JP7108258B2 - Iron nitride magnetic material - Google Patents

Iron nitride magnetic material Download PDF

Info

Publication number
JP7108258B2
JP7108258B2 JP2017206610A JP2017206610A JP7108258B2 JP 7108258 B2 JP7108258 B2 JP 7108258B2 JP 2017206610 A JP2017206610 A JP 2017206610A JP 2017206610 A JP2017206610 A JP 2017206610A JP 7108258 B2 JP7108258 B2 JP 7108258B2
Authority
JP
Japan
Prior art keywords
powder
weight
iron nitride
magnetic material
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017206610A
Other languages
Japanese (ja)
Other versions
JP2018182284A (en
Inventor
智之 小川
斉也 小林
▲徳▼ 戸田
昌司 大谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Future Materialz
Original Assignee
Future Materialz
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Future Materialz filed Critical Future Materialz
Publication of JP2018182284A publication Critical patent/JP2018182284A/en
Application granted granted Critical
Publication of JP7108258B2 publication Critical patent/JP7108258B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、窒化鉄Fe16を含む新規な窒化鉄系磁性材料に関する。 The present invention relates to novel iron nitride-based magnetic materials containing iron nitride Fe 16 N 2 .

磁性材料は、例えば電子分野、自動車分野、医療分野等の各種の分野で利用されており、その用途等に応じて種々の化合物等が用いられている。例えば、フェライト系をはじめとして、パーマロイ系、ネオジム系、サマリウム系、アルニコ系等の各種の材料が知られている。 Magnetic materials are used in various fields such as the electronic field, the automotive field, and the medical field, and various compounds and the like are used according to their uses. For example, various materials such as ferrite, permalloy, neodymium, samarium, and alnico are known.

これら磁性材料の中でも、窒化鉄Fe16は、α-Feを超える磁化が期待できるうえ、通常の鉄系材料に比して耐食性等にも優れるという点で注目されている強磁性材料の一つである。このため、各種の分野においてもFe16系磁性材料の開発が進められている。 Among these magnetic materials, iron nitride Fe 16 N 2 is expected to have a magnetization exceeding that of α-Fe, and is a ferromagnetic material that is attracting attention for its superior corrosion resistance compared to ordinary iron-based materials. is one. For this reason, Fe 16 N 2 -based magnetic materials are being developed in various fields.

例えば、鉄と窒素を少なくとも構成元素とし、かつFe16相を少なくとも含む磁性粉末であって、鉄に対する窒素の含有量が1.0~20.0原子%であり、粒子長軸の平均サイズが20~100nmの範囲の紡錘状または針状であることを特徴とする窒化鉄系磁性粉末が知られている(特許文献1)。 For example, a magnetic powder containing at least iron and nitrogen as constituent elements and at least an Fe 16 N 2 phase, wherein the nitrogen content relative to iron is 1.0 to 20.0 atomic %, and the average particle long axis is An iron nitride-based magnetic powder characterized by having a spindle shape or a needle shape with a size in the range of 20 to 100 nm is known (Patent Document 1).

また例えば、Fe16相を含み、粒径の個数分布において、粒径10nm以上50nm以下の範囲の粒子の個数が全体のx%、粒径100nm以上200nm以下の範囲の粒子が全体のy%とするとき、前記xが30≦x≦70であり、前記yが30≦y≦70であり、前記x及びyが60≦x+y≦100であることを特徴とする窒化鉄系磁性粉が提案されている(特許文献2) Further, for example, the Fe 16 N 2 phase is included, and in the particle size distribution, x% of the total number of particles having a particle size of 10 nm or more and 50 nm or less, and y of the total particles having a particle size of 100 nm or more and 200 nm or less %, x is 30≦x≦70, y is 30≦y≦70, and x and y are 60≦x+y≦100. Proposed (Patent Document 2)

さらに、Fe16を主成分とする窒化鉄粉末であって、粉末表面の少なくとも一部に、希土類金属元素、アルミニウムおよびシリコンからなる群から選ばれる少なくとも一種の元素ならびに(CoFe1-X)Fe(0<x≦1)で表される組成を有するコバルト含有フェライトを含む被覆層を有する窒化鉄粉末が提案されている(特許文献3) Furthermore, the iron nitride powder containing Fe 16 N 2 as a main component has at least one element selected from the group consisting of rare earth metal elements, aluminum and silicon and (Co X Fe 1- X ) An iron nitride powder having a coating layer containing cobalt-containing ferrite having a composition represented by Fe 2 O 4 (0<x≦1) has been proposed (Patent Document 3).

特開2004-319923JP 2004-319923 特開2016-17199JP 2016-17199 特開2009-88287JP 2009-88287

このように、Fe16系磁性材料は、さまざまな研究・開発がなされているが、保磁力という点ではなお改善の余地が残されている。すなわち、Fe16系磁性材料の保磁力をより高めることができれば、さらなる用途の拡大が期待できる。この点、窒化鉄Fe16に第3元素をドーピングする方法も考えられるが、第3元素をドープしても高い保磁力は得られていないのが現状である。 As described above, Fe 16 N 2 -based magnetic materials have been extensively researched and developed, but there is still room for improvement in terms of coercive force. In other words, if the coercive force of the Fe 16 N 2 -based magnetic material can be further enhanced, further expansion of applications can be expected. In this regard, a method of doping iron nitride Fe 16 N 2 with a third element is also conceivable, but at present, high coercive force cannot be obtained even by doping with a third element.

従って、本発明の主な目的は、より高い保磁力を発揮できるFe16系磁性材料を提供することにある。 SUMMARY OF THE INVENTION Accordingly, it is a primary object of the present invention to provide a Fe 16 N 2 -based magnetic material capable of exhibiting a higher coercive force.

本発明者は、従来技術の問題点に鑑みて鋭意研究を重ねた結果、特定の組成・構成からなる材料が上記目的を達成できることを見出し、本発明を完成するに至った。 As a result of intensive research in view of the problems of the prior art, the inventors have found that a material having a specific composition and configuration can achieve the above-mentioned objects, and have completed the present invention.

すなわち、本発明は、下記の窒化鉄系磁性材料に係る。
1. 窒化鉄系材料を含む磁性材料であって、
前記窒化鉄系材料として、
a)一次粒子の平均粒径が10~200nmである(Fe16-m)N(但し、XはFeサイトに置換可能な元素の少なくとも1種を示し、mは0≦m≦5を満たす。)を含む第1粉末と、
b)一次粒子の平均粒径が0.3~500μmであるRFe17(但し、Rは希土類元素の少なくとも1種を示し、nは0<n≦3を満たす。)を含む第2粉末
とを含むことを特徴とする窒化鉄系磁性材料。
2. 前記Xが、Ge、Ga、Al、Si、V、Ti、Cr、Mn、Ni、Co、Zn、W、Mo、Pt、Rh、Pd、Ru、Y、Sc、Zr及びCeの少なくとも1種である、前記項1に記載の窒化鉄系磁性材料。
3. 前記Rが、Sm、Ce、Nd及びDyの少なくとも1種である、前記項1に記載の窒化鉄系磁性材料。
4. 第1粉末及び第2粉末の合計100重量部として、重量比で第1粉末が5~95重量部であり、第2粉末が95~5重量部である、前記項1に記載の窒化鉄系磁性材料。
5. 圧粉体である、請求項1~4のいずれかに記載の窒化鉄系磁性材料。
6. 圧粉体が磁気的に異方な成形体である、前記項5に記載の窒化鉄系磁性材料。
That is, the present invention relates to the following iron nitride-based magnetic material.
1. A magnetic material containing an iron nitride-based material,
As the iron nitride-based material,
a) (Fe 16-m X m )N 2 having an average primary particle size of 10 to 200 nm (where X represents at least one element that can be substituted at the Fe site, and m is 0≦m≦5 and a first powder containing
b) a primary particle containing R 2 Fe 17 N n (where R represents at least one rare earth element and n satisfies 0<n≦3) having an average primary particle size of 0.3 to 500 μm; 2. An iron nitride-based magnetic material characterized by containing 2 powders.
2. X is at least one of Ge, Ga, Al, Si, V, Ti, Cr, Mn, Ni, Co, Zn, W, Mo, Pt, Rh, Pd, Ru, Y, Sc, Zr and Ce 2. The iron nitride-based magnetic material according to item 1 above.
3. 2. The iron nitride-based magnetic material according to item 1, wherein R is at least one of Sm, Ce, Nd and Dy.
4. Item 1. The iron nitride system according to Item 1, wherein the weight ratio of the first powder is 5 to 95 parts by weight and the second powder is 95 to 5 parts by weight when the total of the first powder and the second powder is 100 parts by weight. magnetic material.
5. The iron nitride-based magnetic material according to any one of claims 1 to 4, which is a compact.
6. 6. The iron nitride-based magnetic material according to item 5, wherein the powder compact is a magnetically anisotropic compact.

本発明によれば、より高い保磁力を発揮できるFe16系磁性材料を提供することができる。より具体的には、本発明材料では、比較的粒径の小さな第1粉末と比較的粒径の大きな第2粉末との混合粉末(特に複合材料)として用いることにより、高い保磁力とともに、第1粉末の特徴と第2粉末の特徴とを兼ね備えた物性を得ることができる。 ADVANTAGE OF THE INVENTION According to this invention, the Fe16N2 system magnetic material which can exhibit higher coercive force can be provided. More specifically, in the material of the present invention, by using a mixed powder (especially a composite material) of a first powder having a relatively small particle size and a second powder having a relatively large particle size, a high coercive force and a It is possible to obtain physical properties that combine the characteristics of the first powder and the characteristics of the second powder.

このような特徴をもつ本発明材料は、例えば粉末又は圧粉体(成形体)の形態で、従来の硬質磁性材料の代替品として利用することもできる。 The material of the present invention having such characteristics can also be used as a substitute for conventional hard magnetic materials, for example in the form of powder or green compact (molding).

試験例1で求めた各試料の磁性ヒステリシスループを示す。The magnetic hysteresis loop of each sample obtained in Test Example 1 is shown. 試験例2で求めた各試料の磁化曲線を示す。The magnetization curve of each sample obtained in Test Example 2 is shown. 試験例3において、第1粉末と第2粉末との比率と、磁化との関係について調べた結果を示す。3 shows the result of examining the relationship between the ratio of the first powder and the second powder and the magnetization in Test Example 3. 試験例4において、第1粉末と第2粉末との比率と、保磁力との関係について調べた結果を示す。In Test Example 4, the results of examining the relationship between the ratio of the first powder and the second powder and the coercive force are shown. 試験例5において、第1粉末と第2粉末との比率と、最大エネルギー積(BH)maxとの関係について調べた結果を示す。5 shows the results of an examination of the relationship between the ratio of the first powder to the second powder and the maximum energy product (BH)max in Test Example 5. FIG. 本発明材料(FN20重量%及びSFN80重量%)の磁気特性について高温域における温度依存性について調べた結果を示す。2 shows the results of an examination of the temperature dependence in a high temperature range of the magnetic properties of the materials of the present invention (FN 20% by weight and SFN 80% by weight). 本発明材料(FN20重量%及びSFN80重量%)を走査型電子顕微鏡で観察した結果(SEM像)を示す。2 shows the result (SEM image) of the material of the present invention (FN 20% by weight and SFN 80% by weight) observed with a scanning electron microscope. 試験例8で求めた測定資料gの磁性ヒステリシスループを示す。The magnetic hysteresis loop of measurement sample g obtained in Test Example 8 is shown. 試験例8で求めた測定資料hの磁性ヒステリシスループを示す。The magnetic hysteresis loop of the measurement sample h obtained in Test Example 8 is shown. 試験例8で求めた測定資料iの磁性ヒステリシスループを示す。The magnetic hysteresis loop of measurement sample i obtained in Test Example 8 is shown. 試験例8で求めた測定資料j磁性ヒステリシスループを示す。Measurement material j magnetic hysteresis loop obtained in Test Example 8 is shown. 試験例8で求めた測定資料kの磁性ヒステリシスループを示す。The magnetic hysteresis loop of measurement sample k obtained in Test Example 8 is shown. 試験例8で求めた測定資料lの磁性ヒステリシスループを示す。The magnetic hysteresis loop of measurement sample 1 obtained in Test Example 8 is shown.

1.窒化鉄系磁性材料
本発明の窒化鉄系磁性材料(本発明材料)は、窒化鉄系材料を含む磁性材料であって、
前記窒化鉄系材料として、
a)一次粒子の平均粒径が10~200nmである(Fe16-m)N(但し、XはFeサイトに置換可能な元素の少なくとも1種を示し、mは0≦m≦5を満たす。)を含む第1粉末と、
b)一次粒子の平均粒径が0.3~500μmであるRFe17(但し、Rは希土類元素の少なくとも1種を示し、nは0<n≦3を満たす。)を含む第2粉末とを含むことを特徴とする。
1. Iron Nitride-Based Magnetic Material The iron nitride-based magnetic material of the present invention (the material of the present invention) is a magnetic material containing an iron nitride-based material,
As the iron nitride-based material,
a) (Fe 16-m X m )N 2 having an average primary particle size of 10 to 200 nm (where X represents at least one element that can be substituted at the Fe site, and m is 0≦m≦5 and a first powder containing
b) a primary particle containing R 2 Fe 17 N n (where R represents at least one rare earth element and n satisfies 0<n≦3) having an average primary particle size of 0.3 to 500 μm; 2 powder.

第1粉末として、(Fe16-m)N(但し、XはFeサイトに置換可能な元素の少なくとも1種を示し、mは0≦m≦5を満たす。)を含む粉末を用いる。すなわち、1)窒化鉄Fe16及び2)そのFeサイトが他の元素により置換された化合物の少なくとも1種を含む粉末を用いる。 As the first powder, a powder containing (Fe 16-m X m )N 2 (where X represents at least one element that can be substituted at the Fe site, and m satisfies 0≦m≦5) is used. . That is, a powder containing at least one of 1) iron nitride Fe 16 N 2 and 2) a compound whose Fe site is replaced by another element is used.

このような粉末自体は、公知又は市販のものを使用することができるほか、公知の合成方法に従って調製することができる。また、第1粉末は、(Fe16-m)N成分の含有率が100体積%であることが最も望ましいが、本発明の効果を妨げない範囲内で他の成分(他の結晶相等)が含まれていても良い。一般的には、上記含有率は80~100体積%とし、好ましくは90~100体積%とし、より好ましくは95~100体積%とすることができる。 Such a powder itself can be a known or commercially available one, or can be prepared according to a known synthesis method. In addition, although it is most desirable that the content of the (Fe 16-m X m )N 2 component in the first powder is 100% by volume, other components (other crystals equivalent) may be included. Generally, the content can be 80 to 100% by volume, preferably 90 to 100% by volume, more preferably 95 to 100% by volume.

Feサイトを置換する元素としては、特に限定されないが、特に本発明ではGe、Ga、Al、Si、V、Ti、Cr、Mn、Ni、Co、Zn、W、Mo、Pt、Rh、Pd、Ru、Y、Sc、Zr及びCeの少なくとも1種であることが好ましく、特にGe、Ga、Ti、Cr、Mn、Ni、Co,Zn、W、Mo及びRhの少なくとも1種であることがより好ましい。 Elements that substitute the Fe site are not particularly limited, but in the present invention, Ge, Ga, Al, Si, V, Ti, Cr, Mn, Ni, Co, Zn, W, Mo, Pt, Rh, Pd, It is preferably at least one of Ru, Y, Sc, Zr and Ce, and more preferably at least one of Ge, Ga, Ti, Cr, Mn, Ni, Co, Zn, W, Mo and Rh. preferable.

また、上記mの値は、通常は0~5である。すなわち、Feサイトが置換されていない組成(Fe16)のほか、Feサイトが置換された組成も採用することができる。Feサイトが置換されている場合は、0<m≦5とすれば良いが、特に1.5~5であることが好ましい。これによって、よりいっそうの結晶構造の安定化を図ることもできる。 Also, the value of m is usually 0-5. That is, in addition to a composition (Fe 16 N 2 ) in which the Fe site is not substituted, a composition in which the Fe site is substituted can also be employed. When the Fe site is substituted, 0<m≦5, preferably 1.5-5. This also makes it possible to further stabilize the crystal structure.

第1粉末の一次粒子の平均粒径は、通常10~200nmであり、好ましくは30~180nmである。このような粒径範囲に設定することにより、第1粉末を構成する粒子が、それよりも大きな第2粉末の粒子を取り囲み、あるいは被覆する状態を確保することができる結果、所望の磁気特性を発揮させることができる。上記の平均粒径は、公知の分級処理、粉砕処理、作製諸条件等によって適宜調整することもできる。 The primary particles of the first powder generally have an average particle size of 10 to 200 nm, preferably 30 to 180 nm. By setting the particle size within such a range, it is possible to secure a state in which the particles constituting the first powder surround or cover the larger particles of the second powder, resulting in desired magnetic properties. can be demonstrated. The above average particle size can also be appropriately adjusted by known classification treatment, pulverization treatment, production conditions, and the like.

なお、上記の一次粒子の平均粒径は、第1粉末を日本電子株式会社製の透過型電子顕微鏡「JEM-1400」で観察したデジタル画像データをPLYMPUS製「iTEM5.2」にて任意の粒子120個の粒径を測定・解析し、その算術平均値とした。 The average particle size of the primary particles is the digital image data obtained by observing the first powder with a transmission electron microscope "JEM-1400" manufactured by JEOL Ltd., and the digital image data is obtained using "iTEM 5.2" manufactured by PLYMPUS. 120 particle sizes were measured and analyzed, and the arithmetic mean value was obtained.

第2粉末として、一次粒子の平均粒径が0.3~500μmであるRFe17(但し、Rは希土類元素の少なくとも1種を示し、nは0<n≦3を満たす。)を含む粉末を用いる。 As the second powder, R 2 Fe 17 N n having an average primary particle size of 0.3 to 500 μm (where R represents at least one rare earth element and n satisfies 0<n≦3). Use a powder containing

このような粉末自体は、公知又は市販のものを使用することができるほか、公知の合成方法に従って調製することができる。また、第2粉末は、RFe17成分の含有率が100体積%であることが最も望ましいが、本発明の効果を妨げない範囲内で他の成分(他の結晶相等)が含まれていても良い。例えば、RFe17結晶相の安定化成分、表面修飾材等の粒子間の磁気的分離等のための各種の成分が含まれていても良い。一般的には、上記含有率は80~100体積%とし、好ましくは90~100体積%とし、より好ましくは95~100体積%とすれば良い。 Such a powder itself can be a known or commercially available one, or can be prepared according to a known synthesis method. In addition, it is most desirable that the content of the R 2 Fe 17 Nn component in the second powder is 100% by volume, but other components (such as other crystal phases) may be included within a range that does not interfere with the effects of the present invention. It's okay if it is. For example, various components for magnetic separation between particles such as a component for stabilizing the R 2 Fe 17 Nn crystal phase and a surface modifier may be included. Generally, the content is 80 to 100% by volume, preferably 90 to 100% by volume, more preferably 95 to 100% by volume.

上記Rは、希土類元素であれば特に制限されない。例えば、La、Ce、Sm、Pr、Nd、Dy、Eu、Tb、Gd、Er、Ho、Yb、Lu等の各種の元素が挙げられるが、特にSm、Ce、Nd及びDyの少なくとも1種であることが望ましい。特に、本発明の効果を最大限に発揮できるRを組み合わせた組成の材料を選択すれば良い。これにより、RFe17相の安定化を図れるほか、所望の磁気特性をより確実に得ることができる。従って、第2粉末として、例えばSmFe17含む粉末等を好適に用いることができる。 R is not particularly limited as long as it is a rare earth element. Examples include various elements such as La, Ce, Sm, Pr, Nd, Dy, Eu, Tb, Gd, Er, Ho, Yb, and Lu. It is desirable to have In particular, it is preferable to select a material having a composition in which R is combined so that the effects of the present invention can be maximized. As a result, the R 2 Fe 17 Nn phase can be stabilized, and desired magnetic properties can be obtained more reliably. Therefore, as the second powder, for example, a powder containing Sm 2 Fe 17 N 3 can be preferably used.

また、上記nの値は、通常は0<n≦3であるが、好ましくは2≦n≦3とする。これにより、所望の磁気特性(特に高保磁力特性)が得られる。 The value of n is usually 0<n≦3, but preferably 2≦n≦3. Thereby, desired magnetic properties (particularly high coercive force properties) can be obtained.

第2粉末の一次粒子の平均粒径は、通常0.3~500μmであり、好ましくは0.5~100μmである。このような粒径範囲に設定することにより、第1粉末を構成する粒子が、それよりも大きな第2粉末の粒子を取り囲み、あるいは被覆する状態を確保することができる結果、所望の磁気特性を発揮させることができる。特に、後記の図7にも示すように、第1粉末を構成する粒子表面に第2粉末の粒子が付着して一体化してなる複合粒子を構成することが望ましい。上記の平均粒径は、公知の分級処理、粉砕処理等によって適宜調整することもできる。 The average particle size of the primary particles of the second powder is usually 0.3-500 μm, preferably 0.5-100 μm. By setting the particle size within such a range, it is possible to secure a state in which the particles constituting the first powder surround or cover the larger particles of the second powder, resulting in desired magnetic properties. can be demonstrated. In particular, as shown in FIG. 7 described later, it is desirable to form composite particles in which the particles of the second powder are attached to the surfaces of the particles of the first powder and integrated. The above average particle diameter can also be appropriately adjusted by known classification treatment, pulverization treatment, and the like.

なお、上記の一次粒子の平均粒径については、第2粉末を日本電子株式会社製のショットキー電界放出形走査電子顕微鏡「JSM-7800F」で観察したデジタル画像データをPLYMPUS製「iTEM5.2」にて任意の粒子120個の粒径を測定・解析し、その算術平均値を前記平均粒径とした。 Regarding the average particle size of the primary particles, the digital image data obtained by observing the second powder with a Schottky field emission scanning electron microscope "JSM-7800F" manufactured by JEOL Ltd. is converted to "iTEM5.2" manufactured by PLYMPUS. The particle diameters of 120 arbitrary particles were measured and analyzed, and the arithmetic mean value was taken as the average particle diameter.

本発明材料における第1粉末と第2粉末との割合は、用途、所望の磁気特性等に応じて適宜設定することができるが、通常は第1粉末及び第2粉末の合計100重量部として、重量比で第1粉末が5~95重量部であり、第2粉末が95~5重量部であることが好ましい。特に、第1粉末が10~85重量部であり、第2粉末が90~15重量部であることがより好ましい。 The ratio of the first powder and the second powder in the material of the present invention can be appropriately set according to the application, desired magnetic properties, etc., but usually the total of the first powder and the second powder is 100 parts by weight, It is preferable that the weight ratio of the first powder is 5 to 95 parts by weight and the second powder is 95 to 5 parts by weight. More preferably, the first powder is 10 to 85 parts by weight and the second powder is 90 to 15 parts by weight.

また、本発明材料中における第1粉末と第2粉末との合計含有量が占める割合は限定的ではないが、通常は本発明材料中80~100重量%とし、特に85~100重量%とすることが好まし、さらに90~100重量%とすることがより好ましい。従って、本発明材料中における第1粉末と第2粉末との合計含有量が占める割合を例えば100重量%と設定することもできる。 In addition, although the ratio of the total content of the first powder and the second powder in the material of the present invention is not limited, it is usually 80 to 100% by weight, particularly 85 to 100% by weight, in the material of the present invention. 90 to 100% by weight is more preferable. Therefore, the ratio of the total content of the first powder and the second powder in the material of the present invention can be set at 100% by weight, for example.

本発明材料では、本発明の効果を妨げない範囲内において他の成分が含まれていても良い。例えば、着色剤、潤滑剤、焼結助剤、樹脂バインダー、分散剤等の成分が添加されていても良い。 The material of the present invention may contain other components as long as the effects of the present invention are not impaired. For example, components such as colorants, lubricants, sintering aids, resin binders and dispersants may be added.

本発明材料の形態としては、粉末状であるほか、本発明粉末を構成する結晶相が維持されている限りは圧粉体(成形体)であっても良い。本発明の圧粉体の例としては外部磁場印加しない状態で作製されるものであるが、それに限定されない。例えば、外部磁場を印加して磁気配向した圧粉体でも良い。これらは、用途等に合わせて適宜選択すれば良い。 As for the form of the material of the present invention, in addition to being in the form of powder, it may be in the form of green compact (molding) as long as the crystal phase constituting the powder of the present invention is maintained. An example of the green compact of the present invention is one that is produced without applying an external magnetic field, but is not limited to this. For example, a green compact magnetically oriented by applying an external magnetic field may be used. These may be appropriately selected in accordance with the application or the like.

圧粉体とする場合は、粉末状の本発明材料を公知の成形方法(例えばプレス成型(冷間・熱間)、鋳込み成型、射出成形、ローラー成形等)によって成形すれば良い。この場合、圧粉体中にも、本発明の効果を妨げない範囲内で本発明材料以外の成分が含まれていても良い。例えば、圧粉体を成形するに添加される樹脂バインダーとして、エポキシ樹脂、フェノール樹脂等の熱硬化性樹脂を5重量%以下の範囲内(好ましくは0.1~3重量%の範囲内)で含まれていても良い。 In the case of forming a powder compact, the powdered material of the present invention may be molded by a known molding method (for example, press molding (cold/hot), cast molding, injection molding, roller molding, etc.). In this case, the green compact may also contain components other than the materials of the present invention within a range that does not impair the effects of the present invention. For example, as a resin binder added for molding the compact, a thermosetting resin such as an epoxy resin or a phenolic resin is added in the range of 5% by weight or less (preferably in the range of 0.1 to 3% by weight). May be included.

本発明材料(特に圧粉体)の特性としては、例えば以下のような磁気特性を有するものが挙げられる。本発明材料が等方性磁石として機能する場合、保磁力Hcについては、通常1.5~20kOeの範囲内にあり、好ましくは5~20kOeである。また、残留磁化Mrについては、通常180~350emu/cmの範囲内にあり、好ましくは220~350emu/cmである。他方、本発明材料が異方性磁石として機能する場合、保磁力Hcについては、通常2000~20000Oeの範囲内にあり、好ましくは2500~20000Oeである。また、残留磁化Mrについては、通常350~700emu/cmの範囲内にあり、好ましくは400~700emu/cmである。 The characteristics of the material of the present invention (especially the green compact) include, for example, those having the following magnetic characteristics. When the material of the present invention functions as an isotropic magnet, the coercive force Hc is usually in the range of 1.5-20 kOe, preferably 5-20 kOe. The residual magnetization Mr is usually in the range of 180-350 emu/cm 3 , preferably 220-350 emu/cm 3 . On the other hand, when the material of the present invention functions as an anisotropic magnet, the coercive force Hc is usually in the range of 2000-20000 Oe, preferably 2500-20000 Oe. The residual magnetization Mr is usually in the range of 350-700 emu/cm 3 , preferably 400-700 emu/cm 3 .

2.窒化鉄系磁性材料の製造方法
本発明材料は、第1粉末及び第2粉末を混合する工程を含む方法によって製造することができる。両粉末を混合する方法は、両者をできる限り均一に混合する。その手法は特に制限されず、公知のミキサー、ニーダー等の装置を用いて実施することができる。
2. Method for Producing Iron Nitride-Based Magnetic Material The material of the present invention can be produced by a method including the step of mixing the first powder and the second powder. Both powders are mixed as uniformly as possible. The method is not particularly limited, and can be carried out using known devices such as mixers and kneaders.

また、両粉末の混合に際しては、乾式混合又は湿式混合のいずれであっても良い。なお、本発明における乾式混合とは、液体を一切使用しない条件下での混合をいう。また、湿式混合とは、非水系(有機溶媒の存在下)での混合をいう。 Both powders may be mixed by dry mixing or wet mixing. In addition, dry mixing in the present invention refers to mixing under conditions in which no liquid is used. Wet mixing refers to mixing in a non-aqueous system (in the presence of an organic solvent).

また、本発明材料を圧粉体とする場合は、粉末状の本発明材料を公知の成形方法(例えばプレス成型(冷間・熱間)、鋳込み成型、射出成形、ローラー成形等)によって成形すれば良い。この場合、樹脂バインダーを用いることもできる。樹脂バインダーとしては、特に限定されないが、例えばエポキシ樹脂、フェノール樹脂等の熱硬化性樹脂(粉末)を好適に用いることができる。樹脂バインダーの添加量は、用いる樹脂バインダーの種類等に応じて適宜設定できるが、通常は5重量%以下の範囲内(好ましくは0.1~3重量%の範囲内)とすれば良い。このような樹脂バインダーを上記添加量で配合することにより、より確実かつ効率的に圧粉体を作製することができる。成形するための材料は、粉末状の本発明材料と樹脂バインダーを水の不存在下で混合することにより調製することができる。樹脂バインダーを添加する場合、粉末状の樹脂バインダーをそのまま添加することもできるが、特に樹脂バインダーを有機溶剤(例えばアセトン、トルエン、テトラヒドロフラン等)に溶解又は分散させて得られた液状物(ペースト等)の形態で粉末状の本発明材料と混合することも可能である。 When the material of the present invention is used as a compact, the powdered material of the present invention can be molded by a known molding method (for example, press molding (cold/hot), cast molding, injection molding, roller molding, etc.). Good luck. In this case, a resin binder can also be used. The resin binder is not particularly limited, but thermosetting resins (powder) such as epoxy resins and phenol resins can be suitably used. The amount of the resin binder to be added can be appropriately set according to the type of resin binder used, etc., but it is usually within the range of 5% by weight or less (preferably within the range of 0.1 to 3% by weight). By blending such a resin binder in the amount described above, a green compact can be produced more reliably and efficiently. A material for molding can be prepared by mixing the powdered inventive material with a resin binder in the absence of water. When adding a resin binder, it is possible to add a powdery resin binder as it is. ) can be mixed with the powdered present material.

粉末状の本発明材料と前記ペーストとを混合する場合、これらが均一に混合することができれば良いが、特にペースト中に含まれる有機溶剤の一部又は全部を揮発させることにより、得られる混合物が粉末状とすることが好ましい。これにより、所望の成形体密度を有する成形体をより確実に得ることが可能となる。 When mixing the powdery material of the present invention and the paste, it is sufficient if they can be uniformly mixed. It is preferably powdered. This makes it possible to more reliably obtain a molded article having a desired molded article density.

また、粉末状の本発明材料と前記ペーストとの混合は磁場中で行うこともできる。これにより、磁気的な配向状態が得られ易くなる。この場合の磁場の強さは、限定的ではないが、通常は0.2~1.5T程度とすれば良い。 Also, the powdery inventive material and the paste can be mixed in a magnetic field. This makes it easier to obtain a magnetic orientation state. Although the strength of the magnetic field in this case is not limited, it is usually about 0.2 to 1.5T.

成形条件としては、特に制限されない。成形圧は、特に制限されないが、通常は0.1~25tonf/cm程度とし、好ましくは0.2~20tonf/cmとすれば良い。また、成形する際の雰囲気は、大気中でも良いが、特に第1粉末及び第2粉末が酸化されないように不活性雰囲気あるいは真空中で成形工程を実施することが好ましい。成形温度は、限定的でなく、例えば室温でも良い。また、特に樹脂バインダーが含まれている場合の成形温度は、通常70~250℃程度とし、特に80~200℃とすることが望ましい。雰囲気は、大気中でも良いが、特に実質的に非酸化性雰囲気であることが望ましく、例えば不活性ガス中、真空中等で成形を実施することができる。 Molding conditions are not particularly limited. Although the molding pressure is not particularly limited, it is usually about 0.1 to 25 tonf/cm 2 , preferably 0.2 to 20 tonf/cm 2 . The atmosphere for molding may be the air, but it is preferable to carry out the molding process in an inert atmosphere or in a vacuum so as not to oxidize the first powder and the second powder. The molding temperature is not critical, and may be room temperature, for example. The molding temperature, particularly when a resin binder is contained, is usually about 70 to 250.degree. C., preferably 80 to 200.degree. The atmosphere may be the air, but is preferably a substantially non-oxidizing atmosphere.

成形に際しては、成形時に外部磁界をかけずに圧粉体を製造した場合は、磁気等方性の圧粉体を得ることができる。これに対し、成形時に外部磁界をかけながら圧粉体を製造した場合は、磁気異方性の圧粉体(異方性磁石)を得ることができる。すなわち、外部磁界をかけながら成形することによって、得られる圧粉体の磁気特性を異方性化させることができる。 In molding, if the green compact is produced without applying an external magnetic field during molding, a magnetically isotropic green compact can be obtained. On the other hand, when a green compact is produced while applying an external magnetic field during molding, a magnetically anisotropic green compact (anisotropic magnet) can be obtained. That is, by molding while applying an external magnetic field, the magnetic properties of the obtained green compact can be made anisotropic.

外部磁界をかける場合は、公知の方法に従って実施すれば良い。例えば、市販の磁場発生装置を用いて実施することができる。また、磁場配向機能と成形機能を併せ持つ磁場中プレス成型装置を使用することもできる。外部磁界をかける場合の外部磁場の強さは、限定的ではなく、通常は0.2T以上とすれば良い。その上限値は、用いる磁場発生装置等の上限とすれば良く、一般的には7T程度とし、特に5T程度とすれば良い。また、外部磁場をかける時間(保持時間)は、特に限定されず、通常1~60分程度の範囲内において、圧粉体の大きさ等に応じて適宜設定すれば良い。外部磁場の向きは一方向のみでも良いが、場合によっては反転方向に磁場をかけても良い。また、これらを組み合わせて反転操作を複数回行っても良い。 When applying an external magnetic field, it may be carried out according to a known method. For example, it can be carried out using a commercially available magnetic field generator. In addition, a press-molding device in a magnetic field having both a magnetic field orientation function and a molding function can be used. The strength of the external magnetic field when applying the external magnetic field is not particularly limited, and should normally be 0.2 T or more. The upper limit may be set to the upper limit of the magnetic field generator or the like to be used, generally about 7T, particularly about 5T. Also, the time for which the external magnetic field is applied (holding time) is not particularly limited, and may be appropriately set within a range of about 1 to 60 minutes, usually depending on the size of the green compact. The direction of the external magnetic field may be in only one direction, but depending on the situation, the magnetic field may be applied in the opposite direction. Alternatively, these operations may be combined to perform the reversing operation a plurality of times.

圧粉成形時の温度は、特に限定されず、例えば圧粉体の第一粉末と第二粉末との配合組成、用いる樹脂に最適な温度を選択すれば良い。従って、例えば室温(20℃)~150℃程度であっても良いが、これに限定されない。 The temperature at the time of powder compaction is not particularly limited, and for example, the optimal temperature for the compounding composition of the first powder and the second powder of the compact and the resin to be used may be selected. Therefore, the temperature may be, for example, room temperature (20° C.) to about 150° C., but is not limited to this.

3.窒化鉄系磁性材料の使用
本発明材料は、通常の硬質磁性材料等と同様の用途に適用することができる。特に、本発明材料は、例えばダイレクトドライブ型風力発電等の発電機、VCM、ビデオ、CD、DVD等の再生記録装置のモーター等のほか、家電・自動車搭載機器におけるモーター等の各種用途に好適に用いることができる。
3. Use of Iron Nitride-Based Magnetic Material The material of the present invention can be applied to the same uses as ordinary hard magnetic materials. In particular, the material of the present invention is suitable for various applications such as generators such as direct drive wind power generators, motors for reproducing and recording devices such as VCM, video, CD, DVD, etc., and motors for home appliances and automobile equipment. can be used.

以下に実施例を示し、本発明の特徴をより具体的に説明する。ただし、本発明の範囲は、実施例に限定されない。 EXAMPLES Examples are given below to more specifically describe the features of the present invention. However, the scope of the present invention is not limited to the examples.

なお、本実施例において、粒子の平均粒径、磁性ヒステリシスループ等は、以下のようにして測定した。 In this example, the average particle size of particles, the magnetic hysteresis loop, etc. were measured as follows.

(1)平均粒子径及び粒子表面酸化物皮膜厚みの測定
日本電子株式会社製の透過型電子顕微鏡JEM-1400、あるいは日本電子株式会社製のショットキー電界放出形走査電子顕微鏡JSM-7800Fで試料を観察したデジタル画像データをPLYMPUS製「iTEM5.2」にて任意の粒子120個の粒径を測定・解析し、算出した。
(1) Measurement of average particle size and particle surface oxide film thickness The sample is measured with a transmission electron microscope JEM-1400 manufactured by JEOL Ltd. or a Schottky field emission scanning electron microscope JSM-7800F manufactured by JEOL Ltd. The observed digital image data was measured, analyzed and calculated for the particle size of 120 arbitrary particles using "iTEM5.2" manufactured by PLYMPUS.

(2)ヒステリシスループ
日本カンタム・デザイン株式会社製の振動試料型磁力計付きPhysical Property Measurement Systemを用いて印加磁場を-50000~50000Oe、300Kの条件下でM-Hヒステリシスループを測定し、飽和磁化及び保磁力を求めた。
(2) Hysteresis loop Using a physical property measurement system with a vibrating sample magnetometer manufactured by Nippon Quantum Design Co., Ltd., the MH hysteresis loop was measured under the conditions of −50000 to 50000 Oe and 300 K, and the saturation magnetization was measured. and coercive force.

(3)試料粉末の純度の決定
ブルカー・エイエックスエス株式会社製 D8 ADVANCEにてXRD測定を行い、そのデータを用いて、同社製TOPAS解析ソフトを用いて、生成相の分率を求めた。
(3) Determination of purity of sample powder XRD measurement was performed with a D8 ADVANCE manufactured by Bruker AXS Co., Ltd., and the data was used to determine the fraction of the generated phase using TOPAS analysis software manufactured by the same company.

実施例1
アルゴンガスで満たされた露点0℃DP以下のグローブボックス中(酸素濃度1000ppm以下)にて、第1粉末としてFe16粉末(一次粒子の平均粒径48nm、純度90%、以下「FN」とも表記する。)、第2粉末としてSmFe17粉末(一次粒子の平均粒径8μm、純度100%、以下「SFN」とも表記する。)を用意し、両粉末を所定の割合で量り取り、これらをグローブボックス中でメノウ乳鉢ライカイ機にて均一に乾式にて混合・粉砕することによって混合粉末全量として3gを調製した。
なお、FNS又はFNのいずれか一方のみからなる粉末(比較試料)については、単独の粉末をグローブボックス中でメノウ乳鉢ライカイ機にて均一に乾式にて粉砕・混合することによって粉末全量として3gを調製した。
次いで、同グローブボックス中で得られた混合粉末及び比較試料を用いて圧粉体を作製した。より具体的には、樹脂バインダーとして、液状高粘性の熱硬化性樹脂(エポキシ樹脂)0.2gをアセトン3mLに溶解させてペーストを調製した。上記で用意した混合粉末に対して前記ペーストを添加して混合しながら、アセトンを蒸発させて粉末状の混合物を得た。この混合物を同グローブボックス中に配置した金型(7mm角、割子)に充填して成形圧1.5tonf/cm、温度100℃でプレス成形することにより直方体状の圧粉体を得た。得られた圧粉体の断片(約0.5g)を採取し、これを測定試料として用いた。
Example 1
In a glove box filled with argon gas and having a dew point of 0 ° C. DP or less (oxygen concentration of 1000 ppm or less), Fe 16 N 2 powder (average primary particle diameter 48 nm, purity 90%, hereinafter “FN”) was used as the first powder. ), and Sm 2 Fe 17 N 3 powder (primary particle average particle size 8 μm, purity 100%, hereinafter also referred to as “SFN”) as the second powder, and both powders are mixed at a predetermined ratio. These were weighed out and uniformly dry-mixed and pulverized in a glove box with an agate mortar and mortar machine to prepare 3 g as the total amount of the mixed powder.
For the powder (comparative sample) consisting of either FNS or FN alone, the powder was uniformly dry ground and mixed in a glove box with an agate mortar Raikai machine to obtain a total powder amount of 3 g. prepared.
Next, using the mixed powder obtained in the same glove box and the comparative sample, a green compact was produced. More specifically, a paste was prepared by dissolving 0.2 g of a liquid highly viscous thermosetting resin (epoxy resin) as a resin binder in 3 mL of acetone. While the paste was added to the mixed powder prepared above and mixed, acetone was evaporated to obtain a powdery mixture. This mixture was filled into a mold (7 mm square, split) placed in the same glove box and press-molded at a molding pressure of 1.5 tonf/cm 2 and a temperature of 100° C. to obtain a rectangular solid. . A piece (approximately 0.5 g) of the resulting green compact was collected and used as a measurement sample.

試験例1
実施例1で得られた各測定試料a~fについて、そのヒステリシスループを求めた。その結果を図1にそれぞれ示す。
なお、図1において、測定試料と配合割合との関係は、以下のとおりである。
測定試料a:SFN/FN=0重量%/100重量%(比較試料)
測定試料b:SFN/FN=20重量%/80重量%
測定試料c:SFN/FN=40重量%/60重量%
測定試料d:SFN/FN=50重量%/50重量%
測定試料e:SFN/FN=80重量%/20重量%
測定試料f:SFN/FN=100重量%/0重量%(比較試料)
Test example 1
The hysteresis loops of the measurement samples a to f obtained in Example 1 were determined. The results are shown in FIG.
In addition, in FIG. 1, the relationship between the measurement sample and the mixing ratio is as follows.
Measurement sample a: SFN/FN = 0% by weight/100% by weight (comparative sample)
Measurement sample b: SFN/FN=20% by weight/80% by weight
Measurement sample c: SFN/FN = 40% by weight/60% by weight
Measurement sample d: SFN/FN = 50% by weight/50% by weight
Measurement sample e: SFN/FN = 80% by weight/20% by weight
Measurement sample f: SFN/FN=100% by weight/0% by weight (comparative sample)

試験例2
実施例1で得られた各測定試料a~fについて、その磁化曲線を求めた。その結果を図2にそれぞれ示す。
なお、図2において、測定試料と配合割合との関係は、以下のとおりである。
測定試料a:SFN/FN=0重量%/100重量%(比較試料)
測定試料b:SFN/FN=20重量%/80重量%
測定試料c:SFN/FN=40重量%/60重量%
測定試料e:SFN/FN=80重量%/20重量%
測定試料f:SFN/FN=100重量%/0重量%(比較試料)
Test example 2
The magnetization curves of the measurement samples a to f obtained in Example 1 were obtained. The results are shown in FIG. 2, respectively.
In addition, in FIG. 2, the relationship between the measurement sample and the mixing ratio is as follows.
Measurement sample a: SFN/FN = 0% by weight/100% by weight (comparative sample)
Measurement sample b: SFN/FN=20% by weight/80% by weight
Measurement sample c: SFN/FN = 40% by weight/60% by weight
Measurement sample e: SFN/FN = 80% by weight/20% by weight
Measurement sample f: SFN/FN=100% by weight/0% by weight (comparative sample)

試験例3
第1粉末と第2粉末との配合割合を変えて実施例1と同様にして作製した測定試料について、その配合割合(FN含有量)と磁化との関係について調べた。その結果を図3に示す。
Test example 3
The relation between the mixing ratio (FN content) and the magnetization was examined for measurement samples prepared in the same manner as in Example 1 by changing the mixing ratio of the first powder and the second powder. The results are shown in FIG.

試験例4
第1粉末と第2粉末との配合割合を変えて実施例1と同様にして作製した測定試料について、その配合割合(FN含有量)と保磁力(保磁力Hc及び残留磁化Mr)との関係について調べた。その結果を図4に示す。
Test example 4
Relationship between the mixing ratio (FN content) and the coercive force (coercive force Hc and remanent magnetization Mr) of measurement samples prepared in the same manner as in Example 1 by changing the mixing ratio of the first powder and the second powder. investigated. The results are shown in FIG.

試験例5
第1粉末と第2粉末との配合割合を変えて実施例1と同様にして作製した測定試料について、その配合割合(FN含有量)と最大エネルギー積(BH)maxとの関係について調べた。その結果を図5に示す。
Test example 5
The relationship between the mixing ratio (FN content) and the maximum energy product (BH)max was examined for measurement samples prepared in the same manner as in Example 1 by changing the mixing ratio of the first powder and the second powder. The results are shown in FIG.

試験例6
測定試料eにおける磁気特性の温度依存性について調べた。その結果を図6に示す。温度は、350K、450K及び550Kで設定した。
Test example 6
The temperature dependence of the magnetic properties of the measurement sample e was investigated. The results are shown in FIG. Temperatures were set at 350K, 450K and 550K.

試験例7
測定試料eの成形体断面を前記SEMにより観察した結果を図7に示す。図7中、符号Aに示すようにサブミクロンオーダーのSFN粒子であり、そのSFN粒子表面に苔のように付着している小さな粒子がFN粒子(符号Bで示す粒子)である。本発明材料は、FN粒子とSFN粒子との単なる混合粉末であっても良いが、図7に示すようにSFN粒子表面にFN粒子が付着して一体化してなる複合粒子を含む粉末であっても良い。
Test example 7
FIG. 7 shows the result of observing the cross section of the molded body of the measurement sample e by the SEM. In FIG. 7, the SFN particles are of submicron order as indicated by symbol A, and the small particles adhering to the surface of the SFN particles like moss are FN particles (particles indicated by symbol B). The material of the present invention may be a simple mixed powder of FN particles and SFN particles, but as shown in FIG. Also good.

これらの結果からも明らかなように、本発明材料では、一次粒子の平均粒径が特定の範囲に制御されたFNとSNFとをブレンドすることによって、FNとSFNとの中間的な特性が確実に得られることがわかる。すなわち、FNよりも高い保磁力が得られるとともに、FN本来の特性(高い磁化等)も得られることがわかる。従って、本発明材料においては、両者の特性を活かした新たな用途の開拓が期待される。 As is clear from these results, in the material of the present invention, intermediate properties between FN and SFN are ensured by blending FN and SNF in which the average particle size of the primary particles is controlled within a specific range. It can be seen that That is, it can be seen that a coercive force higher than that of FN can be obtained, and the original characteristics of FN (high magnetization, etc.) can also be obtained. Therefore, the material of the present invention is expected to develop new applications utilizing the properties of both.

実施例2
FNとSFNとを表1に示す組成となるように混合したほかは、実施例1と同様にして混合粉末を調製した。
なお、FNのみからなる粉末(比較試料)については、FNの粉末をグローブボックス中でメノウ乳鉢ライカイ機にて均一に乾式にて粉砕・混合することによって全量として3gを調製した。
次いで、同グローブボックス中で得られた混合粉末又は比較試料を用いて圧粉体を作製した。より具体的には、樹脂バインダーとして、液状高粘性の熱硬化性樹脂(エポキシ樹脂)0.2gをアセトン3mLに溶解させてペーストを調製した。グローブボックス中で外部磁界2.0Tをかけた雰囲気下において、上記で用意した混合粉末又は比較試料に対して前記ペーストを添加して混合しながら、アセトンを蒸発させて粉末状の混合物を得た。この混合物を同グローブボックス中に配置した金型(7mm角、割子)に充填し、成形圧20.5tonf/cm、温度約24℃、外部磁界2.6Tの条件下で3分間かけてプレス成形することにより所定の直方体の圧粉体(測定試料g,h,i,j)を得た。得られた圧粉体のサイズ、密度等を表2に示す。
Example 2
A mixed powder was prepared in the same manner as in Example 1, except that FN and SFN were mixed so as to have the composition shown in Table 1.
As for the powder (comparative sample) consisting only of FN, the total amount of 3 g was prepared by uniformly dry pulverizing and mixing FN powder in a glove box with an agate mortar and mortar machine.
Next, using the mixed powder obtained in the same glove box or a comparative sample, a green compact was produced. More specifically, a paste was prepared by dissolving 0.2 g of a liquid highly viscous thermosetting resin (epoxy resin) as a resin binder in 3 mL of acetone. In an atmosphere in which an external magnetic field of 2.0 T was applied in a glove box, the paste was added to the mixed powder prepared above or the comparative sample and mixed while acetone was evaporated to obtain a powdery mixture. . This mixture was filled into a mold (7 mm square, split) placed in the same glove box, and the mixture was molded under conditions of a molding pressure of 20.5 tonf/cm 2 , a temperature of about 24° C., and an external magnetic field of 2.6 T for 3 minutes. Predetermined rectangular parallelepiped compacts (measurement samples g, h, i, j) were obtained by press molding. Table 2 shows the size, density, etc. of the green compacts obtained.

Figure 0007108258000001
Figure 0007108258000001

実施例3
表1に示す組成を採用し、かつ、成形方法として成形圧10tonf/cm、温度(約80℃)、外部磁界2.6Tの条件下で10分間かけて成形したほかは、実施例2と同様にして所定の直方体の圧粉体(測定試料k,l)を得た。得られた圧粉体のサイズ、密度等を表2に示す。
Example 3
Same as Example 2, except that the composition shown in Table 1 was adopted, and the molding was performed for 10 minutes under the conditions of a molding pressure of 10 tonf/cm 2 , a temperature (about 80° C.), and an external magnetic field of 2.6 T. Predetermined cuboid compacts (measurement samples k and l) were obtained in the same manner. Table 2 shows the size, density, etc. of the green compacts obtained.

試験例8
実施例2及び実施例3で得られた各圧粉体(測定試料g~l)の磁気特性(飽和磁化Ms、残留時間Mr等)を調べた。その結果を表2に示す。また、各圧粉体(測定試料g~l)のヒステリシスループを図8(測定資料g)、図9(測定資料h)、図10(測定資料i)、図11(測定資料j)、図12(測定資料k)及び~図13(測定資料l)に示す。各ヒステリシスループの「A」が磁化容易軸、「B」が磁化困難軸を示す。なお、図8においては、磁化容易軸と磁化困難軸がほぼ一致しており、磁気的な配向はほとんど得られていない状態となっている。
Test example 8
The magnetic properties (saturation magnetization Ms, residence time Mr, etc.) of the powder compacts (measurement samples g to l) obtained in Examples 2 and 3 were examined. Table 2 shows the results. Also, the hysteresis loops of each green compact (measurement samples g to l) are shown in FIG. 8 (measurement data g), FIG. 9 (measurement data h), FIG. 12 (measurement data k) and to FIG. 13 (measurement data l). "A" of each hysteresis loop indicates the axis of easy magnetization, and "B" indicates the axis of hard magnetization. In FIG. 8, the axis of easy magnetization and the axis of hard magnetization are substantially aligned, and magnetic orientation is hardly obtained.

Figure 0007108258000002
Figure 0007108258000002

これらの結果からも明らかなように、本発明の圧粉体はSFN、FNそれぞれ単独では得られない特異な物性を示すことがわかる。 As is clear from these results, the powder compact of the present invention exhibits unique physical properties that cannot be obtained with SFN or FN alone.

Claims (6)

窒化鉄系材料を含む磁性材料であって、
(1)前記窒化鉄系材料として、
a)一次粒子の平均粒径が10~200nmである(Fe16-m)N(但し、XはFeサイトに置換可能な元素の少なくとも1種を示し、mは0≦m≦5を満たす。)を含み、その含有率が90~100体積%である第1粉末と、
b)一次粒子の平均粒径が0.3~500μmであるRFe17N(但し、Rは希土類元素の少なくとも1種を示し、nは0<n≦3を満たす。)を含み、その含有率が95~100体積%である第2粉末と
(2)熱硬化性樹脂と、
を含むことを特徴とする窒化鉄系磁性材料。
A magnetic material containing an iron nitride-based material,
(1) As the iron nitride-based material,
a) (Fe 16-m X m )N 2 having an average primary particle size of 10 to 200 nm (where X represents at least one element that can be substituted at the Fe site, and m is 0≦m≦5 satisfying.) , the content of which is 90 to 100% by volume , and
b) R 2 Fe17N n having an average primary particle size of 0.3 to 500 μm (where R represents at least one rare earth element and n satisfies 0<n≦3), and a second powder having a content of 95 to 100% by volume ;
(2) a thermosetting resin;
An iron nitride-based magnetic material comprising:
前記Xが、Ge、Ga、Al、Si、V、Ti、Cr、Mn、Ni、Co、Zn、W、Mo、Pt、Rh、Pd、Ru、Y、Sc、Zr及びCeの少なくとも1種である、請求項1に記載の窒化鉄系磁性材料。 X is at least one of Ge, Ga, Al, Si, V, Ti, Cr, Mn, Ni, Co, Zn, W, Mo, Pt, Rh, Pd, Ru, Y, Sc, Zr and Ce The iron nitride-based magnetic material according to claim 1, wherein 前記Rが、Sm、Ce、Nd及びDyの少なくとも1種である、請求項1に記載の窒化鉄系磁性材料。 2. The iron nitride-based magnetic material according to claim 1, wherein said R is at least one of Sm, Ce, Nd and Dy. 第1粉末及び第2粉末の合計100重量部として、重量比で第1粉末が5~95重量部であり、第2粉末が95~5重量部である、請求項1に記載の窒化鉄系磁性材料。 The iron nitride system according to claim 1, wherein the weight ratio of the first powder is 5 to 95 parts by weight and the second powder is 95 to 5 parts by weight, assuming that the total of the first powder and the second powder is 100 parts by weight. magnetic material. 圧粉体である、請求項1~4のいずれかに記載の窒化鉄系磁性材料。 The iron nitride-based magnetic material according to any one of claims 1 to 4, which is a powder compact. 圧粉体が磁気的に異方な成形体である、請求項5に記載の窒化鉄系磁性材料。
6. The iron nitride-based magnetic material according to claim 5, wherein the powder compact is a magnetically anisotropic compact.
JP2017206610A 2017-04-07 2017-10-25 Iron nitride magnetic material Active JP7108258B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017077114 2017-04-07
JP2017077114 2017-04-07

Publications (2)

Publication Number Publication Date
JP2018182284A JP2018182284A (en) 2018-11-15
JP7108258B2 true JP7108258B2 (en) 2022-07-28

Family

ID=64277140

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017206610A Active JP7108258B2 (en) 2017-04-07 2017-10-25 Iron nitride magnetic material

Country Status (1)

Country Link
JP (1) JP7108258B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11299641B2 (en) 2018-01-10 2022-04-12 Ricoh Company, Ltd. Curable liquid composition, composition-accommodating container, liquid composition discharging device, cured material, and method of manufacturing cured material

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012253247A (en) 2011-06-03 2012-12-20 Sumitomo Electric Ind Ltd Composite magnetic material and method for manufacturing the same
JP2016146387A (en) 2015-02-06 2016-08-12 Tdk株式会社 Iron nitride magnet

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04346203A (en) * 1991-05-23 1992-12-02 Nippon Steel Corp Manufacture of rare-earth magnet powder, bond magnet, and rare-earth magnet powder
JPH0831626A (en) * 1993-11-11 1996-02-02 Seiko Epson Corp Rare earth magnetic powder, permanent magnet thereof, and manufacture of them

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012253247A (en) 2011-06-03 2012-12-20 Sumitomo Electric Ind Ltd Composite magnetic material and method for manufacturing the same
JP2016146387A (en) 2015-02-06 2016-08-12 Tdk株式会社 Iron nitride magnet

Also Published As

Publication number Publication date
JP2018182284A (en) 2018-11-15

Similar Documents

Publication Publication Date Title
Hirosawa et al. High‐coercivity iron‐rich rare‐earth permanent magnet material based on (Fe, Co) 3B‐Nd‐M (M= Al, Si, Cu, Ga, Ag, Au)
Fan et al. Tuning Ce distribution for high performanced Nd-Ce-Fe-B sintered magnets
JP2897871B2 (en) Magnet powder, sintered magnet, bonded magnet and magnetic recording medium
US6972046B2 (en) Process of forming magnetic nanocomposites via nanoparticle self-assembly
JP3741597B2 (en) Multi-element rare earth-iron lattice intrusion-type permanent magnet material, permanent magnet comprising the same, and method for producing them
JP5831866B2 (en) Ferromagnetic particle powder and method for producing the same, anisotropic magnet, bonded magnet, and compacted magnet
JP5924657B2 (en) Method for producing ferromagnetic iron nitride particle powder, anisotropic magnet, bonded magnet and dust magnet
KR101936174B1 (en) Rare earth permanent magnet and method for manufacturing rare earth permanent magnet
WO2012039461A1 (en) Ferromagnetic particle powder, method for producing same, anisotropic magnet, and bonded magnet
Chen et al. On the synthesis and microstructure analysis of high performance MnBi
Jimenez-Villacorta et al. Advanced permanent magnetic materials
US20150325349A1 (en) HIGH PERFORMANCE PERMANENT MAGNET BASED ON MnBi AND METHOD TO MANUFACTURE SUCH A MAGNET
Tan et al. Effect of Dy substitution on the microstructure and magnetic properties of high (BH) max Nd-Dy-Fe-Co-B nanoparticles prepared by microwave processing
WO2012128371A1 (en) Rare-earth magnetic powder, method for manufacturing same, compound of same, and bond magnet of same
Coey et al. New bonded magnet materials
Shashanka et al. Magnetic parameters of SrFe12O19 sintered from a mixture of nanocrystalline and micron-sized powders
Matsunami et al. Preparation of Sm− Fe− N bulk magnets with high maximum energy products
Sam et al. Nanocomposite Permanent Magnets Based on SrFe 12 O 19-Fe 3 O 4 Hard-Soft Ferrites
Dirba et al. Synthesis and magnetic properties of bulk α ″-Fe16N2/SrAl2Fe10O19 composite magnets
JP6547141B2 (en) Rare earth anisotropic magnet material and method of manufacturing the same
JP7108258B2 (en) Iron nitride magnetic material
Rao et al. Anisotropic ${\rm MnBi/Sm} _ {2}{\rm Fe} _ {17}{\rm N} _ {\rm x} $ Hybrid Magnets Fabricated by Hot Compaction
Yin et al. Preparation and magnetic properties of anisotropic Nd2Fe14B/Sm2Co17 hybrid-bonded magnets
Vázquez-Victorio et al. Low-temperature short-time SPS processes to produce fine-grained high-coercivity barium hexaferrite ceramics from polyol nanoparticles
JP2001052912A (en) Ferrite magnet material, sintered magnet and bonded magnet

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171124

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201022

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210928

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20211126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20220125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220628

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220705

R150 Certificate of patent or registration of utility model

Ref document number: 7108258

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150