnetic properties are ultimately lowered. Therefore, the content of iron-containing material in the multiphase particles is preferably 90% by volume or less. The content of the rare earth element hydrogen compound is more than 0% by volume, preferably 10% by volume or more and less than 40% by volume.

鉄含有物は、(1)Fe(純鉄)である形態、(2)FeとFe以外の元素(例えば、B,C,Co,Mn,Tiなど)とを含む化合物(例えば、Fe3B、(CoFe2)B、Fe3C、FeMn化合物、FeTi化合物など)である形態、(3) (1)及び(2)の双方を含む形態、(4) (1)及び(2)の少なくとも一方とFe以外の元素(例えば、Co,Ni,Mn,Tiなど)とを含む形態が挙げられる。鉄含有物がFe以外の元素を含む形態では、磁気特性や耐食性を向上することができる。希土類元素の水素化合物は、例えば、SmH2,NdH2などが挙げられる。なお、多相粒子は、不可避不純物の含有を許容する。 The iron-containing material is (1) a form that is Fe (pure iron), (2) a compound containing Fe and an element other than Fe (e.g., B, C, Co, Mn, Ti, etc.) (e.g., Fe 3 B (CoFe 2 ) B, Fe 3 C, FeMn compound, FeTi compound, etc.), (3) a form including both (1) and (2), (4) at least one of (1) and (2) Examples include a form containing one element other than Fe (for example, Co, Ni, Mn, Ti, etc.). In the form in which the iron-containing material contains an element other than Fe, the magnetic properties and corrosion resistance can be improved. Examples of the rare earth element hydrogen compound include SmH 2 and NdH 2 . The multiphase particles allow the inclusion of inevitable impurities.

多相粒子は、希土類元素の水素化合物の相と鉄含有物の相とが均一的に離散して存在した組織を有する。離散した状態とは、多相粒子中において、希土類元素の水素化合物の相と鉄含有物の相との両相が隣接して存在し、鉄含有物の相を介して隣り合う希土類元素の水素化合物の相間の間隔が3μm以下であることとする。代表的には、上記両相が多層構造となった層状形態、希土類元素の水素化合物の相が粒状であり、鉄含有物の相を母相として、この母相中に粒状の希土類元素の水素化合物が分散して存在する粒状形態が挙げられる。上記相関の間隔は、0.5μm以上、特に1μm以上が好ましい。   The multiphase particles have a structure in which a phase of a rare earth element hydride and a phase of an iron-containing material are uniformly dispersed. In the discrete state, in the multiphase particles, both the phase of the rare earth element hydrogen compound and the phase of the iron-containing material are adjacent to each other, and the hydrogen of the rare earth element adjacent to each other through the phase of the iron-containing material is present. The interval between the compound phases is 3 μm or less. Typically, a layered form in which both phases have a multilayer structure, the phase of the rare earth element hydrogen compound is granular, and the phase of the iron-containing material is the parent phase. Examples include a granular form in which the compound is present in a dispersed state. The correlation interval is preferably 0.5 μm or more, particularly preferably 1 μm or more.

上記粒状形態は、希土類元素の水素化合物の粒子の周囲に鉄含有物が均一的に存在するため、上記層状形態よりも鉄含有物を変形させ易く、複雑な形状の粉末成形体や、多相粉末の相対密度が85%以上、更に90%以上、特に95%以上といった高密度の粉末成形体を得易い。上記粒状形態において希土類元素の水素化合物の相と鉄含有物の相とが隣接するとは、代表的には、多相粒子の断面をとったとき、希土類元素の水素化合物の粒子の周囲を覆うように鉄含有物が存在し、隣り合う希土類元素の水素化合物の粒子間に鉄含有物が存在する状態をいう。また、上記粒状形態の場合、隣り合う希土類元素の水素化合物の相間の間隔とは、上記断面において隣り合う二つの希土類元素の水素化合物の粒子の中心間の距離をいう。   Since the iron-containing material is uniformly present around the rare earth element hydride particles in the granular form, it is easier to deform the iron-containing material than the layered form, and the powder molded body having a complicated shape or multiphase It is easy to obtain a powder compact having a high density such that the relative density of the powder is 85% or more, further 90% or more, particularly 95% or more. In the granular form, the phase of the rare earth element hydride and the phase of the iron-containing material are typically adjacent to the rare earth element hydride particles when the cross section of the multiphase particle is taken. In which iron-containing materials exist, and iron-containing materials exist between adjacent rare earth element hydrogen compound particles. In the case of the granular form, the interval between phases of adjacent rare earth element hydrogen compounds refers to the distance between the centers of two adjacent rare earth element hydrogen compound particles in the cross section.

多相粒子を構成する組成(構成元素、含有量など)、鉄含有物の含有量や希土類元素の水素化合物の含有量、上記相間の間隔は、出発合金の組成や多相粉末を製造する際の熱処理条件(主に温度)を適宜変化させることで調整できる。例えば、出発合金における鉄の比率(原子比)を多くしたり、上記熱処理(水素化)時の温度を高くしたりすると、上記相間の間隔が大きくなる傾向にある。所望の多相粉末が得られるように出発合金の組成や熱処理条件を調整するとよい。   The composition of the multiphase particles (constituent elements, content, etc.), the content of iron-containing materials, the content of rare earth element hydrogen compounds, and the spacing between the above phases are the same as the composition of the starting alloy and the production of the multiphase powder. It can be adjusted by appropriately changing the heat treatment conditions (mainly temperature). For example, if the iron ratio (atomic ratio) in the starting alloy is increased or the temperature during the heat treatment (hydrogenation) is increased, the spacing between the phases tends to increase. The composition of the starting alloy and the heat treatment conditions may be adjusted so that the desired multiphase powder can be obtained.

多相粉末は、各多相粒子の全周を覆うように酸化防止層や絶縁被覆を具える形態とすることができる。酸化防止層を具える形態は、加圧成形時に生じた新生面の酸化を防止できる。絶縁被覆を具える形態は、絶縁被覆(或いは絶縁被覆の構成材料から熱処理により変成された絶縁材)の存在により、電気抵抗が高く渦電流損が小さい複合磁性材が得られる。   The multiphase powder can have a form including an antioxidant layer and an insulating coating so as to cover the entire circumference of each multiphase particle. The form including the antioxidant layer can prevent the oxidation of the new surface generated during the pressure molding. In the form having an insulating coating, a composite magnetic material having a high electric resistance and a small eddy current loss can be obtained due to the presence of the insulating coating (or an insulating material transformed from the constituent material of the insulating coating by heat treatment).

酸化防止層は、酸素の透過係数(30℃)が1.0×10-11m3・m/(s・m2・Pa)未満、特に0.01×10-11m3・m/(s・m2・Pa)以下の酸素低透過材料からなる酸素低透過層を少なくとも具える形態が挙げられる。酸素低透過材料は、例えば、ナイロン6(酸素の透過係数(30℃):0.0011×10-11m3・m/(s・m2・Pa))といったポリアミド系樹脂、その他、ポリエステル、ポリ塩化ビニルなどが挙げられる。また、酸化防止層は、酸素低透過層に加えて、透湿率(30℃)が1000×10-13kg/(m・s・MPa)未満、特に10×10-13kg/(m・s・MPa)以下の湿気低透過材料からなる湿気低透過層を具えると、多湿状態(例えば、気温30℃程度/湿度80%程度など)で保管などされた場合でも酸化を効果的に防止できて好ましい。湿気低透過材料は、透湿率(30℃):7×10-13kg/(m・s・MPa)〜60×10-13kg/(m・s・MPa)であるポリエチレン、その他、フッ素樹脂、ポリプロピレンなどが挙げられる。酸素低透過層を多相粒子側、湿気低透過層を酸素低透過層の上に具えることが好ましい。酸化防止層を構成する各層の厚さは10nm以上500nm以下が好ましい。 The antioxidant layer has an oxygen permeability coefficient (30 ° C) of less than 1.0 × 10 -11 m 3・ m / (s ・ m 2・ Pa), especially 0.01 × 10 -11 m 3・ m / (s ・ m 2 Pa) A form including at least an oxygen low-permeability layer made of the following oxygen low-permeability material may be mentioned. Oxygen low permeability materials include, for example, polyamide 6 such as nylon 6 (oxygen permeability coefficient (30 ° C): 0.0011 × 10 -11 m 3 · m / (s · m 2 · Pa)), polyester, polychlorinated Vinyl etc. are mentioned. In addition to the low oxygen permeability layer, the antioxidant layer has a moisture permeability (30 ° C) of less than 1000 × 10 -13 kg / (m ・ s ・ MPa), especially 10 × 10 -13 kg / (m ・s · MPa) A moisture low permeability layer composed of the following moisture low permeability materials effectively prevents oxidation even when stored in high humidity conditions (for example, temperature 30 ° C / humidity 80%, etc.) This is preferable. Moisture low permeability material is moisture permeability (30 ℃): 7 × 10 -13 kg / (m ・ s ・ MPa) to 60 × 10 -13 kg / (m ・ s ・ MPa) polyethylene, other fluorine Resin, polypropylene, etc. are mentioned. It is preferable to provide the oxygen low-permeability layer on the multiphase particle side and the moisture low-permeability layer on the oxygen low-permeability layer. The thickness of each layer constituting the antioxidant layer is preferably 10 nm or more and 500 nm or less.

酸化防止層の形成には、例えば、湿式乾燥塗膜法やゾルゲル法といった湿式法、粉体塗装といった乾式法を利用できる。   For forming the antioxidant layer, for example, a wet method such as a wet dry coating method or a sol-gel method, or a dry method such as powder coating can be used.

絶縁被覆は、例えば、Si,Al,Tiなどの酸化物の結晶性被膜や非晶質のガラス被膜、X-Fe-O(X=Ba,Sr,Ni,Mnなどの金属元素)といったフェライトやマグネタイト(Fe3O4)、Dy2O3といった金属酸化物、シリコーン樹脂といった樹脂、シルセスキオキサン化合物などといった有機無機ハイブリッド化合物からなる被膜が挙げられる。これら結晶性被膜やガラス被膜、酸化物被膜などは、酸化防止機能を有する場合があり、この場合、多相粒子の酸化も防止できる。また、熱伝導性を向上する目的で、Si-N、Si-C系のセラミックス被覆を多相粒子に施してもよい。 Insulating coatings include, for example, crystalline films of oxides such as Si, Al, and Ti, amorphous glass films, ferrites such as X-Fe-O (X = Ba, Sr, Ni, Mn, etc.) Examples thereof include a film made of a metal oxide such as magnetite (Fe 3 O 4 ) and Dy 2 O 3 , a resin such as a silicone resin, and an organic-inorganic hybrid compound such as a silsesquioxane compound. These crystalline coatings, glass coatings, oxide coatings and the like may have an antioxidant function, and in this case, oxidation of multiphase particles can also be prevented. In order to improve thermal conductivity, Si-N or Si-C based ceramic coating may be applied to the multiphase particles.

上記絶縁被覆やセラミックス被覆と上記酸化防止層との双方を具える形態は、多相粒子の表面に接するように絶縁被覆を形成した後、絶縁被覆の上にセラミックス被覆や上記酸化防止層を形成することが好ましい。絶縁被覆や酸化防止層などを具える形態では、多相粒子が真球に近いと、(1)酸化防止層や絶縁被覆などを均一的な厚さで形成し易い、(2)加圧成形時に酸化防止層や絶縁被覆などの破損を抑制できる、といった効果が得られて好ましい。   In the form including both the insulating coating or ceramic coating and the antioxidant layer, the insulating coating is formed so as to contact the surface of the multiphase particles, and then the ceramic coating or the antioxidant layer is formed on the insulating coating. It is preferable to do. In a form with an insulation coating or an anti-oxidation layer, when the multiphase particles are close to a true sphere, (1) it is easy to form an anti-oxidation layer or an insulation coating with a uniform thickness. (2) Pressure molding It is preferable because the effect that the breakage of the antioxidant layer or the insulating coating can be sometimes suppressed is obtained.

(造粒工程)
本発明製造方法では、上記原料粉末とバインダとを混合して造粒粉を形成することを特徴の一つとする。
(Granulation process)
One feature of the production method of the present invention is that the raw material powder and the binder are mixed to form a granulated powder.

バインダは、造粒から成形途中までの間、一時的に存在させ、成形時の加熱及び排気により除去する。このバインダは、成形型に投入するまでの造粒粉の流動性を確保すると共に、多相粉末の表面上にナノ鉄粉を均一的に混合するための助剤として機能する。また、バインダは、成形時に潤滑剤としても機能することができる。バインダの分解温度が高いと、成形時の加熱温度を高くする必要がある。ここで、ナノ鉄粉を構成する鉄粒子(主としてα鉄)の酸化進行温度は、実質的に250℃であるため、酸化による磁気特性の低下を防止するには、成形時の加熱温度は、250℃以下が望まれる。そのため、本発明製造方法では、バインダとして、分解温度が低いもの、具体的には240℃以下、好ましくは220℃以下のものを利用する。かつ、分解温度+20℃以下の温度で揮発又はガスに分解することによって気化して除去可能なバインダを利用する。このような比較的低温でバインダが除去可能であることで、成形時の温度を低くでき、ナノ鉄粉の粗大化、原料粉末の酸化の防止、バインダ自体の熱分解の防止を図ることができる。また、バインダは、ナノ鉄粉及び多相粉末と反応せず、造粒可能なものとする。このようなバインダとして、例えば、オレイン酸アミド、エルカ酸アミド、リシノール酸アミドなどの有機物が挙げられる。上述の仕様(分解温度など)を満たす市販のワックスなどを利用してもよい。   The binder is temporarily present from granulation to the middle of molding and is removed by heating and exhaust during molding. This binder functions as an auxiliary agent for ensuring the fluidity of the granulated powder until it is put into the mold and for uniformly mixing the nano iron powder on the surface of the multiphase powder. The binder can also function as a lubricant during molding. When the decomposition temperature of the binder is high, it is necessary to increase the heating temperature during molding. Here, since the oxidation progress temperature of the iron particles (mainly α iron) constituting the nano iron powder is substantially 250 ° C., in order to prevent deterioration of magnetic properties due to oxidation, the heating temperature at the time of molding is 250 ° C or less is desired. Therefore, in the production method of the present invention, a binder having a low decomposition temperature, specifically, 240 ° C. or lower, preferably 220 ° C. or lower is used. In addition, a binder that can be vaporized and removed by decomposition into volatilization or gas at a decomposition temperature + 20 ° C. or lower is used. Since the binder can be removed at such a relatively low temperature, the temperature during molding can be lowered, the nano-iron powder can be coarsened, the raw material powder can be prevented from being oxidized, and the thermal decomposition of the binder itself can be prevented. . Moreover, a binder does not react with nano iron powder and multiphase powder, and shall be granulated. Examples of such a binder include organic substances such as oleic acid amide, erucic acid amide, and ricinoleic acid amide. Commercially available wax that satisfies the above specifications (decomposition temperature etc.) may be used.

造粒にあたり、バインダを溶融又は軟化状態とすると、ナノ鉄粉と多相粉末と当該バインダとの三者を均一的に混合し易く、当該バインダにより、多相粒子の表面に鉄粒子が万遍なく分散した状態が維持された造粒粉を形成することができる。従って、原料粉末とバインダとの混合は、当該バインダの融点以上、好ましくは融点+5℃以上の温度で行うことが好ましい。混合時の温度は、低過ぎると、原料粉末とバインダとを均一的に混合し難く造粒し難い。その結果、バインダが原料粉末に均一的に付着せず、原料粉末のすべりが悪くなって、成形型への充填率の低下や成形性の劣化を招いたりする恐れがある。一方、混合時の温度は、高過ぎると、造粒中にバインダが混合設備中に付着や堆積などしてバインダが低減するため、(融点+5)℃〜(融点+15)℃程度が好ましい。   In granulation, when the binder is in a molten or softened state, it is easy to uniformly mix the three of the nano iron powder, the multiphase powder, and the binder, and the iron particles are universally spread on the surface of the multiphase particles by the binder. A granulated powder in which the dispersed state is maintained can be formed. Therefore, it is preferable to mix the raw material powder and the binder at a temperature equal to or higher than the melting point of the binder, preferably higher than the melting point + 5 ° C. If the temperature at the time of mixing is too low, it is difficult to mix the raw material powder and the binder uniformly, and granulation is difficult. As a result, the binder does not uniformly adhere to the raw material powder, and the raw material powder does not slide, and there is a risk that the filling rate into the mold and the moldability will deteriorate. On the other hand, if the temperature at the time of mixing is too high, the binder is reduced due to adhesion or deposition in the mixing equipment during granulation. Therefore, the melting point is preferably about (melting point + 5) ° C. to (melting point + 15) ° C.

バインダの融点は90℃以下が好ましい。融点が低いことで、バインダを溶融又は軟化状態にし易い。そのため、比較的低温でバインダと原料粉末とを均一的に混合でき、造粒工程の作業性に優れる上に、バインダが均一的に存在する造粒粉を形成できる。バインダが均一的に存在する造粒粉は、原料粉末の酸化を防止できる上に、原料粉末のすべりを良好にでき、成形型への充填性や成形性に優れる。   The melting point of the binder is preferably 90 ° C. or less. Since the melting point is low, the binder can be easily melted or softened. Therefore, the binder and the raw material powder can be mixed uniformly at a relatively low temperature, and the workability of the granulation process is excellent, and a granulated powder in which the binder exists uniformly can be formed. The granulated powder in which the binder is uniformly present can prevent the raw material powder from being oxidized, and also can improve the sliding of the raw material powder, and is excellent in the filling ability and moldability to the mold.

バインダの含有量は、適宜選択することができるが、多過ぎると、除去時間が長くなったり、残存して磁性相の割合の低下を招いたりする。従って、バインダの含有量は、原料粉末の質量(多相粉末とナノ鉄粉との合計質量)に対して、0.5質量%〜5質量%が好ましい。   The binder content can be selected as appropriate, but if it is too much, the removal time becomes longer or it remains and causes a decrease in the proportion of the magnetic phase. Therefore, the content of the binder is preferably 0.5% by mass to 5% by mass with respect to the mass of the raw material powder (the total mass of the multiphase powder and the nano iron powder).

ナノ鉄粉と多相粉末との配合比は、適宜選択することができる。多相粉末が多いと成形性に優れ、大型なバルク材を形成し易く、ナノ鉄粉が多いと、α"Fe16N2成分の含有による磁気特性の向上効果を得易い。成形性及び磁気特性を考慮すると、ナノ鉄粉の配合比は、多相粉末とナノ鉄粉との合計質量を100質量%とするとき、5質量%以上が好ましく、10質量%〜25質量%が利用し易い。 The compounding ratio of the nano iron powder and the multiphase powder can be appropriately selected. When there are many multiphase powders, it is excellent in moldability, and it is easy to form a large bulk material. When there are many nano iron powders, it is easy to obtain the effect of improving magnetic properties by containing α "Fe 16 N 2 component. Considering the characteristics, the blending ratio of the nano iron powder is preferably 5% by mass or more and 10% by mass to 25% by mass when the total mass of the multiphase powder and the nano iron powder is 100% by mass. .

十分に混合したら、原料粉末とバインダとの混合物を室温まで冷却して、当該バインダを固化させて造粒粉を形成する。造粒粉はその平均粒径を10μm以上、特に50μm以上とすると、流動性や成形型への充填性に優れる、造粒粉を製造し易い、成形性に優れる、といった利点を有して好ましい。但し、造粒粉が大き過ぎると、バインダが過剰になったり、バインダ成分の残存により原料粉末の充填率を低下させたりすることから、平均粒径は500μm以下が好ましい。上述のようにバインダを溶融させてから冷却することで、所望の大きさの造粒粉を製造し易い。造粒粉の平均粒径は、上述の室温までの冷却工程における冷却速度を調整することで変化させられ、冷却速度を速めると小さくなる傾向にある。   When sufficiently mixed, the mixture of the raw material powder and the binder is cooled to room temperature, and the binder is solidified to form granulated powder. When the average particle diameter is 10 μm or more, particularly 50 μm or more, the granulated powder is preferable because it has excellent advantages such as excellent fluidity and filling property in a mold, easy to produce granulated powder, and excellent moldability. . However, if the granulated powder is too large, the average particle size is preferably 500 μm or less because the binder becomes excessive or the filling rate of the raw material powder is lowered due to the remaining binder component. As described above, it is easy to produce granulated powder of a desired size by cooling after melting the binder. The average particle size of the granulated powder can be changed by adjusting the cooling rate in the above-described cooling step to room temperature, and tends to decrease as the cooling rate is increased.

ナノ鉄粉や多相粉末は、上述のように酸化し易い。ナノ鉄粉が酸化すると、窒化が阻害されてα"Fe16N2の生成量が低下し、磁性相の割合が低下したり、α"Fe16N2成分が少ないことにより配向性が低下したりする。多相粉末が酸化すると、生成された酸化物により再合金化が阻害されて、磁性相の割合が低下する。従って、原料粉末の酸化は、飽和磁化の低下といった磁気特性の低下を招く。そのため、造粒工程は、低酸素雰囲気とすることが好ましい。具体的には、酸素濃度が3000質量ppm以下、更に2500質量ppm以下、特に2000質量ppm以下が好ましい。造粒工程の具体的な雰囲気は、例えば、Ar(アルゴン)やHe(ヘリウム)などの希ガス雰囲気やN2(窒素)などの不活性雰囲気が挙げられる。上述した酸化防止層を具えた多相粉末を利用すると、バインダに覆われるまでの間の多相粉末の酸化を効果的に防止できる。 Nano iron powder and multiphase powder are easily oxidized as described above. When nano iron powder is oxidized, nitriding is inhibited and the amount of α "Fe 16 N 2 produced decreases, the proportion of the magnetic phase decreases, and the orientation decreases due to the small amount of α" Fe 16 N 2 component. Or When the multiphase powder is oxidized, re-alloying is inhibited by the generated oxide, and the proportion of the magnetic phase is lowered. Therefore, the oxidation of the raw material powder causes a decrease in magnetic properties such as a decrease in saturation magnetization. For this reason, the granulation step is preferably a low oxygen atmosphere. Specifically, the oxygen concentration is preferably 3000 mass ppm or less, more preferably 2500 mass ppm or less, and particularly preferably 2000 mass ppm or less. Specific examples of the granulation step include a rare gas atmosphere such as Ar (argon) and He (helium) and an inert atmosphere such as N 2 (nitrogen). When the multiphase powder including the above-described antioxidant layer is used, the oxidation of the multiphase powder before being covered with the binder can be effectively prevented.

造粒粉は、基本的には、多相粒子の表層にバインダによってナノ鉄粉が付着している状態であればよく、例えば、多相粒子の表層にナノ粉が付着した複数の多相粒子がバインダによって結合した状態でもよい。上述のようにバインダを溶融させて、当該バインダにより鉄粒子や多相粒子の全周を覆った造粒粉とすると、当該バインダを鉄粒子や多相粒子の酸化防止層として機能させることもできる。   The granulated powder may basically be in a state in which nano iron powder is adhered to the surface layer of the multi-phase particle by a binder, for example, a plurality of multi-phase particles having nano powder adhered to the surface layer of the multi-phase particle. May be combined with a binder. When the binder is melted as described above and the granulated powder covers the entire circumference of the iron particles and multiphase particles with the binder, the binder can also function as an antioxidant layer for the iron particles and multiphase particles. .

(成形工程)
本発明製造方法では、上記造粒粉を加圧成形して成形体(第一成形体)を形成するにあたり、加熱及び排気を行うことを特徴の一つとする。
(Molding process)
One feature of the production method of the present invention is that heating and exhausting are performed when forming the compact (first compact) by pressure-molding the granulated powder.

{加熱}
成形時の加熱は、主として、造粒粉中のバインダを溶融・気化(揮発)するために行う。従って、この工程の加熱温度(最終到達温度)は、バインダの分解温度近傍が好ましく、分解温度±20℃とする。この加熱温度が(分解温度−20)℃未満では、バインダを十分に溶融できず、原料粉末のすべりを阻害したり、十分に気化できず、当該バインダが残存して原料粉末の充填率の低下を招いたりする。加熱温度が高いほどバインダを溶融・気化し易く、確実に除去できるが、(分解温度+20)℃超となると、例えば、揮発させる目的のバインダにおいて意図しない分解が進行して、バインダの構成成分(例えば、C(炭素)など)が残渣として成形体内部に残ったり、原料粉末が酸化し易くなり、磁気特性の低下を招く。造粒粉の加熱は外熱を与える他、成形型を所定の温度に加熱することで実現できる。また、造粒粉をバインダの融点以下の温度で予熱すると、造粒粉自体の昇温時間を短縮することができる。この予熱により多相粉末の変形を促進でき、高密度な成形体や複雑な形状の成形体を得易い。
{heating}
Heating at the time of molding is performed mainly for melting and vaporizing (volatilizing) the binder in the granulated powder. Therefore, the heating temperature (final temperature reached) in this step is preferably in the vicinity of the binder decomposition temperature, and is set to the decomposition temperature ± 20 ° C. If the heating temperature is less than (decomposition temperature -20) ° C, the binder cannot be sufficiently melted, the raw material powder cannot be prevented from sliding or vaporized sufficiently, and the binder remains and the filling rate of the raw material powder is reduced. Or invite you. The higher the heating temperature, the easier it is to melt and vaporize the binder, which can be reliably removed, but when it exceeds (decomposition temperature +20) ° C, for example, unintended decomposition proceeds in the binder to be volatilized, and the constituent components of the binder ( For example, C (carbon) or the like) remains in the molded body as a residue, or the raw material powder is easily oxidized, resulting in a decrease in magnetic properties. The granulated powder can be heated not only by applying external heat but also by heating the mold to a predetermined temperature. Moreover, when the granulated powder is preheated at a temperature lower than the melting point of the binder, the temperature raising time of the granulated powder itself can be shortened. Due to this preheating, the deformation of the multiphase powder can be promoted, and a high-density molded body and a molded body having a complicated shape can be easily obtained.

{排気}
成形時の排気は、主として、上記加熱により気化したバインダを外部に除去するために行う。具体的には、0.9気圧(91.2kPa)以下となるように排気する。つまり、成形は、減圧雰囲気で行う。雰囲気の圧力が0.9気圧超では、十分に脱気できず、バインダが残存して原料粉末の充填率の低下を招く。雰囲気の圧力が大きいほど、排気を十分に行えて、バインダを排出し易く、かつ、雰囲気中の酸素濃度も低減できることから、0.8気圧(81.1kPa)以下がより好ましい。成形時、雰囲気中の酸素濃度が低いことで、バインダが除去されて鉄粒子や多相粒子が露出された状態になっても、当該粒子の酸化を抑制することができる。
{exhaust}
Exhaust during molding is performed mainly to remove the binder vaporized by the heating to the outside. Specifically, exhaust is performed so that the pressure becomes 0.9 atm (91.2 kPa) or less. That is, the molding is performed in a reduced pressure atmosphere. If the atmospheric pressure exceeds 0.9 atm, sufficient degassing cannot be performed, and the binder remains to cause a reduction in the filling rate of the raw material powder. The higher the pressure of the atmosphere, the more the exhaust can be performed, the binder can be easily discharged, and the oxygen concentration in the atmosphere can be reduced, so 0.8 atm (81.1 kPa) or less is more preferable. At the time of molding, since the oxygen concentration in the atmosphere is low, even when the binder is removed and the iron particles and the multiphase particles are exposed, the oxidation of the particles can be suppressed.

{加圧}
成形時の加圧は、主として、原料粉末の高密度化のために行う。成形圧力は、1ton/cm2以上が好ましく、5ton/cm2〜10ton/cm2程度が利用し易い。加圧により、原料粉末を構成する粒子間に存在するバインダも排出し易い。
{Pressurization}
The pressurization at the time of molding is mainly performed to increase the density of the raw material powder. Molding pressure is preferably from 1 ton / cm 2 or more, 5ton / cm 2 ~10ton / cm 2 about the easily available. By pressurization, the binder present between the particles constituting the raw material powder is also easily discharged.

成形工程を経て得られた第一成形体は、代表的には、圧縮変形により扁平な形状などになった多相粒子間にナノ鉄粉が介在した圧密組織を有する粉末成形体である。多相粒子は、成形性に優れることで、鉄粒子を覆うように変形できるため、多相粒子間の隙間が小さい、或いは当該隙間が実質的に存在しない。第一成形体中の鉄粒子は、原料に準備したナノ鉄粉の大きさが実質的に維持されている。なお、圧密組織とは、第一成形体の加圧方向(プレス方向)に平行な断面組織をとったとき、多相粒子が、主として加圧方向に短く、加圧方向に垂直な方向に長く延びたように変形している組織とする。   The first molded body obtained through the molding process is typically a powder molded body having a compacted structure in which nano-iron powder is interposed between multiphase particles that are flattened by compression deformation. Since the multiphase particles are excellent in moldability and can be deformed so as to cover the iron particles, the gaps between the multiphase particles are small, or the gaps do not substantially exist. The iron particles in the first molded body substantially maintain the size of the nano iron powder prepared as a raw material. The consolidated structure means that when a cross-sectional structure parallel to the pressing direction (pressing direction) of the first compact is taken, the multiphase particles are mainly short in the pressing direction and long in the direction perpendicular to the pressing direction. The tissue is deformed so as to extend.

(脱水素工程)
本発明製造方法では、二段階の熱処理を行う。一段階目の熱処理では、上記第一成形体を構成する多相粉末から水素を分離して、希土類元素と鉄含有物とを再結合する。再結合された合金の組成は、出発合金の組成に実質的に等しい。本発明製造方法では、この第一段階の熱処理を施すにあたり、特定の強磁場を印加することを特徴の一つとする。
(Dehydrogenation process)
In the production method of the present invention, a two-stage heat treatment is performed. In the first-stage heat treatment, hydrogen is separated from the multiphase powder constituting the first molded body, and the rare earth element and the iron-containing material are recombined. The composition of the recombined alloy is substantially equal to the composition of the starting alloy. One feature of the manufacturing method of the present invention is that a specific strong magnetic field is applied when the heat treatment of the first stage is performed.

{雰囲気}
脱水素工程は、多相粒子と反応せず、かつ水素を効率よく除去できるように非水素雰囲気にて熱処理を行う。非水素雰囲気には、不活性雰囲気や減圧雰囲気が挙げられる。不活性雰囲気は、例えば、ArやN2が挙げられる。減圧雰囲気は、標準の大気雰囲気よりも圧力を低下させた真空状態をいう。減圧雰囲気で希土類元素の水素化合物から水素の除去を行うと、希土類元素の水素化合物が残存し難く、再結合化を完全に起こさせることができる。その結果、再結合合金の成分を高められ、最終的に磁気特性に優れる複合磁性材が得られる。従って、本発明製造方法では、減圧雰囲気とする。特に、100Pa以下の減圧雰囲気とする。より好ましくは、脱水素処理は、所定の温度(反応開始温度)までの昇温工程を、大気圧(1気圧)の水素雰囲気とし、その後、水素を排出して非水素雰囲気とすると共に100Pa以下の減圧雰囲気とすることが好ましい。昇温を水素雰囲気とすることで、十分に高い温度になってから脱水素反応を開始することができ、反応斑を抑制できる。また、脱水素反応処理時の圧力を100Pa以下とすると、脱水素反応が進行し易く、再結合合金の結晶の粗大化を防止して、高い保磁力を有する複合磁性材が得られる。脱水素反応処理時の雰囲気の圧力は、低いほど脱水素反応が進行し易いため、50Pa以下が好ましく、最終到達圧力(最終到達真空度)は、10Pa以下、特に1Pa以下が好ましい。
{atmosphere}
In the dehydrogenation step, heat treatment is performed in a non-hydrogen atmosphere so as not to react with the multiphase particles and to efficiently remove hydrogen. Examples of the non-hydrogen atmosphere include an inert atmosphere and a reduced pressure atmosphere. Examples of the inert atmosphere include Ar and N 2 . The reduced pressure atmosphere refers to a vacuum state in which the pressure is lower than that of a standard air atmosphere. When hydrogen is removed from a rare earth element hydrogen compound in a reduced-pressure atmosphere, the rare earth element hydrogen compound hardly remains and recombination can be caused completely. As a result, the composition of the recombined alloy can be increased, and finally a composite magnetic material having excellent magnetic properties can be obtained. Therefore, in the manufacturing method of the present invention, a reduced pressure atmosphere is used. In particular, a reduced pressure atmosphere of 100 Pa or less is used. More preferably, in the dehydrogenation treatment, the temperature raising step up to a predetermined temperature (reaction start temperature) is set to a hydrogen atmosphere at atmospheric pressure (1 atm), and then hydrogen is discharged to make a non-hydrogen atmosphere and 100 Pa or less. The reduced pressure atmosphere is preferable. By making the temperature rise into a hydrogen atmosphere, the dehydrogenation reaction can be started after the temperature is sufficiently high, and reaction spots can be suppressed. Moreover, when the pressure during the dehydrogenation reaction treatment is 100 Pa or less, the dehydrogenation reaction is likely to proceed, and the recombination alloy crystal is prevented from coarsening, and a composite magnetic material having a high coercive force can be obtained. The lower the pressure of the atmosphere during the dehydrogenation reaction treatment, the easier the dehydrogenation reaction proceeds. Therefore, the pressure is preferably 50 Pa or less, and the final ultimate pressure (final ultimate vacuum) is preferably 10 Pa or less, particularly preferably 1 Pa or less.

{加熱}
脱水素工程における熱処理(脱水素)の温度は、再結合温度以上とする。再結合温度とは、多相粒子が、希土類元素の水素化合物の相と鉄含有物の相とを有する多相状態から、希土類元素と鉄含有物とが結合して、希土類元素とFeとを含む合金からなる単相状態に変態する温度をいう。再結合温度は、多相粒子の組成により異なるものの、代表的には、Smを含む場合、600℃以上、Ndを含む場合、700℃以上が挙げられる。熱処理(脱水素)時の温度は、高いほど水素を十分に除去して再結合化を進行できるものの、高過ぎると、蒸気圧が高い希土類元素が揮発して減少したり、再結合合金の結晶が粗大化して、最終的に得られる複合磁性材の保磁力が低下したりする恐れがあるため、1000℃以下が好ましい。熱処理(脱水素)時の保持時間は、10分以上600分以下が挙げられる。温度条件は、公知のHDDR処理におけるDR処理の条件を適用できる。
{heating}
The temperature of the heat treatment (dehydrogenation) in the dehydrogenation step is equal to or higher than the recombination temperature. The recombination temperature means that a multiphase particle has a phase of a rare earth element hydrogen compound and a phase of an iron-containing material, and the rare earth element and the iron-containing material are combined to form a rare earth element and Fe. The temperature at which it transforms into a single phase consisting of the alloy it contains. The recombination temperature varies depending on the composition of the multiphase particles, but typically includes 600 ° C. or higher when Sm is included, and 700 ° C. or higher when Nd is included. The higher the temperature during heat treatment (dehydrogenation), the more hydrogen can be removed and recombination can proceed, but if it is too high, rare earth elements with high vapor pressure will volatilize and decrease, or the crystal of the recombination alloy May be coarsened, and the coercive force of the finally obtained composite magnetic material may be reduced. The holding time at the time of heat treatment (dehydrogenation) is 10 minutes or more and 600 minutes or less. As the temperature condition, a known DR process condition in the HDR process can be applied.

{磁場印加}
そして、脱水素工程では、第一成形体に磁場を印加した状態で熱処理(脱水素)を行う。磁場は、2T以上の強磁場とする。このような強磁場は、高温超電導磁石を用いることで安定して形成することができる。高温超電導磁石は、例えば、予備印加状態から最大磁場への到達時間が短いなど、磁場の変動を高速で行える。低温超電導磁石を用いた場合、磁場変動速度は、一般に、1T当たり5分〜10分程度であるのに対し、高温超電導磁石では、例えば、1T当たり10秒以内と非常に短時間で行える。このように高温超電導磁石を利用すると、所望の強磁場を容易に得られることから、熱処理時間の短縮を図ることができる。熱処理時間の短縮化により、成形体を構成する粒子内の結晶粒の成長を抑制して粗粒化を低減できることから、保磁力が大きな複合磁性材が得られ易い。更に、磁場変動速度が速いため、成形型に造粒粉を充填するときや成形体を取り出すときに磁場の印加を停止(OFF)したり、熱処理中に磁場の印加を開始(ON)したり、といった磁場の印加の制御も速やかに行える。このように高温超電導磁石を利用すると、連続的に熱処理が行え、複合磁性材の生産性にも優れる。高温超電導磁石は、代表的には、酸化物超電導体により構成された超電導コイルを例えば、冷凍機による伝導冷却で冷却して使用される(動作温度はおよそ-260℃以上)。
{Magnetic field applied}
In the dehydrogenation step, heat treatment (dehydrogenation) is performed with a magnetic field applied to the first compact. The magnetic field is a strong magnetic field of 2T or more. Such a strong magnetic field can be stably formed by using a high-temperature superconducting magnet. The high-temperature superconducting magnet can change the magnetic field at high speed, for example, the arrival time from the preliminary application state to the maximum magnetic field is short. When a low-temperature superconducting magnet is used, the magnetic field fluctuation speed is generally about 5 to 10 minutes per 1T, whereas with a high-temperature superconducting magnet, it can be performed in a very short time, for example, within 10 seconds per 1T. When the high-temperature superconducting magnet is used in this way, a desired strong magnetic field can be easily obtained, so that the heat treatment time can be shortened. By shortening the heat treatment time, the growth of crystal grains in the particles constituting the compact can be suppressed to reduce the coarsening, so that a composite magnetic material having a large coercive force can be easily obtained. Furthermore, since the magnetic field fluctuation speed is fast, the application of the magnetic field is stopped (OFF) when the granulated powder is filled in the mold or the molded product is taken out, or the application of the magnetic field is started (ON) during the heat treatment. The application of the magnetic field can be quickly controlled. When the high-temperature superconducting magnet is used in this way, heat treatment can be performed continuously, and the productivity of the composite magnetic material is excellent. A high-temperature superconducting magnet is typically used by cooling a superconducting coil composed of an oxide superconductor, for example, by conducting cooling with a refrigerator (operating temperature is about −260 ° C. or more).

造粒粉を成形型に充填する際には、上述の特定の強磁場を印加していない状態とすると、成形型内に造粒粉が偏って充填されることなどを防止し易く好ましい。一方、造粒粉を成形型(好ましくは上述の加熱温度に加熱された状態にあるもの)に充填した後には、造粒粉の温度が上昇してバインダが溶融状態になるまでの間、例えば、10秒〜15秒程度の非常に短時間の間に上記特定の強磁場にすることが望まれる。高温超電導磁石は、強磁場を急速に励磁可能な高温超電導コイルを具える電磁石であり、この要求に十分に対応できることから、造粒粉を成形型に充填した後、高温超電導磁石を用いて上記特定の磁場を印加することが好ましい。   When filling the granulated powder into the mold, it is preferable that the above-described specific strong magnetic field is not applied to easily prevent the granulated powder from being charged unevenly in the mold. On the other hand, after filling the granulated powder into a mold (preferably in a state heated to the above heating temperature), until the temperature of the granulated powder rises and the binder is in a molten state, for example, It is desired to make the above-mentioned specific strong magnetic field within a very short time of about 10 seconds to 15 seconds. A high-temperature superconducting magnet is an electromagnet having a high-temperature superconducting coil that can rapidly excite a strong magnetic field, and can sufficiently meet this requirement. Therefore, after filling granulated powder into a mold, the above-mentioned high-temperature superconducting magnet is used. It is preferable to apply a specific magnetic field.

脱水素工程では、水素が除去されて形成された、希土類元素とFeとを含む結晶核の周囲に、希土類元素の含有量が高い液相(希土類リッチ相)が存在した状態になっている。このとき、上述の特定の強磁場を印加すると、結晶核の結晶方位が一定の方向に向き易くなり、再結合の反応の完了時、各結晶粒が配向した状態となる。また、上述の特定の強磁場を印加すると、この結晶粒の周囲に存在するナノ鉄粉も、その結晶方位が一方向に向きやすくなり、配向した状態となる。即ち、再結合合金の結晶の磁化容易軸(代表的には、c軸)とナノ鉄粉の結晶の磁化容易軸(代表的には、<100>方向)とが揃って配向する。この磁場の大きさが大きいほど上記再結合合金の結晶方位やナノ鉄粉の結晶方位を一方向に配向させ易い。その結果、再結合合金が等方性結晶となることを防止し易くなる上に、最終的に磁気特性(特に、保磁力)に優れる複合磁性材が得られることから、磁場の大きさは3T以上、更に4T以上が好ましい。   In the dehydrogenation step, a liquid phase (rare earth rich phase) having a high content of rare earth elements is present around crystal nuclei containing rare earth elements and Fe formed by removing hydrogen. At this time, when the above-described specific strong magnetic field is applied, the crystal orientation of the crystal nucleus is easily oriented in a fixed direction, and each crystal grain is oriented when the recombination reaction is completed. In addition, when the above-described specific strong magnetic field is applied, the nanoiron powder existing around the crystal grains is easily oriented in one direction and is in an oriented state. That is, the easy axis (typically c-axis) of the crystal of the recombined alloy and the easy axis of magnetization (typically <100> direction) of the nano-iron powder crystal are aligned. The larger the magnetic field, the easier it is to align the crystal orientation of the recombination alloy and the crystal orientation of the nano iron powder in one direction. As a result, it is easy to prevent the recombination alloy from becoming an isotropic crystal, and finally a composite magnetic material having excellent magnetic properties (particularly coercive force) is obtained. In addition, 4T or more is preferable.

多相粉末が上述した酸化防止層を具える形態であって、当該酸化防止層が樹脂といった加熱により除去可能な材質から構成されている場合、熱処理(脱水素)は、当該酸化防止層の除去を兼ねることもできる。酸化防止層を除去するための熱処理(被覆除去)を別途施してもよい。この熱処理(被覆除去)は、酸化防止層の材質にもよるが、例えば、加熱温度:200℃以上400℃以下、保持時間:30分以上300分以下が挙げられる。この熱処理(被覆除去)を行うことで、酸化防止層の残滓を効果的に防止できる。   When the multiphase powder is provided with the above-described antioxidant layer and the antioxidant layer is made of a material that can be removed by heating, such as a resin, heat treatment (dehydrogenation) is performed to remove the antioxidant layer. It can also serve as. A heat treatment (coating removal) for removing the antioxidant layer may be separately performed. Although this heat treatment (coating removal) depends on the material of the antioxidant layer, for example, the heating temperature is 200 ° C. or more and 400 ° C. or less, and the holding time is 30 minutes or more and 300 minutes or less. By performing this heat treatment (coating removal), the residue of the antioxidant layer can be effectively prevented.

第一成形体として相対密度が高いものを作製すると、脱水素工程の前後で体積の変化度合い(熱処理(脱水素)後の収縮量)を小さくでき、例えば、体積変化率を5%以下とすることができる。従って、形状調整のための切削加工などの後加工を省略でき、本発明製造方法は、複合磁性材の生産性を高められる。   When a product with a high relative density is produced as the first molded body, the degree of volume change (shrinkage amount after heat treatment (dehydrogenation)) can be reduced before and after the dehydrogenation process, for example, the volume change rate is set to 5% or less. be able to. Accordingly, post-processing such as cutting for shape adjustment can be omitted, and the manufacturing method of the present invention can increase the productivity of the composite magnetic material.

脱水素工程を経て得られた第二成形体は、代表的には、扁平な形状の再結合合金からなる粒子(以下、再結合粒子と呼ぶ)間にナノ鉄粉が介在した圧密組織を有する成形体である。   The second molded body obtained through the dehydrogenation process typically has a compacted structure in which nano iron powder is interposed between particles made of a flat recombination alloy (hereinafter referred to as recombination particles). It is a molded body.

(窒化工程)
二段階目の熱処理では、主として、第二成形体を構成するナノ鉄粉を窒化して、α"Fe16N2を生成する。本発明製造方法では、この第二段階の熱処理を施すにあたり、特定の強磁場を印加することを特徴の一つとする。
(Nitriding process)
In the second stage heat treatment, the nano iron powder constituting the second molded body is mainly nitrided to produce α "Fe 16 N 2. In the manufacturing method of the present invention, the second stage heat treatment is performed. One characteristic is that a specific strong magnetic field is applied.

{雰囲気}
窒化工程における雰囲気は、少なくとも窒素元素を含むものとする。例えば、窒素(N2)のみの単一雰囲気、或いはアンモニア(NH3)雰囲気、或いは窒素(N2)やアンモニアといった窒素元素を含むガスとArといった不活性ガスとの混合ガス雰囲気、或いは上記窒素元素を含むガスと水素(H2)との混合ガス雰囲気が挙げられる。特に、水素元素を含有する雰囲気は還元雰囲気であるため、生成した窒化物の酸化、再結合粒子などの酸化や過剰窒化を防止できて好ましい。特に、本発明製造方法では、酸素濃度を200質量ppm以下とすることで、窒化工程での酸化を効果的に防止できる。従って、ナノ鉄粉を良好に窒化できる上に、生成された酸化物により磁性相(希土類元素とFeとを含有する合金、α"Fe16N2)の割合が低下することを防止でき、飽和磁化、保磁力の双方に優れる複合磁性材が得られる。酸素濃度は低いほど好ましく、100質量ppm以下がより好ましい。
{atmosphere}
The atmosphere in the nitriding step includes at least a nitrogen element. For example, a single atmosphere of only nitrogen (N 2 ), or an ammonia (NH 3 ) atmosphere, or a mixed gas atmosphere of a gas containing a nitrogen element such as nitrogen (N 2 ) or ammonia and an inert gas such as Ar, or the above nitrogen A mixed gas atmosphere of a gas containing an element and hydrogen (H 2 ) can be given. In particular, since the atmosphere containing hydrogen element is a reducing atmosphere, oxidation of the produced nitride, oxidation of recombination particles, and excessive nitridation can be prevented, which is preferable. In particular, in the production method of the present invention, the oxidation in the nitriding step can be effectively prevented by setting the oxygen concentration to 200 mass ppm or less. Therefore, it is possible to satisfactorily nitride the nano iron powder, and it is possible to prevent the ratio of the magnetic phase (alloy containing rare earth element and Fe, α "Fe 16 N 2 ) from being lowered by the generated oxide, and to be saturated. A composite magnetic material excellent in both magnetization and coercive force can be obtained.The lower the oxygen concentration, the more preferable, and 100 mass ppm or less is more preferable.

{加熱}
熱処理(窒化)の温度は、200℃以上450℃以下とする。200℃以上とすることで、FeとNとの反応性を高められ、鉄の基本格子を構成するFe原子-Fe原子間にN原子を十分に侵入させることができる。この温度が高いほど、上記反応性を高められて窒化を進行でき、α"Fe16N2を十分に生成でき、保磁力が高いといった磁気特性に優れる複合磁性材が得られる。但し、熱処理(窒化)の温度は、高過ぎると後述する磁場の印加による磁歪効果が小さくなり、過剰窒化によってα"Fe16N2の生成効率が低下し、α"Fe16N2成分の割合が減ることで飽和磁化の低下を招くことから、450℃以下とする。200℃〜350℃程度がより好ましい。熱処理(窒化)時の保持時間は、例えば、10分以上1800分以下が挙げられる。アンモニア雰囲気といった窒化の進行が速い雰囲気とすると、熱処理(窒化)の保持時間を短くすることができる。
{heating}
The temperature of the heat treatment (nitriding) is 200 ° C. or higher and 450 ° C. or lower. By setting the temperature to 200 ° C. or higher, the reactivity between Fe and N can be increased, and N atoms can sufficiently penetrate between Fe atoms and Fe atoms constituting the basic lattice of iron. The higher the temperature is, the higher the reactivity is, the more the nitriding can proceed, the α ”Fe 16 N 2 can be sufficiently produced, and a composite magnetic material having excellent magnetic properties such as high coercive force can be obtained. temperature of nitriding) is magnetostrictive effect by the application of a magnetic field which will be described later too high is reduced, excess alpha by nitriding "generation efficiency of Fe 16 N 2 is decreased, alpha" Fe 16 N 2 that the ratio of components is reduced In order to reduce the saturation magnetization, the temperature is set to 450 ° C. or less, more preferably about 200 ° C. to 350 ° C. The holding time during heat treatment (nitridation) is, for example, 10 minutes to 1800 minutes. When the atmosphere in which nitriding proceeds is fast, the heat treatment (nitriding) holding time can be shortened.

出発合金にRExMe17やREx/2Me12といった希土類-鉄系合金を利用した場合、窒化工程では、上記希土類-鉄系合金からなる再結合合金を窒化して、希土類元素とFeとを含む希土類-鉄-窒素系合金を生成する。即ち、この形態では、ナノ鉄粉と再結合合金との双方を同時に窒化する。希土類-鉄-窒素系合金を生成するための温度は、再結合合金が窒素元素と反応する温度(窒化温度)以上、窒素不均化温度(希土類元素と鉄含有物とがそれぞれ分離・独立して、窒素元素と反応する温度)以下が好ましい。窒化温度や窒素不均化温度は、再結合合金の組成によって異なるが、200℃以上550℃以下が挙げられる。上述のように熱処理(窒化)の温度を200℃〜450℃、より好ましくは200℃〜300℃程度とすれば、再結合合金を十分に窒化可能であり、希土類-鉄-窒素系合金を生成できる。また、α"Fe16N2及び希土類-鉄-窒素系合金の割合を十分に高められ、保磁力が高いといった複合磁性材が得られる。出発合金にRExMe14B,RExMe14Cといった希土類-鉄-ホウ素系合金や希土類-鉄-炭素系合金を利用した場合、窒化工程では、実質的にナノ鉄粉の窒化のみが行われる。なお、RE-Me合金(代表的にはREx/2Me12)の窒化温度はFeの窒化温度よりも高い傾向にあるため、原料にRE-Me合金を用いた場合、窒化工程の温度によってはRE-Me合金が実質的に窒化されず、Feのみが窒化され、RE1Me12が存在する複合磁性材が製造され得る。この場合でも、複合磁性材は磁気特性に優れる。出発合金にRE1Me12N3といった既に希土類-鉄-窒素系合金となっている合金を利用することもできる。 When a rare earth-iron alloy such as RE x Me 17 or RE x / 2 Me 12 is used as a starting alloy, in the nitriding step, a recombination alloy composed of the rare earth-iron alloy is nitrided, and the rare earth element and Fe To produce rare earth-iron-nitrogen based alloys. That is, in this embodiment, both the nano iron powder and the recombination alloy are simultaneously nitrided. The temperature at which the rare earth-iron-nitrogen alloy is produced is equal to or higher than the temperature at which the recombination alloy reacts with the nitrogen element (nitriding temperature) and the nitrogen disproportionation temperature (the rare earth element and the iron-containing material are separated and independent of each other). The temperature at which the element reacts with the nitrogen element) is preferred. Although the nitriding temperature and the nitrogen disproportionation temperature vary depending on the composition of the recombination alloy, examples include 200 ° C. or more and 550 ° C. or less. As described above, if the temperature of the heat treatment (nitriding) is 200 ° C. to 450 ° C., more preferably about 200 ° C. to 300 ° C., the recombination alloy can be sufficiently nitrided, and a rare earth-iron-nitrogen alloy is formed. it can. In addition, a composite magnetic material having a sufficiently high ratio of α "Fe 16 N 2 and a rare earth-iron-nitrogen alloy and a high coercive force is obtained. RE x Me 14 B, RE x Me 14 C When rare earth-iron-boron alloys and rare earth-iron-carbon alloys are used, only nitriding of nano iron powder is performed in the nitriding process. The nitriding temperature of x / 2 Me 12 ) tends to be higher than the nitriding temperature of Fe, so when using a RE-Me alloy as a raw material, the RE-Me alloy is not substantially nitrided depending on the temperature of the nitriding process. only Fe is nitrided, the composite magnetic material RE 1 Me 12 there can be produced even in this case, the composite magnetic material excellent in magnetic properties already rare earth such as RE 1 Me 12 N 3 in the starting alloy -.. iron - An alloy that is a nitrogen-based alloy can also be used.

{磁場印加}
そして、窒化工程も、第二成形体に磁場を印加した状態で熱処理(窒化)を行う。磁場は、3T以上の強磁場とする。このような強磁場の印加には、上述した高温超電導磁石を好適に利用することができる。このような強磁場を印加することで、Feの基本格子を印加する磁場方向に十分に引き伸ばすことができ、N原子の侵入方向を一方向に規制し易い。そのため、N原子がランダムに侵入して、磁気特性に劣るFe4NやFe3Nが生成されることを抑制して、α"Fe16N2を効率よく生成できる。その結果、飽和磁化が高いといった磁気特性に優れる複合磁性材が得られる。この磁場の大きさは、大きいほど鉄の基本格子を一方向に引き伸ばし易く、引き伸ばされたFe原子-Fe原子間にN原子を侵入させ易い、即ち、α"Fe16N2を生成し易い。また、この磁場が大きいほど、再結合合金の結晶格子も一方向に引き伸ばし易く、引き伸ばされたFe原子-Fe原子間にN原子を侵入させることで、理想状態の原子比の窒化物(例えば、Sm2Fe17N3)が得られ易くなる。つまり、印加磁場の大きさは、大きいほどN原子の進入方向を規制できるため、3.5T以上、更に4T以上が好ましい。
{Magnetic field applied}
In the nitriding step, heat treatment (nitriding) is performed in a state where a magnetic field is applied to the second compact. The magnetic field is a strong magnetic field of 3T or more. The high-temperature superconducting magnet described above can be suitably used for applying such a strong magnetic field. By applying such a strong magnetic field, it can be sufficiently stretched in the direction of the magnetic field in which the basic lattice of Fe is applied, and the intrusion direction of N atoms can be easily controlled in one direction. Therefore, it is possible to efficiently generate α "Fe 16 N 2 by suppressing the intrusion of N atoms at random and the generation of Fe 4 N and Fe 3 N which are inferior in magnetic properties. As a result, the saturation magnetization is reduced. A composite magnetic material with excellent magnetic properties, such as high, can be obtained.The larger the magnetic field, the easier it is to stretch the iron basic lattice in one direction, and it is easier for N atoms to penetrate between the stretched Fe atoms-Fe atoms. That is, α ″ Fe 16 N 2 is easily generated. In addition, the larger the magnetic field, the easier the recombination alloy crystal lattice stretches in one direction, and N atoms penetrate between the stretched Fe atoms-Fe atoms, so that nitrides with an ideal atomic ratio (for example, Sm 2 Fe 17 N 3 ) is easily obtained. That is, the larger the magnitude of the applied magnetic field, the more restrictive the direction in which N atoms enter is, so 3.5T or more, and further 4T or more are preferable.

また、この磁場の印加により、生成されたα"Fe16N2の磁気容易軸と、生成された希土類-鉄-窒素系合金の磁気容易軸や、再結合された希土類-鉄-ホウ素系合金や希土類-鉄-炭素系合金、希土類-鉄-窒素系合金などの磁気容易軸とを揃えて配向させることができる。このように本発明製造方法は、合金粒子と鉄窒化物粒子とが揃って配向した配向組織を有する本発明複合磁性材が得られる。 In addition, by applying this magnetic field, the magnetic easy axis of the generated α ”Fe 16 N 2 , the magnetic easy axis of the generated rare earth-iron-nitrogen alloy, and the recombined rare earth-iron-boron alloy And the magnetic easy axis of rare earth-iron-carbon alloys, rare earth-iron-nitrogen alloys, etc. As described above, in the production method of the present invention, alloy particles and iron nitride particles are aligned. Thus, the composite magnetic material of the present invention having an oriented structure is obtained.

脱水素工程後に得られた第二成形体も相対密度が高いものであると、窒化工程の前後でも体積の変化度合いを小さくでき、例えば、体積変化率を5%以下とすることができる。従って、最終形状のための切削加工などの後加工を省略でき、本発明製造方法は、複合磁性材の生産性を高められる。   If the second molded body obtained after the dehydrogenation step has a high relative density, the degree of volume change can be reduced before and after the nitriding step, for example, the volume change rate can be 5% or less. Therefore, post-processing such as cutting for the final shape can be omitted, and the manufacturing method of the present invention can increase the productivity of the composite magnetic material.

[複合磁性材]
本発明複合磁性材は、希土類元素とFeとを含有する合金を主成分とする複数の合金粒子間に、α"Fe16N2を主成分とする少なくとも一つの鉄窒化物粒子が介在された成形体からなるものである。つまり、本発明複合磁性材は、合金粒子及び鉄窒化物粒子の粒界を確認することができる。
[Composite magnetic material]
In the composite magnetic material of the present invention, at least one iron nitride particle mainly composed of α ″ Fe 16 N 2 is interposed between a plurality of alloy particles mainly composed of an alloy containing a rare earth element and Fe. That is, the composite magnetic material of the present invention can confirm the grain boundaries of alloy particles and iron nitride particles.

上記合金粒子を構成する合金は、例えば、上述のREとMeとを用いて(但し、x=1.5〜3.5)、RE2Me14B,RE2Me14C,RE2Me17Nx,RE1Me12Nx及びRE1Me12から選択される1以上が挙げられる。より具体的には、RE2Me14Bは、Nd2Fe14B、Nd2(Co1Fe13)B、RE2Me14Cは、Nd2Fe14C、RE2Me17Nxは、Sm2Fe17N3、Y2Fe17N3、RE1Me12Nxは、Sm1(Ti1Fe11)N2、Sm1(Mn1Fe11)N2、Y1(Ti1Fe11)N2、Y1(Mn1Fe11)N2、RE1Me12は、Sm1(Ti1Fe11)、Sm1(Mn1Fe11)、Y1(Ti1Fe11)、Y1(Mn1Fe11)などが挙げられる。特に、Sm-Fe-N系合金は、磁気特性に優れて好ましい。MeにおけるFeとその他の元素:Co,Ni,Mn,Tiとの含有比率は連続的に変化させることができる。また、合金粒子は、多相組織から再結合合金組織に変化する際に結晶の成長を制御するような元素(例えば、Cu,Al,Cr,Ga,Nbなど)を含むものを許容する。 The alloy constituting the alloy particles may be, for example, RE 2 Me 14 B, RE 2 Me 14 C, RE 2 Me 17 N x , RE using the above-described RE and Me (where x = 1.5 to 3.5). One or more selected from 1 Me 12 N x and RE 1 Me 12 can be mentioned. More specifically, RE 2 Me 14 B is Nd 2 Fe 14 B, Nd 2 (Co 1 Fe 13 ) B, RE 2 Me 14 C is Nd 2 Fe 14 C, RE 2 Me 17 N x is Sm 2 Fe 17 N 3 , Y 2 Fe 17 N 3 , RE 1 Me 12 N x are Sm 1 (Ti 1 Fe 11 ) N 2 , Sm 1 (Mn 1 Fe 11 ) N 2 , Y 1 (Ti 1 Fe 11 ) N 2 , Y 1 (Mn 1 Fe 11 ) N 2 , RE 1 Me 12 are Sm 1 (Ti 1 Fe 11 ), Sm 1 (Mn 1 Fe 11 ), Y 1 (Ti 1 Fe 11 ), Y 1 (Mn 1 Fe 11 ) and the like. In particular, the Sm—Fe—N alloy is preferable because of its excellent magnetic properties. The content ratio of Fe and other elements: Co, Ni, Mn, Ti in Me can be changed continuously. In addition, alloy particles that contain elements (for example, Cu, Al, Cr, Ga, Nb, etc.) that control crystal growth when changing from a multiphase structure to a recombined alloy structure are allowed.

合金粒子における合金成分の含有量は、80体積%以上とする。この含有量が多いほど(純度が高いほど)、磁気特性に優れる磁性相が多くなり、磁気特性に優れる。従って、合金粒子における合金成分の含有量は90体積%以上がより好ましい。合金成分の含有量は、製造工程において、酸化を防止することで高められる。例えば、上述のように多相粉末として酸化防止層を具えるものを利用したり、造粒工程や窒化工程での酸素濃度を低減して酸化を防止したりすることが挙げられる。合金粒子は、不可避不純物の含有を許容する。不可避不純物は、酸化物、バインダの残滓などが挙げられる。   The alloy component content in the alloy particles is 80% by volume or more. The greater the content (the higher the purity), the greater the magnetic phase with excellent magnetic properties and the better magnetic properties. Therefore, the content of the alloy component in the alloy particles is more preferably 90% by volume or more. The content of the alloy component is increased by preventing oxidation in the manufacturing process. For example, as described above, a multiphase powder having an antioxidant layer may be used, or the oxygen concentration in the granulation process or nitriding process may be reduced to prevent oxidation. The alloy particles allow inclusion of inevitable impurities. Examples of inevitable impurities include oxides and binder residues.

鉄窒化物粒子におけるα"Fe16N2成分の含有量は、80体積%以上とする。この含有量が多いほど(純度が高いほど)、磁気特性に優れる磁性相が多くなったり、配向性を高められたりして、保磁力や飽和磁化が高く、磁気特性に優れる。そのため、α"Fe16N2成分の含有量は、85体積%以上、更に90体積%以上が好ましい。鉄窒化物粒子は、不可避不純物の含有を許容する。不可避不純物はα鉄や酸化物などが挙げられる。α"Fe16N2成分の含有量は、例えば、製造工程において、酸化を防止することで高められる。例えば、造粒工程や窒化工程での酸素濃度を低減して酸化を防止することが挙げられる。 The content of α ”Fe 16 N 2 component in iron nitride particles should be 80% by volume or more. The higher this content (the higher the purity), the more the magnetic phase with excellent magnetic properties and the orientation The coercive force and saturation magnetization are high, and the magnetic properties are excellent. Therefore, the content of the α ″ Fe 16 N 2 component is preferably 85% by volume or more, and more preferably 90% by volume or more. The iron nitride particles allow inclusion of inevitable impurities. Examples of inevitable impurities include α-iron and oxides. The content of the α ”Fe 16 N 2 component can be increased, for example, by preventing oxidation in the production process. For example, reducing the oxygen concentration in the granulation process or nitriding process to prevent oxidation. It is done.

鉄窒化物粒子は、原料に用いたナノ鉄粉と同様に、柱状で、その短軸の平均長さが100nm以下とする。短軸の平均長さは、80nm以下、更に50nm以下、特に20nm以下が好ましい。ここで、結晶粒径が10nm以上である場合、結晶粒界が多いほど、つまり結晶粒のサイズが小さいほど、保磁力が大きくなる。鉄窒化物粒子の長軸に対して相対的に短軸の長さが短いほど、つまり、アスペクト比が大きいほど、鉄窒化物粒子内が単結晶化し易く、結果として結晶粒のサイズが小さいことと同義になるため、保磁力を大きくすることができる。この鉄窒化物粒子のアスペクト比は、2以上、更に2.2以上が好ましい。また、鉄窒化物粒子の短軸の平均長さが10nm以上であると、アスペクト比が小さくなり過ぎず、鉄窒化物粒子がいわゆる超常磁性状態となり難くなり、磁石特性の喪失を抑制できる。   The iron nitride particles are columnar like the nano iron powder used as a raw material, and the average length of the minor axis is 100 nm or less. The average length of the short axis is preferably 80 nm or less, more preferably 50 nm or less, and particularly preferably 20 nm or less. Here, when the crystal grain size is 10 nm or more, the coercive force increases as the crystal grain boundary increases, that is, as the crystal grain size decreases. The shorter the length of the minor axis relative to the major axis of the iron nitride particles, that is, the larger the aspect ratio, the easier the inside of the iron nitride particles to be single crystallized, resulting in a smaller crystal grain size. The coercive force can be increased. The aspect ratio of the iron nitride particles is preferably 2 or more, and more preferably 2.2 or more. Further, when the average length of the minor axis of the iron nitride particles is 10 nm or more, the aspect ratio does not become too small, and the iron nitride particles are unlikely to be in a so-called superparamagnetic state, and loss of magnet characteristics can be suppressed.

そして、本発明複合磁性材は、合金粒子の磁化容易軸の配向方向(平行方向)と、鉄窒化物粒子の磁化容易軸の配向方向(平行方向)とがなす立体角が10°以下であることを特徴の一つとする。本発明複合磁性材は、上述のように特定の強磁場を印加して製造することから、合金粒子及び鉄窒化物粒子の両粒子の結晶方位が同様な方向に配向して、立体角が小さくなる。立体角が小さいほど、上記両粒子が同じ方向に配向していることになり磁気特性により優れることから、立体角は、9°以下、更に7°以下が好ましい。立体角は、出発合金粉末の形状や製造条件により調整することができる。合金粒子及び鉄窒化物粒子の磁気容易軸は、代表的には、(00n)方向が挙げられる(n≠0の整数。代表的にはn=2〜6)。合金粒子(或いは鉄窒化物粒子)の磁化容易軸の配向方向は、以下のように求める。複合磁性材の極点図を測定し、観察面に対する磁化容易軸の分布情報を得る。この分布情報から、全体の合金粒子(或いは鉄窒化物粒子)の70%以上の結晶の磁化容易軸がその配向方向から立体角が30°以内になっている場合を前提とし、観察面中に存在する全体の合金粒子(或いは鉄窒化物粒子)の平均方向を磁化容易軸の配向方向とする。本発明製造方法で製造した複合磁性材は、上述の前提状態が成立している。   In the composite magnetic material of the present invention, the solid angle formed by the orientation direction (parallel direction) of the easy axis of alloy particles and the orientation direction (parallel direction) of the easy axis of iron nitride particles is 10 ° or less. This is one of the characteristics. Since the composite magnetic material of the present invention is manufactured by applying a specific strong magnetic field as described above, the crystal orientations of both the alloy particles and the iron nitride particles are oriented in the same direction, and the solid angle is small. Become. The smaller the solid angle, the more the above particles are oriented in the same direction and the better the magnetic properties. Therefore, the solid angle is preferably 9 ° or less, and more preferably 7 ° or less. The solid angle can be adjusted by the shape of the starting alloy powder and the production conditions. The magnetic easy axis of alloy particles and iron nitride particles typically has a (00n) direction (an integer where n ≠ 0, typically n = 2 to 6). The orientation direction of the easy axis of the alloy particles (or iron nitride particles) is obtained as follows. The pole figure of the composite magnetic material is measured, and the distribution information of the easy magnetization axis with respect to the observation surface is obtained. From this distribution information, assuming that the easy axis of 70% or more of all alloy particles (or iron nitride particles) has a solid angle within 30 ° from the orientation direction, The average direction of all the alloy particles (or iron nitride particles) present is defined as the orientation direction of the easy magnetization axis. The above-mentioned precondition is established for the composite magnetic material manufactured by the manufacturing method of the present invention.

本発明複合磁性材は、(1)磁気特性(特に、保磁力)に優れる合金粒子と、磁気特性(特に、飽和磁化)に優れる鉄窒化物粒子との双方を含む、(2)合金粒子と鉄窒化物粒子とが揃って配向している、ことから、保磁力や飽和磁化といった磁気特性に優れる。例えば、飽和磁化が1.5T以上を満たす形態、保磁力が10kOe(800kA/m)以上を満たす形態、飽和磁化:1.5T以上及び保磁力:10kOe(800kA/m)以上の双方を満たす形態が挙げられる。このように磁気特性に優れることから、本発明複合磁性材は、永久磁石の素材に好適に利用することができる。   The composite magnetic material of the present invention includes both (1) alloy particles having excellent magnetic properties (particularly coercive force) and iron nitride particles having excellent magnetic properties (particularly saturation magnetization). Since the iron nitride particles are aligned together, the magnetic properties such as coercive force and saturation magnetization are excellent. For example, a form in which the saturation magnetization satisfies 1.5 T or more, a form in which the coercive force satisfies 10 kOe (800 kA / m) or more, a form that satisfies both the saturation magnetization: 1.5 T or more and the coercivity: 10 kOe (800 kA / m) or more. It is done. Thus, since it is excellent in a magnetic characteristic, this invention composite magnetic material can be utilized suitably for the raw material of a permanent magnet.

本発明複製造方法では、上述のように成形性に優れる多相粉末を原料に用いることで高密度な粉末成形体を得易く、このような粉末成形体を利用することで、高密度な複合磁性材が得られる。例えば、製造時に上述のバインダを十分に除去することで、本発明複合磁性材は、その相対密度が90%以上、更には95%以上とすることができる。このような高密度な複合磁性材は、磁性相の割合が高いため、磁気特性に優れる。   In the multi-production method of the present invention, it is easy to obtain a high-density powder molded body by using the multiphase powder having excellent moldability as a raw material as described above, and a high-density composite can be obtained by using such a powder molded body. A magnetic material is obtained. For example, by sufficiently removing the above-mentioned binder at the time of manufacture, the composite magnetic material of the present invention can have a relative density of 90% or more, further 95% or more. Such a high-density composite magnetic material has a high magnetic phase ratio and thus has excellent magnetic properties.

以下、試験例を挙げて、本発明のより具体的な実施形態を説明する。
[試験例1]
原料粉末として、異なる二種類の粉末を用意し、この原料粉末とバインダとを混合して造粒粉を作製し、この造粒粉を加圧成形した後、二段階の熱処理(脱水素及び窒化)を施して磁性材を作製し、磁気特性を調べた。この試験では、特に、原料粉末のサイズ、バインダの分解温度、成形条件(温度、雰囲気圧力)、熱処理条件(温度、印加磁場、雰囲気)の影響を調べた。
Hereinafter, more specific embodiments of the present invention will be described with reference to test examples.
[Test Example 1]
Prepare two different types of powder as raw material powder, mix this raw material powder and binder to produce granulated powder, press the granulated powder, and then perform two-stage heat treatment (dehydrogenation and nitriding) ) To produce a magnetic material and investigate the magnetic properties. In this test, in particular, the effects of the raw material powder size, binder decomposition temperature, molding conditions (temperature, atmospheric pressure), and heat treatment conditions (temperature, applied magnetic field, atmosphere) were examined.

複合磁性材は、図1に示すように準備工程:原料粉末の準備→造粒工程:造粒粉の作製→成形工程:第一成形体の形成→脱水素工程:第二成形体の形成→窒化工程:α"Fe16N2の生成・希土類-鉄-窒素系合金の生成という手順で作製した。 As shown in FIG. 1, the composite magnetic material has a preparation process: preparation of raw material powder → granulation process: production of granulated powder → molding process: formation of a first molded body → dehydrogenation process: formation of a second molded body → Nitriding process: Fabricated by the procedure of α ”Fe 16 N 2 and rare earth-iron-nitrogen alloy.

(準備工程)
原料粉末には、以下のナノ鉄粉と、多相粉末とを用意した。
{ナノ鉄粉}
共沈法に準じて、塩化鉄(II)と水酸化ナトリウムとをpH≒8〜9の状態になるように投入制御して、Fe2O3粉末を作製し、水素還元を行った後、酸化処理を施して、表面に酸化層を具えるナノ鉄粉を作製した。各試料に用いるナノFe2O3粉末は、反応容器の外側に電磁石を配置して一定の外部磁場(0.1T)を印加しながら合成を行って作製した。この合成にあたり、反応時間(30分〜180分)・反応温度(60℃〜90℃)を調整することで、ナノFe2O3粉末の粒子サイズを適宜変化させた。試料No.1-1〜1-4,1-101〜1-103は、平均粒径20nm〜300nmのFe2O3粉末を作製し、上記以外の試料は、平均粒径50nmのFe2O3粉末を作製した。酸化層は、公知の条件により形成した。試料No.1-1〜1-4,1-11,1-12,1-101〜1-103,1-111は、その他の試料と酸化層の形成時間を異ならせ、試料No.1-1の形成時間を最も短くし、試料No.1-103の形成時間を最も長くした。なお、水素還元前後の粉末の大きさを調べたところ、粒子サイズの増加は実質的に認められなかった。つまり、ナノFe2O3粉末と、ナノ鉄粉とはいずれも粒子サイズが実質的に同じであった。
(Preparation process)
The following nano iron powder and multiphase powder were prepared as raw material powder.
{Nano iron powder}
According to the coprecipitation method, iron (II) chloride and sodium hydroxide were charged and controlled to be in a state of pH ≈ 8-9, to prepare an Fe 2 O 3 powder, and after hydrogen reduction, Oxidation treatment was performed to produce nano iron powder having an oxide layer on the surface. The nano Fe 2 O 3 powder used for each sample was prepared by placing an electromagnet outside the reaction vessel and applying a constant external magnetic field (0.1 T). In this synthesis, the particle size of the nano Fe 2 O 3 powder was appropriately changed by adjusting the reaction time (30 minutes to 180 minutes) and the reaction temperature (60 ° C. to 90 ° C.). Sample Nos. 1-1 to 1-4, 1-101 to 1-103 produced Fe 2 O 3 powder with an average particle size of 20 nm to 300 nm, and samples other than the above were Fe 2 O with an average particle size of 50 nm. Three powders were made. The oxide layer was formed under known conditions. Sample Nos. 1-1 to 1-4, 1-11, 1-12, 1-101 to 1-103, 1-111 are different from other samples in the formation time of the oxide layer. The formation time of No. 1 was the shortest, and the formation time of Sample No. 1-103 was the longest. In addition, when the size of the powder before and after hydrogen reduction was examined, an increase in particle size was not substantially observed. In other words, both the nano Fe 2 O 3 powder and the nano iron powder had substantially the same particle size.

得られた各ナノ鉄粉におけるFeの含有量を調べた。その結果を表1,表2に示す。この試験では、いずれの試料のナノ鉄粉も、Feの含有量が80体積%であり、Fe(α鉄)を主成分(80体積%以上)とすることを確認した。Feの含有量(体積%)は、例えば、以下のようにして測定することができる。ナノ鉄粉を構成する各鉄粒子をそれぞれ透過型電子顕微鏡:TEMによってフォーカスして電子線回折を行い、Fe結晶における電子線回折強度とその他の成分(不純物)における電子線回折強度との比を計測する。この電子線回折強度の比から鉄粒子内のFeの体積比率を測定することができる。なお、鉄粒子の成分は、メスバウアースペクトル分析や、サイズが大きい場合、X線回折などでも測定することができる。   The Fe content in each obtained nano iron powder was examined. The results are shown in Tables 1 and 2. In this test, it was confirmed that the nano iron powder of any sample had an Fe content of 80% by volume and Fe (α iron) as a main component (80% by volume or more). The Fe content (% by volume) can be measured, for example, as follows. Each iron particle that composes the nano iron powder is focused by a transmission electron microscope: TEM, and electron beam diffraction is performed, and the ratio of the electron beam diffraction intensity in the Fe crystal to the electron beam diffraction intensity in other components (impurities) is determined. measure. From the ratio of the electron diffraction intensity, the volume ratio of Fe in the iron particles can be measured. In addition, the component of the iron particles can be measured by Mossbauer spectrum analysis or, when the size is large, by X-ray diffraction.

得られた各ナノ鉄粉を透過型電子顕微鏡:TEMにより観察したところ、いずれも柱状であった。この観察像を用いて短軸の平均長さを測定した。ここでは、上記観察像を画像処理し、視野中に存在する各ナノ鉄粉を構成する鉄粒子について、長軸方向の中心位置において長軸と直交する短軸の長さを測定し、この短軸の長さを当該鉄粒子の短軸の長さとし、50個以上の鉄粒子の短軸の長さの平均を短軸の平均長さとする。その結果を表1,表2に示す。Fe2O3粉末の大きさに応じて短軸の平均長さが異なっていた。例えば、試料No.1-101〜1-103は、Fe2O3粉末が大きなものを利用したことで、短軸の平均長さが大きくなり、試料No.1-1は、Fe2O3粉末が小さなものを利用したことで、短軸の平均長さが小さくなっていた。 When each of the obtained nano iron powders was observed with a transmission electron microscope: TEM, all were columnar. The average length of the short axis was measured using this observation image. Here, the observation image is subjected to image processing, and the length of the minor axis perpendicular to the major axis is measured at the center position in the major axis direction for the iron particles constituting each nano iron powder present in the visual field. The length of the axis is defined as the length of the minor axis of the iron particles, and the average of the lengths of the minor axes of 50 or more iron particles is defined as the average length of the minor axes. The results are shown in Tables 1 and 2. Depending on the size of the Fe 2 O 3 powder, the average length of the minor axis was different. For example, sample Nos. 1-101 to 1-103 have a large average length of the short axis by using a large Fe 2 O 3 powder, and sample No. 1-1 has Fe 2 O 3 By using a small powder, the average length of the short axis was small.

{多相粉末}
SmとFeとの原子比(at%)がSm:Fe≒10:90であるSm2Fe17の合金インゴットを用意し、この合金インゴットをAr雰囲気中で超硬合金製乳鉢により粉砕して、平均粒径30μmの出発合金粉末を作製した。上記平均粒径は、レーザ回折式粒度分布装置により、積算重量が50%となる粒径(50%粒径)を測定した。
{Multiphase powder}
Prepare an alloy ingot of Sm 2 Fe 17 in which the atomic ratio (at%) of Sm to Fe is Sm: Fe≈10: 90, and pulverize this alloy ingot with a cemented carbide mortar in an Ar atmosphere. A starting alloy powder with an average particle size of 30 μm was prepared. The average particle size was measured with a laser diffraction particle size distribution device so that the cumulative weight was 50% (50% particle size).

出発合金粉末に水素(H2)雰囲気中、850℃×3時間で熱処理(水素化)を施した。この熱処理(水素化)により得られた粉末をエポキシ樹脂で固めて、組織観察用のサンプルを作製した。このサンプルの内部の粉末が酸化しないように当該サンプルを任意の位置で切断又は研磨し、この切断面又は研磨面に存在する上記粉末を構成する各粒子の組成をEDX(エネルギー分散型X線分光法)装置により調べた。また、上記切断面又は研磨面を光学顕微鏡又は走査型電子顕微鏡:SEM(100倍〜10000倍)で観察し、上記粉末を構成する各粒子の形態を調べた。その結果、得られた粉末を構成する各粒子は、鉄含有物(ここではFe)の相を母相とし、この母相中に複数の粒状の希土類元素の水素化合物(ここではSmH2)の相が分散して存在した複数相の組織からなることを確認した(以下、当該粉末を多相粉末、当該粒子を多相粒子と呼ぶ)。また、隣り合う希土類元素の水素化合物の粒子間に鉄含有物が介在していることを確認した。 The starting alloy powder was heat-treated (hydrogenated) at 850 ° C. for 3 hours in a hydrogen (H 2 ) atmosphere. The powder obtained by this heat treatment (hydrogenation) was hardened with an epoxy resin to prepare a sample for tissue observation. The sample is cut or polished at an arbitrary position so that the powder inside the sample is not oxidized, and the composition of each particle constituting the powder existing on the cut surface or the polished surface is determined by EDX (energy dispersive X-ray spectroscopy). Method) Investigated with equipment. Further, the cut surface or the polished surface was observed with an optical microscope or a scanning electron microscope: SEM (100 to 10,000 times), and the form of each particle constituting the powder was examined. As a result, each particle constituting the obtained powder has a phase of an iron-containing material (here, Fe) as a parent phase, and a plurality of granular rare earth element hydrogen compounds (here, SmH 2 ) are contained in the parent phase. It was confirmed that the phase consisted of a multiphase structure in which phases existed (hereinafter, the powder is referred to as multiphase powder, and the particles are referred to as multiphase particles). It was also confirmed that iron-containing materials were present between adjacent rare earth element hydrogen compound particles.

上記エポキシ樹脂を含むサンプルを用いて、多相粒子における希土類元素の水素化合物:SmH2,鉄含有物:Feの含有量(体積%)を求めたところ、希土類元素の水素化合物が40体積%未満であり(30体積%程度)、鉄含有物が主成分であった(70体積%程度)。含有量は、出発合金粉末の組成、及びSmH2,Feの原子量を用いて体積比を演算して求めた。また、上記EDX装置による多相粉末の組成の面分析(マッピングデータ)を利用して、隣り合う希土類元素の水素化合物の粒子間の間隔(上述した中心間の距離)を測定したところ、3μm以下であった(2μm程度)。ここでは、上記間隔は、上記切断面或いは研磨面に面分析を行って、SmH2のピーク位置を抽出し、隣り合うSmH2のピーク位置間の間隔を測定し、全ての間隔の平均値とした。 Using the sample containing the epoxy resin, the content (volume%) of the rare earth element hydrogen compound: SmH 2 and the iron-containing material: Fe in the multiphase particles was less than 40 volume%. (About 30% by volume), and iron-containing material was the main component (about 70% by volume). The content was obtained by calculating the volume ratio using the composition of the starting alloy powder and the atomic weight of SmH 2 and Fe. Further, using the surface analysis (mapping data) of the composition of the multiphase powder by the above EDX apparatus, the distance between adjacent rare earth element hydrogen compound particles (the distance between the above-mentioned centers) was measured to be 3 μm or less. (About 2 μm). Here, the interval, performing a surface analysis on the cut surface or polished surface, extracts the peak position of SmH 2, to measure the distance between the peak positions of adjacent SmH 2, the average of all intervals did.

この試験では、いずれの試料も、作製した多相粉末とナノ鉄粉の合計質量に対して20質量%となるようにナノ鉄粉を用意した。   In this test, nano iron powder was prepared so that all the samples were 20% by mass with respect to the total mass of the produced multiphase powder and nano iron powder.

(造粒工程)
バインダとして、オレイン酸アミド(融点:75℃、分解温度:220℃)、エルカ酸アミド(融点:85℃、分解温度:240℃)、エチレンビスステアリン酸アミド(融点:115℃、分解温度:250℃)を用意した(いずれも市販のワックス)。バインダの含有量は、原料粉末の質量(多相粉末とナノ鉄粉との合計質量)に対して、1.0質量%となるように調整した。そして、酸素濃度が2000質量ppmの窒素雰囲気下で、表1,表2に示す温度にまで加熱した状態で原料粉末とバインダとを混合し、十分に混合した後、室温まで冷却して混練して、平均粒径75μmの造粒粉を形成した。造粒粉の平均粒径は以下のようにして測定した。ガラス板上に十分な量の造粒粉を分散し、ガラス板上の造粒粉の投影像を光学顕微鏡によって撮影し、得られた像中に存在する50個以上の造粒粉について、各造粒粉のフェレー径(ここでは、垂直フェレー径と平行フェレー径との平均値)を求め、50個以上の造粒粉のフェレー径の平均を平均粒径とした。なお、造粒粉は、篩分級や風力分級などを用いて分級することができる。
(Granulation process)
As binders, oleic acid amide (melting point: 75 ° C, decomposition temperature: 220 ° C), erucic acid amide (melting point: 85 ° C, decomposition temperature: 240 ° C), ethylenebisstearic acid amide (melting point: 115 ° C, decomposition temperature: 250 (All are commercially available waxes). The binder content was adjusted to 1.0 mass% with respect to the mass of the raw material powder (total mass of the multiphase powder and nano iron powder). Then, in a nitrogen atmosphere with an oxygen concentration of 2000 mass ppm, the raw material powder and the binder are mixed in a state heated to the temperatures shown in Tables 1 and 2, and after sufficiently mixed, cooled to room temperature and kneaded. Thus, a granulated powder having an average particle size of 75 μm was formed. The average particle size of the granulated powder was measured as follows. A sufficient amount of granulated powder is dispersed on the glass plate, and a projected image of the granulated powder on the glass plate is taken with an optical microscope. About 50 or more granulated powders present in the obtained image, The ferret diameter of the granulated powder (here, the average value of the vertical ferret diameter and the parallel ferret diameter) was determined, and the average of the ferret diameters of 50 or more granulated powders was defined as the average particle diameter. The granulated powder can be classified using sieve classification, air classification, or the like.

(成形工程)
得られた各造粒粉を用いて、表1,表2に示す条件で、成形圧力を9ton/cm2として加圧成形した。具体的には、成形型に造粒粉を充填した後、成形型内の圧力が表1,表2に示す大きさの減圧雰囲気(表1,表2に示す圧力の大気雰囲気)となるように脱気ポンプにより排気しながら、表1に示す温度に加熱した状態で加圧成形を行った。試料No.1-132は、大気圧(1気圧≒101.3kPa)とし、排気を行わなかった。十分に加圧した後、粉末成形体(直径φ10mm×高さ10mmの円柱体)を成形型から取り出した。
(Molding process)
Each of the obtained granulated powders was subjected to pressure molding under the conditions shown in Tables 1 and 2 at a molding pressure of 9 ton / cm 2 . Specifically, after filling the mold with the granulated powder, the pressure in the mold becomes a reduced pressure atmosphere of the size shown in Table 1 and Table 2 (the atmospheric atmosphere of the pressure shown in Table 1 and Table 2). While being evacuated by a degassing pump, the pressure molding was performed in a state heated to the temperature shown in Table 1. Sample No. 1-132 was at atmospheric pressure (1 atm≈101.3 kPa) and was not evacuated. After sufficiently pressurizing, the powder compact (a cylinder having a diameter of 10 mm and a height of 10 mm) was taken out from the mold.

(脱水素工程)
成形工程を経て得られた各粉末成形体(第一成形体)に減圧雰囲気下で熱処理(脱水素)を施した。具体的には、上記成形体を水素雰囲気中(1気圧)、所定の温度(ここでは750℃)まで昇温した後、脱気ポンプにより水素を排気して真空(VAC)に切り替え、表1,表2に示す圧力に減圧し、この減圧雰囲気下で熱処理(脱水素)を施した。この熱処理(脱水素)は、温度750(℃)×60分とした。試料No.1-141,1-142を除く各試料はいずれも、雰囲気圧力が100Pa以下となったときに脱水素反応の開始温度となるように条件の設定を行うことで、熱処理(脱水素)を十分に行えた。なお、試料No.1-141,1-142を除く各試料はいずれも、最終的に0.5Paまで減圧した。
(Dehydrogenation process)
Each powder molded body (first molded body) obtained through the molding process was subjected to heat treatment (dehydrogenation) in a reduced pressure atmosphere. Specifically, the molded body was heated to a predetermined temperature (here, 750 ° C.) in a hydrogen atmosphere (1 atm), and then the hydrogen was exhausted by a deaeration pump and switched to vacuum (VAC). The pressure was reduced to the pressure shown in Table 2, and heat treatment (dehydrogenation) was performed in this reduced pressure atmosphere. This heat treatment (dehydrogenation) was performed at a temperature of 750 (° C.) × 60 minutes. All samples except Sample Nos. 1-141 and 1-142 are heat treated (dehydrogenated by setting the conditions so that the dehydrogenation reaction start temperature is reached when the atmospheric pressure becomes 100 Pa or less. ) Was done enough. Note that each sample except Sample Nos. 1-141 and 1-142 was finally depressurized to 0.5 Pa.

また、この熱処理(脱水素)は、表1,表2に示す磁場(T)を印加した状態で行った。磁場の印加は、高温超電導磁石を用いて行った。ここでは、磁場の印加方向は、上記成形工程における加圧方向と同じ方向とした。試料No.1-151は、磁場を印加せずに熱処理(脱水素)を行った。   Further, this heat treatment (dehydrogenation) was performed in a state where a magnetic field (T) shown in Tables 1 and 2 was applied. The magnetic field was applied using a high temperature superconducting magnet. Here, the application direction of the magnetic field was the same as the pressing direction in the molding step. Sample No. 1-151 was heat-treated (dehydrogenated) without applying a magnetic field.

熱処理(脱水素)後に得られた成形体(第二成形体)の組成をEDX装置により調べたところ、いずれの試料も実質的にSm2Fe17という希土類-鉄系合金からなる複数の粒子(再結合粒子)が存在していた。従って、上記熱処理(脱水素)により多相粒子から水素が除去されたことが分かる。また、走査型電子顕微鏡:SEM又は透過型電子顕微鏡:TEMにより、再結合粒子間にナノ鉄粉(鉄粒子)が存在することを確認した。 When the composition of the molded body (second molded body) obtained after the heat treatment (dehydrogenation) was examined by an EDX apparatus, each sample was substantially composed of a plurality of particles composed of a rare earth-iron alloy of Sm 2 Fe 17 ( Recombined particles) were present. Therefore, it can be seen that hydrogen was removed from the multiphase particles by the heat treatment (dehydrogenation). Further, it was confirmed by scanning electron microscope: SEM or transmission electron microscope: TEM that nano iron powder (iron particles) was present between the recombined particles.

(窒化工程)
脱水素工程を経て得られた成形体(第二成形体)に、表1,表2に示す酸素濃度(質量ppm)の窒素(N2)雰囲気中、表1,表2に示す温度(℃)×30時間で熱処理(窒化)を施した。この熱処理(窒化)は、表1,表2に示す磁場(T)を印加した状態で行った。磁場の印加は、高温超電導磁石を用いて行った。磁場の印加方向は、上記脱水素工程における磁場の印加方向と同じ方向とした。試料No.1-171は、磁場を印加せずに熱処理(窒化)を行った。
(Nitriding process)
In the nitrogen (N 2 ) atmosphere of the oxygen concentration (mass ppm) shown in Table 1 and Table 2 in the molded body (second molded body) obtained through the dehydrogenation step, the temperature (° C. ) × 30 hours were subjected to heat treatment (nitriding). This heat treatment (nitriding) was performed in a state where a magnetic field (T) shown in Tables 1 and 2 was applied. The magnetic field was applied using a high temperature superconducting magnet. The application direction of the magnetic field was the same as the application direction of the magnetic field in the dehydrogenation step. Sample No. 1-171 was heat-treated (nitrided) without applying a magnetic field.

Figure 2012253247
Figure 2012253247

Figure 2012253247
Figure 2012253247

熱処理(窒化)後に得られた成形体の組成をEDX装置により調べたところ、いずれの試料も希土類-鉄-窒素系合金が確認された。そのため、この熱処理(窒化)により再結合粒子が窒化されたことが分かる。合金の組成を表3,表4に示す(x=1.5〜3.5)。また、希土類-鉄-窒素系合金からなる合金粒子における当該合金成分の含有量(体積%)を調べた。その結果を表3,表4に示す。合金成分の含有量(体積%)は、SEM-EDXを用いると共に、成形体に対して局所的に(合金粒子を対象として)X線回折を行い、得られたX線回折強度を用いて求めた。   When the composition of the molded body obtained after the heat treatment (nitriding) was examined with an EDX apparatus, a rare earth-iron-nitrogen alloy was confirmed in all the samples. Therefore, it can be seen that the recombination particles are nitrided by this heat treatment (nitriding). The compositions of the alloys are shown in Tables 3 and 4 (x = 1.5 to 3.5). Further, the content (volume%) of the alloy component in the alloy particles made of a rare earth-iron-nitrogen alloy was examined. The results are shown in Tables 3 and 4. The content (volume%) of the alloy component is obtained using SEM-EDX and performing X-ray diffraction locally on the compact (targeting the alloy particles) and using the obtained X-ray diffraction intensity. It was.

熱処理(窒化)後に得られた成形体についてEDX装置による組成分析及び走査型電子顕微鏡:SEM又は透過型電子顕微鏡:TEMの観察を行ったところ、試料No.1-161,1-171〜1-173,1-183を除く各成形体は、希土類-鉄-窒素系合金を含有する複数の合金粒子と、α"Fe16N2を含有する複数の鉄窒化物粒子からなることを確認した。このことから、試料No.1-161,1-171〜1-173,1-183を除く各成形体は、ナノ鉄粉によりα"Fe16N2といった窒化物が形成されたことが分かる。また、試料No.1-161,1-171〜1-173,1-183を除く各成形体は、合金粒子間に鉄窒化物粒子が介在していること、鉄窒化物粒子が柱状であることを確認した。この柱状の鉄窒化物粒子について、透過型電子顕微鏡:TEMの観察像を利用して上述したナノ鉄粉と同様にして、鉄窒化物粒子の短軸の平均長さを測定したところ、ナノ鉄粉における短軸の平均長さを実質的に維持していた。 The molded body obtained after the heat treatment (nitriding) was subjected to composition analysis using an EDX apparatus and scanning electron microscope: SEM or transmission electron microscope: TEM, and sample Nos. 1-161 and 1-171 to 1- It was confirmed that each compact except 173 and 1-183 was composed of a plurality of alloy particles containing a rare earth-iron-nitrogen based alloy and a plurality of iron nitride particles containing α "Fe 16 N 2 . From this, it can be seen that nitrides such as α "Fe 16 N 2 were formed by nano iron powder in each molded body excluding Sample Nos. 1-161, 1-171 to 1-173, 1-183. Further, in each molded body except for sample Nos. 1-161, 1-171 to 1-173, 1-183, iron nitride particles are interposed between alloy particles, and the iron nitride particles are columnar. It was confirmed. For the columnar iron nitride particles, the average length of the short axis of the iron nitride particles was measured using the transmission electron microscope: TEM observation image in the same manner as the nanoiron powder described above. The average minor axis length of the flour was substantially maintained.

更に、試料No.1-161,1-171〜1-173,1-183を除く各成形体について、鉄窒化物粒子におけるα"Fe16N2成分の含有量を調べたところ、いずれの試料も80体積%以上であった。α"Fe16N2成分の含有量(体積%)は、例えば、以下のようにして測定することができる。各成形体内に分散している各鉄窒化物粒子をそれぞれ透過型電子顕微鏡:TEMによってフォーカスして電子線回折を行い、α"Fe16N2結晶における電子線回折強度とその他の成分(α-Fe,Fe3N,Fe4Nなど)における電子線回折強度との比を計測する。この電子線回折強度の比から鉄窒化物粒子内のα"Fe16N2の体積比率を測定することができる。なお、鉄窒化物粒子の成分は、メスバウワースペクトル分析や、サイズが大きい場合、X線回折などでも測定することができる。 Further, for each molded body except for sample Nos. 1-161, 1-171 to 1-173, 1-183, the content of α "Fe 16 N 2 component in the iron nitride particles was examined. The content of ααFe 16 N 2 component (% by volume) can be measured, for example, as follows. Each iron nitride particle dispersed in each molded body is individually subjected to transmission electron microscope: TEM focusing and electron diffraction, and electron beam diffraction intensity and other components in α "Fe 16 N 2 crystal (α- (Fe, Fe 3 N, Fe 4 N, etc.) The ratio of the electron diffraction intensity is measured.From this ratio of the electron diffraction intensity, the volume ratio of α ”Fe 16 N 2 in the iron nitride particles is measured. Can do. The component of the iron nitride particles can be measured by Mossbauer spectrum analysis or, when the size is large, by X-ray diffraction.

熱処理(窒化)後に得られた成形体について相対密度(真密度に対する実際の密度の割合)を求めた。その結果を表3,表4に示す。実際の密度は、市販の密度測定装置を利用して測定した。真密度は、例えば、以下のようにして求められる。成形体の構成成分をX線回折や電子線回折などで同定し、同定結果から、各構成成分の相(主として、合金相、窒化鉄相)を構成する粒子の真密度及び体積率を求める。各相を構成する粒子の真密度及び体積率を用いることで各構成成分の真密度を算出することができる。原料粉末の配合比と、各構成成分の真密度とから、各構成成分の体積比率を算出することができる。各構成成分の体積比率と算出した各構成成分の真密度とから、成形体の真密度を求めることができる。その他、相対密度は、以下のように求められる。複合磁性材について、任意の直交軸方向(x、y、z)が法線となる断面をとり、光学顕微鏡又は走査型電子顕微鏡:SEMによって断面像の観察を行い、平面充填率(Sxi,Syi,Szi)を導出する。平面充填率は、断面視野内において複合磁性材の構成成分の存在面積をその視野の面積で除したものとする。視野は、複合磁性材の境界(輪郭線)を含まないものとする。50個以上の視野(i=1〜50)に対して平面充填率を求め、N=50以上の平均値(Sx,Sy,Sz)を求める。そして、相対密度Vは、V=(Sx*Sy*Sz)1/2とする。 The relative density (the ratio of the actual density to the true density) was determined for the molded body obtained after the heat treatment (nitriding). The results are shown in Tables 3 and 4. The actual density was measured using a commercially available density measuring device. The true density is determined as follows, for example. The constituent components of the compact are identified by X-ray diffraction, electron beam diffraction, and the like, and the true density and volume ratio of the particles constituting each constituent component phase (mainly alloy phase, iron nitride phase) are determined from the identification results. By using the true density and volume ratio of the particles constituting each phase, the true density of each component can be calculated. From the blending ratio of the raw material powder and the true density of each component, the volume ratio of each component can be calculated. From the volume ratio of each constituent component and the calculated true density of each constituent component, the true density of the molded body can be obtained. In addition, the relative density is obtained as follows. For the composite magnetic material, take a cross-section in which any orthogonal axis direction (x, y, z) is a normal line, observe the cross-sectional image by an optical microscope or scanning electron microscope: SEM, the plane filling rate (Sx i , Sy i , Sz i ) is derived. The plane filling rate is obtained by dividing the existing area of the constituent components of the composite magnetic material by the area of the visual field within the cross-sectional visual field. The field of view does not include the boundary (outline) of the composite magnetic material. A plane filling rate is obtained for 50 or more fields of view (i = 1 to 50), and an average value (Sx, Sy, Sz) of N = 50 or more is obtained. The relative density V is V = (Sx * Sy * Sz) 1/2 .

熱処理(窒化)後に得られた成形体の磁気特性:飽和磁化(T)及び保磁力(kOe)を調べた。その結果を表3,表4に示す。ここでは、各成形体を3T以上のパルス磁界で着磁した後、各成形体について円柱の軸方向(=磁場の印加方向=成形時の加圧方向)の飽和磁化(T)及び保磁力(kOe)をBHトレーサ(理研電子株式会社製DCBHトレーサ)を用いて調べた。   The magnetic properties of the compacts obtained after heat treatment (nitriding): saturation magnetization (T) and coercivity (kOe) were investigated. The results are shown in Tables 3 and 4. Here, after each molded body is magnetized with a pulse magnetic field of 3 T or more, saturation magnetization (T) and coercive force (T) in the axial direction of the cylinder (= magnetic field application direction = pressing direction during molding) for each molded body ( kOe) was examined using a BH tracer (DCBH tracer manufactured by Riken Denshi Co., Ltd.).

熱処理(窒化)後に得られた成形体において、窒化工程で印加した磁場方向(=脱水素工程で印加した磁場方向=成形時の加圧方向)に直交する方向の平面についてX線回折の極点図分析を調べ、合金粒子の磁気容易軸の配向方向と、鉄窒化物粒子の磁気容易軸の配向方向とがなす立体角を調べた。その結果を表3,表4に示す。立体角が測定可能な試料はいずれも、各試料の成形体内における各合金粒子を構成する結晶の磁化容易軸のうち、70%以上の結晶の磁化容易軸はその配向方向から立体角が30°以内を満たしていた。また、同様に、立体角が測定可能な試料はいずれも、各試料の成形体内における各鉄窒化物粒子を構成する結晶の磁化容易軸のうち、70%以上の磁化容易軸はその配向方向から立体角が30°以内を満たしていた。表4中の「評価不可」とは、各粒子を構成する結晶の磁気容易軸の分散が大きく、特定の方向に配向していないことを示す。   Pole figure of X-ray diffraction for a plane perpendicular to the magnetic field direction applied in the nitriding process (= the magnetic field direction applied in the dehydrogenation process = the pressurizing direction during molding) in the molded body obtained after the heat treatment (nitriding) The analysis was conducted to examine the solid angle formed by the orientation direction of the magnetic easy axis of the alloy particles and the orientation direction of the magnetic easy axis of the iron nitride particles. The results are shown in Tables 3 and 4. In any sample whose solid angle can be measured, 70% or more of the easy axis of the crystal constituting each alloy particle in the compact of each sample has a solid angle of 30 ° from the orientation direction. Met within. Similarly, in any sample in which the solid angle can be measured, 70% or more of the easy magnetization axes of the crystals constituting the iron nitride particles in the molded body of each sample are from the orientation direction. The solid angle was within 30 °. “Unevaluable” in Table 4 indicates that the dispersion of the easy magnetic axis of the crystal constituting each particle is large and the crystal is not oriented in a specific direction.

Figure 2012253247
Figure 2012253247

Figure 2012253247
Figure 2012253247

表3,4に示すように、原料粉末に特定のナノ鉄粉及び多相粉末を用い、原料粉末とバインダとを混合して造粒粉とし、この造粒粉を特定の条件(加熱温度:バインダの分解温度±20℃、雰囲気圧力:0.9気圧以下に排気)で加圧成形し、得られた成形体に特定の条件(雰囲気圧力:100Pa以下、加熱温度:再結合温度以上、印加磁場:2T以上)で第一の熱処理(脱水素)を施し、この第一の熱処理後に得られた成形体に更に特定の条件(雰囲気:酸素濃度が200質量ppm以下の窒素元素含有雰囲気、加熱温度:200℃〜450℃、印加磁場:3T以上)で第二の熱処理(窒化)を施すことで、希土類元素とFeとを含有する合金とα"Fe16N2とを含む複合磁性材が得られることが分かる。また、得られた複合磁性材は、上記合金の結晶の配向軸とα"Fe16N2の結晶の配向軸とがなす立体角が10°以内であり、上記合金の結晶とα"Fe16N2の結晶とが揃って配向していることが分かる。そして、上述のようにして得られた、特定の配向組織を有する複合磁性材は、飽和磁化が1.5T以上や保磁力が10kOe以上を満たし、磁気特性に非常に優れることが分かる。また、この試験から、製造条件などを調整することで、飽和磁化:1.5T以上かつ保磁力:10kOe以上を満たす窒化鉄材が得られることが分かる。 As shown in Tables 3 and 4, using specific nano iron powder and multiphase powder as raw material powder, mixing raw material powder and binder into granulated powder, this granulated powder under specific conditions (heating temperature: Binder decomposition temperature ± 20 ° C, atmospheric pressure: exhausted to 0.9 atm or less), and specific conditions (atmospheric pressure: 100 Pa or less, heating temperature: above recombination temperature, applied magnetic field: applied magnetic field: 2T or more) is subjected to a first heat treatment (dehydrogenation), and the molded body obtained after this first heat treatment is further specified conditions (atmosphere: nitrogen element-containing atmosphere with an oxygen concentration of 200 mass ppm or less, heating temperature: By performing the second heat treatment (nitriding) at 200 ° C. to 450 ° C. (applied magnetic field: 3 T or more), a composite magnetic material containing an alloy containing rare earth elements and Fe and α ”Fe 16 N 2 can be obtained. In addition, in the obtained composite magnetic material, the solid angle formed by the crystal orientation axis of the above alloy and the crystal orientation axis of α "Fe 16 N 2 is within 10 °. It can be seen that the crystal of the above alloy and the crystal of α "Fe 16 N 2 are aligned together. And the composite magnetic material having a specific orientation structure obtained as described above is saturated. It can be seen that the magnetization is 1.5T or more and the coercive force is 10kOe or more, and the magnetic characteristics are very good.From this test, the saturation magnetization: 1.5T or more and the coercive force: 10kOe by adjusting the manufacturing conditions etc. It turns out that the iron nitride material which satisfy | fills the above is obtained.

その他、この試験から、以下のことが分かる。
(1) 短軸の平均長さが100nm超のナノ鉄粉を用いると、立体角が大きくなるなどして、保磁力が低くなる。
(2) 分解温度や融点が高いバインダを用いると、成形時の温度や造粒時の温度を高める必要があり、原料粉末が酸化されたり、造粒粉が良好にできなかったりして、最終的に飽和磁化が低くなる。
(3) 成形時の加熱温度が低過ぎる場合や雰囲気の圧力が大き過ぎる場合、バインダが残存するなどして、相対密度が低くなること、及び最終的に飽和磁化が低くなる。
(4) 成形時の加熱温度が高過ぎる場合、原料粉末が酸化するなどして、最終的に保磁力が低くなる。
In addition, the following can be understood from this test.
(1) When nano-iron powder having an average minor axis length of more than 100 nm is used, the coercive force is lowered due to an increase in solid angle.
(2) If a binder with a high decomposition temperature and melting point is used, it is necessary to increase the temperature during molding and the temperature during granulation, and the raw material powder may be oxidized or the granulated powder may not be satisfactory. In particular, the saturation magnetization is lowered.
(3) When the heating temperature at the time of molding is too low or the pressure of the atmosphere is too high, the binder remains, and the relative density is lowered, and finally the saturation magnetization is lowered.
(4) If the heating temperature at the time of molding is too high, the raw material powder will be oxidized and the coercive force will eventually be lowered.

(5) 熱処理(脱水素)時の雰囲気圧力が大き過ぎると、結晶などが粗大化するなどして、保磁力が低くなる。
(6) 熱処理(脱水素)時の印加磁場が小さ過ぎると、再結合合金が十分に配向性せず、等方性結晶になるなどして、保磁力が低くなる。
(7) 熱処理(窒化)時の加熱温度が高過ぎたり、低過ぎたりすると、過剰窒化により飽和磁化が低くなったり、α"Fe16N2や希土類-鉄-窒素合金が十分に生成できず保磁力が低くなったりする。
(8) 熱処理(窒化)時の印加磁場が小さ過ぎると、α"Fe16N2が十分に生成できず飽和磁化が低くなったり、合金成分とα"Fe16N2成分とが十分に配向できず保磁力が低くなったりする。
(9) 熱処理(窒化)時の酸素濃度が高過ぎると、再結合合金やナノ鉄粉が酸化するなどして、磁気特性に劣る。
(5) If the atmospheric pressure at the time of heat treatment (dehydrogenation) is too large, the coercive force is lowered due to the coarsening of crystals and the like.
(6) If the applied magnetic field at the time of heat treatment (dehydrogenation) is too small, the recombination alloy will not be sufficiently oriented, resulting in isotropic crystals, and the coercive force will be low.
(7) If the heating temperature during heat treatment (nitriding) is too high or too low, saturation magnetization will decrease due to excessive nitriding, and α "Fe 16 N 2 and rare earth-iron-nitrogen alloys cannot be generated sufficiently. The coercive force is lowered.
(8) If the applied magnetic field at the time of heat treatment (nitridation) is too small, α ”Fe 16 N 2 cannot be generated sufficiently and the saturation magnetization becomes low, or the alloy component and α” Fe 16 N 2 component are sufficiently oriented. The coercive force cannot be reduced.
(9) If the oxygen concentration during heat treatment (nitridation) is too high, the recombination alloy or nano iron powder will be oxidized, resulting in poor magnetic properties.

[試験例2]
試験例1と同様の工程で複合磁性材を作製し、磁気特性を調べた。この試験では、特に、ナノ鉄粉におけるFe成分の含有量、造粒条件(温度、酸素濃度、ナノ鉄粉の配合比)の影響を調べた。
[Test Example 2]
A composite magnetic material was produced in the same process as in Test Example 1, and the magnetic properties were examined. In this test, in particular, the influence of the content of Fe component in the nano iron powder and the granulation conditions (temperature, oxygen concentration, blending ratio of nano iron powder) were investigated.

(準備工程)
試験例1と同様にして共沈法により、平均粒径20nmのFe2O3粉末を作製し、水素還元を行った後、酸化処理を施して、表面に酸化層を具えるナノ鉄粉を作製した。試料No.2-1〜2-4,2-201〜2-203は、その他の試料と酸化層の形成時間を異ならせ、試料No.2-201の形成時間を最も短くし、試料No.2-4の形成時間を最も長くした。得られた各ナノ鉄粉のFeの含有量を試験例1と同様にして調べた。その結果を表5に示す。また、試験例1と同様にして、各ナノ鉄粉の短軸の平均長さを測定した。その結果を表5に示す。更に、用意したナノ鉄粉の配合比(多相粉末とナノ鉄粉の合計質量に対する割合)を表5に示す。
(Preparation process)
In the same manner as in Test Example 1, an Fe 2 O 3 powder having an average particle size of 20 nm was prepared by coprecipitation method, subjected to hydrogen reduction, and then subjected to oxidation treatment to obtain nano iron powder having an oxide layer on the surface. Produced. Sample Nos. 2-1 to 2-4 and 2-201 to 2-203 differ from other samples in the formation time of the oxide layer, and the formation time of sample No. 2-201 is the shortest. The formation time of 2-4 was the longest. The Fe content of each nano iron powder obtained was examined in the same manner as in Test Example 1. The results are shown in Table 5. Further, in the same manner as in Test Example 1, the average length of the short axis of each nano iron powder was measured. The results are shown in Table 5. Furthermore, Table 5 shows the blending ratio of the prepared nano iron powder (ratio to the total mass of the multiphase powder and nano iron powder).

多相粉末は、試験例1で作製したものと同様のものを用意した(希土類元素の水素化合物:SmH2と鉄含有物:Feを含有するもの。平均粒径:30μm)。 The same multiphase powder as that prepared in Test Example 1 was prepared (a rare earth element hydrogen compound: SmH 2 and an iron-containing material: containing Fe. Average particle size: 30 μm).

(造粒工程)
バインダとして、試験例1と同じオレイン酸アミド(融点:75℃、分解温度:220℃)を用意した。バインダの含有量は、試験例1と同様に原料粉末の質量に対して1.0質量%とした。そして、表5に示す酸素濃度の窒素雰囲気下で、表5に示す温度にまで加熱した状態で原料粉末とバインダとを混合し、十分に混合した後、室温まで冷却して混練して、試験例1と同様に平均粒径75μmの造粒粉を形成した。平均粒径の測定は、試験例1と同様にして行った。
(Granulation process)
As a binder, the same oleic amide (melting point: 75 ° C., decomposition temperature: 220 ° C.) as in Test Example 1 was prepared. The content of the binder was 1.0% by mass with respect to the mass of the raw material powder as in Test Example 1. Then, in a nitrogen atmosphere having the oxygen concentration shown in Table 5, the raw material powder and the binder were mixed in a state heated to the temperature shown in Table 5, mixed thoroughly, then cooled to room temperature, kneaded, and tested. A granulated powder having an average particle size of 75 μm was formed in the same manner as in Example 1. The average particle size was measured in the same manner as in Test Example 1.

(成形工程)
得られた各造粒粉を試験例1と同様に加圧成形して、試験例1と同様の形状・サイズの成形体を作製した。この試験では、成形条件を、加熱温度:230℃、雰囲気圧力:0.8気圧に排気、成形圧力:10ton/cm2とした。
(Molding process)
Each obtained granulated powder was subjected to pressure molding in the same manner as in Test Example 1 to produce a molded body having the same shape and size as in Test Example 1. In this test, the molding conditions were heating temperature: 230 ° C., atmospheric pressure: 0.8 atm, and molding pressure: 10 ton / cm 2 .

(脱水素工程)
成形工程を経て得られた各粉末成形体(第一成形体)に試験例1と同様に、減圧雰囲気下で熱処理(脱水素)を施した。具体的には、上記成形体を水素雰囲気中(1気圧)、750℃まで昇温した後、脱気ポンプによって水素を排出して真空(VAC)に切り替え、1.0Pa以下まで減圧した。そして、減圧雰囲気下(最終真空度:0.5Pa)で750℃×60分で熱処理(脱水素)を施した。また、この熱処理(脱水素)は、3Tの磁場を印加した状態で行った。磁場の印加は、高温超電導磁石を用いて行った。ここでは、磁場の印加方向は、上記成形工程における加圧方向と同じ方向とした。
(Dehydrogenation process)
Each powder molded body (first molded body) obtained through the molding process was subjected to heat treatment (dehydrogenation) in a reduced-pressure atmosphere in the same manner as in Test Example 1. Specifically, the molded body was heated to 750 ° C. in a hydrogen atmosphere (1 atm), then discharged with a deaeration pump, switched to vacuum (VAC), and decompressed to 1.0 Pa or less. Then, heat treatment (dehydrogenation) was performed in a reduced pressure atmosphere (final vacuum degree: 0.5 Pa) at 750 ° C. for 60 minutes. The heat treatment (dehydrogenation) was performed in a state where a 3 T magnetic field was applied. The magnetic field was applied using a high temperature superconducting magnet. Here, the application direction of the magnetic field was the same as the pressing direction in the molding step.

(窒化工程)
脱水素工程を経て得られた成形体(第二成形体)に、酸素濃度:100質量ppmの窒素(N2)雰囲気中、300℃×30時間で熱処理(窒化)を施した。この熱処理(窒化)は、4Tの磁場を印加した状態で行った。磁場の印加は、高温超電導磁石を用いて行い、磁場の印加方向は、上記脱水素工程における磁場の印加方向と同じ方向とした。
(Nitriding process)
The molded body (second molded body) obtained through the dehydrogenation step was heat-treated (nitrided) at 300 ° C. for 30 hours in a nitrogen (N 2 ) atmosphere with an oxygen concentration of 100 mass ppm. This heat treatment (nitriding) was performed in a state where a 4 T magnetic field was applied. The application of the magnetic field was performed using a high-temperature superconducting magnet, and the application direction of the magnetic field was the same as the application direction of the magnetic field in the dehydrogenation step.

熱処理(窒化)後に得られた成形体の組成をEDX装置により調べたところ、いずれの試料も希土類-鉄-窒素系合金(Sm2Fe17Nx(x=1.5〜3.5))が確認された。そのため、この熱処理(窒化)により再結合粒子が窒化されたことが分かる。また、希土類-鉄-窒素系合金からなる合金粒子における当該合金成分の含有量(体積%)を試験例1と同様にして調べたところ、いずれの試料も91体積%であった。 When the composition of the molded body obtained after the heat treatment (nitriding) was examined by an EDX apparatus, a rare earth-iron-nitrogen alloy (Sm 2 Fe 17 N x (x = 1.5 to 3.5)) was confirmed in all the samples. . Therefore, it can be seen that the recombination particles are nitrided by this heat treatment (nitriding). Further, when the content (volume%) of the alloy component in the alloy particles composed of the rare earth-iron-nitrogen based alloy was examined in the same manner as in Test Example 1, all the samples were 91 volume%.

熱処理(窒化)後に得られた成形体について試験例1と同様にして調べたところ、試料No.2-231,2-232を除く各成形体は、希土類-鉄-窒素系合金を主成分とする複数の合金粒子と、α"Fe16N2を含有する複数の鉄窒化物粒子からなることを確認した。このことから、試料No.2-231,2-232を除く各成形体は、ナノ鉄粉によりα"Fe16N2といった窒化物が形成されたことが分かる。また、試料No.2-231,2-232を除く各成形体は、合金粒子間に鉄窒化物粒子が介在していること、鉄窒化物粒子が柱状であることを確認した。この柱状の鉄窒化物粒子について、試験例1と同様にして、鉄窒化物粒子の短軸の平均長さを測定したところ、ナノ鉄粉における短軸の平均長さを実質的に維持していた。 When the molded body obtained after the heat treatment (nitriding) was examined in the same manner as in Test Example 1, each molded body except Sample Nos. 2-231 and 2-232 was mainly composed of a rare earth-iron-nitrogen alloy. And a plurality of iron nitride particles containing α "Fe 16 N 2. From this, each molded body except for sample Nos. 2-231 and 2-232, It can be seen that a nitride such as α "Fe 16 N 2 was formed by the nano iron powder. In addition, it was confirmed that each molded body except for sample Nos. 2-231 and 2-232 had iron nitride particles interposed between alloy particles and that the iron nitride particles were columnar. For the columnar iron nitride particles, the average minor axis length of the iron nitride particles was measured in the same manner as in Test Example 1, and the average minor axis length of the nanoiron powder was substantially maintained. It was.

試料No.2-231,2-232を除く各成形体について、鉄窒化物粒子におけるα"Fe16N2成分の含有量を試験例1と同様にして調べたところ、試料No.2-201〜2-203を除く試料はいずれも80体積%以上であった。 For each molded body except Sample Nos. 2-231 and 2-232, the content of α "Fe 16 N 2 component in the iron nitride particles was examined in the same manner as in Test Example 1. All samples except ˜2-203 were 80% by volume or more.

熱処理(窒化)後に得られた成形体について、試験例1と同様にして、相対密度(%)、飽和磁化(T)、保磁力(kOe)、立体角(°)を調べた。その結果を表5に示す。   The molded body obtained after the heat treatment (nitriding) was examined in the same manner as in Test Example 1 for the relative density (%), saturation magnetization (T), coercive force (kOe), and solid angle (°). The results are shown in Table 5.

Figure 2012253247
Figure 2012253247

表5に示すように、ナノ鉄粉としてFe成分が多いもの(純度が高いもの)を原料粉末に用いると、α"Fe16N2の配向性を高めて立体角を小さくし易く、飽和磁化が高い複合磁性材が得られることが分かる。また、造粒時の温度を融点よりも十分に高い温度にすると、造粒粉の充填率を高めて相対密度が高い複合磁性材が得られることが分かる。更に、造粒工程において、酸素濃度を3000質量ppm以下にすると、原料粉末の酸化を防止して、保磁力と飽和磁化との双方が高い複合磁性材が得られることが分かる。加えて、ナノ鉄粉の配合比を高めることで、α"Fe16N2を十分に生成でき、保磁力と飽和磁化との双方が高い複合磁性材が得られることが分かる。 As shown in Table 5, when nano-iron powder with high Fe content (high purity) is used as raw material powder, it is easy to increase the orientation of α "Fe 16 N 2 and reduce the solid angle, and saturation magnetization. It can be seen that a composite magnetic material having a high relative density can be obtained by increasing the filling rate of the granulated powder when the temperature during granulation is sufficiently higher than the melting point. Furthermore, it can be seen that when the oxygen concentration is set to 3000 mass ppm or less in the granulation step, oxidation of the raw material powder is prevented, and a composite magnetic material having both high coercive force and saturation magnetization can be obtained. Thus, it can be seen that by increasing the compounding ratio of the nano iron powder, α ″ Fe 16 N 2 can be sufficiently generated, and a composite magnetic material having both high coercive force and saturation magnetization can be obtained.

[試験例3]
試験例1と同様の工程で複合磁性材を作製し、磁気特性を調べた。この試験では、特に、試験例1,2と異なる組成の多相粉末を用意した。
[Test Example 3]
A composite magnetic material was produced in the same process as in Test Example 1, and the magnetic properties were examined. In this test, in particular, a multiphase powder having a composition different from that of Test Examples 1 and 2 was prepared.

(準備工程)
ナノ鉄粉は、試験例1の試料No.1-2と同様に作製した柱状のものを用意した(短軸の平均長さ:50nm、Feの含有量:89体積%)。また、後述する各多相粉末とナノ鉄粉の合計質量に対して20質量%となるようにナノ鉄粉を用意した。
(Preparation process)
As the nano iron powder, a columnar product prepared in the same manner as Sample No. 1-2 in Test Example 1 was prepared (average length of minor axis: 50 nm, Fe content: 89% by volume). Moreover, nano iron powder was prepared so that it might become 20 mass% with respect to the total mass of each multiphase powder mentioned later and nano iron powder.

多相粉末は、出発合金粉末として、試料No.3-1はNd2Fe14B、試料No.3-2はNd2(Co1Fe13)B、試料No.3-3はSm1(Mn1Fe11)、試料No.3-4はSm1(Ti1Fe11)を用意し(いずれも平均粒径:30μm。平均粒径の測定は試験例1と同様。)、いずれの出発合金粉末に対しても、水素(H2)雰囲気中、850℃×3時間の条件で熱処理(水素化)を施して作製した。 Multi-phase powder as the starting alloy powder, samples No.3-1 the Nd 2 Fe 14 B, samples No.3-2 the Nd 2 (Co 1 Fe 13) B, samples No.3-3 is Sm 1 ( Mn 1 Fe 11 ) and Sample No. 3-4 were prepared with Sm 1 (Ti 1 Fe 11 ) (both average particle size: 30 μm. Measurement of the average particle size is the same as in Test Example 1). The alloy powder was also prepared by heat treatment (hydrogenation) in a hydrogen (H 2 ) atmosphere under conditions of 850 ° C. × 3 hours.

熱処理(水素化)により得られた各粉末の形態及び組成を試験例1と同様にして調べたところ、鉄含有物の相を母相とし、この母相中に複数の粒状の希土類元素の水素化合物の相が分散して存在した複数相の組織からなることを確認した。構成相を表6に示す。   When the morphology and composition of each powder obtained by heat treatment (hydrogenation) were examined in the same manner as in Test Example 1, the phase of the iron-containing material was the parent phase, and a plurality of granular rare earth element hydrogens were contained in the parent phase. It was confirmed that the compound phase consisted of a multiphase structure in which the phases were dispersed. The constituent phases are shown in Table 6.

各多相粉末について鉄含有物の含有量と希土類元素の水素化合物の含有量とを試験例1と同様にして調べたところ、いずれの試料も、希土類元素の水素化合物が40体積%未満であり(30体積%程度)、鉄含有物が主成分であった(70体積%程度)。また、各多相粉末について、試験例1と同様にして、隣り合う希土類元素の水素化合物の粒子間の間隔(相間の間隔)を測定したところ、いずれの試料も、3μm以下であった(2μm程度)。   For each multiphase powder, the content of the iron-containing material and the content of the rare earth element hydrogen compound were examined in the same manner as in Test Example 1. In each sample, the rare earth element hydrogen compound was less than 40% by volume. (About 30% by volume), iron-containing material was the main component (about 70% by volume). Further, for each multiphase powder, the spacing between adjacent rare earth element hydrogen compound particles (interphase spacing) was measured in the same manner as in Test Example 1, and all the samples were 3 μm or less (2 μm). degree).

(造粒工程)
バインダとして、試験例1と同じオレイン酸アミド(融点:75℃、分解温度:220℃)を用意した。バインダの含有量は、試験例1と同様に原料粉末の質量に対して1.0質量%とした。そして、酸素濃度:2000質量ppmの雰囲気下で、80℃にまで加熱した状態で原料粉末とバインダとを混合し、十分に混合した後、室温まで冷却して混練して、試験例1と同様に平均粒径75μmの造粒粉を形成した。平均粒径の測定は、試験例1と同様にして行った。
(Granulation process)
As a binder, the same oleic amide (melting point: 75 ° C., decomposition temperature: 220 ° C.) as in Test Example 1 was prepared. The content of the binder was 1.0% by mass with respect to the mass of the raw material powder as in Test Example 1. And, in an atmosphere of oxygen concentration: 2000 mass ppm, the raw material powder and the binder were mixed in a state heated to 80 ° C., mixed well, then cooled to room temperature and kneaded, as in Test Example 1. A granulated powder having an average particle size of 75 μm was formed. The average particle size was measured in the same manner as in Test Example 1.

(成形工程)
得られた各造粒粉を試験例1と同様に加圧成形して、試験例1と同様の形状・サイズの成形体を作製した。この試験では、成形条件を、加熱温度:230℃、雰囲気圧力:0.8気圧に排気、成形圧力:10ton/cm2とした。
(Molding process)
Each obtained granulated powder was subjected to pressure molding in the same manner as in Test Example 1 to produce a molded body having the same shape and size as in Test Example 1. In this test, the molding conditions were heating temperature: 230 ° C., atmospheric pressure: 0.8 atm, and molding pressure: 10 ton / cm 2 .

(脱水素工程)
成形工程を経て得られた各粉末成形体(第一成形体)に試験例2と同様に、水素雰囲気中、試料No.3-1,3-2は800℃まで昇温した後、試料No.3-3,3-3は775℃まで昇温した後、脱気ポンプによって水素を排出して真空(VAC)に切り替え、1.0Pa以下まで減圧した。そして、減圧雰囲気下(最終真空度:0.5Pa)で、試料No.3-1,3-2は800℃×60分、試料No.3-3,3-4は775℃×60分で熱処理(脱水素)を施した。熱処理(脱水素)は、いずれの試料も3Tの磁場を印加した状態で行った。磁場の印加は、高温超電導磁石を用いて行った。ここでは、磁場の印加方向は、上記成形工程における加圧方向と同じ方向とした。
(Dehydrogenation process)
In the same manner as in Test Example 2, each powder compact (first compact) obtained through the molding process was heated in a hydrogen atmosphere to sample Nos.3-1 and 3-2. .3-3 and 3-3 were heated to 775 ° C., and then the hydrogen was discharged by a deaeration pump and switched to vacuum (VAC), and the pressure was reduced to 1.0 Pa or less. Then, under a reduced pressure atmosphere (final vacuum: 0.5 Pa), Sample Nos. 3-1 and 3-2 were heat treated at 800 ° C. for 60 minutes, and Samples No. 3-3 and 3-4 were heat treated at 775 ° C. for 60 minutes (Dehydrogenation) was performed. The heat treatment (dehydrogenation) was performed in a state where a 3T magnetic field was applied to all the samples. The magnetic field was applied using a high temperature superconducting magnet. Here, the application direction of the magnetic field was the same as the pressing direction in the molding step.

(窒化工程)
脱水素工程を経て得られた成形体(第二成形体)に、酸素濃度:100質量ppmの窒素(N2)雰囲気中、300℃×30時間で熱処理(窒化)を施した。この熱処理(窒化)は、4Tの磁場を印加した状態で行った。磁場の印加は、高温超電導磁石を用いて行い、磁場の印加方向は、上記脱水素工程における磁場の印加方向と同じ方向とした。
(Nitriding process)
The molded body (second molded body) obtained through the dehydrogenation step was heat-treated (nitrided) at 300 ° C. for 30 hours in a nitrogen (N 2 ) atmosphere with an oxygen concentration of 100 mass ppm. This heat treatment (nitriding) was performed in a state where a 4 T magnetic field was applied. The application of the magnetic field was performed using a high-temperature superconducting magnet, and the application direction of the magnetic field was the same as the application direction of the magnetic field in the dehydrogenation step.

熱処理(窒化)後に得られた成形体の組成をEDX装置により調べた。その結果、いずれの試料も希土類元素とFeとを含有する合金(表6に示す合金)が確認された。そのため、熱処理(脱水素)や熱処理(窒化)により再結合合金が生成されたり(試料No.3-1,3-2)、再結合合金が窒化されたり(試料No.3-3,3-4)したことが分かる。   The composition of the molded body obtained after the heat treatment (nitriding) was examined by an EDX apparatus. As a result, in each sample, an alloy containing rare earth elements and Fe (alloy shown in Table 6) was confirmed. Therefore, a recombination alloy is produced by heat treatment (dehydrogenation) or heat treatment (nitridation) (Sample No.3-1, 3-2), or a recombination alloy is nitrided (Sample No.3-3, 3- 4) I understand what I did.

熱処理(窒化)後に得られた成形体について試験例1と同様にして調べたところ、各成形体は、希土類元素とFeとを含有する合金を主成分とする複数の合金粒子と、α"Fe16N2を主成分とする複数の鉄窒化物粒子からなることを確認した。このことから、各成形体は、ナノ鉄粉によりα"Fe16N2といった窒化物が形成されたことが分かる。また、各成形体は、合金粒子間に鉄窒化物粒子が介在していること、鉄窒化物粒子が柱状であることを確認した。この柱状の鉄窒化物粒子について、試験例1と同様にして、鉄窒化物粒子の短軸の平均長さを測定したところ、ナノ鉄粉における短軸の平均長さを実質的に維持していた。 When the molded body obtained after the heat treatment (nitriding) was examined in the same manner as in Test Example 1, each molded body had a plurality of alloy particles mainly composed of an alloy containing a rare earth element and Fe, and α "Fe It was confirmed that it consists of a plurality of iron nitride particles mainly composed of 16 N 2. From this, it can be seen that each molded body was formed with a nitride such as α "Fe 16 N 2 by nano iron powder. . In addition, it was confirmed that each molded body had iron nitride particles interposed between alloy particles and that the iron nitride particles were columnar. For the columnar iron nitride particles, the average minor axis length of the iron nitride particles was measured in the same manner as in Test Example 1, and the average minor axis length of the nanoiron powder was substantially maintained. It was.

各成形体について、合金粒子における合金成分の含有量(体積%)を試験例1と同様にして調べた。その結果を表6に示す。また、各成形体について、鉄窒化物粒子におけるα"Fe16N2成分の含有量を試験例1と同様にして調べたところ、いずれの試料も80体積%以上であった。 For each compact, the alloy component content (volume%) in the alloy particles was examined in the same manner as in Test Example 1. The results are shown in Table 6. For each molded body, the content of the α ”Fe 16 N 2 component in the iron nitride particles was examined in the same manner as in Test Example 1. As a result, all the samples were 80% by volume or more.

熱処理(窒化)後に得られた成形体について、試験例1と同様にして、相対密度(%)、飽和磁化(T)、保磁力(kOe)、立体角(°)を調べた。その結果を表6に示す。   The molded body obtained after the heat treatment (nitriding) was examined in the same manner as in Test Example 1 for the relative density (%), saturation magnetization (T), coercive force (kOe), and solid angle (°). The results are shown in Table 6.

Figure 2012253247
Figure 2012253247

表6に示すように、本発明製造方法を利用することで、種々の組成の多相粉末を用いて、磁気特性に優れる複合磁性材が得られることが分かる。また、種々の組成の多相粉末を用いた場合でも、立体角が10°以内と小さく、複合磁性材を構成する合金粒子の結晶の配向軸と鉄窒化物粒子の結晶の配向軸とが揃って配向していることが分かる。その他、試料No.3-1,3-2から、Ndを含有する原料を用いることで、飽和磁化が非常に高い複合磁性材が得られること、試料No.3-3,3-4から、Smの使用量を低減しても、磁気特性に優れる複合磁性材が得られることが分かる。なお、試料No.3-4は、水素吸蔵性を有するTiを含むことで、鉄含有物(ここではFe-Ti相)中に水素の含有が認められた。   As shown in Table 6, it can be seen that by using the production method of the present invention, a composite magnetic material having excellent magnetic properties can be obtained using multiphase powders having various compositions. Even when multiphase powders of various compositions are used, the solid angle is as small as 10 ° or less, and the crystal orientation axis of the alloy particles constituting the composite magnetic material is aligned with the crystal orientation axis of the iron nitride particles. It can be seen that they are oriented. In addition, from sample Nos. 3-1 and 3-2, by using a raw material containing Nd, a composite magnetic material having a very high saturation magnetization can be obtained, from sample Nos. 3-3 and 3-4, It can be seen that a composite magnetic material having excellent magnetic properties can be obtained even when the amount of Sm used is reduced. Note that Sample No. 3-4 contained Ti having hydrogen occlusion, so that the inclusion of hydrogen was recognized in the iron-containing material (here, Fe-Ti phase).

本発明は、上述した実施の形態に限定されるものではなく、本発明の要旨を逸脱することなく、適宜変更することが可能である。例えば、バインダの混合量などを適宜変更することができる。   The present invention is not limited to the above-described embodiments, and can be appropriately changed without departing from the gist of the present invention. For example, the mixing amount of the binder can be appropriately changed.

本発明複合磁性材は、永久磁石、例えば、各種のモータ、特に、ハイブリッド自動車(HEV)やハードディスクドライブ(HDD)などに具備される高速モータに用いられる永久磁石の素材に好適に利用することができる。本発明複合磁性材の製造方法は、上記本発明複合磁性材の製造に好適に利用することができる。   The composite magnetic material of the present invention can be suitably used as a permanent magnet, for example, a material of a permanent magnet used in various motors, in particular, a high-speed motor provided in a hybrid vehicle (HEV) or a hard disk drive (HDD). it can. The manufacturing method of the composite magnetic material of the present invention can be suitably used for manufacturing the composite magnetic material of the present invention.

Claims (14)

原料粉末として、Feを主成分とし、短軸の平均長さが100nm以下である柱状粒子からなるナノ鉄粉と、希土類元素の水素化合物の相とFeを含有する鉄含有物の相とを含有する多相粒子からなる多相粉末とを準備する準備工程と、
分解温度が240℃以下であるバインダと前記原料粉末とを混合して、造粒粉を形成する造粒工程と、
前記造粒粉を成形型に充填した後、前記成形型内を0.9気圧以下に排気しながら、{(前記バインダの分解温度)−20}℃以上{(前記バインダの分解温度)+20}℃以下の温度に加熱した状態で加圧成形して第一成形体を形成する成形工程と、
前記第一成形体に、100Pa以下の減圧雰囲気中、前記多相粒子の再結合温度以上の温度で熱処理を施して、前記多相粒子から水素を分離し、前記希土類元素と前記鉄含有物とが結合した再結合合金を生成し、前記再結合合金を含む第二成形体を形成する脱水素工程と、
前記第二成形体に、窒素元素を含み、酸素濃度が200質量ppm以下の雰囲気中、200℃以上450℃以下の温度で熱処理を施して、前記ナノ鉄粉からα"Fe16N2を生成し、α"Fe16N2を含む複合磁性材を形成する窒化工程とを具え、
前記脱水素工程の熱処理は、前記第一成形体に2T以上の磁場を印加して行い、
前記窒化工程の熱処理は、前記第二成形体に、前記脱水素工程における磁場の印加方向と同じ方向に、3T以上の磁場を印加して行うことを特徴とする複合磁性材の製造方法。
As a raw material powder, it contains nano iron powder consisting of columnar particles with Fe as the main component and an average minor axis length of 100 nm or less, a rare earth element hydrogen compound phase, and an iron-containing material phase containing Fe Preparing a multi-phase powder comprising multi-phase particles to be
A granulation step of mixing a binder having a decomposition temperature of 240 ° C. or less and the raw material powder to form a granulated powder;
After filling the granulated powder into a mold, the inside of the mold is evacuated to 0.9 atm or less, {(decomposition temperature of the binder) −20} ° C. or more {(decomposition temperature of the binder) +20} ° C. or less A molding step in which the first molded body is formed by pressure molding in a state heated to a temperature of
The first molded body is subjected to a heat treatment at a temperature equal to or higher than the recombination temperature of the multiphase particles in a reduced-pressure atmosphere of 100 Pa or less to separate hydrogen from the multiphase particles, and the rare earth element and the iron-containing material Producing a recombined alloy bonded with each other, and forming a second compact including the recombined alloy;
The second molded body is heat treated at a temperature of 200 ° C. or higher and 450 ° C. or lower in an atmosphere containing nitrogen element and an oxygen concentration of 200 mass ppm or lower to produce α ”Fe 16 N 2 from the nano iron powder. And a nitriding step for forming a composite magnetic material containing α "Fe 16 N 2 ,
The heat treatment in the dehydrogenation step is performed by applying a magnetic field of 2T or more to the first molded body,
The heat treatment in the nitriding step is performed by applying a magnetic field of 3 T or more to the second compact in the same direction as the direction of applying the magnetic field in the dehydrogenation step.
前記多相粉末の平均粒径が10μm以上であることを特徴とする請求項1に記載の複合磁性材の製造方法。   2. The method for producing a composite magnetic material according to claim 1, wherein an average particle size of the multiphase powder is 10 μm or more. 前記ナノ鉄粉におけるFeの含有量が80体積%以上であることを特徴とする請求項1又は2に記載の複合磁性材の製造方法。   3. The method for producing a composite magnetic material according to claim 1, wherein the content of Fe in the nano iron powder is 80% by volume or more. 前記多相粉末は、希土類元素とFeとを含む合金に、水素元素を含む雰囲気中、当該合金の不均化温度以上の温度で熱処理を施して得られ、
前記合金は、RE=Y,La,Pr,Nd,Sm,Dy及びCeから選択される1種以上の元素、Me=Fe又はFeとCo,Ni,Mn及びTiから選択される1種以上の元素、x=2.0〜2.2とするとき、RExMe14B,RExMe14C,RExMe17及びREx/2Me12から選択される1種以上であることを特徴とする請求項1〜3のいずれか1項に記載の複合磁性材の製造方法。
The multiphase powder is obtained by subjecting an alloy containing a rare earth element and Fe to a heat treatment at a temperature equal to or higher than the disproportionation temperature of the alloy in an atmosphere containing a hydrogen element,
The alloy is one or more elements selected from RE = Y, La, Pr, Nd, Sm, Dy and Ce, and one or more elements selected from Me = Fe or Fe and Co, Ni, Mn and Ti. The element, when x = 2.0 to 2.2, is at least one selected from RE x Me 14 B, RE x Me 14 C, RE x Me 17 and RE x / 2 Me 12 The method for producing a composite magnetic material according to any one of 1 to 3.
前記窒化工程では、前記再結合合金を窒化して、希土類元素とFeとを含む希土類-鉄-窒素系合金を生成することを特徴とする請求項1〜4のいずれか1項に記載の複合磁性材の製造方法。   5. The composite according to claim 1, wherein in the nitriding step, the recombination alloy is nitrided to generate a rare earth-iron-nitrogen based alloy containing a rare earth element and Fe. Manufacturing method of magnetic material. 前記バインダは、その融点が90℃以下であることを特徴とする請求項1〜5のいずれか1項に記載の複合磁性材の製造方法。   6. The method for producing a composite magnetic material according to claim 1, wherein the binder has a melting point of 90 ° C. or less. 前記造粒工程では、酸素濃度が3000質量ppm以下の低酸素雰囲気下とし、{(前記バインダの融点)+5}℃以上の温度から室温にまで冷却して造粒を行うことを特徴とする請求項1〜6のいずれか1項に記載の複合磁性材の製造方法。   The granulation step is performed in a low oxygen atmosphere with an oxygen concentration of 3000 ppm by mass or less, and granulated by cooling from a temperature of {(melting point of the binder) +5} ° C. to room temperature. Item 7. The method for producing a composite magnetic material according to any one of Items 1 to 6. 前記脱水素工程及び前記窒化工程の少なくとも一方の工程における前記磁場の印加は、高温超電導磁石を用いて行うことを特徴とする請求項1〜7のいずれか1項に記載の複合磁性材の製造方法。   8. The production of a composite magnetic material according to claim 1, wherein the application of the magnetic field in at least one of the dehydrogenation step and the nitriding step is performed using a high-temperature superconducting magnet. Method. 請求項1〜8のいずれか1項に記載の複合磁性材の製造方法により得られた複合磁性材であり、
希土類元素とFeとを含有する合金を主成分とする複数の合金粒子と、
α"Fe16N2を主成分とする複数の鉄窒化物粒子とから構成された成形体からなり、
前記合金粒子について行ったX線回折の極点図分析における磁化容易軸の配向方向と、前記鉄窒化物粒子について行ったX線回折の極点図分析における磁化容易軸の配向方向とがなす立体角が10°以内であることを特徴とする複合磁性材。
A composite magnetic material obtained by the method for producing a composite magnetic material according to any one of claims 1 to 8,
A plurality of alloy particles mainly composed of an alloy containing a rare earth element and Fe;
It consists of a compact composed of a plurality of iron nitride particles mainly composed of α "Fe 16 N 2 ,
The solid angle formed by the orientation direction of the easy axis in the pole figure analysis of X-ray diffraction performed on the alloy particles and the orientation direction of the easy axis in the pole figure analysis of X-ray diffraction performed on the iron nitride particles is A composite magnetic material characterized by being within 10 °.
希土類元素とFeとを含有する合金を主成分とする複数の合金粒子と、
α"Fe16N2を主成分とする複数の鉄窒化物粒子とから構成された成形体からなり、
前記鉄窒化物粒子は、柱状であり、短軸の平均長さが100nm以下であり、
前記合金粒子間に少なくとも一つの前記鉄窒化物粒子を介在しており、
前記合金粒子について行ったX線回折の極点図分析における磁化容易軸の配向方向と、前記鉄窒化物粒子について行ったX線回折の極点図分析における磁化容易軸の配向方向とがなす立体角が10°以内であることを特徴とする複合磁性材。
A plurality of alloy particles mainly composed of an alloy containing a rare earth element and Fe;
It consists of a compact composed of a plurality of iron nitride particles mainly composed of α "Fe 16 N 2 ,
The iron nitride particles are columnar, the average length of the minor axis is 100 nm or less,
At least one iron nitride particle is interposed between the alloy particles;
The solid angle formed by the orientation direction of the easy axis in the pole figure analysis of X-ray diffraction performed on the alloy particles and the orientation direction of the easy axis in the pole figure analysis of X-ray diffraction performed on the iron nitride particles is A composite magnetic material characterized by being within 10 °.
前記合金は、RE=Y,La,Pr,Nd,Sm,Dy及びCeから選択される1種以上の元素、Me=Fe又はFeとCo,Ni,Mn及びTiから選択される1種以上の元素、x=1.5〜3.5とするとき、RE2Me14B,RE2Me14C,RE2Me17Nx,RE1Me12Nx及びRE1Me12から選択される1種以上であることを特徴とする請求項9又は10に記載の複合磁性材。 The alloy is one or more elements selected from RE = Y, La, Pr, Nd, Sm, Dy and Ce, and one or more elements selected from Me = Fe or Fe and Co, Ni, Mn and Ti. Element, when x = 1.5 to 3.5, one or more selected from RE 2 Me 14 B, RE 2 Me 14 C, RE 2 Me 17 N x , RE 1 Me 12 N x and RE 1 Me 12 11. The composite magnetic material according to claim 9 or 10, wherein: 前記成形体の飽和磁化が1.5T以上、及び前記成形体の保磁力が10kOe以上の少なくとも一方を満たすことを特徴とする請求項9〜11のいずれか1項に記載の複合磁性材。   12. The composite magnetic material according to claim 9, wherein the molded body satisfies at least one of a saturation magnetization of 1.5 T or more and a coercive force of the molded body of 10 kOe or more. 前記成形体の相対密度が90%以上であることを特徴とする請求項9〜12のいずれか1項に記載の複合磁性材。   13. The composite magnetic material according to claim 9, wherein a relative density of the molded body is 90% or more. 前記合金粒子における合金成分の含有量が90体積%以上であることを特徴とする請求項9〜13のいずれか1項に記載の複合磁性材。   14. The composite magnetic material according to claim 9, wherein a content of an alloy component in the alloy particles is 90% by volume or more.
JP2011125799A 2011-06-03 2011-06-03 Composite magnetic material and method for manufacturing the same Withdrawn JP2012253247A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011125799A JP2012253247A (en) 2011-06-03 2011-06-03 Composite magnetic material and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011125799A JP2012253247A (en) 2011-06-03 2011-06-03 Composite magnetic material and method for manufacturing the same

Publications (1)

Publication Number Publication Date
JP2012253247A true JP2012253247A (en) 2012-12-20

Family

ID=47525782

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011125799A Withdrawn JP2012253247A (en) 2011-06-03 2011-06-03 Composite magnetic material and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP2012253247A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015053548A1 (en) * 2013-10-08 2015-04-16 엘지이노텍 주식회사 Magnetic sheet and wirelessly charged magnetic member including same
JP2018182284A (en) * 2017-04-07 2018-11-15 株式会社Future Materialz Iron nitride system magnetic material
JP2018195698A (en) * 2017-05-17 2018-12-06 株式会社デンソー L10-FeNi magnetic powder and bonded magnet
WO2020137741A1 (en) * 2018-12-27 2020-07-02 キヤノン株式会社 Magnet and magnet production method
CN111403163A (en) * 2020-01-07 2020-07-10 浙江凯文磁业有限公司 Preparation method of high-corrosion-resistance sintered neodymium-iron-boron magnet
CN112908664A (en) * 2019-12-03 2021-06-04 北京中科三环高技术股份有限公司 Method for preparing rare earth sintered magnet
CN112951534A (en) * 2021-02-02 2021-06-11 包头市金蒙汇磁材料有限责任公司 Sintered neodymium-iron-boron magnet and preparation method thereof
CN116237537A (en) * 2021-12-08 2023-06-09 重庆大学 Selective magnetization 3D printing method

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105900190B (en) * 2013-10-08 2019-09-17 Lg伊诺特有限公司 Magnetic sheet and wireless charging magnetic component comprising the magnetic sheet
US20160268033A1 (en) * 2013-10-08 2016-09-15 Lg Innoteck Co. Ltd. Magnetic Sheet and Wirelessly Charged Magnetic Member Including Same
US9831022B2 (en) * 2013-10-08 2017-11-28 Lg Innotek Co., Ltd. Magnetic sheet and wirelessly charged magnetic member including same
WO2015053548A1 (en) * 2013-10-08 2015-04-16 엘지이노텍 주식회사 Magnetic sheet and wirelessly charged magnetic member including same
JP7108258B2 (en) 2017-04-07 2022-07-28 株式会社Future Materialz Iron nitride magnetic material
JP2018182284A (en) * 2017-04-07 2018-11-15 株式会社Future Materialz Iron nitride system magnetic material
CN110622261B (en) * 2017-05-17 2021-05-25 株式会社电装 L10-FeNi magnetic powder and bonded magnet
CN110622261A (en) * 2017-05-17 2019-12-27 株式会社电装 L10-FeNi magnetic powder and bonded magnet
JP2018195698A (en) * 2017-05-17 2018-12-06 株式会社デンソー L10-FeNi magnetic powder and bonded magnet
US11244776B2 (en) 2017-05-17 2022-02-08 Denso Corporation L10-FeNi magnetic powder and bond magnet
JP2020107732A (en) * 2018-12-27 2020-07-09 キヤノン株式会社 Magnet and method of manufacturing the same
CN113168962A (en) * 2018-12-27 2021-07-23 佳能株式会社 Magnet and method for manufacturing magnet
WO2020137741A1 (en) * 2018-12-27 2020-07-02 キヤノン株式会社 Magnet and magnet production method
JP7278768B2 (en) 2018-12-27 2023-05-22 キヤノン株式会社 Magnet and method for manufacturing magnet
CN112908664A (en) * 2019-12-03 2021-06-04 北京中科三环高技术股份有限公司 Method for preparing rare earth sintered magnet
CN112908664B (en) * 2019-12-03 2022-12-20 北京中科三环高技术股份有限公司 Method for preparing rare earth sintered magnet
CN111403163A (en) * 2020-01-07 2020-07-10 浙江凯文磁业有限公司 Preparation method of high-corrosion-resistance sintered neodymium-iron-boron magnet
CN112951534A (en) * 2021-02-02 2021-06-11 包头市金蒙汇磁材料有限责任公司 Sintered neodymium-iron-boron magnet and preparation method thereof
CN112951534B (en) * 2021-02-02 2023-03-24 包头市金蒙汇磁材料有限责任公司 Sintered neodymium-iron-boron magnet and preparation method thereof
CN116237537A (en) * 2021-12-08 2023-06-09 重庆大学 Selective magnetization 3D printing method

Similar Documents

Publication Publication Date Title
JP5218869B2 (en) Rare earth-iron-nitrogen alloy material, method for producing rare earth-iron-nitrogen alloy material, rare earth-iron alloy material, and method for producing rare earth-iron alloy material
JP5892139B2 (en) Rare earth anisotropic magnet and manufacturing method thereof
JP4873008B2 (en) R-Fe-B porous magnet and method for producing the same
JP5572673B2 (en) R-T-B system rare earth sintered magnet alloy, R-T-B system rare earth sintered magnet alloy manufacturing method, R-T-B system rare earth sintered magnet alloy material, R-T-B system rare earth Sintered magnet, method for producing RTB-based rare earth sintered magnet, and motor
JP5304907B2 (en) R-Fe-B fine crystal high density magnet
JP5754232B2 (en) Manufacturing method of high coercive force NdFeB magnet
CN102918611B (en) The manufacture method of rare-earth permanent magnet and rare-earth permanent magnet
JP4591633B2 (en) Nanocomposite bulk magnet and method for producing the same
JP5288277B2 (en) Manufacturing method of RTB-based permanent magnet
JP2012253247A (en) Composite magnetic material and method for manufacturing the same
JP4872887B2 (en) Porous material for R-Fe-B permanent magnet and method for producing the same
WO2000012771A1 (en) Alloy for use in preparation of r-t-b-based sintered magnet and process for preparing r-t-b-based sintered magnet
JP2013102122A (en) Magnetic member and manufacturing method for magnetic member
TW201142878A (en) Powder for magnet
WO2003066922A1 (en) Sinter magnet made from rare earth-iron-boron alloy powder for magnet
JP2009260290A (en) Method of manufacturing r-fe-b system anisotropic bulk magnet
JP5288276B2 (en) Manufacturing method of RTB-based permanent magnet
JP5757394B2 (en) Rare earth permanent magnet manufacturing method
JP5613856B1 (en) R-T-B system rare earth sintered magnet alloy, R-T-B system rare earth sintered magnet alloy manufacturing method, R-T-B system rare earth sintered magnet alloy material, R-T-B system rare earth Sintered magnet, method for producing RTB-based rare earth sintered magnet, and motor
JP2012199423A (en) Production method of anisotropic magnetic powder and anisotropic bond magnet
US8480818B2 (en) Permanent magnet and manufacturing method thereof
JP4650218B2 (en) Method for producing rare earth magnet powder
JP2003247022A (en) Method for manufacturing r-t-b sintered magnet
JP2004137582A (en) Sintered rare earth magnet and its production method
JPH11293418A (en) Master alloy for pare earth magnet material, rare earth magnet material, its production and rare earth bond magnet using it

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140805