JP2012246174A - Method for manufacturing iron nitride material, and iron nitride material - Google Patents

Method for manufacturing iron nitride material, and iron nitride material Download PDF

Info

Publication number
JP2012246174A
JP2012246174A JP2011118594A JP2011118594A JP2012246174A JP 2012246174 A JP2012246174 A JP 2012246174A JP 2011118594 A JP2011118594 A JP 2011118594A JP 2011118594 A JP2011118594 A JP 2011118594A JP 2012246174 A JP2012246174 A JP 2012246174A
Authority
JP
Japan
Prior art keywords
phase
iron nitride
magnetic
nitride material
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011118594A
Other languages
Japanese (ja)
Inventor
Toru Maeda
前田  徹
Motoki Nagasawa
基 永沢
Takeshi Kato
武志 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2011118594A priority Critical patent/JP2012246174A/en
Publication of JP2012246174A publication Critical patent/JP2012246174A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Hard Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing an iron nitride material, by which an iron nitride material having a high content of an α"FeNphase can be obtained, and to provide such an iron nitride material.SOLUTION: The manufacturing method includes a step of generating an α"FeNphase by heating an Fe-containing base material such as pure iron, an iron alloy or an iron compound in a nitrogen element-containing gas atmosphere such as a nitrogen atmosphere, while applying a magnetic field to the base material. The applied magnetic field H is a strong magnetic field with H≥(7/3)+2×Nf, wherein Nf (Nf=0-1) is a demagnetization coefficient prescribed from the shape of the base material. Since the strong magnetic field with H≥(7/3)+2×Nf is applied to the base material, the primitive lattice of Fe elongates in the applied magnetic field direction (one direction) and the intrusion position of N is easily restricted to this one direction. Therefore, excess nitrogen is controlled, the α"FeNphase excellent in magnetic properties is easily generated, and the objective iron nitride material having a high content of the α"FeNphase can be manufactured.

Description

本発明は、永久磁石などの磁性部材の素材に適した窒化鉄材、及びその製造方法に関する。特に、強磁性窒化鉄の含有量が高い窒化鉄材が得られる窒化鉄材の製造方法に関するものである。   The present invention relates to an iron nitride material suitable for a material of a magnetic member such as a permanent magnet, and a manufacturing method thereof. In particular, the present invention relates to a method for producing an iron nitride material from which an iron nitride material having a high content of ferromagnetic iron nitride is obtained.

モータや発電機などに利用される永久磁石として、Fe-Al-Ni-Co系合金やFe-Cr-Co系合金などの金属材料からなる金属系磁石(代表的には、アルニコ磁石)、酸化鉄を主成分とするフェライトからなるフェライト磁石が利用されている。また、磁気特性により優れる磁石として、希土類磁石(代表的には、Nd-Fe-B磁石、Sm-Fe-N磁石)が知られている。   As permanent magnets used in motors and generators, metal magnets (typically alnico magnets) made of metal materials such as Fe-Al-Ni-Co alloys and Fe-Cr-Co alloys, oxidation Ferrite magnets made of ferrite composed mainly of iron are used. In addition, rare earth magnets (typically, Nd—Fe—B magnets and Sm—Fe—N magnets) are known as magnets having superior magnetic properties.

更に、飽和磁化が非常に高く、磁気特性に非常に優れる磁性体として、α”Fe16N2(原理計算や薄膜による実験において飽和磁化:2.8T程度、正方晶、a=5.72Å、c=6.29Å、結晶記号:I4/mmm)という窒化鉄がある(特許文献1参照)。α”Fe16N2を含む磁石は、上記希土類磁石よりも磁気特性に優れる磁石が得られると期待される。 Furthermore, as a magnetic material with very high saturation magnetization and excellent magnetic properties, α ”Fe 16 N 2 (saturation magnetization: about 2.8 T in tetragonal calculations, tetragonal crystal, a = 5.72Å, c = 6.29 鉄, crystal symbol: I4 / mmm) (see Patent Document 1). Magnets containing α ″ Fe 16 N 2 are expected to yield magnets with better magnetic properties than the rare earth magnets. .

特開2003-160314号公報JP 2003-160314 A

α”Fe16N2を含有する窒化鉄材は、薄膜やナノ粒子からなるFe母材に窒素雰囲気やアンモニア雰囲気で熱処理を施して、上記母材中にα”Fe16N2を生成することで製造することが検討されている。しかし、この方法では、生成されるα”Fe16N2が少なく、得られた窒化鉄材は、α”Fe16N2の含有よる磁気特性の向上効果が少ない。特許文献1は、プラズマ照射することを提案しているが、得られた窒化鉄材中のα”Fe16N2の含有量は30%程度に過ぎない。従って、α”Fe16N2の含有量がより多い窒化鉄材が得られる製造方法の開発が望まれる。 An iron nitride material containing α ”Fe 16 N 2 is obtained by heat-treating an Fe base material made of a thin film or nanoparticles in a nitrogen atmosphere or an ammonia atmosphere to produce α” Fe 16 N 2 in the base material. Manufacturing is under consideration. However, in this method, the amount of α ″ Fe 16 N 2 produced is small, and the obtained iron nitride material has little effect of improving the magnetic properties due to the content of α ″ Fe 16 N 2 . Patent Document 1 proposes plasma irradiation, but the content of α ″ Fe 16 N 2 in the obtained iron nitride material is only about 30%. Therefore, the content of α ″ Fe 16 N 2 is included. It is desired to develop a production method capable of obtaining a larger amount of iron nitride material.

そこで、本発明の目的の一つは、α”Fe16N2の含有量が多い窒化鉄材が得られる窒化鉄材の製造方法を提供することにある。また、本発明の他の目的は、α”Fe16N2の含有量が高い窒化鉄材を提供することにある。 Accordingly, one of the objects of the present invention is to provide a method for producing an iron nitride material from which an iron nitride material having a high content of α ″ Fe 16 N 2 is obtained. Another object of the present invention is to provide an α “To provide an iron nitride material having a high content of Fe 16 N 2 .

Fe16N2の結晶構造は、鉄の基本格子(体心立方格子:BCC)の格子軸(a軸,b軸,c軸)のうち、任意の軸に沿って一方向に並ぶFe原子-Fe原子間に一つおきにN原子が侵入した配置である。即ち、Fe原子-N原子-Fe原子-Fe原子-N原子-Fe原子…と並ぶ。従って、上記一方向に並ぶFe原子-Fe原子間にN原子を積極的に配置させることができれば、α”Fe16N2を効率よく生成することができる、と言える。 The crystal structure of Fe 16 N 2 is Fe atoms aligned in one direction along any axis among the lattice axes (a-axis, b-axis, c-axis) of the basic lattice of iron (BCC). It is an arrangement in which every other N atom invades between Fe atoms. That is, they are aligned with Fe atom-N atom-Fe atom-Fe atom-N atom-Fe atom. Accordingly, it can be said that α ″ Fe 16 N 2 can be efficiently generated if N atoms can be positively arranged between the Fe atoms arranged in one direction.

鉄や鉄合金、鉄化合物を単純に窒化すると、体心立方格子の任意の一方向(例えば、c軸方向)に並ぶFe原子-Fe原子間だけではなく、別の二方向(例えば、a軸方向及びb軸方向)に並ぶFe原子-Fe原子間にもN原子が侵入する。即ち、体心立方格子の格子軸に沿った三方向に対してランダムにN原子が侵入して、複数の軸方向に並ぶFe原子-Fe原子間にN原子が配置される。その結果、窒素が過剰に取り込まれて、磁気特性に劣るFe4NやFe3Nなどの化合物が生成される。 When simply nitriding iron, iron alloy, or iron compound, not only between Fe atoms-Fe atoms arranged in any one direction (e.g. c-axis direction) of the body-centered cubic lattice, but also in another two directions (e.g. a-axis N atoms also invade between the Fe atoms and the Fe atoms aligned in the direction and the b-axis direction). That is, N atoms randomly invade in three directions along the lattice axis of the body-centered cubic lattice, and N atoms are arranged between Fe atoms-Fe atoms arranged in a plurality of axial directions. As a result, nitrogen is excessively taken in and compounds such as Fe 4 N and Fe 3 N having poor magnetic properties are generated.

従って、任意の一方向に並ぶFe原子-Fe原子間に選択的にN原子を配置させるためには、基本格子を一方向に歪ませることが効果的である。任意の一方向に歪ませる方法として、加圧・圧縮を行う、又は引張り応力を負荷することが考えられる。しかし、加圧・圧縮や引張り応力の印加を行う場合、母材の形状が制限される。   Therefore, in order to selectively arrange N atoms between Fe atoms arranged in one arbitrary direction, it is effective to distort the basic lattice in one direction. As a method of distorting in any one direction, it is conceivable to apply pressure / compression or to apply a tensile stress. However, when pressurizing / compressing or applying a tensile stress, the shape of the base material is limited.

一方、鉄に磁場を印加すると、鉄の基本格子は、磁歪によって印加した磁界方向に伸びる。従って、磁場を利用すれば、任意の形状の母材に対して、鉄の基本格子を任意の一方向に歪ませることができる。そこで、本発明は、鉄を窒化する工程において磁場を印加することを提案する。   On the other hand, when a magnetic field is applied to iron, the basic lattice of iron extends in the direction of the applied magnetic field due to magnetostriction. Therefore, if a magnetic field is used, an iron basic lattice can be distorted in an arbitrary direction with respect to a base material having an arbitrary shape. Therefore, the present invention proposes to apply a magnetic field in the step of nitriding iron.

また、窒化にあたり母材を加熱すると、母材において強磁性の要因となっている電子が熱揺らぎを受けて、磁歪による伸縮量が小さくなることから、加熱による磁歪効果の低下を補償する必要がある。更に、母材の形状によって反磁場の大きさが異なるため、反磁場の影響をも考慮する必要がある。そこで、本発明では、窒化時の熱影響、及び反磁場の影響を考慮して印加する磁場の大きさを設定することを提案する。   In addition, when the base material is heated during nitriding, electrons that cause ferromagnetism in the base material are subjected to thermal fluctuation, and the amount of expansion and contraction due to magnetostriction is reduced, so it is necessary to compensate for the reduction in magnetostriction effect due to heating. is there. Furthermore, since the magnitude of the demagnetizing field varies depending on the shape of the base material, it is necessary to consider the influence of the demagnetizing field. Therefore, in the present invention, it is proposed to set the magnitude of the magnetic field to be applied in consideration of the thermal influence during nitriding and the influence of the demagnetizing field.

本発明の窒化鉄材の製造方法は、Feを含む母材に窒化処理を施して、α”Fe16N2相を含有する窒化鉄材を製造する方法に係るものであり、母材の組成・組織によって、以下の三つの方法を提案する。 The method for producing an iron nitride material according to the present invention relates to a method for producing an iron nitride material containing an α ″ Fe 16 N 2 phase by nitriding a base material containing Fe, and the composition and structure of the base material. The following three methods are proposed.

(単相材質からなる形態(以下、単相形態と呼ぶことがある))
この形態は、Feを含有する母材に磁場を印加した状態で、かつ窒素元素含有ガス雰囲気下で加熱して、α”Fe16N2相を生成する工程(窒化処理工程)を具える。
そして、上記印加する磁場Hは、上記母材の形状から規定される反磁界係数をNf(Nf=0〜1)とするとき、H=(7/3)+2×Nf以上の強磁場とする。
(Form made of single-phase material (hereinafter sometimes referred to as single-phase form))
This embodiment includes a step (nitriding treatment step) of generating an α ″ Fe 16 N 2 phase by heating in a nitrogen element-containing gas atmosphere with a magnetic field applied to a base material containing Fe.
The applied magnetic field H is H = (7/3) + 2 × Nf or higher when the demagnetizing factor defined by the shape of the base material is Nf (Nf = 0 to 1). .

(磁性相と非磁性相とを具える形態(以下、二相形態と呼ぶことがある))
この形態は、Feを含有する第1相と、上記第1相に接して存在し、飽和磁化が0.2T以下の材質からなる第2相との混合物からなる母材に磁場を印加した状態で、かつ窒素元素含有ガス雰囲気下で加熱して、上記第1相中にα”Fe16N2相を生成する工程(窒化処理工程)を具える。
そして、上記印加する磁場Hmは、上記母材の形状から規定される反磁界係数をNf(Nf=0〜1)、上記母材に対する第1相の体積比率をV1(V1=0〜1)とするとき、Hm=(7/3)+2×(Nf/V1)以上の強磁場とする。
(Form comprising a magnetic phase and a non-magnetic phase (hereinafter sometimes referred to as a two-phase form))
This form is in a state where a magnetic field is applied to a base material made of a mixture of a first phase containing Fe and the second phase made of a material having a saturation magnetization of 0.2 T or less, in contact with the first phase. And heating in a nitrogen element-containing gas atmosphere to form an α ″ Fe 16 N 2 phase in the first phase (nitriding treatment step).
And, the magnetic field Hm to be applied is Nf (Nf = 0 to 1) as a demagnetizing factor defined by the shape of the base material, and V1 (V1 = 0 to 1) as a volume ratio of the first phase to the base material. In this case, the magnetic field is Hm = (7/3) + 2 × (Nf / V1) or more.

(複数の磁性相を具える形態(以下、複数磁性相形態と呼ぶことがある))
この形態は、Feを含有する第1磁性相と、上記第1磁性相に接して存在し、飽和磁化が0.4T以上の磁性材料からなる第2磁性相との混合物からなる母材に磁場を印加した状態で、かつ窒素元素含有ガス雰囲気下で加熱して、上記第1磁性相中にα”Fe16N2相を生成する工程(窒化処理工程)を具える。
そして、上記印加する磁場Hは、上記母材の形状から規定される反磁界係数をNf(Nf=0〜1)とするとき、H=(7/3)+2×Nf以上の強磁場とする。
(Form having a plurality of magnetic phases (hereinafter, sometimes referred to as a plurality of magnetic phase forms))
In this form, a magnetic field is applied to a base material made of a mixture of a first magnetic phase containing Fe and a second magnetic phase that is in contact with the first magnetic phase and has a saturation magnetization of 0.4 T or more. A step (nitriding treatment step) of generating an α ″ Fe 16 N 2 phase in the first magnetic phase by heating in a nitrogen element-containing gas atmosphere in an applied state is provided.
The applied magnetic field H is H = (7/3) + 2 × Nf or higher when the demagnetizing factor defined by the shape of the base material is Nf (Nf = 0 to 1). .

上述のいずれの形態の本発明製造方法も、特定の大きさの強磁場を母材に印加することで、鉄の基本格子を印加した磁界方向に引き伸ばすことができるため、引き伸ばされた格子軸に沿った一方向に並ぶFe原子-Fe原子間にN原子が侵入し易く、他の二方向にN原子が侵入することを低減できる。即ち、本発明製造方法は、N原子の侵入方向を規制することができる。そのため、本発明製造方法は、α”Fe16N2相を効率よく生成可能であり、α”Fe16N2相の含有量が多い窒化鉄材を製造できる。従って、本発明製造方法は、α”Fe16N2相の含有効果を十分に得られ、磁気特性に非常に優れる窒化鉄材、この窒化鉄材を素材とする永久磁石を提供できると期待される。また、本発明製造方法は、磁場の印加を利用するため、粉末、粉末成形体、薄膜など任意の形状の母材に適用可能であり、大型で、磁気特性に非常に優れる窒化鉄材を提供できると期待される。 In any of the above-described forms of the manufacturing method of the present invention, by applying a strong magnetic field having a specific magnitude to the base material, the iron basic lattice can be stretched in the applied magnetic field direction. N atoms can easily enter between Fe atoms arranged in one direction along the same direction, and N atoms can be prevented from entering in the other two directions. That is, the production method of the present invention can regulate the penetration direction of N atoms. Therefore, the present invention production process, alpha "Fe 16 N 2 phase is efficiently be generated, alpha" Fe 16 N content of 2-phase can be produced more iron nitride. Therefore, it is expected that the production method of the present invention can provide an iron nitride material having a sufficient content effect of the α ″ Fe 16 N 2 phase and having excellent magnetic properties, and a permanent magnet made of this iron nitride material. In addition, since the manufacturing method of the present invention uses application of a magnetic field, it can be applied to a base material having an arbitrary shape such as a powder, a powder compact, or a thin film, and can provide an iron nitride material that is large and has excellent magnetic properties. It is expected.

本発明製造方法の一形態として、上記雰囲気が、窒素(N2)雰囲気、アンモニア(NH3)雰囲気、及び窒素元素を含むガスと希ガス又は水素(H2)ガスとの混合ガス雰囲気から選択される一種である形態が挙げられる。 As one form of the production method of the present invention, the atmosphere is selected from a nitrogen (N 2 ) atmosphere, an ammonia (NH 3 ) atmosphere, and a mixed gas atmosphere of a gas containing a nitrogen element and a rare gas or hydrogen (H 2 ) gas. The form which is a kind to be mentioned is mentioned.

上記形態は、いずれもN原子を十分に供給でき、母材中のFeの窒化を十分に行える。特に、水素ガスを含有する雰囲気は還元雰囲気であるため、Feの酸化や生成した窒化鉄の酸化を防止できる上に、Feの酸化により窒化が進行しなくなることも防止でき、窒化鉄を効率よく生成できる。   In any of the above forms, N atoms can be sufficiently supplied, and Fe in the base material can be sufficiently nitrided. In particular, since the atmosphere containing hydrogen gas is a reducing atmosphere, it is possible to prevent the oxidation of Fe and the oxidation of the generated iron nitride, and also prevent the nitridation from proceeding due to the oxidation of Fe. Can be generated.

本発明製造方法の一形態として、加熱温度を150℃以上400℃以下とする形態が挙げられる。   As an embodiment of the production method of the present invention, an embodiment in which the heating temperature is 150 ° C. or more and 400 ° C. or less can be mentioned.

上記形態では、母材のFeと窒素元素との反応性を十分に高められ、α”Fe16N2相を十分に生成可能であり、かつ、高温による印加磁場の低下が少なく、α”Fe16N2相を効率よく生成できる。 In the above-described form, the reactivity between the base material Fe and the nitrogen element can be sufficiently increased, the α ″ Fe 16 N 2 phase can be sufficiently generated, and the applied magnetic field is not significantly reduced by the high temperature, and the α ″ Fe 16 N 2 phase can be generated efficiently.

本発明製造方法の一形態として、上記雰囲気は、酸素の含有量が体積割合で100ppm以下である形態が挙げられる。   As one form of the production method of the present invention, the atmosphere includes a form in which the oxygen content is 100 ppm or less by volume.

上記形態は、酸素濃度が低いため、鉄成分の酸化を効果的に防止できる。   Since the above-mentioned form has a low oxygen concentration, it is possible to effectively prevent the iron component from being oxidized.

上記単相形態として、上記母材が平均粒径10nm以上500nm以下の粉末である形態が挙げられる。また、この粉末を集合させた状態で磁場を印加することが好ましい。   Examples of the single phase form include a form in which the base material is a powder having an average particle size of 10 nm or more and 500 nm or less. Moreover, it is preferable to apply a magnetic field in a state where the powder is aggregated.

上記形態は、原料にいわゆるナノ粉末を利用するため、得られる窒化鉄材もナノオーダーの超微細粉末となり、飽和磁化や保磁力といった磁気特性に優れる。また、原料のナノ粉末を纏めて磁場を印加することで、窒化鉄材を効率よく製造できる。   In the above form, so-called nano-powder is used as a raw material, and thus the obtained iron nitride material becomes a nano-order ultra-fine powder and is excellent in magnetic properties such as saturation magnetization and coercive force. Moreover, an iron nitride material can be efficiently manufactured by collecting the nano-powder materials and applying a magnetic field.

上記単相形態として、上記母材は、平均厚さが10nm以上500nm以下の薄膜である形態が挙げられる。また、上記薄膜表面に対して垂直方向に磁場を印加することが好ましい。   Examples of the single phase form include a form in which the base material is a thin film having an average thickness of 10 nm to 500 nm. Further, it is preferable to apply a magnetic field in a direction perpendicular to the surface of the thin film.

上記形態も、上述のナノ粉末を用いた場合と同様に、ナノオーダーの窒化鉄材が得られ、磁気特性に優れる。また、上記形態は、上述のナノ粉末を用いた場合よりも、大型の窒化鉄材を形成可能であり、窒化鉄材の生産性に優れる。   As in the case of using the above-mentioned nano powder, the above-mentioned form also provides a nano-order iron nitride material and is excellent in magnetic properties. Moreover, the said form can form a large sized iron nitride material compared with the case where the above-mentioned nano powder is used, and is excellent in the productivity of an iron nitride material.

上記薄膜と、当該薄膜の構成材料とは異なる無機材料からなる中間膜とを交互に多層に積層させた状態で磁場を印加する形態とすることができる。   A magnetic field can be applied in a state where the thin film and an intermediate film made of an inorganic material different from the constituent material of the thin film are alternately stacked in multiple layers.

上記形態は、Feを含有する薄膜を多層に具えることで、磁気特性以外の特性、例えば、強度や電気伝導性などにも優れた窒化鉄材を得ることができる。また、上記形態は、より大きな窒化鉄材を製造したり、屈曲性を有する窒化鉄材を製造したり、高周波の電力が通電される場合に渦電流を抑制できる窒化鉄材を製造したりすることができる。上記中間膜の構成材料は、例えば、非磁性材料が挙げられる。   The said form can obtain the iron nitride material excellent also in characteristics other than a magnetic characteristic, for example, intensity | strength, electrical conductivity, etc. by providing the thin film containing Fe in multiple layers. Moreover, the said form can manufacture a larger iron nitride material, can manufacture the iron nitride material which has flexibility, or can manufacture the iron nitride material which can suppress an eddy current when a high frequency electric power is supplied. . Examples of the constituent material of the intermediate film include nonmagnetic materials.

上記二相形態として、上記第1相が棒状体であり、各棒状体の最小幅の平均値が10nm以上100nm以下である形態が挙げられる。   Examples of the two-phase form include a form in which the first phase is a rod-like body and the average value of the minimum width of each rod-like body is 10 nm or more and 100 nm or less.

各棒状体の最小幅の平均値とは、母材の断面をとって、透過型電子顕微鏡:TEMなどで観察し、この断面に存在する棒状(柱状)の第1相を100個以上抽出し、各棒状体の最小幅を測定し、測定した100個以上の棒状体の最小幅の平均とする。上記形態は、第2相をマトリクスとして、第1相が棒状に存在する形態であり、かつこの棒状体の幅がナノオーダーと非常に小さい。従って、第1相のFe成分から形成されるα”Fe16N2相もナノオーダーの超極細相となり、その大きさからも、磁気特性に優れる窒化鉄材が得られる。 The average value of the minimum width of each rod-shaped body is taken by taking a cross-section of the base material and observing it with a transmission electron microscope: TEM, etc., and extracting 100 or more rod-shaped (columnar) first phases existing in this cross-section. The minimum width of each rod-shaped body is measured, and the average of the minimum widths of 100 or more measured rod-shaped bodies is taken. The above form is a form in which the second phase is a matrix and the first phase is present in a rod shape, and the width of the rod-like body is as small as nano-order. Accordingly, the α ″ Fe 16 N 2 phase formed from the Fe component of the first phase also becomes a nano-order ultrafine phase, and an iron nitride material having excellent magnetic properties can be obtained from its size.

上記二相形態として、上記母材が平均粒径10μm以上1000μm以下の粉末である形態が挙げられる。また、この粉末を集合させた状態で磁場を印加することが好ましい。   Examples of the two-phase form include a form in which the base material is a powder having an average particle size of 10 μm or more and 1000 μm or less. Moreover, it is preferable to apply a magnetic field in a state where the powder is aggregated.

上記形態は、母材が特定の大きさの粉末であることで、粉末成形体といった粉末を集合させた状態を容易に形成できる。また、粉末成形体などの粉末が纏まった状態で磁場を印加することで、窒化鉄材を効率よく製造できる。更に、粉末成形体を利用すると、所望の形状で、かつ大型な窒化鉄材を製造することができる。   The said form can form easily the state which aggregated powder, such as a powder molded object, because a base material is a powder of a specific magnitude | size. Moreover, an iron nitride material can be efficiently manufactured by applying a magnetic field in a state where powder such as a powder compact is gathered. Furthermore, when a powder molded body is used, a large-sized iron nitride material having a desired shape can be produced.

上記二相形態として、上記第2相は、Al,Ni,Co,Cr及びSiから選択される2種以上の元素を合計で70原子%以上含有する形態が挙げられる。   Examples of the two-phase form include a form in which the second phase contains a total of 70 atomic% or more of two or more elements selected from Al, Ni, Co, Cr, and Si.

上記形態は、Fe-Al-Ni-Co系合金やFe-Cr-Co系合金といった公知の合金にスピノーダル分解を利用した相分離処理を施すことで、母材を製造可能であり、母材を容易に準備できる。また、得られる窒化鉄材の磁性体相は、飽和磁化が高いα”Fe16N2相を有するため、従来のアルニコ磁石のようにFe-Co相を生成しなくてもよいことから、Coを含有していない合金やCoの含有量が少ない合金を母材に利用できる。 In the above embodiment, a base material can be manufactured by subjecting a known alloy such as an Fe-Al-Ni-Co alloy or an Fe-Cr-Co alloy to a phase separation process using spinodal decomposition. Easy to prepare. In addition, since the magnetic body phase of the obtained iron nitride material has an α ″ Fe 16 N 2 phase with high saturation magnetization, it is not necessary to generate a Fe—Co phase like a conventional alnico magnet. An alloy that does not contain it or an alloy that contains less Co can be used as the base material.

上記複数磁性相形態として、隣り合う上記第2磁性相に挟まれた上記第1磁性相の最小距離の平均が10nm以上50nm以下である形態が挙げられる。   Examples of the plurality of magnetic phase forms include a form in which the average of the minimum distances of the first magnetic phase sandwiched between the adjacent second magnetic phases is 10 nm or more and 50 nm or less.

上記第1磁性相の最小距離の平均は、以下のように求める。母材の断面をとり、一つの第1磁性相を選択し、この第1磁性相に隣接する第2磁性相との接点P1と、当該第1磁性相に隣接する別の第2磁性相との接点P2とをとり、両接点P1,P2間の距離のうち、最小距離を調べる。上記断面に存在する各第1磁性相の最小距離を調べ、その平均を第1磁性相の最小距離の平均とする。   The average of the minimum distances of the first magnetic phase is obtained as follows. Take a cross-section of the base material, select one first magnetic phase, contact P1 with the second magnetic phase adjacent to the first magnetic phase, and another second magnetic phase adjacent to the first magnetic phase And the minimum distance among the distances between the two contacts P1 and P2 is examined. The minimum distance of each first magnetic phase existing in the cross section is examined, and the average is defined as the average of the minimum distances of the first magnetic phase.

上記形態は、一つの第1磁性相を挟んで存在する第2磁性相の間には、上記最小距離の平均に相当する10nm〜50nmの間隔が存在する。このような母材を利用することで、上記形態では、α”Fe16N2相を主成分とする第1磁性体相と、この第1磁性体相よりも強力な結晶磁気異方性を有し、磁気相互作用の発生距離が第1磁性体相よりも長い結晶磁気異方性を有する第2磁性体相とを具える窒化鉄材が得られ、かつ両磁性体相は、磁気相互作用が生じないように存在することができる。この窒化鉄材は、磁気特性に非常に優れる。 In the above embodiment, there is an interval of 10 nm to 50 nm corresponding to the average of the minimum distances between the second magnetic phases existing with one first magnetic phase interposed therebetween. By using such a base material, in the above embodiment, the first magnetic phase mainly composed of the α ″ Fe 16 N 2 phase and a stronger magnetocrystalline anisotropy than the first magnetic phase are obtained. And an iron nitride material having a second magnetic phase having a magnetocrystalline anisotropy that has a longer magnetic interaction generation distance than the first magnetic phase, and both magnetic phases have a magnetic interaction This iron nitride material has very good magnetic properties.

上記複数磁性相形態として、上記母材の第2磁性相は、RE=Y,La,Ce,Pr,Nd,Dy,Tb及びSmから選択される少なくとも1種、X=B,C及びNから選択される1種、ME=Co,Cu,Mn及びNiから選択される少なくとも1種とするとき、RE-Fe-X化合物、又はRE-Fe-ME-X化合物を80体積%以上含有する形態が挙げられる。   As the plurality of magnetic phase forms, the second magnetic phase of the base material is at least one selected from RE = Y, La, Ce, Pr, Nd, Dy, Tb and Sm, X = B, C and N A form containing at least 80% by volume of RE-Fe-X compound or RE-Fe-ME-X compound when at least one selected from ME = Co, Cu, Mn and Ni is selected Is mentioned.

上記形態は、母材に、上記REで示される希土類元素を含有する希土類化合物を含有するため、得られた窒化鉄材も、この希土類化合物からなる磁性体相(第2磁性体相)を具える。上記希土類化合物は磁気特性に優れることから、上記形態は、磁気特性に非常に優れる窒化鉄材が得られる。   In the above embodiment, since the base material contains a rare earth compound containing the rare earth element represented by RE, the obtained iron nitride material also includes a magnetic phase (second magnetic phase) made of this rare earth compound. . Since the rare earth compound is excellent in magnetic properties, the above form provides an iron nitride material that is extremely excellent in magnetic properties.

上記複数磁性相形態として、上記母材の第2磁性相は、MA=Ca,Sr及びBaから選択される少なくとも1種とするとき、MA-Fe-O化合物、又はLa-MA-Fe-Co-O化合物を80体積%以上含有する形態が挙げられる。   As the multiple magnetic phase form, when the second magnetic phase of the base material is at least one selected from MA = Ca, Sr and Ba, a MA-Fe-O compound, or La-MA-Fe-Co The form which contains 80 volume% or more of -O compounds is mentioned.

上記形態は、母材に、フェライト系磁石と呼ばれる鉄酸化物を含有するため、得られた窒化鉄材も、この鉄酸化物からなる磁性体相(第2磁性体相)を具える。上記鉄酸化物は、原料が安価であることから、上記形態は、磁気特性に優れる窒化鉄材を低コストで製造できる。   In the above embodiment, since the base material contains an iron oxide called a ferrite-based magnet, the obtained iron nitride material also includes a magnetic phase (second magnetic phase) made of this iron oxide. Since the raw material of the iron oxide is inexpensive, the above embodiment can produce an iron nitride material having excellent magnetic properties at a low cost.

上記複数磁性相形態として、上記母材の第2磁性相は、Pt-Fe合金、Pt-Co合金、及びPt-(Fe,Co)化合物から選択される1種以上を合計で80体積%以上含有する形態が挙げられる。   As the plurality of magnetic phase forms, the second magnetic phase of the base material is 80% by volume or more in total of at least one selected from a Pt—Fe alloy, a Pt—Co alloy, and a Pt— (Fe, Co) compound. The form to contain is mentioned.

上記Pt-Fe合金などの合金や化合物は耐食性に優れることから、上記形態は、耐食性に優れる窒化鉄材を製造できる。   Since alloys and compounds such as the Pt—Fe alloy are excellent in corrosion resistance, the above embodiment can produce an iron nitride material excellent in corrosion resistance.

上記本発明製造方法により、α”Fe16N2相の含有量が多い窒化鉄材が得られる。例えば、本発明窒化鉄材として、上記本発明窒化鉄材の製造方法により得られ、鉄窒化物を主体とする磁性体相を有しており、この磁性体相中にα”Fe16N2相を80体積%以上含有する形態が挙げられる。 By the production method of the present invention, an iron nitride material having a large content of α ″ Fe 16 N 2 phase can be obtained. For example, the iron nitride material of the present invention is obtained by the production method of the iron nitride material of the present invention, and is mainly composed of iron nitride. There is a form in which 80% by volume or more of α ″ Fe 16 N 2 phase is contained in the magnetic phase.

上記本発明窒化鉄材は、磁気特性に優れるα”Fe16N2相を十分に含有しており、磁気特性に非常に優れる。そのため、本発明窒化鉄材は、永久磁石の素材に好適に利用できる。 The iron nitride material of the present invention sufficiently contains α ″ Fe 16 N 2 phase having excellent magnetic properties and is very excellent in magnetic properties. Therefore, the iron nitride material of the present invention can be suitably used as a material for permanent magnets. .

本発明窒化鉄材の製造方法は、α”Fe16N2相の含有量が多い窒化鉄材を生産性よく製造できる。本発明窒化鉄材は、α”Fe16N2相の含有量が多く、磁気特性に非常に優れる。 The method for producing an iron nitride material of the present invention can produce an iron nitride material having a high content of α ″ Fe 16 N 2 phase with high productivity. The iron nitride material of the present invention has a high content of α ″ Fe 16 N 2 phase and has a magnetic property. Excellent properties.

図1は、試験例1において、窒化鉄材の製造に当たり原料に用いた母材の反磁界係数Nfと、窒化処理時の印加磁場Hとの関係を示すグラフである。FIG. 1 is a graph showing the relationship between the demagnetizing factor Nf of a base material used as a raw material in the manufacture of an iron nitride material and the applied magnetic field H during nitriding in Test Example 1. 図2は、試験例2において、窒化鉄材の製造に当たり原料に用いた母材において、第1相の体積比率V1に対する反磁界係数Nfの比:Nf/V1と、窒化処理時の印加磁場Hmとの関係を示すグラフである。FIG. 2 shows the ratio of the demagnetizing factor Nf to the volume ratio V1 of the first phase: Nf / V1 and the applied magnetic field Hm during nitriding in the base material used as a raw material in the manufacture of the iron nitride material in Test Example 2. It is a graph which shows the relationship. 図3は、試験例3において、窒化鉄材の製造に当たり原料に用いた母材の反磁界係数Nfと、窒化処理時の印加磁場Hとの関係を示すグラフである。FIG. 3 is a graph showing the relationship between the demagnetizing factor Nf of the base material used as a raw material in the manufacture of the iron nitride material and the applied magnetic field H during nitriding in Test Example 3. 図4は、反磁界係数の補正方法を説明するための説明図である。FIG. 4 is an explanatory diagram for explaining a method for correcting the demagnetizing field coefficient.

以下、本発明をより詳細に説明する。
〔製造方法〕
[母材]
本発明製造方法で原料に用いる母材は、少なくともFeを含有するものとする。上記単相形態の母材の材質は、純鉄(Fe:98質量%以上、残部:不可避的不純物)、鉄合金、鉄化合物が挙げられる。鉄合金は、例えば、Fe-Si系合金,Fe-Ni系合金,Fe-Al系合金,Fe-Co系合金,Fe-Cr系合金,Fe-Si-Al系合金(センダスト)などが挙げられる。鉄化合物は、Fe-O化合物(例えば、酸化鉄)やFe-C化合物(例えば、有機酸塩化合物や有機酸錯体)などが挙げられる。上記鉄化合物を原料に用いる場合には、予め、還元処理などの適宜な処理を行って酸素や有機成分などを除去し、純鉄や鉄合金などとしてから、後述する窒化処理を施す。
Hereinafter, the present invention will be described in more detail.
〔Production method〕
[Base material]
The base material used as the raw material in the production method of the present invention contains at least Fe. Examples of the material of the single-phase base material include pure iron (Fe: 98 mass% or more, balance: inevitable impurities), iron alloy, and iron compound. Examples of iron alloys include Fe-Si alloys, Fe-Ni alloys, Fe-Al alloys, Fe-Co alloys, Fe-Cr alloys, and Fe-Si-Al alloys (Sendust). . Examples of the iron compound include Fe-O compounds (for example, iron oxide) and Fe-C compounds (for example, organic acid salt compounds and organic acid complexes). When the iron compound is used as a raw material, an appropriate treatment such as a reduction treatment is performed in advance to remove oxygen, organic components, and the like to obtain pure iron or an iron alloy, and then a nitriding treatment described later is performed.

上記純鉄や鉄合金などからなる母材の形状は、種々の形状を利用できる。代表的には、粒子や膜材が挙げられる。単相形態では、生成されるα”Fe16N2相の形状・大きさが母材の形状・大きさに実質的に等しくなる。α”Fe16N2相は、ナノオーダーであると優れた磁気特性を有することから、母材もナノオーダーであることが好ましい。例えば、母材は、粒径がナノオーダーであるナノ粉末が挙げられる。特に、平均粒径が10nm以上のナノ粉末を母材とすると、熱揺らぎを受け難く、熱揺らぎによる磁気特性の低下が生じ難い。また、500nm以下のナノ粉末を母材とすると、磁気特性に優れる窒化鉄材(粉末)が得られる。従って、母材の平均粒径は10nm以上500nm以下が好ましい。また、鉄系材料からなる粒子は、その粒径が10nm付近である場合に保磁力が最大になり、磁気特性により優れる窒化鉄材が得られることから、母材の平均粒径は、10nm〜100nm程度、更に10nm以上50nm以下がより好ましい。このような超微細粉末は、例えば、逆ミセル法、ゾルゲル法などを利用することで製造できる。 Various shapes can be used as the shape of the base material made of pure iron or iron alloy. Typical examples include particles and film materials. In the single-phase form, the shape and size of the generated α ”Fe 16 N 2 phase is substantially equal to the shape and size of the base material. The α” Fe 16 N 2 phase is excellent when it is in the nano order. It is preferable that the base material is also nano-order because of its magnetic properties. For example, the base material may be nanopowder having a particle size in the nano order. In particular, when a nano-powder having an average particle size of 10 nm or more is used as a base material, it is difficult for thermal fluctuation to occur, and magnetic characteristics are not easily lowered due to thermal fluctuation. Further, when a nanopowder of 500 nm or less is used as a base material, an iron nitride material (powder) having excellent magnetic properties can be obtained. Therefore, the average particle size of the base material is preferably 10 nm or more and 500 nm or less. In addition, since the particles made of iron-based material have a maximum coercive force when the particle size is around 10 nm and an iron nitride material that is superior in magnetic properties is obtained, the average particle size of the base material is 10 nm to 100 nm. More preferably, it is 10 nm or more and 50 nm or less. Such an ultrafine powder can be produced by using, for example, a reverse micelle method or a sol-gel method.

上記ナノ粉末は、当該粉末を構成する粒子一つ一つを窒化処理すると、生産性に劣るため、集合させた状態で窒化処理を行うことが好ましい。粉末を集合させた状態とは、例えば、粘着フィルムに粉末を貼り付けたり、ゾル状物質やゲル状物質中に粉末を混合させたりすることなどが挙げられる。   The nano-powder is inferior in productivity when nitriding each of the particles constituting the powder, so that the nitriding treatment is preferably performed in an assembled state. Examples of the state in which the powder is aggregated include attaching the powder to an adhesive film or mixing the powder in a sol-like substance or a gel-like substance.

或いは、母材は、例えば、平均厚さがナノオーダーである薄膜が挙げられる。特に、平均厚さが10nm以上500nm以下、好ましくは10nm〜100nmであると、保磁力が高く、磁気特性に優れた窒化鉄材が得られる。このような薄膜は、スパッタリング法といった物理蒸着法(PVD法)、化学蒸着法(CVD法)などの蒸着法により形成できる。鉄合金の薄膜を形成する場合は、所望の組成の合金が得られるように、Feの蒸着源と、合金をつくる元素の蒸着源とを用意したり、所望の組成の合金の蒸着源を利用したりしてもよい。成膜条件(蒸着源、成膜時間、成膜面積など)を適宜選択することで、所望の組成、厚さ、大きさの薄膜状母材を容易に形成可能である。   Alternatively, examples of the base material include a thin film having an average thickness of nano-order. In particular, when the average thickness is 10 nm or more and 500 nm or less, preferably 10 nm to 100 nm, an iron nitride material having high coercive force and excellent magnetic properties can be obtained. Such a thin film can be formed by a vapor deposition method such as a physical vapor deposition method (PVD method) such as a sputtering method or a chemical vapor deposition method (CVD method). When forming a thin film of an iron alloy, prepare an Fe evaporation source and an evaporation source of an element that forms the alloy, or use an alloy evaporation source of the desired composition so that an alloy of the desired composition can be obtained. You may do it. A thin film base material having a desired composition, thickness, and size can be easily formed by appropriately selecting film formation conditions (evaporation source, film formation time, film formation area, etc.).

上記薄膜は、単層としてもよいが、多層とすると、大型な窒化鉄材が得られる。多層構造とする場合、例えば、上記純鉄や鉄合金などからなる膜間に、当該膜の構成材料とは異なる無機材料からなる中間膜を形成することができる。より具体的には、純鉄からなる膜と鉄合金からなる膜とを交互に積層した形態、組成の異なる鉄合金からなる膜を交互に積層した形態とすることができる。この場合、一方が中間膜として機能し、かつ、全ての膜中にα”Fe16N2相を生成可能である。従って、母材に多層構造の薄膜を用いると、大型で、かつ磁気特性に非常に優れる窒化鉄材が得られる。その他、中間膜の材質は、後述する二相形態の第2相の構成材料(代表的には、非磁性材料)、複数磁性相形態の第2磁性相の磁性材料が挙げられる。中間膜の厚さは、隣接する膜間に磁気相互作用が生じない厚さとするとよく、例えば、20nm〜50nm程度が挙げられる。 The thin film may be a single layer, but if it is a multilayer, a large iron nitride material can be obtained. In the case of a multi-layer structure, for example, an intermediate film made of an inorganic material different from the constituent material of the film can be formed between the films made of the pure iron or the iron alloy. More specifically, a form in which films made of pure iron and a film made of iron alloy are alternately laminated, or a film made of iron alloys having different compositions can be alternately laminated. In this case, one of them functions as an intermediate film, and an α ″ Fe 16 N 2 phase can be generated in all films. Therefore, when a thin film having a multilayer structure is used as a base material, it is large and has a magnetic property. In addition, the material of the intermediate film is composed of a second phase constituent material (typically a nonmagnetic material), which will be described later, and a second magnetic phase in the form of multiple magnetic phases. The thickness of the intermediate film may be set to a thickness that does not cause magnetic interaction between adjacent films, for example, about 20 nm to 50 nm.

なお、母材を薄膜とする場合、例えば、純鉄などのFeを含有する母材膜を成膜した後、後述する窒化処理を行う、というように母材膜の形成と窒化処理とを繰り返し行うことで、α”Fe16N2相が均一的に形成された窒化鉄層を多層に具える窒化鉄材を製造することができる。或いは、純鉄などのFeを含有する母材膜を多層に積層した後、後述する窒化処理を行うと、窒化処理が一度で済み、工程数を低減できる。但し、この場合、各母材膜の面積によっては窒素の侵入不足が生じる恐れがあることから、多層構造の窒化鉄層を具える窒化鉄材を製造する場合には、Feを含有する母材膜を成膜するごとに窒化処理を行うことが好ましい。上述した中間膜を具える形態においても、母材膜の成膜→後述する窒化処理→中間膜の成形(以下、上記工程の繰り返し)といった工程を経て、多層構造の窒化鉄層を具える窒化鉄材を製造することができる。 When the base material is a thin film, for example, after forming the base material film containing Fe such as pure iron, the base material film is formed and the nitriding processing is repeated, such as performing nitriding treatment described later. By doing so, it is possible to manufacture an iron nitride material having a multi-layered iron nitride layer in which α ″ Fe 16 N 2 phase is uniformly formed. Alternatively, a base material film containing Fe such as pure iron When the nitriding process described later is performed after the lamination, the nitriding process is completed once and the number of processes can be reduced, however, in this case, there is a possibility that insufficient penetration of nitrogen may occur depending on the area of each base material film. In the case of producing an iron nitride material having a multi-layered iron nitride layer, it is preferable to perform nitriding every time a base material film containing Fe is formed. , Formation of base material film → nitriding treatment described later → intermediate film forming (hereinafter referred to as the above process) Ri returns) through the process such as can be produced nitriding iron comprising an iron nitride layer of a multilayer structure.

母材を上述のように単層又は多層の薄膜とする場合、例えば、膜表面に対して垂直方向(膜の厚さ方向に平行方向)に磁場を印加すると、いわゆる垂直磁気記録媒体や、磁気ヘッドなどのいわゆる半硬質磁性材料の用途に適した窒化鉄材が得られる。一方、膜表面に対して平行に磁場を印加すると、反磁場の効果と窒化鉄の結晶磁気異方性の効果とを併せ持つことができ、磁石材料として優れた性質を有する窒化鉄材が得られる。   When the base material is a single-layer or multilayer thin film as described above, for example, when a magnetic field is applied in a direction perpendicular to the film surface (a direction parallel to the film thickness direction), a so-called perpendicular magnetic recording medium or magnetic An iron nitride material suitable for a so-called semi-hard magnetic material such as a head can be obtained. On the other hand, when a magnetic field is applied in parallel to the film surface, both the effect of the demagnetizing field and the effect of crystal magnetic anisotropy of iron nitride can be obtained, and an iron nitride material having excellent properties as a magnet material can be obtained.

上記二相形態の母材は、上述のようにFeを含有する第1相と、飽和磁化が0.2T以下の材質からなる第2相とが隣接して存在する相分離組織を有するものを利用する。母材中の第1相は、その主成分であるFeがα”Fe16N2相の生成に利用され、窒化鉄材中の磁性体相を形成するための前駆体として機能する。母材中の第2相は、代表的には、非磁性材料で構成され、窒化処理後も概ねそのまま存在して、窒化鉄材中の磁性体相同士に磁気相互作用が生じないように存在する介在相として機能する。 As described above, the base material of the two-phase form uses a material having a phase separation structure in which a first phase containing Fe and a second phase made of a material having a saturation magnetization of 0.2 T or less are adjacent to each other. To do. In the first phase of the base metal, Fe, which is the main component, is used to generate the α ”Fe 16 N 2 phase and functions as a precursor for forming the magnetic phase in the iron nitride material. The second phase is typically composed of a non-magnetic material, and generally exists as it is after nitriding, and as an intervening phase that exists so that magnetic interaction between the magnetic phases in the iron nitride material does not occur. Function.

上記特定の組織を有する母材は、例えば、Al,Ni,Co,Cr及びSiから選択される2種以上の元素を含有し、残部がFe及び不可避的不純物からなる鉄合金にスピノーダル分解を利用した相分離処理を施し、第1相を析出させることで製造できる。上記鉄合金は、Fe-Al-Ni-Co系合金、Fe-Cr-Co系合金、Fe-Si-Ni系合金などが挙げられ、公知の合金を利用できる。その他、Coを実質的に含まないFe-Al-Ni系合金(Coの含有量:5原子%未満)、Coの含有量が5原子%〜10原子%の低CoのFe-Cr-Co系合金なども利用可能であり、このような合金を利用すると、Coの使用量を低減できる。相分離処理の条件は、アルニコ磁石などの金属系磁石の製造に利用されている相分離処理の条件を適用できる。例えば、Fe-Al-Ni系合金を素材とする場合、溶体化処理の加熱温度:850℃〜1300℃(好ましくは1000℃以上)、保持時間:10分〜10時間、900℃〜700℃の温度範囲における当該素材の相分離温度域における降温速度:0.05℃/sec以上5℃/sec以下が挙げられる。例えば、Fe-Cr-Co系合金を素材とする場合、溶体化処理の加熱温度:700℃〜1200℃(好ましくは1000℃以上)、保持時間:10分〜10時間、1000℃以上に加熱した後、550℃までの冷却工程における降温速度:5.0℃/sec以上、550℃〜450℃の温度範囲において当該素材の相分離温度域における降温速度:0.05℃/sec以上5℃/sec以下が挙げられる。   The base material having the above specific structure contains, for example, two or more elements selected from Al, Ni, Co, Cr and Si, and spinodal decomposition is used for an iron alloy composed of Fe and inevitable impurities as the balance. It can be produced by subjecting the obtained phase separation treatment to the precipitation of the first phase. Examples of the iron alloy include Fe-Al-Ni-Co alloys, Fe-Cr-Co alloys, Fe-Si-Ni alloys, and the like, and known alloys can be used. Other Fe-Al-Ni alloys that do not substantially contain Co (Co content: less than 5 atomic%), Fe-Cr-Co based on low Co with Co content of 5 atomic% to 10 atomic% Alloys can also be used, and the use of Co can reduce the amount of Co used. As the conditions for the phase separation treatment, the conditions for the phase separation treatment used for the production of metal magnets such as alnico magnets can be applied. For example, when using a Fe-Al-Ni alloy as a raw material, the heating temperature of the solution treatment: 850 ° C to 1300 ° C (preferably 1000 ° C or more), the holding time: 10 minutes to 10 hours, 900 ° C to 700 ° C The temperature decreasing rate in the phase separation temperature region of the material in the temperature range: 0.05 ° C / sec or more and 5 ° C / sec or less. For example, when using a Fe-Cr-Co alloy as a raw material, the heating temperature of the solution treatment: 700 ° C to 1200 ° C (preferably 1000 ° C or higher), the holding time: 10 minutes to 10 hours, heated to 1000 ° C or higher After that, the cooling rate in the cooling process to 550 ° C .: 5.0 ° C./sec or more, in the temperature range of 550 ° C. to 450 ° C., the cooling rate in the phase separation temperature range of the material: 0.05 ° C./sec or more and 5 ° C./sec or less It is done.

上記相分離温度域での降温中、磁場を印加すると(0.4MA/m(5kOe)以上、或いは0.5T以上)、Feを含有する第1相の幅がナノオーダー、長さがマイクロオーダーといったアスペクト比が非常に大きなナノサイズの棒状とすることができ、磁場を印加しないと粒状とすることができる。第1相が棒状の場合、第2相は第1相を包むような筒状のマトリクスとなり、断面組織を観察すると模様のように両相が交互に配置された組織となり、粒状の場合、第1相の粒子の周囲を囲むように第2相が存在する。窒化反応を行うとき、第1相に比較して第2相への窒素の拡散が小さい場合、第1相が棒状である組織が好ましく、第1相に比較して第2相への窒素の拡散が大きい場合、第1相は粒状でもよい。   When the magnetic field is applied during the temperature drop in the above phase separation temperature range (0.4 MA / m (5 kOe) or more, or 0.5 T or more), the width of the first phase containing Fe is nano-order, and the length is micro-order. It can be made into a nano-sized rod having a very large ratio, and can be made granular when no magnetic field is applied. When the first phase is rod-shaped, the second phase becomes a cylindrical matrix that wraps around the first phase, and when the cross-sectional structure is observed, it becomes a structure in which both phases are alternately arranged like a pattern. A second phase exists around the periphery of the one-phase particles. When performing the nitriding reaction, if the diffusion of nitrogen into the second phase is small compared to the first phase, a structure in which the first phase is rod-like is preferable, and the nitrogen of the second phase compared to the first phase If the diffusion is large, the first phase may be granular.

上記相分離処理により、第1相は、実質的にFe相やFe-Co相などで構成され、第2相は、Al,Ni,Co,Cr及びSiから選択される2種以上の元素を含有する相、代表的にはAl-NiやCr-Coといった合金で構成される。Al-NiやCr-Coといった合金は、通常、非磁性材料であり、飽和磁化が0.2T以下である。第2相中における上記合金成分の割合が高いほど好ましく、70原子%以上、更に80原子%以上、特に90原子%以上が好ましい。母材の非磁性成分の割合が高いことで、得られた窒化鉄材中において、この非磁性成分によって磁性体相間に磁気相互作用が生じることを効果的に防止できる。   By the above phase separation treatment, the first phase is substantially composed of Fe phase, Fe-Co phase, etc., and the second phase is composed of two or more elements selected from Al, Ni, Co, Cr and Si. The contained phase, typically an alloy such as Al—Ni or Cr—Co. An alloy such as Al—Ni or Cr—Co is usually a nonmagnetic material and has a saturation magnetization of 0.2 T or less. The higher the proportion of the alloy component in the second phase is, the more preferable, 70 atomic% or more, 80 atomic% or more, particularly 90 atomic% or more is preferable. Since the ratio of the nonmagnetic component of the base material is high, it is possible to effectively prevent magnetic interaction between the magnetic phases due to the nonmagnetic component in the obtained iron nitride material.

窒化鉄材中の磁性体相の形状や大きさは、母材の第1相の形状や大きさに実質的に等しくなる。上述のようにα”Fe16N2相は、ナノオーダーであると磁気特性に優れることから、第1相もナノオーダーであることが好ましい。例えば、第1相が上述のように棒状体であり、各棒状体の最小幅の平均値が10nm以上であると、窒化鉄材中に生成されるα”Fe16N2相も10nm以上の棒状体となって飽和磁化が高くなり、上記平均値が100nm以下であると、α”Fe16N2相もその幅が100nm以下の超極細相となり、磁気特性に優れる窒化鉄材が得られる。第1相の最小幅の平均値は、20nm以上50nm以下がより好ましい。 The shape and size of the magnetic phase in the iron nitride material are substantially equal to the shape and size of the first phase of the base material. As described above, the α ″ Fe 16 N 2 phase has excellent magnetic properties when in the nano order, and therefore the first phase is also preferably in the nano order. For example, the first phase is a rod-shaped body as described above. Yes, if the average value of the minimum width of each rod-shaped body is 10 nm or more, the α ”Fe 16 N 2 phase generated in the iron nitride material also becomes a rod-shaped body of 10 nm or more, and the saturation magnetization becomes high. Is 100 nm or less, the α ”Fe 16 N 2 phase also becomes an ultrafine phase with a width of 100 nm or less, and an iron nitride material with excellent magnetic properties is obtained. The average value of the minimum width of the first phase is 20 nm or more and 50 nm The following is more preferable.

上記二相形態の母材は、窒素と十分に接触できるように、粉末であることが好ましい。特に、平均粒径10μm以上1000μm以下の粉末、好ましくは、20μm以上200μm以下の粉末であると、所望の形状・大きさの粉末成形体を容易に作製できる。粉末成形体は、原料粉末を構成する粒子間の間隙が残存しており、この粒子間の間隙から窒素が侵入可能である。従って、粉末成形体は、一度に多く粉末を窒化処理できる上に、大型の窒化処理材も形成でき、窒化鉄材の生産性に優れるため、母材に好適に利用できる。粉末成形体を母材に利用する場合、相対密度が高いほど、磁性成分の割合が高い窒化鉄材が得られるが、緻密過ぎると窒素の侵入経路を十分に確保できず、α”Fe16N2相を効率よく生成することが難しい。そのため、相対密度が90%以上94%以下の粉末成形体が好ましい。成形圧力は、成形金型の温度にもよるが、例えば、0.5GPa〜2.0GPaが挙げられる。成形時の雰囲気は、酸素の含有量が少ない雰囲気(酸素:100体積ppm以下)や酸素を実質的に含まない雰囲気(例えば、Arといった希ガスなどの不活性雰囲気)とすると、母材の酸化を防止できる。 The base material in the two-phase form is preferably a powder so that it can sufficiently come into contact with nitrogen. In particular, when the powder has an average particle size of 10 μm or more and 1000 μm or less, and preferably 20 μm or more and 200 μm or less, a powder molded body having a desired shape and size can be easily produced. In the powder compact, gaps between particles constituting the raw material powder remain, and nitrogen can enter through the gaps between the particles. Therefore, the powder molded body can be suitably used as a base material because a large amount of powder can be nitrided at a time and a large nitriding material can be formed and the productivity of the iron nitride material is excellent. When a powder compact is used as a base material, the higher the relative density, the higher the ratio of magnetic component, and the more the iron nitride material can be obtained. However, if it is too dense, a sufficient nitrogen penetration path cannot be secured, and α ”Fe 16 N 2 For this reason, it is difficult to produce a phase efficiently, and therefore, a powder molded body having a relative density of 90% or more and 94% or less is preferable, although the molding pressure depends on the temperature of the molding die, for example, 0.5 GPa to 2.0 GPa. If the atmosphere during molding is an atmosphere with a low oxygen content (oxygen: 100 ppm by volume or less) or an atmosphere that does not substantially contain oxygen (for example, an inert atmosphere such as a rare gas such as Ar), The oxidation of the material can be prevented.

この二相形態から得られた窒化鉄材において、磁性体相中の主成分であるα”Fe16N2相は、硬磁性体として機能する。 In the iron nitride material obtained from this two-phase form, the α ″ Fe 16 N 2 phase, which is the main component in the magnetic phase, functions as a hard magnetic material.

上記複数磁性相形態の母材には、Feを含有する第1磁性相と、飽和磁化が0.4T以上の磁性材料からなる第2磁性相とが隣接して存在する多相組織を有するものを利用する。母材中の第1磁性相は、その主成分であるFeがα”Fe16N2相の生成に利用され、窒化鉄材中の第1磁性体相を形成するための前駆体として機能する。母材中の第2磁性相は、窒化処理後も概ねそのまま存在して、第1磁性体相とは別の第2磁性体相として機能する。即ち、複数磁性相形態により得られる窒化鉄材は、第1磁性相から生成されたα”Fe16N2相が、いわゆるナノコンポジットマグネット(交換スプリングマグネット)の軟磁性体として機能し、第2磁性体相(母材の第2磁性相に略等しい)は、硬磁性体として機能することで、非常に強力な磁石となり得る。 The base material in the form of multiple magnetic phases has a multiphase structure in which a first magnetic phase containing Fe and a second magnetic phase made of a magnetic material having a saturation magnetization of 0.4 T or more are adjacent to each other. Use. In the first magnetic phase in the base material, Fe, which is the main component, is used to generate the α ″ Fe 16 N 2 phase, and functions as a precursor for forming the first magnetic phase in the iron nitride material. The second magnetic phase in the base material exists almost as it is after the nitriding treatment, and functions as a second magnetic phase different from the first magnetic phase. The α ”Fe 16 N 2 phase generated from the first magnetic phase functions as a soft magnetic material for the so-called nanocomposite magnet (exchange spring magnet), and the second magnetic phase (substantially the second magnetic phase of the base material). Equal) can function as a hard magnetic material and can be a very strong magnet.

上記特定の組織を有する母材は、例えば、Feを含有する希土類化合物、Feを含有する酸化物、Feを含有する合金や金属間化合物などを原料素材とし、この原料素材にFeを過剰に配合して溶解し、得られた溶湯を急冷してアモルファス状態の材料を得た後、Feを含有する第1磁性相が生成(析出)されるように上記アモルファス状態の材料に結晶化処理を行うことで、製造できる。上記結晶化処理を利用する方法は、母材を比較的容易に製造でき、母材の製造性に優れる。   The base material having the above specific structure is made of, for example, a rare earth compound containing Fe, an oxide containing Fe, an alloy containing Fe, an intermetallic compound, or the like as a raw material, and excessively containing Fe in the raw material. Then, the obtained molten metal is rapidly cooled to obtain an amorphous material, and then the amorphous material is crystallized so that a first magnetic phase containing Fe is generated (precipitated). It can be manufactured. The method using the crystallization treatment can manufacture the base material relatively easily and is excellent in the productivity of the base material.

上記希土類化合物は、例えば、RE=Y,La,Ce,Pr,Nd,Dy,Tb及びSmから選択される少なくとも1種、X=B,C及びNから選択される1種、ME=Co,Cu,Mn及びNiから選択される少なくとも1種とするとき、RE-Fe-X化合物、又はRE-Fe-ME-X化合物が挙げられる。具体的には、Nd-Fe-B、Nd-Fe-C、Sm-Fe-N、Nd-Fe-Co-Bなどが挙げられる。希土類磁石に利用されている公知の材料を原料素材に利用できる。結晶化処理の条件は、加熱温度:450℃〜600℃、保持時間:0.01時間〜0.1時間が挙げられる。また、結晶化処理時の雰囲気は、希土類元素の酸化防止のために、非酸化性雰囲気、例えば、Arなどの希ガスといった不活性ガス雰囲気や真空雰囲気(真空度:0.01Pa〜10Pa程度)が好ましい。   The rare earth compound is, for example, at least one selected from RE = Y, La, Ce, Pr, Nd, Dy, Tb and Sm, one selected from X = B, C and N, ME = Co, When at least one selected from Cu, Mn, and Ni, a RE-Fe-X compound or a RE-Fe-ME-X compound may be mentioned. Specific examples include Nd—Fe—B, Nd—Fe—C, Sm—Fe—N, Nd—Fe—Co—B, and the like. A known material used for a rare earth magnet can be used as a raw material. The conditions for the crystallization treatment include heating temperature: 450 ° C. to 600 ° C., holding time: 0.01 hour to 0.1 hour. The atmosphere during crystallization treatment is a non-oxidizing atmosphere, for example, an inert gas atmosphere such as a rare gas such as Ar or a vacuum atmosphere (vacuum degree: about 0.01 Pa to 10 Pa) in order to prevent oxidation of rare earth elements. preferable.

上記希土類化合物を原料素材に利用した場合、母材中の第1磁性相は、実質的にFe相で構成され、母材中の第2磁性相は、上記RE-Fe-X化合物やRE-Fe-ME-X化合物で構成される。RE-Fe-X化合物やRE-Fe-ME-X化合物は、飽和磁化が高く、0.4T以上、組成によっては0.7T以上、更に1.0T以上であり、磁気特性に非常に優れる。母材中に、保磁力が高い希土類化合物成分の割合が高いほど、磁気特性に非常に優れる窒化鉄材が得られる。そのため、第2磁性相中における上記希土類化合物成分の割合が高いほど好ましく、80体積%以上、特に90体積%以上が好ましい。   When the rare earth compound is used as a raw material, the first magnetic phase in the base material is substantially composed of an Fe phase, and the second magnetic phase in the base material is the RE-Fe-X compound or RE- Consists of Fe-ME-X compounds. RE-Fe-X compounds and RE-Fe-ME-X compounds have high saturation magnetization, 0.4 T or more, and depending on the composition, 0.7 T or more, and further 1.0 T or more, and have excellent magnetic properties. The higher the ratio of the rare earth compound component having a high coercive force in the base material, the more excellent the iron nitride material having excellent magnetic properties can be obtained. Therefore, the higher the proportion of the rare earth compound component in the second magnetic phase is, the more preferable, 80% by volume or more, particularly 90% by volume or more is preferable.

上記酸化物は、例えば、MA=Ca,Sr及びBaから選択される少なくとも1種とするとき、MA-Fe-O化合物、又はLa-MA-Fe-Co-O化合物が挙げられる。具体的には、Sr-Fe-O、Ba-Fe-O、La-Sr-Fe-Co-Oなどが挙げられる。フェライト磁石に利用されている公知の材料を原料素材に利用でき、比較的安価に母材を準備できる。上記酸化物は、例えば、以下のようにして製造することができる。所望の組成の鉄酸化物(フェライト)となるように、鉄以外の金属元素にFeを過剰に配合して溶解し、得られた溶湯を急冷してアモルファス状態の材料を得る。このアモルファス状態の材料に、Feが孤立球状に析出するように結晶化処理を行った後、更に、マトリックスであるフェライト構成金属元素を含む合金相のみを酸化処理することで上記酸化物が得られる。   For example, when the oxide is at least one selected from MA = Ca, Sr and Ba, a MA-Fe-O compound or a La-MA-Fe-Co-O compound may be mentioned. Specific examples include Sr—Fe—O, Ba—Fe—O, and La—Sr—Fe—Co—O. A known material used for a ferrite magnet can be used as a raw material, and a base material can be prepared relatively inexpensively. The oxide can be produced, for example, as follows. To obtain an iron oxide (ferrite) having a desired composition, Fe is excessively blended and dissolved in a metal element other than iron, and the resulting molten metal is rapidly cooled to obtain an amorphous material. This amorphous material is subjected to a crystallization treatment so that Fe precipitates in an isolated spherical shape, and then the oxide is obtained by oxidizing only the alloy phase containing the ferrite constituent metal element as a matrix. .

上記酸化物を利用した場合、母材中の第1磁性相は、実質的にFe相で構成され、母材中の第2磁性相は、飽和磁化が0.4T以上である上記MA-Fe-O化合物やLa-MA-Fe-Co-O化合物で構成される。第2磁性相中における上記酸化物成分の割合が高いほど磁気特性に優れる窒化鉄材が得られることから、80体積%以上、特に90体積%以上が好ましい。   When the oxide is used, the first magnetic phase in the base material is substantially composed of an Fe phase, and the second magnetic phase in the base material is the MA-Fe- It is composed of an O compound or a La-MA-Fe-Co-O compound. The higher the proportion of the oxide component in the second magnetic phase, the better the iron nitride material having better magnetic properties, so 80 volume% or more, particularly 90 volume% or more is preferred.

上記合金や金属間化合物は、例えば、Pt-Fe合金、Pt-Co合金、及びPt-(Fe,Co)化合物から選択される1種が挙げられ(いずれも飽和磁化が0.4T以上)、公知のものを利用できる。これらの合金などは耐食性に非常に優れることから、これらの合金などを含むことで耐食性に優れる窒化鉄材が得られる。第2磁性相中における上記合金などの成分の割合が高いほど耐食性を高められ、80体積%以上、特に90体積%以上が好ましい。   Examples of the alloy and intermetallic compound include one selected from a Pt—Fe alloy, a Pt—Co alloy, and a Pt— (Fe, Co) compound (both have a saturation magnetization of 0.4 T or more), and are publicly known Can be used. Since these alloys and the like are extremely excellent in corrosion resistance, an iron nitride material having excellent corrosion resistance can be obtained by including these alloys and the like. The higher the proportion of the component such as the alloy in the second magnetic phase, the higher the corrosion resistance, and 80 vol% or more, particularly 90 vol% or more is preferable.

窒化鉄材中の第1磁性体相の形状や大きさは、母材の第1磁性相の形状や大きさに実質的に等しくなる。窒化鉄材においてα”Fe16N2相を主成分とする第1磁性体相が所望の形状・大きさとなるように第1磁性相の形状を選択する。上述のようにα”Fe16N2相は、ナノオーダーであると磁気特性に優れることから、第1磁性相もナノオーダーであることが好ましい。例えば、隣り合う第2磁性相に挟まれた第1磁性相の最小距離の平均が10nm以上50nm以下であると、窒化鉄材において隣り合う第2磁性体相に挟まれた第1磁性体相における最小距離も10nm〜50nmとなり、当該窒化鉄材は磁気特性に優れる。第1磁性相の最小距離の平均値は、10nm以上30nm以下がより好ましい。第1磁性相の形状は、例えば、棒状、球状、膜状が挙げられる。 The shape and size of the first magnetic phase in the iron nitride material are substantially equal to the shape and size of the first magnetic phase of the base material. In the iron nitride material, the shape of the first magnetic phase is selected so that the first magnetic phase mainly composed of the α ″ Fe 16 N 2 phase has a desired shape and size. As described above, the α ″ Fe 16 N 2 If the phase is nano-order, the magnetic properties are excellent, and therefore the first magnetic phase is preferably nano-order. For example, when the average of the minimum distances of the first magnetic phase sandwiched between the adjacent second magnetic phases is 10 nm or more and 50 nm or less in the first magnetic phase sandwiched between the adjacent second magnetic phase in the iron nitride material The minimum distance is 10 nm to 50 nm, and the iron nitride material is excellent in magnetic properties. The average value of the minimum distance of the first magnetic phase is more preferably 10 nm or more and 30 nm or less. Examples of the shape of the first magnetic phase include a rod shape, a spherical shape, and a film shape.

窒化鉄材を磁石の素材に用いる場合、当該窒化鉄材中においてα”Fe16N2相を主成分とする磁性体相や第1磁性体相において形状に起因する反磁界が最も小さくなる方向に、α”Fe16N2結晶のc軸が揃っていることが好ましい。例えば、上記磁性体相などが棒状である場合、棒状体の長軸方向にc軸が揃っていることが好ましく、上記磁性体相などが膜状である場合、膜表面に平行にc軸が揃っていることが好ましい。このようにc軸を揃えるには、上述した二相形態の第1相や複数磁性相形態の第1磁性相が棒状である場合、磁界方向が棒状体の長軸方向となるように、膜状である場合、磁界方向が膜表面に平行方向となるように磁場を印加することが挙げられる。垂直磁気記録の用途では、上述のように磁界方向を膜表面に垂直とすることが好ましい。 When using an iron nitride material as a magnet material, in the direction in which the demagnetizing field due to the shape is minimized in the magnetic phase and the first magnetic phase mainly composed of the α ”Fe 16 N 2 phase in the iron nitride material, It is preferable that the c-axes of α ″ Fe 16 N 2 crystal are aligned. For example, when the magnetic material phase is rod-shaped, it is preferable that the c-axis is aligned in the major axis direction of the rod-shaped material. When the magnetic material phase is film-shaped, the c-axis is parallel to the film surface. It is preferable that they are aligned. In order to align the c-axis in this way, when the first phase in the two-phase form or the first magnetic phase in the plurality of magnetic phases is in a rod shape, the film direction is the long axis direction of the rod-shaped body. In this case, the magnetic field is applied so that the magnetic field direction is parallel to the film surface. In the perpendicular magnetic recording application, the magnetic field direction is preferably perpendicular to the film surface as described above.

[印加する磁場]
本発明製造方法では、単相形態及び複数磁性相形態では、印加する磁場をH=(7/3)+2×Nf以上とし、0.2T以下の材質からなる第2相を具える二相形態では、Hm=(7/3)+2×(Nf/V1)以上とする。後述する試験例に示すように、反磁界係数Nfを変数とし、補償値:(7/3)を考慮して磁場の大きさを設定することで、Feの基本格子を印加する磁界方向に十分に引き伸ばして、N原子の侵入方向を一方向に規制し易い。印加する磁場の上限は工業的に環境磁場の問題や電力コストの問題などによる弊害がない範囲とする。
[Applied magnetic field]
In the production method of the present invention, in the single phase form and the multiple magnetic phase form, the applied magnetic field is H = (7/3) + 2 × Nf or more, and in the two-phase form comprising the second phase made of a material of 0.2 T or less, , Hm = (7/3) + 2 × (Nf / V1) or more. As shown in the test example to be described later, the demagnetizing factor Nf is a variable, and the value of the magnetic field is set in consideration of the compensation value: (7/3). It is easy to regulate the penetration direction of N atoms in one direction. The upper limit of the magnetic field to be applied is within a range where there are no harmful effects due to environmental magnetic field problems or power cost problems industrially.

磁場の印加には、高温超電導磁石を利用することができる。高温超電導磁石は、磁場の変動を高速で行える。低温超電導磁石を用いた場合、磁場変動速度は、一般に、1T当たり5分〜10分程度であるのに対し、高温超電導磁石では、例えば1T当たり10秒以内と非常に短時間で行える。つまり、所望の強磁場を容易に得られることから、高温超電導磁石を利用すると、処理時間の短縮を図ることができる。処理時間の短縮化により、結晶粒の成長を抑制して粗粒化を低減できることから、保磁力が大きな窒化鉄材が得られ易い。更に、磁場変動速度が速いため、素材の投入時や取出時に磁場の印加を停止(OFF)したり、加熱中に磁場の印加を開始(ON)したり、といった磁場の印加の制御も速やかに行える。従って、高温超電導磁石を利用すると、連続的に処理が行え、窒化鉄材の生産性にも優れる。高温超電導磁石は、代表的には、酸化物超電導体により構成された超電導コイルを例えば冷凍機による伝導冷却で冷却して使用される(動作温度はおよそ-260℃以上)。   A high-temperature superconducting magnet can be used for applying the magnetic field. The high-temperature superconducting magnet can change the magnetic field at high speed. When a low-temperature superconducting magnet is used, the magnetic field fluctuation speed is generally about 5 to 10 minutes per 1T, whereas with a high-temperature superconducting magnet, it can be performed in a very short time, for example, within 10 seconds per 1T. That is, since a desired strong magnetic field can be easily obtained, the processing time can be shortened by using a high-temperature superconducting magnet. By shortening the treatment time, the growth of crystal grains can be suppressed and the coarsening can be reduced, so that an iron nitride material having a large coercive force can be easily obtained. Furthermore, since the magnetic field fluctuation speed is fast, the application of the magnetic field, such as stopping the application of the magnetic field at the time of loading or unloading the material (OFF), or starting the application of the magnetic field during the heating (ON) is quickly performed. Yes. Therefore, when a high-temperature superconducting magnet is used, processing can be performed continuously and the productivity of the iron nitride material is excellent. A high-temperature superconducting magnet is typically used by cooling a superconducting coil composed of an oxide superconductor by conduction cooling using, for example, a refrigerator (operating temperature is about −260 ° C. or more).

反磁界係数Nfは、通常、粒子のような球状体を比較的低密度な集合体とし、この集合体に磁場を印加する場合、1/3(0.33)、薄膜に対して膜表面に垂直に磁場を印加する場合(膜厚方向に磁場を印加する場合)、1とする。その他、母材の磁化曲線(I-H曲線)を求め、反磁界係数を適宜補正してもよい。具体的には、母材に対して、窒化処理における磁場の印加方向と同じ方向となるように磁場を印加して、振動試料型磁力計(VSM)でI-H曲線(I=f(H))を求める。そして、図4に示すように横軸(x軸)を磁場H、縦軸(y軸)を磁化Iとし、x軸と磁化曲線とがなす角θを求め、角θが90°となるように補正曲線(I'=f(H-[Nf]×I))を求め、反磁場係数[Nf]を決定し、この補正後の反磁場係数[Nf]を利用するとよい。   The demagnetizing factor Nf is usually 1/3 (0.33) perpendicular to the film surface with respect to the thin film when a spherical body such as a particle is a relatively low-density assembly and a magnetic field is applied to this assembly. Set to 1 when applying a magnetic field (when applying a magnetic field in the film thickness direction). In addition, the magnetization curve (IH curve) of the base material may be obtained, and the demagnetizing factor may be corrected as appropriate. Specifically, a magnetic field is applied to the base material so that it is in the same direction as the direction of magnetic field application in the nitriding treatment, and an IH curve (I = f (H)) is obtained with a vibrating sample magnetometer (VSM). Ask for. Then, as shown in FIG. 4, the horizontal axis (x axis) is the magnetic field H, the vertical axis (y axis) is the magnetization I, and the angle θ formed by the x axis and the magnetization curve is obtained so that the angle θ becomes 90 °. Then, a correction curve (I ′ = f (H− [Nf] × I)) is obtained, a demagnetizing factor [Nf] is determined, and the demagnetizing factor [Nf] after this correction is used.

[雰囲気]
窒化処理の雰囲気は、窒素元素を含む雰囲気とする。例えば、窒素雰囲気(N2の含有量:99.999体積%以上)、アンモニア雰囲気、窒素(N2)やアンモニアとArなどの希ガスとの混合雰囲気、窒素(N2)やアンモニアと水素ガスとの混合雰囲気などが挙げられる。窒素雰囲気は、窒素を十分に供給でき、アンモニア雰囲気や水素を含む混合雰囲気は、過剰窒化を防止できる上に、鉄成分や希土類元素などの酸化を防止でき、希ガスを含む混合雰囲気も酸化を防止できる。
[atmosphere]
The atmosphere of nitriding treatment is an atmosphere containing nitrogen element. For example, nitrogen atmosphere (N 2 content: 99.999 vol% or more), ammonia atmosphere, nitrogen (N 2 ), mixed atmosphere of ammonia and rare gases such as Ar, nitrogen (N 2 ), ammonia and hydrogen gas A mixed atmosphere is mentioned. Nitrogen atmosphere can supply enough nitrogen, ammonia atmosphere and mixed atmosphere containing hydrogen can prevent excessive nitriding and also prevent oxidation of iron components and rare earth elements, etc. Mixture atmosphere containing rare gas also oxidizes Can be prevented.

[加熱温度]
窒化処理時の加熱温度が高いほど、FeとNとの反応性を高められ、Fe原子-Fe原子間にN原子を十分に侵入させられるが、高過ぎると、母材への磁歪効果が小さくなり、α”Fe16N2相の生成効率が低下する。従って、加熱温度は、150℃以上400℃以下が好ましく、200℃〜300℃がより好ましい。
[Heating temperature]
The higher the heating temperature during nitriding, the higher the reactivity between Fe and N, and the more sufficient N atoms can penetrate between the Fe and Fe atoms. However, if it is too high, the magnetostriction effect on the base material will be small. As a result, the production efficiency of the α ″ Fe 16 N 2 phase is lowered. Therefore, the heating temperature is preferably 150 ° C. or higher and 400 ° C. or lower, and more preferably 200 ° C. to 300 ° C.

以下、試験例を挙げて、本発明のより具体的な実施形態を説明する。
[試験例1:単相形態]
純鉄を母材とし、適宜磁場を印加しながら窒化処理を行って、窒化鉄材を作製した。この試験では、母材として、純鉄粉と、純鉄からなる薄膜とを用意した。
Hereinafter, more specific embodiments of the present invention will be described with reference to test examples.
[Test Example 1: Single-phase form]
Pure iron was used as a base material, and nitriding treatment was performed while applying a magnetic field as appropriate, thereby producing an iron nitride material. In this test, pure iron powder and a thin film made of pure iron were prepared as base materials.

《粉末》
(母材の準備)
純鉄粉は、粒径が異なる二種類の粉末を用意した。一つは、逆ミセル法により、鉄カルボニル(Fe(CO)5)から純鉄粉を合成し、合成条件を変化させることで、平均粒径が5nm〜50nmのものを用意した。逆ミセル法は、公知の方法を利用できる。他の一つは、市販のカルボニル鉄粉(粒径5μm)を冷凍粉砕し、粉砕度合いを変化させることで、平均粒径が100nm〜1000nmの純鉄粉を用意した。その他、ガスアトマイズ法で形成した純鉄粉などを利用することができる。平均粒径はいずれも、市販のレーザ回折式粒度分布測定装置を用いて湿式法により測定した。
<Powder>
(Preparation of base material)
Two types of pure iron powders with different particle sizes were prepared. First, pure iron powder was synthesized from iron carbonyl (Fe (CO) 5 ) by the reverse micelle method and the synthesis conditions were changed to prepare those having an average particle size of 5 nm to 50 nm. A known method can be used for the reverse micelle method. The other one was prepared by freezing and pulverizing commercially available carbonyl iron powder (particle size: 5 μm) and changing the degree of pulverization to prepare pure iron powder having an average particle size of 100 nm to 1000 nm. In addition, pure iron powder formed by a gas atomizing method can be used. All of the average particle diameters were measured by a wet method using a commercially available laser diffraction particle size distribution analyzer.

(窒化処理)
得られた各純鉄粉を耐熱性の粘着フィルム(シリコーン接着剤を付与したポリイミドフィルム)の上に貼り付け、フィルムを巻き上げて粉末を集合させた状態で窒化処理を施した。窒化処理は、純度:99.999体積%の窒素気流による窒素雰囲気(酸素濃度:100体積ppm以下)とし、0T〜5Tの範囲から選択した磁場を印加すると共に、100℃〜400℃の範囲から選択した加熱温度を3時間保持して行った。なお、フィルムは、筒状に巻く他、折り畳んでもよい。
(Nitriding treatment)
Each obtained pure iron powder was affixed on a heat-resistant adhesive film (polyimide film provided with a silicone adhesive), and the film was rolled up to perform nitriding treatment in a state where the powder was assembled. The nitriding treatment was performed in a nitrogen atmosphere (oxygen concentration: 100 volume ppm or less) with a nitrogen stream of purity: 99.999 vol%, and a magnetic field selected from a range of 0T to 5T was applied, and a range of 100 ° C to 400 ° C was selected. The heating temperature was maintained for 3 hours. The film may be folded in addition to being wound in a cylindrical shape.

上記窒化処理後、粘着フィルムから粉末を取り出して、窒化処理が施された粉末の質量を測定した。また、取り出した粉末について、振動試料型磁力計(VSM)を用いて、最大磁界2T(≒1590kA/m)として、飽和磁化を測定した。純鉄粉の平均粒径(nm)、窒化処理時の加熱温度(℃)、印加した磁場(磁界)(T)、窒化処理後の粉末の飽和磁化(emu/g=J/(T・kg))を表1に示す。この試験では、純鉄粉を構成する各粒子を球体として扱い、反磁界係数Nfを1/3(0.33)とした。   After the nitriding treatment, the powder was taken out from the adhesive film, and the mass of the nitriding powder was measured. Further, the saturation magnetization of the extracted powder was measured using a vibrating sample magnetometer (VSM) with a maximum magnetic field of 2 T (≈1590 kA / m). Average particle diameter of pure iron powder (nm), heating temperature during nitriding (° C), applied magnetic field (magnetic field) (T), saturation magnetization of powder after nitriding (emu / g = J / (T · kg) )) Is shown in Table 1. In this test, each particle constituting the pure iron powder was treated as a sphere, and the demagnetizing factor Nf was 1/3 (0.33).

《薄膜》
(母材の準備)
薄膜は、スパッタ法により基材(シリコン基板)の上に成膜し、成膜時間などを変化させることで、平均厚さが5nm〜1000nmの薄膜(単層)を形成した。成膜条件は、公知の条件を利用した。平均厚さはいずれも、市販の接触式膜厚計を用いた。
<Thin film>
(Preparation of base material)
The thin film was formed on a base material (silicon substrate) by a sputtering method, and a thin film (single layer) having an average thickness of 5 nm to 1000 nm was formed by changing the film formation time and the like. As the film forming conditions, known conditions were used. As for the average thickness, a commercially available contact film thickness meter was used.

(窒化処理)
上記薄膜に窒化処理を施した。窒化処理は、純度:99.999体積%の窒素気流による窒素雰囲気(酸素濃度:100体積ppm以下)とし、0T〜5Tの範囲から選択した磁場を当該膜表面に垂直に印加すると共に、100℃〜500℃の範囲から選択した加熱温度を3時間保持して行った。磁場の印加には、高温超電導磁石を用いた。
(Nitriding treatment)
The thin film was subjected to nitriding treatment. The nitriding treatment is performed in a nitrogen atmosphere (oxygen concentration: 100 volume ppm or less) with a nitrogen stream of purity: 99.999% by volume, and a magnetic field selected from the range of 0T to 5T is applied perpendicularly to the film surface and 100 ° C. to 500 ° C. The heating temperature selected from the range of ° C. was held for 3 hours. A high temperature superconducting magnet was used to apply the magnetic field.

上記窒化処理後の試料の質量を測定し、この測定結果と成膜前の基材の質量との差から、窒化処理後の薄膜の質量を求めた。また、この薄膜について、振動試料型磁力計(VSM)を用いて、最大磁界2T(≒1590kA/m)として、飽和磁化(emu/g)を測定した。窒化処理前の薄膜の平均厚さ(nm)、窒化処理時の加熱温度(℃)、印加した磁場(磁界)(T)、窒化処理後の薄膜の飽和磁化(emu/g=J/(T・kg))を表2に示す。この試験では、薄膜の反磁界係数Nfを1とした。   The mass of the sample after the nitriding treatment was measured, and the mass of the thin film after the nitriding treatment was determined from the difference between the measurement result and the mass of the base material before film formation. The thin film was measured for saturation magnetization (emu / g) using a vibrating sample magnetometer (VSM) with a maximum magnetic field of 2T (≈1590 kA / m). Average thickness of thin film before nitriding treatment (nm), heating temperature during nitriding treatment (℃), applied magnetic field (magnetic field) (T), saturation magnetization of thin film after nitriding treatment (emu / g = J / (T・ Kg)) is shown in Table 2. In this test, the demagnetizing factor Nf of the thin film was set to 1.

また、母材に上記粉末を用いた場合、及び薄膜を用いた場合について、反磁界係数Nfと印加した磁場との関係を図1に示す。図1では、試料No.1-1〜1-3,2-1〜2-2を実施例、試料No.101〜103,201〜205を比較例として示す。   FIG. 1 shows the relationship between the demagnetizing factor Nf and the applied magnetic field when the powder is used as the base material and when a thin film is used. In FIG. 1, sample Nos. 1-1 to 1-3 and 2-1 to 2-2 are shown as examples, and sample Nos. 101 to 103 and 201 to 205 are shown as comparative examples.

Figure 2012246174
Figure 2012246174

Figure 2012246174
Figure 2012246174

表1,表2に示すように、磁場を印加することで、飽和磁化が高くなる傾向にあり、印加する磁場の大きさによって、窒化鉄材の飽和磁化の大きさが異なることが分かる。また、図1に示すように、反磁界係数Nfを大きくする場合、印加磁場も大きくすることで、窒化鉄材の飽和磁化が高められることが分かる。従って、反磁界係数Nfと印加磁場Hとは、線形の関係にあると言え、飽和磁化が大きい○印の試料と飽和磁化が小さい●印の試料とは、一次式:y=ax+bにより区別できると言える。図1に示す試料を利用すると、上記一次式として、H=(7/3)+2×Nfが導き出せる。この式から、Nf=0.33のとき、印加する磁場はH≒2.99以上が好ましく、Nf=1のとき、印加する磁場はH≒4.33以上が好ましいと言え、H=(7/3)+2×Nf以上の磁場を印加した試料は、飽和磁化が高くなっている。   As shown in Tables 1 and 2, it can be seen that the saturation magnetization tends to increase when a magnetic field is applied, and the saturation magnetization of the iron nitride material differs depending on the magnitude of the applied magnetic field. Further, as shown in FIG. 1, it is understood that when the demagnetizing factor Nf is increased, the saturation magnetization of the iron nitride material can be increased by increasing the applied magnetic field. Therefore, it can be said that the demagnetizing factor Nf and the applied magnetic field H are in a linear relationship, and the sample with a large saturation magnetization and the sample with a small saturation magnetization are expressed by a linear expression: y = ax + b It can be said that they can be distinguished. When the sample shown in FIG. 1 is used, H = (7/3) + 2 × Nf can be derived as the linear expression. From this equation, it can be said that when Nf = 0.33, the applied magnetic field is preferably H≈2.99 or more, and when Nf = 1, the applied magnetic field is preferably H≈4.33 or more, and H = (7/3) + 2 × Nf The sample to which the above magnetic field is applied has high saturation magnetization.

H=(7/3)+2×Nf以上の磁場を印加した試料の飽和磁化が高くなった理由は、窒化処理により、α”Fe16N2相の含有量が高い鉄窒化物が形成されたため、と考えられる。実際、例えば、試料No.1-1,2-1の窒化鉄材について、断面をとり、TEM分析及びX線回折を行った結果、α”Fe16N2相が存在しており、α”Fe16N2相の割合は、窒化鉄材全体を100体積%とするとき、試料No.1-1:82体積%、試料No.2-1:84体積%(いずれも80体積%以上)であった。また、磁場を印加しなかった試料No.101,201の窒化鉄材を同様に調べたところ、α”Fe16N2相が少なく(25体積%以下)、Fe4NやFe3Nなどの化合物が多かった。その他の試料も同様であった。 The reason why the saturation magnetization of the sample to which a magnetic field of H = (7/3) + 2 × Nf or higher was applied was high was that the nitriding process formed iron nitride with a high content of α ”Fe 16 N 2 phase. Actually, for example, the iron nitride material of Sample Nos. 1-1 and 2-1 were cross-sectioned and subjected to TEM analysis and X-ray diffraction. As a result, α ″ Fe 16 N 2 phase was present. The ratio of α ”Fe 16 N 2 phase is 100% by volume of the entire iron nitride material. Sample No.1-1: 82% by volume, Sample No.2-1: 84% by volume (both 80% In addition, when the iron nitride materials of sample Nos. 101 and 201 to which no magnetic field was applied were examined in the same manner, α ″ Fe 16 N 2 phase was small (25% by volume or less), and Fe 4 N or Fe compounds such as 3 N there were many. The other samples were the same.

上記試験から、Feを含有する母材を用意し、当該母材の形状から規定される反磁界係数Nfにより求められる値:H=(7/3)+2×Nf以上の強磁場を印加した状態で窒化処理を施すことで、磁気特性に優れる窒化鉄材が得られることが分かる。また、この窒化鉄材は、α”Fe16N2相の含有量が多いことが分かる。 From the above test, a base material containing Fe is prepared, and a value obtained from the demagnetizing factor Nf defined by the shape of the base material: a state in which a strong magnetic field of H = (7/3) + 2 × Nf or more is applied It can be seen that an iron nitride material having excellent magnetic properties can be obtained by performing nitriding treatment with. It can also be seen that this iron nitride material has a high content of α ″ Fe 16 N 2 phase.

更に、上記試験から、磁気特性により優れる窒化鉄材を得るためには、窒化処理時の加熱温度:150℃以上400℃以下、粉末の平均粒径や薄膜の平均厚さ:10nm以上500nm以下が好ましいと言える。   Furthermore, from the above test, in order to obtain an iron nitride material with superior magnetic properties, the heating temperature during nitriding treatment is preferably 150 ° C. or more and 400 ° C. or less, the average particle diameter of the powder or the average thickness of the thin film: 10 nm or more and 500 nm or less is preferable. It can be said.

[試験例2:二相形態]
Feを含有する第1相と、0.2T以下の材質からなる第2相との混合物を母材とし、適宜磁場を印加しながら窒化処理を行って、窒化鉄材を作製した。この試験では、母材として、Fe-Al-Ni合金を用意し、一定の組成の合金と、Al,Niの含有量を異ならせた合金とを用意した。
[Test Example 2: Two-phase form]
A mixture of a first phase containing Fe and a second phase made of a material of 0.2 T or less was used as a base material, and nitriding treatment was performed while applying a magnetic field as appropriate, thereby producing an iron nitride material. In this test, an Fe—Al—Ni alloy was prepared as a base material, and an alloy having a constant composition and an alloy having different contents of Al and Ni were prepared.

《一定組成》
(母材の準備)
ガスアトマイズ法により、Fe-17原子%Al-5.5原子%Ni合金からなり、平均粒径50μmの粉末を作製した。平均粒径は、市販のレーザ回折式粒度分布測定装置を用いて湿式法により測定した。得られた粉末に相分離処理を施した。ここでは、Ar雰囲気(Ar気流中)で900℃×1時間保持した後、850℃から750℃の温度域において、外部から1Tの磁場を印加した状態で冷却状態を制御して降温した。冷却状態は、加熱に用いた加熱炉内の温度を制御することで調整し、降温速度を0.2℃/secとした。この制御冷却の後、粉末を冷却油中に投入して急冷した。この工程により、主としてFeから構成される第1相と、AlNi成分を含む第2相とに相分離された母材(合金粉末)を得る。
<< constant composition >>
(Preparation of base material)
A powder having an average particle diameter of 50 μm made of an Fe-17 atomic% Al-5.5 atomic% Ni alloy was prepared by gas atomization. The average particle diameter was measured by a wet method using a commercially available laser diffraction particle size distribution measuring apparatus. The obtained powder was subjected to a phase separation treatment. Here, after holding at 900 ° C. for 1 hour in an Ar atmosphere (in an Ar air stream), the temperature was lowered by controlling the cooling state in the temperature range of 850 ° C. to 750 ° C. while applying a 1 T magnetic field from the outside. The cooling state was adjusted by controlling the temperature in the heating furnace used for heating, and the cooling rate was 0.2 ° C./sec. After this controlled cooling, the powder was put into cooling oil and quenched. By this step, a base material (alloy powder) phase-separated into a first phase mainly composed of Fe and a second phase containing an AlNi component is obtained.

得られた母材において、上述の降温時の磁場の印加方向と垂直方向に断面をとり、イオンミリングにより薄片化した後、透過型電子顕微鏡:TEM(50000倍程度)により観察したところ、粉末を構成する各粒子内には、第1相が棒状に存在し、この棒状体を包むように筒状の第2相が第1相に接して存在していることが確認できた。上記観察像を用いて、視野内に存在する各棒状体(第1相)の最小幅を求め、その平均を求めた。その結果を表3に示す。また、得られた母材の断面をとり、この断面のX線回折結果とTEM観察時の電子線回折のスポット解析とから上記各相の組成を同定したところ、上記棒状の第1相は、実質的にFeから構成され、第2相は、AlNiを含有していることが確認された。上記X線回折結果を用いて、粉末を構成する各粒子に対する第1相の体積比率を調べ、上記X線回折結果とスポット解析との結果を用いて、第2相に対するAlNi成分の含有量(原子%)を調べた。その結果を表3に示す。   In the obtained base material, after taking a cross section in the direction perpendicular to the application direction of the magnetic field at the time of the above-mentioned temperature drop, and thinning by ion milling, when observed with a transmission electron microscope: TEM (about 50000 times), the powder was It was confirmed that the first phase was present in the form of a rod in each of the constituting particles, and the cylindrical second phase was in contact with the first phase so as to wrap around the rod-shaped body. Using the observed image, the minimum width of each rod-like body (first phase) existing in the field of view was obtained, and the average was obtained. The results are shown in Table 3. Also, taking the cross-section of the obtained base material, and identifying the composition of each phase from the X-ray diffraction results of this cross-section and the spot analysis of electron diffraction during TEM observation, the rod-shaped first phase is It was substantially composed of Fe, and the second phase was confirmed to contain AlNi. Using the X-ray diffraction results, the volume ratio of the first phase to each particle constituting the powder is examined, and using the results of the X-ray diffraction results and spot analysis, the content of the AlNi component with respect to the second phase ( Atomic%). The results are shown in Table 3.

《Al,Ni調整組成》
(母材の準備)
ガスアトマイズ法により、Fe-x原子%Al-y原子%Ni合金からなり、平均粒径50μmの粉末を作製した。Al量及びNi量を表4に示す。平均粒径は、市販の粒度分布測定装置で測定した。得られた粉末に、上記一定組成の場合と同様の条件で相分離処理を施し、主としてFeから構成される第1相と、AlNi成分を含む第2相とに相分離された母材(合金粉末)を得る。得られた母材は、上記一定組成の場合と同様に、棒状の第1相に接するように第2相が存在していた。
《Al, Ni adjustment composition》
(Preparation of base material)
By a gas atomization method, a powder made of an Fe-x atomic% Al-y atomic% Ni alloy and having an average particle diameter of 50 μm was produced. Table 4 shows the amounts of Al and Ni. The average particle size was measured with a commercially available particle size distribution measuring apparatus. The obtained powder was subjected to a phase separation treatment under the same conditions as in the case of the above constant composition, and a base material (alloy that was phase-separated into a first phase mainly composed of Fe and a second phase containing an AlNi component). Powder). The obtained base material had a second phase so as to be in contact with the rod-like first phase, as in the case of the above-mentioned constant composition.

得られた母材において、上記一定組成の場合と同様に、第1相の最小幅の平均(nm)、第1相の体積比率、第2相に対するAlNi成分の含有量(原子%)を調べた。その結果を表4に示す。なお、第2相と同一の組成比のAl-Ni-Fe合金を試作して飽和磁化を測定したところ、AlNiの飽和磁化は、0.13T〜0.16Tである(0.2T以下)。   In the obtained base material, the average of the minimum width of the first phase (nm), the volume ratio of the first phase, and the content of AlNi component (atomic%) with respect to the second phase are examined as in the case of the above-mentioned constant composition. It was. The results are shown in Table 4. Note that when an Al—Ni—Fe alloy having the same composition ratio as that of the second phase was made and saturation magnetization was measured, the saturation magnetization of AlNi was 0.13 T to 0.16 T (0.2 T or less).

(成形体の作製)
得られた各合金粉末を油圧プレスにより圧縮成形し(成形圧力:1GPa)、粉末成形体(直径φ10mm×高さ10mm、相対密度90%)を得た。相対密度は、粉末成形体の真密度に対する実際の密度から求めた。実際の密度は、市販の密度測定装置を利用して測定し、真密度は、ピクノメータを用いて測定した。
(Production of molded body)
Each obtained alloy powder was compression-molded by a hydraulic press (molding pressure: 1 GPa) to obtain a powder compact (diameter φ10 mm × height 10 mm, relative density 90%). The relative density was determined from the actual density with respect to the true density of the powder compact. The actual density was measured using a commercially available density measuring device, and the true density was measured using a pycnometer.

(窒化処理)
作製した粉末成形体に窒化処理を施した。窒化処理は、純度:99.999体積%の窒素気流による窒素雰囲気(酸素濃度:100体積ppm以下)とし、0T〜5Tの範囲から選択した磁場を印加すると共に、100℃〜500℃の範囲から選択した加熱温度を3時間保持して行った。磁場の印加には、高温超電導磁石を用いた。
(Nitriding treatment)
The produced powder compact was subjected to nitriding treatment. The nitriding treatment was performed in a nitrogen atmosphere (oxygen concentration: 100 volume ppm or less) with a nitrogen stream of purity: 99.999 vol%, and a magnetic field selected from the range of 0T to 5T was applied and selected from the range of 100 ° C to 500 ° C. The heating temperature was maintained for 3 hours. A high temperature superconducting magnet was used to apply the magnetic field.

上記窒化処理後、振動試料型磁力計(VSM)を用いて、最大磁界2T(≒1590kA/m)として、得られた窒化鉄材の残留磁化(T)及び保磁力(kOe)を測定した。窒化処理時の加熱温度(℃)、印加した磁場(磁界)(T)、残留磁化(T)及び保磁力(kOe=(103/4π)kA/m)を表3,表4に示す。この試験では、合金粉末を構成する各粒子を球体として扱い、反磁界係数Nfを1/3(0.33)とした。 After the nitriding treatment, the residual magnetization (T) and coercive force (kOe) of the obtained iron nitride material were measured using a vibrating sample magnetometer (VSM) with a maximum magnetic field of 2T (≈1590 kA / m). Tables 3 and 4 show the heating temperature (° C.), applied magnetic field (magnetic field) (T), remanent magnetization (T), and coercive force (kOe = (10 3 / 4π) kA / m) during nitriding. In this test, each particle constituting the alloy powder was treated as a sphere, and the demagnetizing factor Nf was 1/3 (0.33).

また、母材の第1相の体積比率V1に対する反磁界係数Nfとの比:Nf/V1と印加した磁場との関係を図2に示す。図2では、試料No.3-1〜3-3,4-1〜4-6を実施例、試料No.301〜304,401〜404を比較例として示す。   FIG. 2 shows the relationship between the ratio of the demagnetizing factor Nf to the volume ratio V1 of the first phase of the base material: Nf / V1 and the applied magnetic field. In FIG. 2, sample Nos. 3-1 to 3-3 and 4-1 to 4-6 are shown as examples, and sample Nos. 301 to 304 and 401 to 404 are shown as comparative examples.

Figure 2012246174
Figure 2012246174

Figure 2012246174
Figure 2012246174

表3,表4に示すように、Fe-Al-Ni合金からなり、相分離された母材を用いた場合も、窒化処理時、磁場を印加することで、保磁力が高くなる傾向にあり、印加する磁場の大きさによって、保磁力の大きさが異なることが分かる。また、図2に示すように、反磁界係数Nfを大きくする場合、印加磁場も大きくすることで、窒化鉄材の保磁力が高められることが分かる。但し、この形態では、反磁界は、第1相の含有量(体積比率)に影響を受ける。そこで、第1相の体積比率V1に対する反磁界係数Nfとの比:Nf/V1を変数とすると、Nf/V1と印加磁場Hmとは、線形の関係にあると言え、試験例1と同様に、図2に示す試料を利用して、保磁力が大きい○印の試料と保磁力が小さい●印の試料とを区別する一次式を求めると、Hm=(7/3)+2×(Nf/V1)が導き出せる。この式から、(Nf/V1)=0.33/0.5≒0.66のとき、印加する磁場はH≒3.65以上、(Nf/V1)=0.33/0.72≒0.46のとき、印加する磁場はH≒3.25以上が好ましいと言え、Hm=(7/3)+2×(Nf/V1)以上の磁場を印加した試料は、保磁力が高くなっている。   As shown in Tables 3 and 4, even when using a phase-separated base material made of Fe-Al-Ni alloy, the coercive force tends to increase by applying a magnetic field during nitriding. It can be seen that the magnitude of the coercive force differs depending on the magnitude of the applied magnetic field. Further, as shown in FIG. 2, when the demagnetizing factor Nf is increased, it is understood that the coercive force of the iron nitride material can be increased by increasing the applied magnetic field. However, in this embodiment, the demagnetizing field is affected by the content (volume ratio) of the first phase. Therefore, if the ratio of the demagnetizing factor Nf to the volume ratio V1 of the first phase: Nf / V1 is a variable, it can be said that Nf / V1 and the applied magnetic field Hm are in a linear relationship, as in Test Example 1. Using the sample shown in FIG. 2, a linear equation for distinguishing a sample with a large coercive mark and a sample with a small coercive force is obtained as follows: Hm = (7/3) + 2 × (Nf / V1) can be derived. From this equation, when (Nf / V1) = 0.33 / 0.5≈0.66, the applied magnetic field is H≈3.65 or more, and when (Nf / V1) = 0.33 / 0.72≈0.46, the applied magnetic field is H≈3.25 or more. It can be said that a sample to which a magnetic field of Hm = (7/3) + 2 × (Nf / V1) or more is applied has a high coercive force.

Hm=(7/3)+2×(Nf/V1)以上の磁場を印加した試料の保磁力が高くなった理由は、窒化処理により、母材中の第1相のFeからα”Fe16N2相が生成され、α”Fe16N2相の含有量が高い磁性体相を具える窒化鉄材が形成されたため、と考えられる。実際、例えば、試料No.3-2,4-3の窒化鉄材について、断面をとり、TEM分析及びX線回折を行った結果、α”Fe16N2相が存在しており、磁性体相中のα”Fe16N2相の割合は、磁性体相を100体積%とするとき、試料No.3-2:84体積%、試料No.4-3:82体積%(いずれも80体積%以上)であった。一方、磁場を印加しなかった試料No.301,401の窒化鉄材を同様に調べたところ、磁性体相中にα”Fe16N2相が少なく(31体積%以下)、Fe4NやFe3Nなどの化合物が多かった。その他の試料も同様であった。 The reason why the coercive force of the sample to which a magnetic field of Hm = (7/3) + 2 × (Nf / V1) or higher was applied was increased from the first phase Fe in the base material to α ”Fe 16 N by nitriding treatment. This is probably because two phases were formed and an iron nitride material having a magnetic phase with a high content of α ″ Fe 16 N 2 phase was formed. Actually, for example, the iron nitride material of sample Nos. 3-2 and 4-3 is cross-sectioned and subjected to TEM analysis and X-ray diffraction. As a result, α ″ Fe 16 N 2 phase is present, and the magnetic phase The ratio of α ”Fe 16 N 2 phase in the sample is as follows: Sample No. 3-2: 84% by volume, Sample No. 4-3: 82% by volume (all 80% when the magnetic phase is 100% by volume) % Or more). On the other hand, when the iron nitride material of sample Nos. 301 and 401 to which no magnetic field was applied was examined in the same manner, the α′Fe 16 N 2 phase was small in the magnetic phase (31 vol% or less), and Fe 4 N or Fe 3 N There were many compounds such as etc. The other samples were also the same.

上記試験から、Feを含有する第1相(体積比率V1)と、0.2T以下の材質からなる第2相との混合物からなる母材を用意し、当該母材の形状から規定される反磁界係数Nf及び体積比率V1により求められる値:Hm=(7/3)+2×(Nf/V1)以上の強磁場を印加した状態で窒化処理を施すことで、磁気特性に優れる窒化鉄材が得られることが分かる。また、この窒化鉄材は、磁性体相を有し、磁性体相中のα”Fe16N2相の含有量が多いことが分かる。 From the above test, prepare a base material composed of a mixture of the first phase containing Fe (volume ratio V1) and the second phase composed of a material of 0.2 T or less, and the demagnetizing field defined by the shape of the base material Value obtained by coefficient Nf and volume ratio V1: By applying nitriding with a strong magnetic field of Hm = (7/3) + 2 x (Nf / V1) or higher, an iron nitride material with excellent magnetic properties can be obtained. I understand that. Moreover, iron this nitride has a magnetic phase, it can be seen high content of the magnetic phase of the α "Fe 16 N 2 phase.

更に、上記試験から、磁気特性により優れる窒化鉄材を得るためには、窒化処理時の加熱温度:150℃以上400℃以下、第1相の最小幅の平均:10nm以上100nm以下が好ましいと言える。また、この試験では、母材にCoを実質的に含有しない合金を利用したが、α”Fe16N2相を生成することで、磁気特性に優れる窒化鉄材が得られる上に、Coの使用量を低減できると言える。 Furthermore, from the above test, it can be said that in order to obtain an iron nitride material with superior magnetic properties, it is preferable that the heating temperature during nitriding: 150 ° C. or more and 400 ° C. or less and the average of the first phase minimum width: 10 nm or more and 100 nm or less. In this test, an alloy that does not substantially contain Co was used as the base material. However, by producing an α ”Fe 16 N 2 phase, an iron nitride material having excellent magnetic properties was obtained, and the use of Co was used. It can be said that the amount can be reduced.

[試験例3:複数磁性相形態]
Feを含有する第1磁性相と、0.4T以上の磁性材料からなる第2磁性相との混合物を母材とし、適宜磁場を印加しながら窒化処理を行って、窒化鉄材を作製した。この試験では、母材として、Nd,Bの含有量が異なる種々の組成のFe-x原子%Nd-y原子%B合金を用意した。
[Test Example 3: Multiple magnetic phase morphology]
A mixture of a first magnetic phase containing Fe and a second magnetic phase composed of a magnetic material of 0.4 T or more was used as a base material, and nitriding was performed while applying a magnetic field as appropriate, thereby producing an iron nitride material. In this test, Fe-x atomic% Nd-y atomic% B alloys having various compositions with different Nd and B contents were prepared as base materials.

(母材の準備)
Nd,Bが所望の含有量となるようにx,yを選択し、メルトスパン法により、Fe-x原子%Nd-y原子%B合金からなる素材合金を作製した。この素材合金に、Ar雰囲気(Ar気流中)で外部から2Tの磁場を印加した状態で、470℃×0.1時間保持して結晶化処理を施した。この処理を施した素材をボールミルで粉砕して、種々の平均粒径の球状の粉末を得た。平均粒径は、市販の粒度分布測定装置で測定した。この工程により、主としてFeから構成される第1磁性相と、Fe-Nd-B成分を含む第2磁性相とに相分離された母材(合金粉末)を得る。
(Preparation of base material)
A material alloy made of an Fe-x atomic% Nd-y atomic% B alloy was prepared by a melt span method by selecting x and y so that Nd and B had a desired content. This material alloy was crystallized by holding it at 470 ° C. for 0.1 hour in a state where a 2 T magnetic field was applied from the outside in an Ar atmosphere (in an Ar stream). The material subjected to this treatment was pulverized by a ball mill to obtain spherical powders having various average particle diameters. The average particle size was measured with a commercially available particle size distribution measuring apparatus. Through this step, a base material (alloy powder) phase-separated into a first magnetic phase mainly composed of Fe and a second magnetic phase containing an Fe—Nd—B component is obtained.

得られた母材において、上記分解処理時の磁場の印加方向と垂直方向に断面をとり、イオンミリングにより薄片化した後、透過型電子顕微鏡:TEM(50000倍程度)により観察したところ、粉末を構成する各粒子内には、第1磁性相に第2磁性相が接して存在していることが確認できた。上記観察像を用いて、視野内に存在する、第2磁性相に挟まれた第1磁性相の最小距離を求め、その平均を求めた。その結果を表5に示す。また、得られた母材の断面をとり、この断面のX線回折結果とTEM観察時の電子線回折のスポット解析とから上記各相の組成を同定したところ、実質的にFeから構成された相(第1磁性相)と、第1磁性相とは異なる磁性材料からなり、第1磁性相に隣接して存在する相(第2磁性相)とが確認でき、第2磁性相は、Fe-Nd-Bを含有していることが確認された。上記X線回折結果を用いて、粉末を構成する各粒子に対する第1磁性相の体積比率を調べ、上記X線回折結果とスポット解析との結果を用いて、第2磁性相に対するFe-Nd-B成分の含有量(原子%)を調べた。その結果を表5に示す。なお、Fe-Nd-B成分の飽和磁化は、1.4T〜1.5Tである(0.4T以上)。   In the obtained base material, the cross section in the direction perpendicular to the application direction of the magnetic field at the time of the decomposition treatment was taken, and after thinning by ion milling, observed with a transmission electron microscope: TEM (about 50000 times), the powder was It was confirmed that the second magnetic phase was present in contact with the first magnetic phase in each constituting particle. Using the observed image, the minimum distance of the first magnetic phase existing in the visual field and sandwiched between the second magnetic phases was obtained, and the average was obtained. The results are shown in Table 5. Moreover, when the cross section of the obtained base material was taken and the composition of each said phase was identified from the X-ray diffraction result of this cross section and the spot analysis of the electron beam diffraction at the time of TEM observation, it was comprised substantially from Fe Phase (first magnetic phase) and a magnetic material different from the first magnetic phase, and a phase adjacent to the first magnetic phase (second magnetic phase) can be confirmed, the second magnetic phase is Fe It was confirmed to contain -Nd-B. Using the X-ray diffraction results, the volume ratio of the first magnetic phase to each particle constituting the powder was examined, and using the results of the X-ray diffraction results and spot analysis, Fe-Nd- The content of B component (atomic%) was examined. The results are shown in Table 5. Note that the saturation magnetization of the Fe—Nd—B component is 1.4T to 1.5T (0.4T or more).

(成形体の作製)
得られた各合金粉末を油圧プレスにより圧縮成形し(成形圧力:1GPa)、粉末成形体(直径φ10mm×高さ10mm、相対密度83%)を得た。相対密度(粉末成形体の実際の密度/粉末成形体の真密度)は、市販の密度測定装置を利用して実際の密度を測定し、真密度は、ピクノメータを用いて測定した。
(Production of molded body)
Each obtained alloy powder was compression-molded by a hydraulic press (molding pressure: 1 GPa) to obtain a powder compact (diameter φ10 mm × height 10 mm, relative density 83%). The relative density (actual density of the powder compact / true density of the powder compact) was measured using a commercially available density measuring device, and the true density was measured using a pycnometer.

(窒化処理)
作製した粉末成形体に窒化処理を施した。窒化処理は、純度:99.999体積%の窒素気流による窒素雰囲気(酸素濃度:100体積ppm以下)とし、0T〜5Tの範囲から選択した磁場を印加すると共に、100℃〜500℃の範囲から選択した加熱温度を3時間保持して行った。磁場の印加には、高温超電導磁石を用いた。
(Nitriding treatment)
The produced powder compact was subjected to nitriding treatment. The nitriding treatment was performed in a nitrogen atmosphere (oxygen concentration: 100 volume ppm or less) with a nitrogen stream of purity: 99.999 vol%, and a magnetic field selected from the range of 0T to 5T was applied and selected from the range of 100 ° C to 500 ° C. The heating temperature was maintained for 3 hours. A high temperature superconducting magnet was used to apply the magnetic field.

上記窒化処理後、振動試料型磁力計(VSM)を用いて、最大磁界2T(≒1590kA/m)として、得られた窒化鉄材の残留磁化(T)及び保磁力(kOe)を測定した。窒化処理時の加熱温度(℃)、印加した磁場(磁界)(T)、残留磁化(T)及び保磁力(kOe=(103/4π)kA/m)を表5に示す。この試験では、合金粉末を構成する各粒子を球体として扱い、反磁界係数Nfは、補正して、0.28とした。 After the nitriding treatment, the residual magnetization (T) and coercive force (kOe) of the obtained iron nitride material were measured using a vibrating sample magnetometer (VSM) with a maximum magnetic field of 2T (≈1590 kA / m). Table 5 shows the heating temperature (° C.), the applied magnetic field (magnetic field) (T), the remanent magnetization (T), and the coercive force (kOe = (10 3 / 4π) kA / m) during nitriding. In this test, each particle constituting the alloy powder was treated as a sphere, and the demagnetizing factor Nf was corrected to 0.28.

また、母材の反磁界係数Nfと印加した磁場との関係を図3に示す。図3では、試料No.5-1〜5-3を実施例、試料No.501〜503を比較例として示す。   FIG. 3 shows the relationship between the demagnetizing factor Nf of the base material and the applied magnetic field. In FIG. 3, sample Nos. 5-1 to 5-3 are shown as examples, and sample Nos. 501 to 503 are shown as comparative examples.

Figure 2012246174
Figure 2012246174

表5に示すように、Fe-Nd-B合金からなり、相分離された母材を用いた場合も、窒化処理時、磁場を印加することで、保磁力が高くなる傾向にあり、印加する磁場の大きさによって、保磁力の大きさが異なることが分かる。また、図3に示すように反磁界係数Nfを大きくする場合、印加磁場も大きくすることで、窒化鉄材の保磁力が高められることが分かる。即ち、この形態も、反磁界係数Nfと印加磁場Hとが線形の関係にあると言える。ここでは、試験例1で求めたH=(7/3)+2×Nfを当てはめたところ、保磁力が大きい○印の試料と保磁力が小さい●印の試料とは、H=(7/3)+2×Nfにより区別できることが分かる。この式から、Nf=0.28のとき、印加する磁場はH≒2.89以上が好ましいと言え、上記特定の磁場を印加した試料は、保磁力が高くなっている。   As shown in Table 5, even when using a phase-separated base material made of an Fe-Nd-B alloy, the coercive force tends to be increased by applying a magnetic field during nitriding, and applied. It can be seen that the magnitude of the coercive force differs depending on the magnitude of the magnetic field. Further, as shown in FIG. 3, when the demagnetizing factor Nf is increased, the coercive force of the iron nitride material can be increased by increasing the applied magnetic field. That is, in this embodiment, it can be said that the demagnetizing factor Nf and the applied magnetic field H have a linear relationship. Here, when H = (7/3) + 2 × Nf obtained in Test Example 1 was applied, a sample with a large coercive force and a sample with a small coercive force are indicated by H = (7/3 ) + 2 × Nf. From this equation, when Nf = 0.28, it can be said that the applied magnetic field is preferably H≈2.89 or more, and the sample to which the specific magnetic field is applied has a high coercive force.

H=(7/3)+2×Nf以上の磁場を印加した試料の保磁力が高くなった理由は、窒化処理により、母材中の第1磁性相のFeからα”Fe16N2相が生成され、α”Fe16N2相の含有量が高い磁性体相(第1磁性体相)を具える窒化鉄材が形成されたため、と考えられる。実際、例えば、試料No.5-1の窒化鉄材について、断面をとり、TEM分析及びX線回折を行った結果、α”Fe16N2相を含有する第1磁性体相と、Fe-Nd-Bを主成分とする第2磁性体相とが存在しており、第1磁性体相中のα”Fe16N2相の割合は、第1磁性体相を100体積%とするとき、試料No.5-1:83体積%(80体積%以上)であった。従って、試料No.5-1の窒化鉄材は、α”Fe16N2相の存在による磁気特性の向上効果が得られたと言える。一方、磁場を印加しなかった試料No.501の窒化鉄材を同様に調べたところ、α”Fe16N2相が少なく(第1磁性体相中に28体積%)、Fe4NやFe3Nなどの化合物が多かった。従って、試料No.501の窒化鉄材は、α”Fe16N2相の存在による磁気特性の向上効果が得られ難かったと考えられる。その他の試料も同様であった。 The reason why the coercive force of the sample applied with a magnetic field of H = (7/3) + 2 x Nf or higher was increased by the nitriding process from the first magnetic phase Fe in the base material to the α ”Fe 16 N 2 phase. This is probably because an iron nitride material was formed that had a magnetic phase (first magnetic phase) with a high content of α ″ Fe 16 N 2 phase. Actually, for example, as a result of taking a cross section of the iron nitride material of sample No. 5-1 and performing TEM analysis and X-ray diffraction, the first magnetic body phase containing α ″ Fe 16 N 2 phase and Fe—Nd -B is a second magnetic phase mainly composed of B, and the ratio of the α ”Fe 16 N 2 phase in the first magnetic phase is 100% by volume of the first magnetic phase. Sample No. 5-1: 83% by volume (80% by volume or more). Therefore, it can be said that the iron nitride material of sample No. 5-1 has an effect of improving the magnetic properties due to the presence of the α ”Fe 16 N 2 phase. On the other hand, the iron nitride material of sample No. 501 to which no magnetic field was applied was obtained. A similar investigation revealed that the α ″ Fe 16 N 2 phase was small (28% by volume in the first magnetic phase) and there were many compounds such as Fe 4 N and Fe 3 N. Therefore, it is considered that the iron nitride material of sample No. 501 was difficult to obtain the effect of improving the magnetic properties due to the presence of the α ″ Fe 16 N 2 phase. The same applies to the other samples.

上記試験から、Feを含有する第1磁性相と、0.4T以上の磁性材料からなる第2磁性相とを含有する母材を用意し、当該母材の形状から規定される反磁界係数Nfにより求められる値:H=(7/3)+2×Nf以上の強磁場を印加した状態で窒化処理を施すことで、磁気特性に優れる窒化鉄材が得られることが分かる。また、この窒化鉄材は、α”Fe16N2相を多く含有する第1磁性体相と、Fe-Nd-Bという磁気特性に優れる磁性材料からなる第2磁性体相との双方を具えることで、磁気特性に非常に優れることが分かる。 From the above test, a base material containing a first magnetic phase containing Fe and a second magnetic phase composed of a magnetic material of 0.4 T or more is prepared, and the demagnetizing factor Nf defined by the shape of the base material is used. Required value: It can be seen that an iron nitride material having excellent magnetic properties can be obtained by performing nitriding in a state where a strong magnetic field of H = (7/3) + 2 × Nf or more is applied. In addition, this iron nitride material includes both a first magnetic phase containing a large amount of α ″ Fe 16 N 2 phase and a second magnetic phase made of a magnetic material having excellent magnetic properties such as Fe—Nd—B. Thus, it can be seen that the magnetic properties are very excellent.

更に、上記試験から、磁気特性により優れる窒化鉄材を得るためには、窒化処理時の加熱温度:150℃以上400℃以下、第1磁性相の最小距離の平均:10nm以上50nm以下が好ましいと言える。   Furthermore, from the above test, in order to obtain an iron nitride material with better magnetic properties, it can be said that the heating temperature during nitriding treatment is preferably 150 ° C. or more and 400 ° C. or less, and the average of the minimum distances of the first magnetic phase is preferably 10 nm or more and 50 nm or less. .

なお、本発明は、上述した実施形態の形態に限定されるものではなく、本発明の要旨を逸脱することなく、適宜変更することが可能である。例えば、母材・第2相・第2磁性相の組成、窒化処理時の雰囲気や保持時間などを適宜変更することができる。   In addition, this invention is not limited to the form of embodiment mentioned above, It is possible to change suitably, without deviating from the summary of this invention. For example, the composition of the base material, the second phase, and the second magnetic phase, the atmosphere during nitriding, the holding time, and the like can be changed as appropriate.

本発明窒化鉄材は、永久磁石、例えば、各種のモータ、特に、ハイブリッド自動車(HEV)やハードディスクドライブ(HDD)などに具備される高速モータに用いられる永久磁石の素材に好適に利用することができる。その他、本発明窒化鉄材は、磁性体相の表皮深さが磁性体相の幅に近くなる周波数領域(テラヘルツ領域)までの電磁波干渉・吸収材にも使用できると期待される。本発明窒化鉄材の製造方法は、α”Fe16N2相の含有量が多い上記本発明窒化鉄材の製造に好適に利用することができる。 The iron nitride material of the present invention can be suitably used as a permanent magnet, for example, a material of a permanent magnet used in various motors, in particular, a high-speed motor provided in a hybrid vehicle (HEV) or a hard disk drive (HDD). . In addition, the iron nitride material of the present invention is expected to be usable for electromagnetic wave interference / absorption materials up to a frequency region (terahertz region) in which the skin depth of the magnetic phase is close to the width of the magnetic phase. The method for producing an iron nitride material of the present invention can be suitably used for producing the iron nitride material of the present invention having a large content of α ″ Fe 16 N 2 phase.

Claims (19)

Feを含有する母材に磁場を印加した状態で、かつ窒素元素含有ガス雰囲気下で加熱して、α”Fe16N2相を生成する工程を具え、
前記印加する磁場Hは、前記母材の形状から規定される反磁界係数をNf(Nf=0〜1)とするとき、H=(7/3)+2×Nf以上の強磁場とすることを特徴とする窒化鉄材の製造方法。
In a state in which a magnetic field is applied to a base material containing Fe and heated in a nitrogen element-containing gas atmosphere, a process of generating an α ″ Fe 16 N 2 phase is provided,
The magnetic field H to be applied is a strong magnetic field of H = (7/3) + 2 × Nf or more when the demagnetizing factor defined by the shape of the base material is Nf (Nf = 0 to 1). A method for producing a featured iron nitride material.
Feを含有する第1相と、前記第1相に接して存在し、飽和磁化が0.2T以下の材質からなる第2相との混合物からなる母材に磁場を印加した状態で、かつ窒素元素含有ガス雰囲気下で加熱して、前記第1相中にα”Fe16N2相を生成する工程を具え、
前記印加する磁場Hmは、前記母材の形状から規定される反磁界係数をNf(Nf=0〜1)、前記母材に対する第1相の体積比率をV1(V1=0〜1)とするとき、Hm=(7/3)+2×(Nf/V1)以上の強磁場とすることを特徴とする窒化鉄材の製造方法。
A nitrogen element in a state in which a magnetic field is applied to a base material composed of a mixture of a first phase containing Fe and the second phase that is in contact with the first phase and has a saturation magnetization of 0.2 T or less. Heating in an atmosphere containing gas to produce an α ″ Fe 16 N 2 phase in the first phase,
The applied magnetic field Hm has a demagnetizing factor defined by the shape of the base material as Nf (Nf = 0 to 1), and a volume ratio of the first phase to the base material as V1 (V1 = 0 to 1). A method for producing an iron nitride material, characterized in that a strong magnetic field of Hm = (7/3) + 2 × (Nf / V1) or more is obtained.
Feを含有する第1磁性相と、前記第1磁性相に接して存在し、飽和磁化が0.4T以上の磁性材料からなる第2磁性相との混合物からなる母材に磁場を印加した状態で、かつ窒素元素含有ガス雰囲気下で加熱して、前記第1磁性相中にα”Fe16N2相を生成する工程を具え、
前記印加する磁場Hは、前記母材の形状から規定される反磁界係数をNf(Nf=0〜1)とするとき、H=(7/3)+2×Nf以上の強磁場とすることを特徴とする窒化鉄材の製造方法。
In a state where a magnetic field is applied to a base material made of a mixture of a first magnetic phase containing Fe and the second magnetic phase that exists in contact with the first magnetic phase and has a saturation magnetization of 0.4 T or more. And heating in a nitrogen element-containing gas atmosphere to produce an α ″ Fe 16 N 2 phase in the first magnetic phase,
The magnetic field H to be applied is a strong magnetic field of H = (7/3) + 2 × Nf or more when the demagnetizing factor defined by the shape of the base material is Nf (Nf = 0 to 1). A method for producing a featured iron nitride material.
前記雰囲気は、窒素(N2)雰囲気、アンモニア(NH3)雰囲気、及び窒素元素を含むガスと希ガス又は水素(H2)ガスとの混合ガス雰囲気から選択される一種であることを特徴とする請求項1〜3のいずれか1項に記載の窒化鉄材の製造方法。 The atmosphere is a kind selected from a nitrogen (N 2 ) atmosphere, an ammonia (NH 3 ) atmosphere, and a mixed gas atmosphere of a gas containing a nitrogen element and a rare gas or hydrogen (H 2 ) gas. The method for producing an iron nitride material according to any one of claims 1 to 3. 加熱温度は、150℃以上400℃以下とすることを特徴とする請求項1〜4のいずれか1項に記載の窒化鉄材の製造方法。   The method for producing an iron nitride material according to any one of claims 1 to 4, wherein the heating temperature is 150 ° C or higher and 400 ° C or lower. 前記雰囲気は、酸素の含有量が体積割合で100ppm以下であることを特徴とする請求項1〜5のいずれか1項に記載の窒化鉄材の製造方法。   6. The method for producing an iron nitride material according to claim 1, wherein the atmosphere has an oxygen content of 100 ppm or less by volume. 前記母材は、平均粒径10nm以上500nm以下の粉末であることを特徴とする請求項1に記載の窒化鉄材の製造方法。   2. The method for producing an iron nitride material according to claim 1, wherein the base material is a powder having an average particle size of 10 nm to 500 nm. 前記粉末を集合させた状態で磁場を印加することを特徴とする請求項7に記載の窒化鉄材の製造方法。   8. The method for producing an iron nitride material according to claim 7, wherein a magnetic field is applied in a state where the powder is aggregated. 前記母材は、平均厚さが10nm以上500nm以下の薄膜であり、
前記薄膜表面に対して垂直方向に磁場を印加することを特徴とする請求項1に記載の窒化鉄材の製造方法。
The base material is a thin film having an average thickness of 10 nm to 500 nm,
2. The method for producing an iron nitride material according to claim 1, wherein a magnetic field is applied in a direction perpendicular to the surface of the thin film.
前記薄膜と、前記薄膜の構成材料とは異なる無機材料からなる中間膜とを交互に多層に積層させた状態で磁場を印加することを特徴とする請求項9に記載の窒化鉄材の製造方法。   10. The method of manufacturing an iron nitride material according to claim 9, wherein a magnetic field is applied in a state where the thin films and intermediate films made of an inorganic material different from the constituent materials of the thin films are alternately laminated in multiple layers. 前記第1相は、棒状体であり、各棒状体の最小幅の平均値が10nm以上100nm以下であることを特徴とする請求項2に記載の窒化鉄材の製造方法。   3. The method for producing an iron nitride material according to claim 2, wherein the first phase is a rod-shaped body, and an average value of minimum widths of the respective rod-shaped bodies is 10 nm or more and 100 nm or less. 前記母材は、平均粒径10μm以上1000μm以下の粉末であることを特徴とする請求項2又は11に記載の窒化鉄材の製造方法。   12. The method for producing an iron nitride material according to claim 2, wherein the base material is a powder having an average particle size of 10 μm or more and 1000 μm or less. 前記第2相は、Al,Ni,Co,Cr及びSiから選択される2種以上の元素を合計で70原子%以上含有することを特徴とする請求項2,11,12のいずれか1項に記載の窒化鉄材の製造方法。   The second phase contains two or more elements selected from Al, Ni, Co, Cr, and Si in total of 70 atomic% or more. The manufacturing method of the iron nitride material as described in 2. 前記粉末を集合させた状態で磁場を印加することを特徴とする請求項12に記載の窒化鉄材の製造方法。   13. The method for producing an iron nitride material according to claim 12, wherein a magnetic field is applied in a state where the powder is aggregated. 隣り合う前記第2磁性相に挟まれた前記第1磁性相の最小距離の平均が10nm以上50nm以下であることを特徴とする請求項3に記載の窒化鉄材の製造方法。   4. The method for producing an iron nitride material according to claim 3, wherein the average of the minimum distances of the first magnetic phases sandwiched between the adjacent second magnetic phases is 10 nm or more and 50 nm or less. 前記第2磁性相は、RE=Y,La,Ce,Pr,Nd,Dy,Tb及びSmから選択される少なくとも1種、X=B,C及びNから選択される1種、ME=Co,Cu,Mn及びNiから選択される少なくとも1種とするとき、RE-Fe-X化合物、又はRE-Fe-ME-X化合物を80体積%以上含有することを特徴とする請求項3又は15に記載の窒化鉄材の製造方法。   The second magnetic phase is at least one selected from RE = Y, La, Ce, Pr, Nd, Dy, Tb and Sm, one selected from X = B, C and N, ME = Co, 16. When containing at least one selected from Cu, Mn, and Ni, the RE-Fe-X compound or the RE-Fe-ME-X compound is contained in an amount of 80% by volume or more. The manufacturing method of the iron nitride material of description. 前記第2磁性相は、MA=Ca,Sr及びBaから選択される少なくとも1種とするとき、MA-Fe-O化合物、又はLa-MA-Fe-Co-O化合物を80体積%以上含有することを特徴とする請求項3又は15に記載の窒化鉄材の製造方法。   When the second magnetic phase is at least one selected from MA = Ca, Sr and Ba, it contains at least 80% by volume of a MA-Fe-O compound or a La-MA-Fe-Co-O compound. 16. The method for producing an iron nitride material according to claim 3 or 15, wherein: 前記第2磁性相は、Pt-Fe合金、Pt-Co合金、及びPt-(Fe,Co)化合物から選択される1種を合計で80体積%以上含有することを特徴とする請求項3又は15に記載の窒化鉄材の製造方法。   The second magnetic phase contains at least 80% by volume in total of one selected from a Pt—Fe alloy, a Pt—Co alloy, and a Pt— (Fe, Co) compound. 15. The method for producing an iron nitride material according to 15. 請求項1〜18のいずれか1項に記載の窒化鉄材の製造方法により得られ、鉄窒化物を主体とする磁性体相を有しており、
前記磁性体相中にα”Fe16N2相を80体積%以上含有することを特徴とする窒化鉄材。
It is obtained by the method for producing an iron nitride material according to any one of claims 1 to 18, and has a magnetic phase mainly composed of iron nitride,
An iron nitride material characterized in that the magnetic phase contains 80% by volume or more of α ″ Fe 16 N 2 phase.
JP2011118594A 2011-05-27 2011-05-27 Method for manufacturing iron nitride material, and iron nitride material Withdrawn JP2012246174A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011118594A JP2012246174A (en) 2011-05-27 2011-05-27 Method for manufacturing iron nitride material, and iron nitride material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011118594A JP2012246174A (en) 2011-05-27 2011-05-27 Method for manufacturing iron nitride material, and iron nitride material

Publications (1)

Publication Number Publication Date
JP2012246174A true JP2012246174A (en) 2012-12-13

Family

ID=47467016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011118594A Withdrawn JP2012246174A (en) 2011-05-27 2011-05-27 Method for manufacturing iron nitride material, and iron nitride material

Country Status (1)

Country Link
JP (1) JP2012246174A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014205085A (en) * 2013-04-10 2014-10-30 武次 廣田 Method for producing functional carrier, functional carrier, method for treating carbon dioxide and reaction vessel
CN105074836A (en) * 2013-02-07 2015-11-18 明尼苏达大学董事会 Iron nitride permanent magnet and technique for forming iron nitride permanent magnet
WO2015199096A1 (en) * 2014-06-24 2015-12-30 日産自動車株式会社 Method for manufacturing rare earth magnetic mold
JP2017530547A (en) * 2014-08-08 2017-10-12 リージェンツ オブ ザ ユニバーシティ オブ ミネソタ Multi-layer iron nitride hard magnetic material
JP2018083732A (en) * 2016-11-22 2018-05-31 住友電気工業株式会社 Iron nitride grain and method for producing iron nitride grain
US9994949B2 (en) 2014-06-30 2018-06-12 Regents Of The University Of Minnesota Applied magnetic field synthesis and processing of iron nitride magnetic materials
US10002694B2 (en) 2014-08-08 2018-06-19 Regents Of The University Of Minnesota Inductor including alpha″-Fe16Z2 or alpha″-Fe16(NxZ1-x)2, where Z includes at least one of C, B, or O
US10068689B2 (en) 2011-08-17 2018-09-04 Regents Of The University Of Minnesota Iron nitride permanent magnet and technique for forming iron nitride permanent magnet
US10072356B2 (en) 2014-08-08 2018-09-11 Regents Of The University Of Minnesota Magnetic material including α″-Fe16(NxZ1-x)2 or a mixture of α″-Fe16Z2 and α″-Fe16N2, where Z includes at least one of C, B, or O
US10358716B2 (en) 2014-08-08 2019-07-23 Regents Of The University Of Minnesota Forming iron nitride hard magnetic materials using chemical vapor deposition or liquid phase epitaxy
US10504640B2 (en) 2013-06-27 2019-12-10 Regents Of The University Of Minnesota Iron nitride materials and magnets including iron nitride materials
US11195644B2 (en) 2014-03-28 2021-12-07 Regents Of The University Of Minnesota Iron nitride magnetic material including coated nanoparticles
US12018386B2 (en) 2019-10-11 2024-06-25 Regents Of The University Of Minnesota Magnetic material including α″-Fe16(NxZ1-x)2 or a mixture of α″-Fe16Z2 and α″-Fe16N2, where Z includes at least one of C, B, or O

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11742117B2 (en) 2011-08-17 2023-08-29 Regents Of The University Of Minnesota Iron nitride permanent magnet and technique for forming iron nitride permanent magnet
US10068689B2 (en) 2011-08-17 2018-09-04 Regents Of The University Of Minnesota Iron nitride permanent magnet and technique for forming iron nitride permanent magnet
CN107919201A (en) * 2013-02-07 2018-04-17 明尼苏达大学董事会 Nitrided iron permanent magnet and the technology for forming nitrided iron permanent magnet
JP2016513365A (en) * 2013-02-07 2016-05-12 リージェンツ オブ ザ ユニバーシティ オブ ミネソタ Techniques for forming iron nitride permanent magnets and iron nitride permanent magnets
JP2017126755A (en) * 2013-02-07 2017-07-20 リージェンツ オブ ザ ユニバーシティ オブ ミネソタ Iron nitride permanent magnet and technique for forming iron nitride permanent magnet
US9715957B2 (en) 2013-02-07 2017-07-25 Regents Of The University Of Minnesota Iron nitride permanent magnet and technique for forming iron nitride permanent magnet
CN105074836B (en) * 2013-02-07 2018-01-05 明尼苏达大学董事会 Nitrided iron permanent magnet and the technology for forming nitrided iron permanent magnet
US11217371B2 (en) 2013-02-07 2022-01-04 Regents Of The University Of Minnesota Iron nitride permanent magnet and technique for forming iron nitride permanent magnet
US10692635B2 (en) 2013-02-07 2020-06-23 Regents Of The University Of Minnesota Iron nitride permanent magnet and technique for forming iron nitride permanent magnet
CN105074836A (en) * 2013-02-07 2015-11-18 明尼苏达大学董事会 Iron nitride permanent magnet and technique for forming iron nitride permanent magnet
JP2014205085A (en) * 2013-04-10 2014-10-30 武次 廣田 Method for producing functional carrier, functional carrier, method for treating carbon dioxide and reaction vessel
US10504640B2 (en) 2013-06-27 2019-12-10 Regents Of The University Of Minnesota Iron nitride materials and magnets including iron nitride materials
US11195644B2 (en) 2014-03-28 2021-12-07 Regents Of The University Of Minnesota Iron nitride magnetic material including coated nanoparticles
WO2015198396A1 (en) * 2014-06-24 2015-12-30 日産自動車株式会社 Method for manufacturing molded rare earth magnet
WO2015199096A1 (en) * 2014-06-24 2015-12-30 日産自動車株式会社 Method for manufacturing rare earth magnetic mold
US9994949B2 (en) 2014-06-30 2018-06-12 Regents Of The University Of Minnesota Applied magnetic field synthesis and processing of iron nitride magnetic materials
US10961615B2 (en) 2014-06-30 2021-03-30 Regents Of The University Of Minnesota Applied magnetic field synthesis and processing of iron nitride magnetic materials
US10358716B2 (en) 2014-08-08 2019-07-23 Regents Of The University Of Minnesota Forming iron nitride hard magnetic materials using chemical vapor deposition or liquid phase epitaxy
US10072356B2 (en) 2014-08-08 2018-09-11 Regents Of The University Of Minnesota Magnetic material including α″-Fe16(NxZ1-x)2 or a mixture of α″-Fe16Z2 and α″-Fe16N2, where Z includes at least one of C, B, or O
US10573439B2 (en) 2014-08-08 2020-02-25 Regents Of The University Of Minnesota Multilayer iron nitride hard magnetic materials
US10002694B2 (en) 2014-08-08 2018-06-19 Regents Of The University Of Minnesota Inductor including alpha″-Fe16Z2 or alpha″-Fe16(NxZ1-x)2, where Z includes at least one of C, B, or O
US11214862B2 (en) 2014-08-08 2022-01-04 Regents Of The University Of Minnesota Forming iron nitride hard magnetic materials using chemical vapor deposition or liquid phase epitaxy
EP3178099A4 (en) * 2014-08-08 2018-04-18 Regents of the University of Minnesota Multilayer iron nitride hard magnetic materials
JP2017530547A (en) * 2014-08-08 2017-10-12 リージェンツ オブ ザ ユニバーシティ オブ ミネソタ Multi-layer iron nitride hard magnetic material
JP2018083732A (en) * 2016-11-22 2018-05-31 住友電気工業株式会社 Iron nitride grain and method for producing iron nitride grain
US12018386B2 (en) 2019-10-11 2024-06-25 Regents Of The University Of Minnesota Magnetic material including α″-Fe16(NxZ1-x)2 or a mixture of α″-Fe16Z2 and α″-Fe16N2, where Z includes at least one of C, B, or O

Similar Documents

Publication Publication Date Title
JP2012246174A (en) Method for manufacturing iron nitride material, and iron nitride material
Wang Environment-friendly bulk Fe16N2 permanent magnet: Review and prospective
Cui et al. Current progress and future challenges in rare-earth-free permanent magnets
Li et al. Most frequently asked questions about the coercivity of Nd-Fe-B permanent magnets
US11996232B2 (en) Applied magnetic field synthesis and processing of iron nitride magnetic materials
Coey et al. Magnetic nitrides
JP5130270B2 (en) Magnetic material and motor using the same
US20180114614A1 (en) Rare Earth-Free Permanent Magnetic Material
Li et al. Prospect and status of iron-based rare-earth-free permanent magnetic materials
JP6085301B2 (en) Formation technology of iron nitride permanent magnet and iron nitride permanent magnet
US20130252004A1 (en) Rare earth-iron-nitrogen-based alloy material, method for producing rare earth-iron-nitrogen-based alloy material, rare earth-iron-based alloy material, and method for producing rare earth-iron-based alloy material
AU2016211830A1 (en) Preservation of strain in iron nitride magnet
TWI636143B (en) Soft magnetic alloy and magnetic parts
JP2017535062A (en) Rare earth-free permanent magnetic material based on Fe-Ni
US10734143B2 (en) R-T-B based sintered magnet
Veselova et al. Structure and magnetic properties of (Sm, Ho) 2Fe17Nx (x= 0; 2.4)
Rahimi et al. On the magnetic and structural properties of neodymium iron boron nanoparticles
JP2013055076A (en) Light rare earth magnet and magnetic device
Sellmyer et al. Handbook of advanced magnetic materials
Burkhanov et al. Structure and magnetic properties of Nd–Fe–B magnets prepared from DyH 2-containing powder mixtures
Shukla et al. Magnetic nanostructures: Synthesis, properties, and applications
Hirian et al. Effect of spark plasma sintering on the interphase exchange coupling in SmCo5+ 20% Fe hard/soft nanocomposites
Jiménez-Villacorta et al. Tailoring exchange coupling and phase separation in Fe-Co-Mn nanocomposites
Sun et al. Magnetic Properties and Microstructures of Sintered Sm 2 Co 17 Alloys With High Knee-Point Coercivity H k
Khudina et al. Structure and magnetic properties of melt-spun ribbons of Sm (Co, Fe, Cu, Zr) z with high cobalt content

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140805