JP2015142119A - Method for manufacturing rare earth magnet - Google Patents

Method for manufacturing rare earth magnet Download PDF

Info

Publication number
JP2015142119A
JP2015142119A JP2014016142A JP2014016142A JP2015142119A JP 2015142119 A JP2015142119 A JP 2015142119A JP 2014016142 A JP2014016142 A JP 2014016142A JP 2014016142 A JP2014016142 A JP 2014016142A JP 2015142119 A JP2015142119 A JP 2015142119A
Authority
JP
Japan
Prior art keywords
alloy powder
surface layer
powder
metal material
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014016142A
Other languages
Japanese (ja)
Inventor
基 永沢
Motoki Nagasawa
基 永沢
前田 徹
Toru Maeda
前田  徹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2014016142A priority Critical patent/JP2015142119A/en
Publication of JP2015142119A publication Critical patent/JP2015142119A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a rare earth magnet high in relative density and superior in magnetic property.SOLUTION: A method for manufacturing a rare earth magnet comprises: a preparation step for preparing Sm-Fe based alloy powder having a main phase of a Sm-Fe based compound including Sm and Fe; a coating step for coating surfaces of particles of the Sm-Fe based alloy powder with a non-magnetic metal material; a thermal treatment step for performing a thermal treatment on the Sm-Fe based alloy powder coated with the metal material to form a surface layer including a metal element of the metal material for a surface layer of each of particles of the powder; a nitration step for obtaining Sm-Fe-N based alloy powder having a main phase of a Sm-Fe-N based compound by performing a nitriding treatment on the Sm-Fe based alloy powder with the surface layer formed thereon in a magnetic field to nitride the Sm-Fe based compound of the main phase; and a molding step for molding the Sm-Fe-N based alloy powder in a compression manner in a magnetic field to obtain a Sm-Fe-N based magnet.

Description

本発明は、希土類磁石の製造方法に関する。特に、Sm−Fe−N系磁石であって、相対密度が高く、磁気特性に優れる希土類磁石の製造方法に関する。   The present invention relates to a method for producing a rare earth magnet. In particular, the present invention relates to a method for producing a rare earth magnet which is an Sm—Fe—N based magnet and has a high relative density and excellent magnetic properties.

モータや発電機などの用途に、希土類元素とFeとを含有する希土類−鉄系化合物を主相とする希土類−鉄系合金を用いた希土類磁石が広く使用されている。希土類磁石としては、Nd−Fe−B系化合物(例、NdFe14B)を主相とするNd−Fe−B系合金を用いたNd−Fe−B系磁石(ネオジム磁石)が代表的である。ネオジム磁石以外では、Sm−Fe系化合物(例、SmFe17)を主相とするSm−Fe系合金を原料とし、これを窒化したSm−Fe−N系化合物(例、SmFe17)を主相とするSm−Fe−N系合金を用いたSm−Fe−N系磁石(サマリウム鉄窒素磁石)が実用化されている。 For applications such as motors and generators, rare earth magnets using rare earth-iron alloys mainly containing a rare earth-iron compound containing rare earth elements and Fe are widely used. A typical rare earth magnet is an Nd—Fe—B based magnet (neodymium magnet) using an Nd—Fe—B based alloy having a Nd—Fe—B based compound (eg, Nd 2 Fe 14 B) as a main phase. It is. Except neodymium magnets, Sm-Fe-based compound (e.g., Sm 2 Fe 17) and Sm-Fe-based alloy as a main phase as a raw material, which Sm-Fe-N-based compound nitride (eg, Sm 2 Fe 17 Sm—Fe—N magnets (samarium iron nitrogen magnets) using Sm—Fe—N alloys having N 3 ) as the main phase have been put into practical use.

Sm−Fe−N系磁石は、Nd−Fe−B系磁石に次ぐ磁気特性を持っており、Nd−Fe−B系磁石よりも耐熱性に優れることから高温環境下での使用が可能である。しかし、Sm−Fe−N合金(Sm−Fe−N系化合物)は550℃を超える高温で分解して磁気特性が消失することから、Sm−Fe−N系合金の粉末を焼結することが困難である。そのため、一般に、Sm−Fe−N系磁石は、Sm−Fe−N系合金の粉末に樹脂や低融点金属などのバインダを混合し、これを圧縮成形して固化したボンド磁石として使用されている。   Sm-Fe-N magnets have magnetic properties next to Nd-Fe-B magnets, and have better heat resistance than Nd-Fe-B magnets, so they can be used in high-temperature environments. . However, since the Sm—Fe—N alloy (Sm—Fe—N compound) decomposes at a high temperature exceeding 550 ° C. and loses its magnetic properties, the Sm—Fe—N alloy powder can be sintered. Have difficulty. Therefore, in general, Sm-Fe-N-based magnets are used as bonded magnets in which Sm-Fe-N-based alloy powder is mixed with a binder such as a resin or a low-melting-point metal, and this is compression-molded and solidified. .

特許文献1には、以下に示すようなSm−Fe−N系磁石の製造方法が提案されている。まず、Sm−Fe合金(SmFe17)を窒化処理したSm−Fe−N合金の磁石粉末に、Zn,Sn,Pb,及びBiから選択された少なくとも1種の金属の酸化物粉末と、粒状のCaとを所定の割合で混合する。次に、この混合物を不活性ガス雰囲気中で300℃〜1200℃の温度で加熱した後、この反応生成物を水又は弱酸水溶液で処理することで、粒子表面が上記金属で被覆された磁石粉末を得る。そして、得られた磁石粉末を磁場中で圧縮成形した後、500℃×2時間の条件で焼結することで、Sm−Fe−N系磁石を得る。 Patent Document 1 proposes a method of manufacturing an Sm—Fe—N magnet as shown below. First, an Sm—Fe—N alloy magnet powder obtained by nitriding an Sm—Fe alloy (Sm 2 Fe 17 ), at least one metal oxide powder selected from Zn, Sn, Pb, and Bi, Granular Ca is mixed at a predetermined ratio. Next, after heating the mixture at a temperature of 300 ° C. to 1200 ° C. in an inert gas atmosphere, the reaction product is treated with water or a weak acid aqueous solution, so that the particle surface is coated with the metal powder. Get. And after compressing and molding the obtained magnet powder in a magnetic field, Sm-Fe-N type magnet is obtained by sintering on the conditions of 500 degreeC x 2 hours.

特開平5−326229号公報JP-A-5-326229

希土類磁石の磁気特性の更なる向上が望まれている。特に、高耐熱性と高磁力とを実現する観点から、磁石の性能指標である保磁力iHcと残留磁化Brとの向上が求められている。   Further improvement of the magnetic properties of rare earth magnets is desired. In particular, from the viewpoint of realizing high heat resistance and high magnetic force, improvements in coercive force iHc and residual magnetization Br, which are performance indicators of magnets, are required.

ボンド磁石は、バインダが必要な分だけ、硬磁性相であるSm−Fe−N系合金(Sm−Fe−N系化合物)の割合(体積比率)が低く、残留磁化といった磁気特性が低い。したがって、Sm−Fe−N系磁石において、Sm−Fe−N系合金の粉末を高い密度で固める技術の開発が望まれる。   The bond magnet has a low ratio (volume ratio) of the Sm—Fe—N alloy (Sm—Fe—N compound), which is a hard magnetic phase, as much as the binder is required, and has low magnetic properties such as residual magnetization. Therefore, it is desired to develop a technique for solidifying Sm—Fe—N alloy powder with high density in Sm—Fe—N magnets.

特許文献1に記載のSm−Fe−N系磁石の製造方法では、窒化処理したSm−Fe−N合金の粉末に上記金属の酸化物とCaとを混合して加熱した後、この反応生成物を水及び弱酸で処理して、粉末の粒子表面を上記金属で被覆する。上述したようにSm−Fe−N合金は高温で分解するため、特許文献1に記載の製造方法では、Sm−Fe−N合金の粉末を加熱する場合、加熱温度に制限がある。また、特許文献1に記載の製造方法は、酸化物を還元するためにCaを混合したり、合金粉末とCaを含む成分とを分離するために反応生成物を弱酸で処理したりする必要があるため、製造工程が煩雑で高コスト化を招く。   In the method for producing an Sm—Fe—N magnet described in Patent Document 1, the above metal oxide and Ca are mixed and heated in a nitrided Sm—Fe—N alloy powder, and then the reaction product is produced. Is treated with water and a weak acid to coat the particle surface of the powder with the metal. As described above, since the Sm—Fe—N alloy is decomposed at a high temperature, in the manufacturing method described in Patent Document 1, the heating temperature is limited when the powder of the Sm—Fe—N alloy is heated. Moreover, the manufacturing method described in Patent Document 1 needs to mix Ca in order to reduce the oxide, or to treat the reaction product with a weak acid in order to separate the alloy powder and the Ca-containing component. Therefore, the manufacturing process is complicated and the cost is increased.

本発明は、上記事情に鑑みてなされたものであり、本発明の目的の1つは、相対密度が高く、磁気特性に優れる希土類磁石の製造方法を提供することにある。   The present invention has been made in view of the above circumstances, and one of the objects of the present invention is to provide a method for producing a rare earth magnet having a high relative density and excellent magnetic properties.

本発明の希土類磁石の製造方法は、以下の準備工程と、被覆工程と、熱処理工程と、窒化工程と、成形工程と、を備える。
準備工程:SmとFeとを含有するSm−Fe系化合物を主相とするSm−Fe系合金の粉末を用意する工程。
被覆工程:前記Sm−Fe系合金粉末の粒子表面に非磁性の金属材料を被覆する工程。
熱処理工程:前記金属材料が被覆された前記Sm−Fe系合金粉末を熱処理して、前記粉末の粒子表層に前記金属材料の金属元素を含有する表面層を形成する工程。
窒化工程:前記表面層が形成された前記Sm−Fe系合金粉末を磁場中で窒化処理して、前記主相のSm−Fe系化合物を窒化することにより、Sm−Fe−N系化合物を主相とするSm−Fe−N系合金の粉末を得る工程。
成形工程:前記Sm−Fe−N系合金の粉末を磁場中で圧縮成形して、Sm−Fe−N系磁石を得る工程。
The method for producing a rare earth magnet of the present invention includes the following preparation step, coating step, heat treatment step, nitriding step, and forming step.
Preparatory process: The process of preparing the powder of the Sm-Fe-type alloy which uses the Sm-Fe-type compound containing Sm and Fe as a main phase.
Coating step: A step of coating the surface of the particles of the Sm—Fe alloy powder with a nonmagnetic metal material.
Heat treatment step: a step of heat-treating the Sm—Fe-based alloy powder coated with the metal material to form a surface layer containing the metal element of the metal material on the particle surface layer of the powder.
Nitriding step: nitriding the Sm-Fe-based alloy powder with the surface layer formed in a magnetic field and nitriding the Sm-Fe-based compound of the main phase, thereby producing a Sm-Fe-N-based compound as a main component. A step of obtaining Sm—Fe—N alloy powder as a phase.
Molding step: a step of compression-molding the Sm—Fe—N alloy powder in a magnetic field to obtain an Sm—Fe—N magnet.

本発明の希土類磁石の製造方法は、相対密度が高く、磁気特性に優れる希土類磁石を得ることができる。   The method for producing a rare earth magnet of the present invention can provide a rare earth magnet having a high relative density and excellent magnetic properties.

本発明者らは、Sm−Fe系合金の粉末に非磁性の金属材料を被覆し、熱処理して表面層を形成した後、窒化処理し、これを圧縮成形することで、磁石の高密度化と、磁気特性を改善できることを見出した。以上の知見に基づいて、本発明者らは本発明を完成するに至った。   The inventors of the present invention coated a non-magnetic metal material on a powder of an Sm—Fe-based alloy, heat-treated to form a surface layer, and then nitriding and compressing this to increase the density of the magnet. And found that the magnetic properties can be improved. Based on the above findings, the present inventors have completed the present invention.

[本発明の実施形態の説明]
最初に、本発明の実施態様を列記して説明する。
[Description of Embodiment of the Present Invention]
First, embodiments of the present invention will be listed and described.

(1)実施形態に係る希土類磁石の製造方法は、以下の準備工程と、被覆工程と、熱処理工程と、窒化工程と、成形工程と、を備える。
準備工程:SmとFeとを含有するSm−Fe系化合物を主相とするSm−Fe系合金の粉末を用意する工程。
被覆工程:Sm−Fe系合金粉末の粒子表面に非磁性の金属材料を被覆する工程。
熱処理工程:金属材料が被覆されたSm−Fe系合金粉末を熱処理して、粉末の粒子表層に金属材料の金属元素を含有する表面層を形成する工程。
窒化工程:表面層が形成されたSm−Fe系合金粉末を磁場中で窒化処理して、主相のSm−Fe系化合物を窒化することにより、Sm−Fe−N系化合物を主相とするSm−Fe−N系合金の粉末を得る工程。
成形工程:Sm−Fe−N系合金の粉末を磁場中で圧縮成形して、Sm−Fe−N系磁石を得る工程。
(1) The manufacturing method of the rare earth magnet according to the embodiment includes the following preparation process, covering process, heat treatment process, nitriding process, and forming process.
Preparatory process: The process of preparing the powder of the Sm-Fe-type alloy which uses the Sm-Fe-type compound containing Sm and Fe as a main phase.
Coating step: A step of coating a non-magnetic metal material on the particle surface of the Sm-Fe alloy powder.
Heat treatment step: a step of heat-treating the Sm—Fe-based alloy powder coated with the metal material to form a surface layer containing the metal element of the metal material on the particle surface layer of the powder.
Nitriding step: Sm-Fe-N-based compound powder having a surface layer formed therein is nitrided in a magnetic field to nitride the Sm-Fe-based compound of the main phase, thereby using the Sm-Fe-N-based compound as the main phase. A step of obtaining a powder of an Sm—Fe—N alloy.
Molding step: a step of obtaining a Sm-Fe-N-based magnet by compression-molding a powder of an Sm-Fe-N-based alloy in a magnetic field.

上記希土類磁石の製造方法によれば、Sm−Fe系合金粉末の粒子表面に非磁性の金属材料を被覆した後、熱処理することで、Sm−Fe系合金粉末の粒子表層に金属材料の金属元素を含有する表面層を均一に形成できる。また、窒化処理する前のSm−Fe系合金粉末に対して熱処理することから、熱処理温度がSm−Fe−N合金の熱分解温度に制限されることがない。上記金属材料には、単一の金属元素からなる金属の他、金属元素を含む合金も含まれる。   According to the above rare earth magnet manufacturing method, the surface of the Sm-Fe alloy powder is coated with a nonmagnetic metal material and then heat-treated, so that the metal element of the metal material is applied to the particle surface layer of the Sm-Fe alloy powder. The surface layer containing can be formed uniformly. Further, since the heat treatment is performed on the Sm—Fe-based alloy powder before nitriding, the heat treatment temperature is not limited to the thermal decomposition temperature of the Sm—Fe—N alloy. The metal material includes an alloy including a metal element in addition to a metal composed of a single metal element.

表面層は、Sm−Fe−N系合金粉末を圧縮成形する際のバインダとして機能する。表面層に含有する上記金属元素の大部分は、Sm−Fe系合金(Sm−Fe系化合物)の一部のSmやFeと反応して化合物の形で存在すると考えられる。具体的には、上記金属材料が被覆されたSm−Fe系合金粉末を熱処理することによって、粉末の粒子表層に金属材料の金属元素の少なくとも一部が拡散し、Sm−Fe系合金(Sm−Fe系化合物)中のSmやFeと反応して化合物を形成する。表面層が上記金属元素を含有し、表面層に上記金属元素とSmやFeとの化合物が存在することで、表面層が柔らかく変形し易い。そのため、Sm−Fe−N系合金粉末を圧縮成形した際に表面層が塑性変形して粒子同士を結合でき、高密度化が可能である。例えば、相対密度が85%以上の希土類磁石を得ることができる。したがって、相対密度が高く、硬磁性相の割合が高い緻密な希土類磁石を得ることができる。   The surface layer functions as a binder when compression-molding the Sm—Fe—N alloy powder. Most of the metal elements contained in the surface layer are considered to exist in the form of a compound by reacting with a part of Sm and Fe of the Sm—Fe based alloy (Sm—Fe based compound). Specifically, by heat-treating the Sm—Fe alloy powder coated with the metal material, at least a part of the metal element of the metal material diffuses into the particle surface layer of the powder, and the Sm—Fe alloy (Sm— It reacts with Sm and Fe in the Fe-based compound) to form a compound. When the surface layer contains the metal element and the compound of the metal element and Sm or Fe exists in the surface layer, the surface layer is soft and easily deformed. Therefore, when the Sm—Fe—N alloy powder is compression-molded, the surface layer is plastically deformed so that the particles can be bonded to each other, and the density can be increased. For example, a rare earth magnet having a relative density of 85% or more can be obtained. Therefore, a dense rare earth magnet having a high relative density and a high ratio of the hard magnetic phase can be obtained.

また、表面層は、非磁性の上記金属元素を含有しており、最終的な磁石の状態で、Sm−Fe−N系合金粉末の粒子同士の磁気的な結合を切る働きがあり、保磁力といった磁気特性を改善する。具体的には、Sm−Fe系合金粉末の粒子が単結晶粒子(単一の主相の結晶粒のみからなる粒子)の場合は、熱処理によって粉末の粒子表層に表面層が形成され、最終的に、表面層がSm−Fe−N系合金粉末の粒子間の境界に介在して粒子同士の磁気的な結合を切る働きをする。一方、Sm−Fe系合金粉末の粒子が多結晶粒子(複数の主相の結晶粒からなる粒子)の場合は、熱処理によって粉末の粒子表層に表面層が形成されると共に、主相の結晶粒界に沿って上記金属元素が拡散して上記金属元素を含有する粒界相が形成される。そして、最終的に、表面層がSm−Fe−N系合金粉末の粒子間の境界に介在して粒子同士の磁気的な結合を切る働きをすると共に、粒界相がSm−Fe−N系化合物の主相の粒界に存在して主相同士の磁気的な結合を切る働きをする。   Further, the surface layer contains the above-mentioned nonmagnetic metal element, and in the final magnet state, has a function of cutting the magnetic coupling between the particles of the Sm—Fe—N alloy powder, and has a coercive force. Improve magnetic properties. Specifically, when the particles of the Sm—Fe-based alloy powder are single crystal particles (particles consisting of only single main phase crystal grains), a surface layer is formed on the particle surface layer of the powder by heat treatment, and finally In addition, the surface layer is interposed at the boundary between the particles of the Sm—Fe—N alloy powder and functions to cut the magnetic coupling between the particles. On the other hand, when the particles of the Sm—Fe-based alloy powder are polycrystalline particles (particles composed of crystal grains of a plurality of main phases), a surface layer is formed on the particle surface layer of the powder by heat treatment, and the crystal grains of the main phase The metal element diffuses along the boundary to form a grain boundary phase containing the metal element. And finally, the surface layer is interposed at the boundary between the particles of the Sm—Fe—N based alloy powder to cut the magnetic coupling between the particles, and the grain boundary phase is the Sm—Fe—N based. It exists in the grain boundary of the main phase of the compound and works to break the magnetic coupling between the main phases.

その他、Sm−Fe系合金粉末を磁場中で窒化処理することによって、Nが拡散し易く、主相(Sm−Fe系化合物)の結晶格子におけるFe−Fe原子間にNを選択的に導入し易くなる。その結果、Sm−Fe系化合物の窒化反応が促進され、Sm−Fe系化合物を良好に窒化することができ、磁気異方性が改善される。また、Sm−Fe−N系合金粉末を磁場中で圧縮成形することによって、磁場の方向に主相(Sm−Fe−N系化合物)の結晶方位を揃えて粒子を配向させることができる。その結果、Sm−Fe−N系化合物の磁化容易軸(c軸)を一方向に配向させ易く、磁気異方性が高く、磁気特性に優れる希土類磁石が得られる。   In addition, N is easily diffused by nitriding the Sm—Fe alloy powder in a magnetic field, and N is selectively introduced between Fe—Fe atoms in the crystal lattice of the main phase (Sm—Fe compound). It becomes easy. As a result, the nitriding reaction of the Sm—Fe compound is promoted, the Sm—Fe compound can be nitrided well, and the magnetic anisotropy is improved. Further, by compressing the Sm—Fe—N alloy powder in a magnetic field, the grains can be oriented with the crystal orientation of the main phase (Sm—Fe—N compound) aligned in the direction of the magnetic field. As a result, it is possible to obtain a rare earth magnet that easily aligns the easy magnetization axis (c-axis) of the Sm—Fe—N-based compound in one direction, has high magnetic anisotropy, and excellent magnetic properties.

上記被覆工程におけるSm−Fe系合金粉末の粒子表面への上記金属材料の被覆は、例えば、(a)Sm−Fe系合金の粉末の粒子表面に金属材料を気相法により蒸着する、又は、(b)Sm−Fe系合金の粉末と金属材料の粉末とを混合する、ことで行うことが挙げられる。   The coating of the metal material on the particle surface of the Sm-Fe-based alloy powder in the coating step is, for example, (a) depositing the metal material on the particle surface of the Sm-Fe-based alloy powder by a vapor phase method, or (B) It may be performed by mixing the powder of the Sm—Fe alloy and the powder of the metal material.

(2)上記希土類磁石の製造方法の一形態としては、上記被覆工程において、Sm−Fe系合金粉末の粒子表面への金属材料の被覆は、Sm−Fe系合金の粉末の粒子表面に金属材料を気相法により蒸着することで行うことが挙げられる。   (2) As one form of the manufacturing method of the rare earth magnet, in the coating step, the metal material is coated on the particle surface of the Sm—Fe based alloy powder. Is performed by vapor deposition by a vapor phase method.

(3)上記希土類磁石の製造方法の一形態としては、上記被覆工程において、Sm−Fe系合金粉末の粒子表面への金属材料の被覆は、Sm−Fe系合金の粉末と金属材料の粉末とを混合することで行うことが挙げられる。   (3) As one form of the manufacturing method of the rare earth magnet, in the coating step, the coating of the metal material on the particle surface of the Sm—Fe based alloy powder is performed by using the Sm—Fe based alloy powder, the metallic material powder, Is performed by mixing.

Sm−Fe系合金粉末の粒子表面に上記金属材料を気相法により蒸着する、又は、Sm−Fe系合金粉末と上記金属材料の粉末とを混合することで、Sm−Fe系合金粉末の粒子表面に金属材料を良好に被覆できる。Sm−Fe系合金粉末の粒子表面に上記金属材料を気相法により蒸着する方が、Sm−Fe系合金粉末と上記金属材料の粉末とを混合する場合に比較して、粉末の粒子表面に金属材料を均一に被覆し易い利点がある。   By depositing the metal material on the particle surface of the Sm-Fe-based alloy powder by a vapor phase method, or mixing the Sm-Fe-based alloy powder and the powder of the metal material, particles of the Sm-Fe-based alloy powder are obtained. A metal material can be satisfactorily coated on the surface. Vapor deposition of the metal material on the particle surface of the Sm-Fe alloy powder is more effective on the particle surface of the powder than when the Sm-Fe alloy powder and the metal material powder are mixed. There is an advantage that it is easy to uniformly coat the metal material.

(4)上記希土類磁石の製造方法の一形態としては、上記金属材料は、Cu,Zn,Al,Sn,Nb,Zr,及びTiから選択される少なくとも1種の金属元素からなる金属又はその金属元素を含む合金であることが挙げられる。   (4) As one form of the manufacturing method of the rare earth magnet, the metal material is a metal composed of at least one metal element selected from Cu, Zn, Al, Sn, Nb, Zr, and Ti, or a metal thereof It is mentioned that it is an alloy containing an element.

上記金属材料は、金属元素としてCu,Zn,Al,Sn,Nb,Zr,及びTiから選択される少なくとも1種を含むことで、表面層の形成材料として好適である。具体的には、上記金属元素は、Sm−Fe系合金粉末の粒子表面への被覆後の熱処理によって、粉末の粒子表層に拡散し易く、均一な表面層を形成し易い。また、上記金属元素は、SmやFeと反応して化合物を形成し易く、比較的柔らかい表面層を形成し易い。更に、上記金属元素は非磁性であり、表面層(多結晶粒子の場合は粒界相も含む)が上記金属元素を含有することで、Sm−Fe−N系合金粉末の粒子同士(粒界相の場合はSm−Fe−N系化合物の主相同士)の磁気的な結合を効果的に分断することが可能である。   The metal material is suitable as a surface layer forming material by containing at least one selected from Cu, Zn, Al, Sn, Nb, Zr, and Ti as a metal element. Specifically, the metal element is easily diffused into the particle surface layer of the powder by heat treatment after coating the particle surface of the Sm—Fe-based alloy powder, and a uniform surface layer is easily formed. Further, the metal element easily reacts with Sm or Fe to form a compound, and a relatively soft surface layer is easily formed. Furthermore, the metal element is non-magnetic, and the surface layer (including the grain boundary phase in the case of polycrystalline particles) contains the metal element, so that the particles of the Sm—Fe—N alloy powders (grain boundary In the case of the phase, it is possible to effectively break the magnetic coupling of the main phases of the Sm—Fe—N compound).

(5)上記希土類磁石の製造方法の一形態としては、上記合金が、CuSn,CuTi,CuAl,及びTiZnから選択される少なくとも1種の合金であることが挙げられる。 (5) as a form of the method for manufacturing the rare earth magnet, the alloy, Cu 6 Sn 5, CuTi, CuAl, and the like be at least one alloy selected from TiZn 5.

上記合金は、表面層の形成材料として好適である。その他の合金としては、例えば、Smと上記金属元素(Cu,Zn,Al,Sn,Nb,Zr,及びTiのいずれか1種)との合金などが挙げられる。   The above alloy is suitable as a material for forming the surface layer. Examples of the other alloy include an alloy of Sm and the above metal element (any one of Cu, Zn, Al, Sn, Nb, Zr, and Ti).

(6)上記希土類磁石の製造方法の一形態としては、上記熱処理工程において、表面層の厚さが1nm以上27nm以下となるように熱処理することが挙げられる。   (6) As one form of the manufacturing method of the said rare earth magnet, in the said heat processing process, heat processing is mentioned so that the thickness of a surface layer may be 1 nm or more and 27 nm or less.

表面層の厚さが1nm以上であることで、Sm−Fe−N系合金粉末を圧縮成形した際に表面層が塑性変形し易く、粒子同士を強固に結合し易い。つまり、表面層がSm−Fe−N系合金粉末を圧縮成形する際のバインダとしての機能を発揮し易く、圧縮成形が容易になり、緻密で相対密度の高い希土類磁石を得易い。また、表面層の厚さが1nm以上であることで、Sm−Fe−N系合金粉末の粒子同士の磁気的な結合を十分に分断することが可能であり、磁気特性を効果的に改善できる。一方、表面層の厚さが27nm以下であることで、Sm−Fe系合金粉末を窒化処理した際に表面層がNの拡散を阻害し難く、Sm−Fe系化合物を十分に窒化し易い。また、表面層の厚さが27nm以下であることで、Sm−Fe−N系合金粉末の粒子における表面層(上記金属材料の金属元素とSmやFeとの化合物)の割合(体積比率)が増加することによる磁気特性の低下を抑制できる。更に、上記金属材料の金属元素の侵食によるα−Feの生成を抑制でき、α−Feの生成に起因する磁気特性の低下を抑制できる。   When the thickness of the surface layer is 1 nm or more, the surface layer is easily plastically deformed when the Sm—Fe—N alloy powder is compression-molded, and the particles are easily bonded to each other. That is, the surface layer easily exhibits a function as a binder when the Sm—Fe—N alloy powder is compression-molded, the compression molding is facilitated, and a dense rare earth magnet having a high relative density is easily obtained. Further, when the thickness of the surface layer is 1 nm or more, the magnetic coupling between the particles of the Sm—Fe—N alloy powder can be sufficiently separated, and the magnetic characteristics can be effectively improved. . On the other hand, when the thickness of the surface layer is 27 nm or less, when the Sm—Fe-based alloy powder is nitrided, the surface layer hardly inhibits the diffusion of N, and the Sm—Fe-based compound can be sufficiently nitrided. Moreover, since the thickness of the surface layer is 27 nm or less, the ratio (volume ratio) of the surface layer (compound of metal element of the metal material and Sm or Fe) in the particles of the Sm—Fe—N alloy powder is reduced. A decrease in magnetic properties due to the increase can be suppressed. Furthermore, the production | generation of (alpha) -Fe by the erosion of the metal element of the said metal material can be suppressed, and the fall of the magnetic characteristic resulting from the production | generation of (alpha) -Fe can be suppressed.

表面層の厚さは、熱処理工程における熱処理の条件を制御することによって適宜調節することが可能であり、熱処理温度を高くする、或いは、熱処理時間を長くするほど、表面層の厚さが厚くなる傾向がある。熱処理温度は、Sm−Fe系合金粉末の表面に被覆する上記金属材料の種類に応じて適宜設定することが好ましい。   The thickness of the surface layer can be appropriately adjusted by controlling the heat treatment conditions in the heat treatment step, and the thickness of the surface layer increases as the heat treatment temperature is increased or the heat treatment time is increased. Tend. The heat treatment temperature is preferably set as appropriate according to the type of the metal material coated on the surface of the Sm—Fe-based alloy powder.

(7)上記希土類磁石の製造方法の一形態としては、上記窒化処理工程において、磁場の強度を3T以上12T以下とすることが挙げられる。   (7) As one form of the manufacturing method of the rare earth magnet, in the nitriding treatment step, the strength of the magnetic field is 3T or more and 12T or less.

磁場の強度を3T以上とすることで、Nが表面層を浸透して粒子内部まで拡散し易く、Sm−Fe系化合物の窒化反応が促進され、Sm−Fe系化合物を十分に窒化し易い。一方、磁場の強度を12T以下とすることで、Nの拡散速度が速くなり過ぎることによる窒化反応の阻害を抑制でき、磁気特性の低下を抑制できる。また、過剰窒化によるα−Feやa−Sm(「a−」はアモルファスを意味する)の生成を抑制でき、磁気特性の低下を抑制できる。   By setting the strength of the magnetic field to 3 T or more, N easily penetrates the surface layer and diffuses into the particles, promotes the nitriding reaction of the Sm—Fe-based compound, and sufficiently nitrifies the Sm—Fe-based compound. On the other hand, by setting the intensity of the magnetic field to 12 T or less, inhibition of the nitriding reaction due to excessive increase in the diffusion rate of N can be suppressed, and deterioration in magnetic characteristics can be suppressed. Moreover, the production | generation of (alpha) -Fe and a-Sm ("a-" means an amorphous) by excessive nitriding can be suppressed, and the fall of a magnetic characteristic can be suppressed.

[本発明の実施形態の詳細]
本発明の実施形態に係る希土類磁石の製造方法の具体例を説明する。なお、本発明は、これらの例示に限定されるものではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。
[Details of the embodiment of the present invention]
The specific example of the manufacturing method of the rare earth magnet which concerns on embodiment of this invention is demonstrated. In addition, this invention is not limited to these illustrations, is shown by the claim, and is intended that all the changes within the meaning and range equivalent to the claim are included.

<希土類磁石の製造方法>
希土類磁石の製造方法は、準備工程と、被覆工程と、熱処理工程と、窒化工程と、成形工程と、を備える。以下、各工程について詳しく説明する。
<Rare earth magnet manufacturing method>
The method for manufacturing a rare earth magnet includes a preparation step, a covering step, a heat treatment step, a nitriding step, and a forming step. Hereinafter, each step will be described in detail.

(準備工程)
準備工程は、SmとFeとを含有するSm−Fe系化合物を主相とするSm−Fe系合金の粉末を用意する工程である。Sm−Fe系合金は、代表的には、主成分としてSmとFeとを含有し、SmFe17を主相とするSmFe17合金が挙げられる。Sm−Fe系合金は、鋳造法や還元拡散法により製造することができる。鋳造法としては、例えばメルトスパン法やストリップキャスト法などの急冷凝固法が挙げられる。
(Preparation process)
The preparation step is a step of preparing a powder of an Sm—Fe based alloy containing a Sm—Fe based compound containing Sm and Fe as a main phase. The Sm—Fe alloy typically includes Sm 2 Fe 17 alloy containing Sm and Fe as main components and Sm 2 Fe 17 as a main phase. The Sm—Fe-based alloy can be manufactured by a casting method or a reduction diffusion method. Examples of the casting method include rapid solidification methods such as a melt span method and a strip cast method.

〈Sm−Fe系合金〉
Sm−Fe系合金は、希土類元素としてSmを必須元素として含む。Smの含有量は25質量%以上26.5質量%以下とすることが好ましい。Smの含有量を上記範囲内とすることで、化学量論組成がSmFe17といったSm−Fe系化合物が得られ易い。また、Smの一部を他の希土類元素で置換してもよい。置換する他の希土類元素としては、例えばNd,Dy,Pr,Tb,Ce及びYから選択される少なくとも1種の希土類元素が挙げられる。Smの一部を他の希土類元素で置換する場合、磁気特性の低下を避けるため、Smに対する置換量は50原子%未満とすることが好ましく、より好ましくは30原子%以下である。
<Sm-Fe alloy>
The Sm—Fe alloy contains Sm as an essential element as a rare earth element. The Sm content is preferably 25% by mass or more and 26.5% by mass or less. By setting the Sm content within the above range, an Sm—Fe compound having a stoichiometric composition of Sm 2 Fe 17 can be easily obtained. Further, a part of Sm may be substituted with another rare earth element. Examples of other rare earth elements to be substituted include at least one rare earth element selected from Nd, Dy, Pr, Tb, Ce, and Y. When substituting a part of Sm with another rare earth element, the amount of substitution with respect to Sm is preferably less than 50 atomic%, more preferably 30 atomic% or less, in order to avoid deterioration of magnetic properties.

Sm−Fe系合金において、Feの一部を、例えばCo,Ni,Ga,Cu,Al,Si,Ti,Mn及びNbから選択される少なくとも1種以上の元素で置換してもよい。例えば、Feの一部をCoで置換することで、耐熱性を改善できえる。但し、Feの一部を上記元素で置換する場合、置換量が過剰になると磁気特性の低下を招くことから、Feに対する置換量は50原子%未満とすることが好ましく、より好ましくは35原子%以下である。例えば、Feの一部をCoで置換する場合、Sm−Fe系合金におけるCoの含有量は6質量%以下とするが好ましい。   In the Sm—Fe based alloy, a part of Fe may be substituted with at least one element selected from, for example, Co, Ni, Ga, Cu, Al, Si, Ti, Mn, and Nb. For example, heat resistance can be improved by replacing part of Fe with Co. However, when a part of Fe is substituted with the above element, the substitution amount with respect to Fe is preferably less than 50 atomic%, more preferably 35 atomic%, since the magnetic property is deteriorated when the substitution amount is excessive. It is as follows. For example, when a part of Fe is replaced with Co, the Co content in the Sm—Fe-based alloy is preferably 6% by mass or less.

〈Sm−Fe系合金粉末〉
Sm−Fe系合金を適宜粉砕することでSm−Fe系合金の粉末を得ることができる。Sm−Fe系合金の粉砕は、例えばジェットミル、ハンマーミル、ピンミル、ディスクミル、ジョークラッシャーなどの公知の粉砕機を使用できる。Sm−Fe系合金粉末の粒子径は、後工程の窒化工程での窒化処理や成形工程での圧縮成形のし易さの観点から、例えば0.5μm以上50μm以下、特に1μm以上30μm以下とすること好ましい。ここで、Sm−Fe系合金粉末の粒子径とは、レーザ回折式粒度分布測定装置により測定した場合において、体積基準の粒度分布の小径側から累積が50%となる粒径値(D50:50体積%粒径)のことである。また、Sm−Fe系合金粉末を構成する粒子は、単結晶粒子でもよいし、多結晶粒子でもよい。
<Sm-Fe alloy powder>
Sm—Fe based alloy powder can be obtained by appropriately pulverizing the Sm—Fe based alloy. For the pulverization of the Sm—Fe alloy, a known pulverizer such as a jet mill, a hammer mill, a pin mill, a disk mill, or a jaw crusher can be used. The particle diameter of the Sm—Fe-based alloy powder is, for example, 0.5 μm or more and 50 μm or less, particularly 1 μm or more and 30 μm or less, from the viewpoint of easy nitriding in the subsequent nitriding step or compression forming in the forming step. It is preferable. Here, the particle diameter of the Sm—Fe-based alloy powder is a particle diameter value (D50: 50) in which accumulation is 50% from the small diameter side of the volume-based particle size distribution when measured by a laser diffraction particle size distribution measuring device. Volume% particle size). The particles constituting the Sm—Fe-based alloy powder may be single crystal particles or polycrystalline particles.

その他、Sm−Fe系合金又はその粉末をHDDR(Hydrogenation Disproportionation Desorption Recombination;水素化・不均化・脱水素・再結合)処理してもよい。HDDR処理とは、Sm−Fe系合金又はその粉末を水素含有雰囲気中、不均化温度以上で熱処理して、水素化することにより、主相のSm−Fe系化合物(例、SmFe17)をSmの水素化合物(SmH)とFeとの相に分解する。その後、不活性雰囲気中又は減圧雰囲気中、再結合温度以上で熱処理して、脱水素することにより、水素化分解したSm−Fe系化合物を再結合する処理のことである。この処理により、主相の結晶粒が微細化され、平均結晶粒径が500nm以下の微細な主相結晶粒からなる多結晶組織(多結晶粒子)が得られる。HDDR処理したHDDR粉末の場合、通常、主相の結晶粒径は100nm〜300nm程度である。HDDR処理の条件(水素化する熱処理の温度や時間、脱水素する熱処理の温度や時間)は、公知の条件を適用できる。水素化する熱処理の温度は、例えば600℃以上(更に650℃以上)1100℃以下、好ましくは700℃以上(更に750℃以上)950℃以下(更に900℃以下)とすることが挙げられる。水素化する熱処理の時間は、例えば30分以上5時間以下とすることが挙げられる。脱水素する熱処理の温度は、例えば600℃以上(更に650℃以上、特に700℃以上)1000℃以下とすることが挙げられる。脱水素する熱処理の時間は、例えば10分以上10時間以下とすることが挙げられる。 In addition, the Sm—Fe alloy or powder thereof may be subjected to HDDR (Hydrogenation Deposition Decomposition Recombination) treatment (hydrogenation / disproportionation / dehydrogenation / recombination). The HDDR treatment is a Sm—Fe-based compound (eg, Sm 2 Fe 17) of a main phase by heat-treating a Sm—Fe-based alloy or a powder thereof in a hydrogen-containing atmosphere by heat-treating at or above the disproportionation temperature. ) Is decomposed into a phase of Sm hydride (SmH 2 ) and Fe. Then, it is the process which recombines the hydrocracked Sm-Fe-type compound by heat-processing in an inert atmosphere or a pressure-reduced atmosphere above a recombination temperature, and dehydrogenating. By this treatment, the crystal grains of the main phase are refined, and a polycrystalline structure (polycrystal particles) composed of fine main phase crystal grains having an average crystal grain size of 500 nm or less is obtained. In the case of HDDR-treated HDDR powder, the crystal grain size of the main phase is usually about 100 nm to 300 nm. Known conditions can be applied to the HDDR treatment conditions (temperature and time of heat treatment for hydrogenation, temperature and time of heat treatment for dehydrogenation). The temperature of the heat treatment for hydrogenation is, for example, 600 ° C. or higher (more 650 ° C. or higher) 1100 ° C. or lower, preferably 700 ° C. or higher (further 750 ° C. or higher) 950 ° C. or lower (further 900 ° C. or lower). The heat treatment time for hydrogenation is, for example, 30 minutes or more and 5 hours or less. The temperature of the heat treatment for dehydrogenation is, for example, 600 ° C. or higher (further 650 ° C. or higher, particularly 700 ° C. or higher) 1000 ° C. or lower. The heat treatment time for dehydrogenation is, for example, 10 minutes or more and 10 hours or less.

(被覆工程)
被覆工程は、Sm−Fe系合金粉末の粒子表面に非磁性の金属材料を被覆する工程である。Sm−Fe系合金粉末の粒子表面への金属材料の被覆は、例えば、(1)Sm−Fe系合金の粉末の粒子表面に金属材料を気相法により蒸着する、又は、(2)Sm−Fe系合金の粉末と金属材料の粉末とを混合する、ことによって行うことが挙げられる。
(Coating process)
The coating step is a step of coating the surface of the particles of the Sm—Fe-based alloy powder with a nonmagnetic metal material. The coating of the metal material on the particle surface of the Sm-Fe-based alloy powder is, for example, (1) depositing the metal material on the particle surface of the Sm-Fe-based alloy powder by a vapor phase method, or (2) Sm- It may be performed by mixing the powder of the Fe-based alloy and the powder of the metal material.

〈気相法(蒸着)による被覆〉
Sm−Fe系合金の粉末の粒子表面に金属材料を気相法により蒸着することで、Sm−Fe系合金粉末の粒子表面に金属材料を被覆することができる。気相法としては、具体的には、真空蒸着法、スパッタリング法、イオンプレーティング法といった物理的蒸着(PVD)法や、化学的蒸着(CVD)法が挙げられる。気相法により金属材料を蒸着することで、Sm−Fe系合金粉末の粒子表面に金属材料を均一に被覆し易い。Sm−Fe系合金粉末の粒子表面に蒸着(被覆)する金属材料の厚さは、後工程の熱処理工程により形成する表面層の厚さに応じて適宜設定すればよく、被覆する金属材料の厚さは、例えば1nm以上27nm以下とすることが挙げられる。また、蒸着は、Sm−Fe系合金粉末の酸化や不純物の侵入を防止する観点から、真空雰囲気中で行うことが好ましい。
<Coating by vapor phase method (evaporation)>
The metal material can be coated on the particle surface of the Sm-Fe alloy powder by vapor-depositing the metal material on the particle surface of the Sm-Fe alloy powder. Specific examples of the vapor phase method include a physical vapor deposition (PVD) method such as a vacuum vapor deposition method, a sputtering method, and an ion plating method, and a chemical vapor deposition (CVD) method. By vapor-depositing a metal material by a vapor phase method, it is easy to uniformly coat the metal material on the particle surface of the Sm-Fe alloy powder. What is necessary is just to set suitably the thickness of the metal material vapor-deposited (coating) on the particle | grain surface of Sm-Fe type alloy powder according to the thickness of the surface layer formed by the heat treatment process of a post process, and the thickness of the metal material to coat | cover For example, the thickness may be 1 nm or more and 27 nm or less. In addition, the vapor deposition is preferably performed in a vacuum atmosphere from the viewpoint of preventing oxidation of the Sm—Fe-based alloy powder and entry of impurities.

〈混合による被覆〉
Sm−Fe系合金の粉末と金属材料の粉末とを混合することで、Sm−Fe系合金粉末の粒子表面に金属材料の粉末の粒子が付着して被覆された状態になる。Sm−Fe系合金の粉末と金属材料の粉末との混合は、例えばボールミル、V型混合機などの各種混合機・ミキサーなどを使用できる。金属材料の粉末の添加量は、後工程の熱処理工程により形成する表面層の厚さに応じて適宜設定すればよく、金属材料の添加量は、例えば3質量%以上10質量%以下とすることが挙げられる。金属材料の粉末の粒子径は、特に限定されないが、Sm−Fe系合金粉末の粒子径以下とすることが挙げられる。金属材料の粉末の粒子径は、Sm−Fe系合金粉末の粒子径と同じように、50体積%粒径(D50)である。混合条件は、Sm−Fe系合金粉末の粒子表面に金属材料の粉末の粒子が均一に付着するように適宜設定すればよく、混合時間は、例えば3時間以上15時間以下とすることが挙げられる。また、混合は、Sm−Fe系合金粉末の酸化を防止する観点から、不活性雰囲気中、具体的にはArやNなどの不活性ガス雰囲気中で行うことが好ましい。
<Coating by mixing>
By mixing the powder of the Sm-Fe alloy and the powder of the metal material, the particles of the metal material adhere to and coat the particle surfaces of the Sm-Fe alloy powder. For mixing the powder of the Sm—Fe alloy and the powder of the metal material, for example, various mixers / mixers such as a ball mill and a V-type mixer can be used. What is necessary is just to set the addition amount of the powder of a metal material suitably according to the thickness of the surface layer formed by the heat treatment process of a post process, and the addition amount of a metal material shall be 3 mass% or more and 10 mass% or less, for example Is mentioned. Although the particle diameter of the metal material powder is not particularly limited, it may be less than or equal to the particle diameter of the Sm—Fe-based alloy powder. The particle diameter of the metal material powder is 50% by volume (D50), similar to the particle diameter of the Sm—Fe alloy powder. What is necessary is just to set mixing conditions suitably so that the particle | grains of the powder of a metal material may adhere uniformly to the particle | grain surface of Sm-Fe-type alloy powder, and mixing time shall be 3 hours or more and 15 hours or less, for example. . Further, the mixing is preferably performed in an inert atmosphere, specifically, in an inert gas atmosphere such as Ar or N 2 from the viewpoint of preventing oxidation of the Sm—Fe based alloy powder.

〈被覆材料〉
被覆材料に用いる金属材料には、単一の金属元素からなる金属でもよいし、金属元素を含む合金でもよい。金属材料としては、Cu,Zn,Al,Sn,Nb,Zr,及びTiから選択される少なくとも1種の金属元素からなる金属又はその金属元素を含む合金が挙げられる。また、合金としては、CuSn,CuTi,CuAl,及びTiZnから選択される少なくとも1種の合金が挙げられる。これらの金属材料は、後述する表面層の形成材料として好適である。
<Coating material>
The metal material used for the coating material may be a metal composed of a single metal element or an alloy containing a metal element. Examples of the metal material include a metal composed of at least one metal element selected from Cu, Zn, Al, Sn, Nb, Zr, and Ti, or an alloy containing the metal element. As the alloy, Cu 6 Sn 5, CuTi, CuAl, and at least one alloys are selected from TiZn 5. These metal materials are suitable as a material for forming the surface layer described later.

(熱処理工程)
熱処理工程は、金属材料が被覆されたSm−Fe系合金粉末を熱処理して、粉末の粒子表層に金属材料の金属元素を含有する表面層を形成する工程である。Sm−Fe系合金粉末の粒子表面に金属材料を被覆した後、熱処理することで、Sm−Fe系合金粉末の粒子表層に金属材料の金属元素を含有する表面層を均一に形成できる。
(Heat treatment process)
The heat treatment step is a step of heat-treating the Sm—Fe-based alloy powder coated with the metal material to form a surface layer containing the metal element of the metal material on the particle surface layer of the powder. The surface layer containing the metal element of the metal material can be uniformly formed on the particle surface layer of the Sm-Fe-based alloy powder by performing heat treatment after coating the surface of the particle of the Sm-Fe-based alloy powder.

〈表面層〉
表面層に含有する金属元素は、Sm−Fe系合金(Sm−Fe系化合物)の一部のSmやFeと反応して化合物の形で存在すると考えられる。具体的には、熱処理することによって、Sm−Fe−N系合金粉末の粒子表面に被覆した金属材料の金属元素の少なくとも一部が粉末の粒子表層に拡散し、Sm−Fe系合金(Sm−Fe系化合物)中のSmやFeと反応して化合物を形成する。金属材料が金属元素としてCu,Zn,Al,Sn,Nb,Zr,及びTiから選択される少なくとも1種を含むと、熱処理によって、金属元素が粒子表層に拡散し易く、均一な表面層を形成し易い。
<Surface layer>
The metal element contained in the surface layer is considered to exist in the form of a compound by reacting with a part of Sm or Fe of the Sm—Fe based alloy (Sm—Fe based compound). Specifically, by heat treatment, at least a part of the metal element of the metal material coated on the particle surface of the Sm—Fe—N alloy powder is diffused into the particle surface layer of the powder, and the Sm—Fe alloy (Sm— It reacts with Sm and Fe in the Fe-based compound) to form a compound. When the metal material contains at least one selected from Cu, Zn, Al, Sn, Nb, Zr, and Ti as a metal element, the metal element is easily diffused into the particle surface layer by heat treatment, and a uniform surface layer is formed. Easy to do.

表面層は、後工程の成形工程において、Sm−Fe−N系合金粉末を圧縮成形する際のバインダとして機能する。表面層が金属元素を含有し、表面層に金属元素とSmやFeとの化合物が存在することで、表面層が柔らかく変形し易い。特に、上記金属元素(Cu,Zn,Al,Sn,Nb,Zr,及びTi)は、SmやFeと反応して化合物を形成し易く、比較的柔らかい表面層を形成し易い。そのため、Sm−Fe−N系合金粉末を圧縮成形した際に表面層が塑性変形して粒子同士を結合でき、高密度化が可能である。例えば、相対密度が85%以上の希土類磁石を得ることができる。したがって、相対密度が高く、硬磁性相の割合が高い緻密な希土類磁石を得ることができる。   The surface layer functions as a binder when compression-molding the Sm—Fe—N-based alloy powder in a subsequent forming step. The surface layer contains a metal element, and the presence of a compound of the metal element and Sm or Fe in the surface layer makes the surface layer soft and easily deformed. In particular, the metal elements (Cu, Zn, Al, Sn, Nb, Zr, and Ti) easily react with Sm and Fe to form a compound, and a relatively soft surface layer is easily formed. Therefore, when the Sm—Fe—N alloy powder is compression-molded, the surface layer is plastically deformed so that the particles can be bonded to each other, and the density can be increased. For example, a rare earth magnet having a relative density of 85% or more can be obtained. Therefore, a dense rare earth magnet having a high relative density and a high ratio of the hard magnetic phase can be obtained.

更に、表面層は、非磁性の金属元素を含有しており、最終的な磁石の状態で、Sm−Fe−N系合金粉末の粒子同士の磁気的な結合を切る働きがあり、磁気特性を改善する。具体的には、Sm−Fe系合金粉末の粒子が単結晶粒子(単一の主相の結晶粒のみからなる粒子)の場合は、熱処理によって粉末の粒子表層に表面層が形成され、最終的に、表面層がSm−Fe−N系合金粉末の粒子間の境界に介在して粒子同士の磁気的な結合を切る働きをする。一方、Sm−Fe系合金粉末の粒子が多結晶粒子(複数の主相の結晶粒からなる粒子)の場合は、熱処理によって粉末の粒子表層に表面層が形成されると共に、主相の結晶粒界に沿って金属元素が拡散して金属元素を含有する粒界相が形成される。そして、最終的に、表面層がSm−Fe−N系合金粉末の粒子間の境界に介在して粒子同士の磁気的な結合を切る働きをすると共に、粒界相がSm−Fe−N系化合物の主相の粒界に存在して主相同士の磁気的な結合を切る働きをする。特に、上記金属元素(Cu,Zn,Al,Sn,Nb,Zr,及びTi)はいずれも非磁性であり、表面層(多結晶粒子の場合は粒界相も含む)が上記金属元素を含有することで、Sm−Fe−N系合金粉末の粒子同士(粒界相の場合はSm−Fe−N系化合物の主相同士)の磁気的な結合を効果的に分断することが可能である。   Further, the surface layer contains a non-magnetic metal element, and in the final magnet state, it has a function of cutting the magnetic coupling between the particles of the Sm-Fe-N alloy powder, and has a magnetic property. Improve. Specifically, when the particles of the Sm—Fe-based alloy powder are single crystal particles (particles consisting of only single main phase crystal grains), a surface layer is formed on the particle surface layer of the powder by heat treatment, and finally In addition, the surface layer is interposed at the boundary between the particles of the Sm—Fe—N alloy powder and functions to cut the magnetic coupling between the particles. On the other hand, when the particles of the Sm—Fe-based alloy powder are polycrystalline particles (particles composed of crystal grains of a plurality of main phases), a surface layer is formed on the particle surface layer of the powder by heat treatment, and the crystal grains of the main phase A grain boundary phase containing a metal element is formed by diffusing the metal element along the boundary. And finally, the surface layer is interposed at the boundary between the particles of the Sm—Fe—N based alloy powder to cut the magnetic coupling between the particles, and the grain boundary phase is the Sm—Fe—N based. It exists in the grain boundary of the main phase of the compound and works to break the magnetic coupling between the main phases. In particular, the metal elements (Cu, Zn, Al, Sn, Nb, Zr, and Ti) are all non-magnetic, and the surface layer (including the grain boundary phase in the case of polycrystalline particles) contains the metal element. By doing so, it is possible to effectively break the magnetic coupling between the particles of the Sm—Fe—N alloy powder (in the case of a grain boundary phase, the main phases of the Sm—Fe—N compound). .

〈表面層の厚さ〉
表面層の厚さは、1nm以上27nm以下とすることが好ましい。表面層の厚さを1nm以上とすることで、Sm−Fe−N系合金粉末を圧縮成形した際に表面層が塑性変形し易く、粒子同士を強固に結合し易い。つまり、表面層がSm−Fe−N系合金粉末を圧縮成形する際のバインダとしての機能を発揮し易く、圧縮成形が容易になり、緻密で相対密度の高い希土類磁石を得易い。また、表面層の厚さを1nm以上とすることで、Sm−Fe−N系合金粉末の粒子同士の磁気的な結合を十分に分断することが可能であり、磁気特性を効果的に改善できる。一方、表面層の厚さを27nm以下とすることで、後工程の窒化工程において、Sm−Fe系合金粉末を窒化処理した際に表面層がNの拡散を阻害し難く、Sm−Fe系化合物を十分に窒化し易い。また、表面層の厚さを27nm以下とすることで、Sm−Fe−N系合金粉末の粒子における表面層(金属材料の金属元素とSmやFeとの化合物)の割合(体積比率)が増加することによる磁気特性の低下を抑制できる。換言すれば、硬磁性相であるSm−Fe−N系化合物(例、SmFe17)の割合が減少することによる磁気特性の低下を抑制できる。更に、金属材料の金属元素の侵食によるα−Feの生成を抑制でき、α−Feの生成に起因する磁気特性の低下を抑制できる。
<Surface layer thickness>
The thickness of the surface layer is preferably 1 nm or more and 27 nm or less. By setting the thickness of the surface layer to 1 nm or more, the surface layer is easily plastically deformed when the Sm—Fe—N alloy powder is compression-molded, and the particles are easily bonded to each other. That is, the surface layer easily exhibits a function as a binder when the Sm—Fe—N alloy powder is compression-molded, the compression molding is facilitated, and a dense rare earth magnet having a high relative density is easily obtained. Further, by setting the thickness of the surface layer to 1 nm or more, it is possible to sufficiently break the magnetic coupling between the particles of the Sm—Fe—N-based alloy powder, and to effectively improve the magnetic characteristics. . On the other hand, when the thickness of the surface layer is set to 27 nm or less, the Sm—Fe compound is difficult to inhibit the diffusion of N when the Sm—Fe alloy powder is nitrided in the nitriding process in the subsequent step. Can be sufficiently nitrided. Further, by setting the thickness of the surface layer to 27 nm or less, the ratio (volume ratio) of the surface layer (compound of metal element of metal material and Sm or Fe) in the particles of the Sm—Fe—N alloy powder is increased. It is possible to suppress a decrease in magnetic properties due to the operation. In other words, it is possible to suppress a decrease in magnetic properties due to a decrease in the ratio of the Sm—Fe—N-based compound (eg, Sm 2 Fe 17 N 3 ) that is a hard magnetic phase. Furthermore, the production | generation of (alpha) -Fe by the erosion of the metal element of a metal material can be suppressed, and the fall of the magnetic characteristic resulting from the production | generation of (alpha) -Fe can be suppressed.

〈熱処理〉
熱処理は、表面層の厚さが1nm以上27nm以下となるように行うことが好ましい。表面層の厚さは、熱処理の条件を制御することによって適宜調節することが可能であり、例えば、熱処理温度を高くする、或いは、熱処理時間を長くするほど、表面層の厚さが厚くなる傾向がある。特に、熱処理温度をある程度高くすると、Sm−Fe−N系合金粉末の粒子表面に被覆した金属材料の金属元素が粉末の粒子表層に十分に拡散すると共にSmやFeと反応して化合物を形成し易く、表面層が形成され易い。熱処理温度が低過ぎると、金属元素が十分に拡散せず、所定の厚さの表面層を形成することが難しい。一方、熱処理温度を高くし過ぎると、金属元素の拡散が進行し過ぎて表面層の厚さが厚くなり過ぎたり、α−Feが生成され易くなる。
<Heat treatment>
The heat treatment is preferably performed so that the thickness of the surface layer is 1 nm to 27 nm. The thickness of the surface layer can be adjusted as appropriate by controlling the conditions of the heat treatment. For example, the thickness of the surface layer tends to increase as the heat treatment temperature is increased or the heat treatment time is increased. There is. In particular, when the heat treatment temperature is raised to some extent, the metal element of the metal material coated on the particle surface of the Sm—Fe—N alloy powder is sufficiently diffused into the particle surface layer of the powder and reacts with Sm and Fe to form a compound. It is easy to form a surface layer. If the heat treatment temperature is too low, the metal element is not sufficiently diffused and it is difficult to form a surface layer having a predetermined thickness. On the other hand, if the heat treatment temperature is too high, the diffusion of the metal element proceeds too much, and the thickness of the surface layer becomes too thick, or α-Fe is likely to be generated.

熱処理温度は、Sm−Fe系合金粉末の表面に被覆する金属材料の種類に応じて適宜設定することが好ましい。各種金属材料に応じた熱処理温度の範囲の一例を以下に示す。   The heat treatment temperature is preferably set as appropriate according to the type of metal material coated on the surface of the Sm—Fe-based alloy powder. An example of the range of the heat treatment temperature according to various metal materials is shown below.

Cu:620℃超750℃未満、好ましくは630℃以上730℃以下
Zn:430℃超500℃未満、好ましくは440℃以上490℃以下
Al:680℃超800℃未満、好ましくは700℃以上780℃以下
Sn:650℃超830℃未満、好ましくは660℃以上800℃以下
Nb:700℃超810℃未満、好ましくは720℃以上800℃以下
Zr:660℃超790℃未満、好ましくは680℃以上780℃以下
Ti:710℃超850℃未満、好ましくは730℃以上830℃以下
CuSn:570℃超690℃未満、好ましくは590℃以上670℃以下
CuTi:650℃超770℃未満、好ましくは660℃以上750℃以下
CuAl:640℃超760℃未満、好ましくは650℃以上740℃以下
TiZn:600℃超720℃未満、好ましくは610℃以上700℃以下
Cu: more than 620 ° C. and less than 750 ° C., preferably 630 ° C. or more and 730 ° C. or less Zn: more than 430 ° C. and less than 500 ° C., preferably 440 ° C. or more and 490 ° C. or less Al: more than 680 ° C. and less than 800 ° C., preferably 700 ° C. or more and 780 ° C. Sn: More than 650 ° C. and less than 830 ° C., preferably 660 ° C. or more and 800 ° C. or less Nb: More than 700 ° C. and less than 810 ° C., preferably 720 ° C. or more and 800 ° C. or less Zr: More than 660 ° C. and less than 790 ° C., preferably 680 ° C. or more and 780 ° C. Ti: 710 ° C. or more and less than 850 ° C., preferably 730 ° C. or more and 830 ° C. or less Cu 6 Sn 5 : 570 ° C. or more and less than 690 ° C., preferably 590 ° C. or more and 670 ° C. or less CuTi: More than 650 ° C. and less than 770 ° C., preferably 660 ° C. or higher and 750 ° C. or lower CuAl: Over 640 ° C. and lower than 760 ° C., preferably 650 ° C. or higher and 740 ° C. or lower iZn 5: 600 ℃ ultra 720 below ° C., preferably not more than 700 ° C. 610 ° C. or higher

熱処理時間は、表面層の厚さが上記範囲内となるように適宜設定すればよく、熱処理温度に応じて、例えば0.5時間以上2時間以下とすることが挙げられる。また、熱処理は、Sm−Fe系合金粉末の酸化を防止する観点から、不活性雰囲気中、具体的にはArなどの不活性ガス雰囲気中で行うことが好ましい。   The heat treatment time may be set as appropriate so that the thickness of the surface layer falls within the above range, and may be 0.5 hours or more and 2 hours or less, for example, depending on the heat treatment temperature. Moreover, it is preferable to perform heat processing in inert gas atmosphere, specifically, inert gas atmosphere, such as Ar, from a viewpoint of preventing the oxidation of Sm-Fe type alloy powder.

(窒化工程)
窒化工程は、表面層が形成されたSm−Fe系合金粉末を磁場中で窒化処理して、主相のSm−Fe系化合物を窒化することにより、Sm−Fe−N系化合物を主相とするSm−Fe−N系合金の粉末を得る工程である。代表的には、SmFe17を窒化してSmFe17とする。
(Nitriding process)
In the nitriding step, the Sm—Fe—N based compound powder having the surface layer formed therein is nitrided in a magnetic field to nitride the Sm—Fe based compound of the main phase, thereby making the Sm—Fe—N based compound a main phase. This is a step of obtaining Sm—Fe—N alloy powder. Typically, Sm 2 Fe 17 is nitrided to Sm 2 Fe 17 N 3 .

〈窒化処理〉
窒化処理は、窒素含有雰囲気中、窒化温度以上で熱処理することで行うことが挙げられる。窒素含有雰囲気としては、例えば、Nガス雰囲気又はNガスとHガスとの混合ガス雰囲気、若しくは、NHガス雰囲気又はNHガスとHガスとの混合ガス雰囲気が挙げられる。また、窒化処理する際の熱処理の温度は、例えば200℃以上(好ましくは300℃以上)550℃以下(好ましくは500℃以下)とすることが挙げられる。
<Nitriding treatment>
The nitriding treatment may be performed by performing a heat treatment in a nitrogen-containing atmosphere at a nitriding temperature or higher. Examples of the nitrogen-containing atmosphere include an N 2 gas atmosphere, a mixed gas atmosphere of N 2 gas and H 2 gas, an NH 3 gas atmosphere, or a mixed gas atmosphere of NH 3 gas and H 2 gas. Moreover, the temperature of the heat treatment at the time of nitriding is, for example, 200 ° C. or higher (preferably 300 ° C. or higher) and 550 ° C. or lower (preferably 500 ° C. or lower).

更に、窒化処理を磁場中で行うことで、Nが拡散し易く、主相(Sm−Fe系化合物)の結晶格子におけるFe−Fe原子間にNを選択的に導入し易くなる。その結果、Sm−Fe系化合物の窒化反応が促進され、Sm−Fe系化合物を良好に窒化することができ、磁気異方性が改善される。特に、磁場の強度は3T以上12T以下とすることが好ましい。磁場の強度を3T以上とすることで、Nが表面層を浸透して粒子内部まで拡散し易く、Sm−Fe系化合物の窒化反応が促進され、Sm−Fe系化合物を十分に窒化し易い。また、後工程の成形工程において、Sm−Fe系化合物(例、SmFe17)が残留することによる成形性の低下も抑制できる。一方、磁場の強度を12T以下とすることで、Nの拡散速度が速くなり過ぎることによる窒化反応の阻害を抑制でき、磁気特性の低下を抑制できる。また、過剰窒化によるα−Feやa−Smの生成を抑制でき、磁気特性の低下を抑制できる。加えて、磁場の影響によりSm−Fe−N系合金粉末の結晶相の組成分布に偏りが生じることが少なく、結晶相の組成分布に偏りが生じることによる成形性の低下を抑制できる。磁場の印加は、例えば超電導マグネット、常電導マグネットなどの公知の磁場印加装置を使用できる。超電導マグネットを使用すれば、3T以上の強磁場を印加することも容易である。 Furthermore, by performing the nitriding treatment in a magnetic field, it is easy for N to diffuse and to selectively introduce N between Fe—Fe atoms in the crystal lattice of the main phase (Sm—Fe-based compound). As a result, the nitriding reaction of the Sm—Fe compound is promoted, the Sm—Fe compound can be nitrided well, and the magnetic anisotropy is improved. In particular, the strength of the magnetic field is preferably 3T or more and 12T or less. By setting the strength of the magnetic field to 3 T or more, N easily penetrates the surface layer and diffuses into the particles, promotes the nitriding reaction of the Sm—Fe-based compound, and sufficiently nitrifies the Sm—Fe-based compound. In addition, it is possible to suppress a decrease in moldability due to the remaining Sm—Fe-based compound (eg, Sm 2 Fe 17 ) in the subsequent molding step. On the other hand, by setting the intensity of the magnetic field to 12 T or less, inhibition of the nitriding reaction due to excessive increase in the diffusion rate of N can be suppressed, and deterioration in magnetic characteristics can be suppressed. Moreover, the production | generation of (alpha) -Fe and a-Sm by excessive nitriding can be suppressed, and the fall of a magnetic characteristic can be suppressed. In addition, the composition distribution of the crystal phase of the Sm—Fe—N-based alloy powder is less likely to be biased due to the influence of the magnetic field, and a decrease in formability due to the bias of the composition distribution of the crystal phase can be suppressed. For the application of the magnetic field, for example, a known magnetic field application device such as a superconducting magnet or a normal conducting magnet can be used. If a superconducting magnet is used, it is easy to apply a strong magnetic field of 3T or more.

(成形工程)
成形工程は、Sm−Fe−N系合金の粉末を磁場中で圧縮成形して、Sm−Fe−N系磁石を得る工程である。
(Molding process)
The forming step is a step in which an Sm—Fe—N-based magnet is obtained by compression-molding an Sm—Fe—N-based alloy powder in a magnetic field.

〈圧縮成形〉
圧縮成形の条件は、磁石の高密度化を図る観点から、成形圧力を例えば294MPa(3ton/cm)以上1960MPa(20ton/cm)以下とすることが挙げられる。より好ましい成形圧力は、588MPa(6ton/cm)以上、980MPa(10ton/cm)以上である。成形圧力を高くするほど、相対密度の高い希土類磁石が得られ易い。また、希土類磁石の相対密度は、例えば80%以上とすることが好ましく、より好ましくは85%以上、90%以上である。相対密度が高いほど、緻密で硬磁性相の割合が高い希土類磁石が得られる点で好ましい。ここで、相対密度とは、Sm−Fe−N系合金の真密度(SmFe17の場合、約7.92g/cm)に対する実際の密度([「磁石の嵩密度」/「合金の真密度」]の百分率)のことである。
<Compression molding>
Conditions of the compression molding, from the viewpoint of increasing the density of the magnet, the molding pressure for example 294MPa (3ton / cm 2) or more 1960MPa (20ton / cm 2) include to be less. More preferred molding pressure is, 588MPa (6ton / cm 2) or more, and 980MPa (10ton / cm 2) or more. The higher the molding pressure, the easier it is to obtain a rare earth magnet with a higher relative density. The relative density of the rare earth magnet is preferably 80% or more, and more preferably 85% or more and 90% or more. A higher relative density is preferable in that a rare earth magnet having a dense and hard magnetic phase ratio can be obtained. Here, the relative density (in the case of Sm 2 Fe 17 N 3, about 7.92g / cm 3) Sm-Fe -N -based true density of the alloy actual density to ([ "bulk density of the magnet" / " It is the percentage of the true density of the alloy.

更に、圧縮成形を磁場中で行うことで、磁場の方向に主相(Sm−Fe−N系化合物)の結晶方位を揃えて粒子を配向させることができる。その結果、Sm−Fe−N系化合物の磁化容易軸(c軸)を一方向に配向させ易く、磁気異方性が高く、磁気特性に優れる希土類磁石が得られる。磁場の磁界強度は、例えば3.99kA/cm以上とすることが好ましく、より好ましくは7.98kA/cm以上、23.9kA/cm以上である。磁界強度を高くするほど、磁界の方向に粒子の結晶方位を揃え易いが、磁界強度を高くし過ぎても、それ以上の効果はあまり期待できないので、磁界強度は、例えば79.8kA/cm以下とすることが挙げられる。磁界の方向は、特に限定されないが、例えば、圧縮方向と平行な方向としたり、垂直な方向とすることが挙げられる。その他、圧縮成形する際に成形用金型を適宜加熱することで、粉末の変形が促進され、高密度化が容易になる。   Furthermore, by performing compression molding in a magnetic field, it is possible to align the crystal orientation of the main phase (Sm—Fe—N compound) in the direction of the magnetic field and to orient the particles. As a result, it is possible to obtain a rare earth magnet that easily aligns the easy magnetization axis (c-axis) of the Sm—Fe—N-based compound in one direction, has high magnetic anisotropy, and excellent magnetic properties. The magnetic field strength of the magnetic field is preferably, for example, 3.99 kA / cm or more, more preferably 7.98 kA / cm or more, 23.9 kA / cm or more. The higher the magnetic field strength, the easier it is to align the crystal orientation of the particles in the direction of the magnetic field. However, if the magnetic field strength is increased too much, no further effect can be expected. And so on. The direction of the magnetic field is not particularly limited, and examples thereof include a direction parallel to the compression direction and a perpendicular direction. In addition, by appropriately heating the molding die during compression molding, deformation of the powder is promoted, and high density is facilitated.

[実施例1]
Smを25質量%含有し、残部がFe及び不可避不純物からなる組成を有するSm−Fe系合金を製造し、これを粉砕してSm−Fe系合金の粉末を用意した。Sm−Fe系合金は、上記組成となるようにSmとFeとを配合した原料をストリップキャスト法により溶解・鋳造して、合金薄片を製造した。更に、この例では、このSm−Fe系合金をHDDR処理した。その後、このSm−Fe系合金を粉砕した後、篩にかけて、粒子径(D50)が1.0μmのSm−Fe系合金の原料粉末を得た。このSm−Fe系合金は、SmFe17を主相とするSmFe17合金である。
[Example 1]
An Sm-Fe-based alloy having a composition containing 25% by mass of Sm and the balance of Fe and inevitable impurities was manufactured, and pulverized to prepare an Sm-Fe-based alloy powder. The Sm-Fe alloy was produced by melting and casting a raw material containing Sm and Fe so as to have the above composition by a strip casting method. Further, in this example, this Sm—Fe alloy was subjected to HDDR treatment. Thereafter, this Sm—Fe alloy was pulverized and then sieved to obtain a raw material powder of an Sm—Fe alloy having a particle diameter (D50) of 1.0 μm. The Sm-Fe-based alloy is Sm 2 Fe 17 alloy as a main phase of Sm 2 Fe 17.

用意したSmFe17合金の粉末を原料粉末として用い、製造条件を変更して希土類磁石(Sm−Fe−N系磁石)を製造し、表1に示す試料No.1−1〜No.1−4及びNo.1−11〜No.1−14を得た。そして、得られた磁石の試料について、磁石特性を評価した。 The prepared Sm 2 Fe 17 alloy powder was used as a raw material powder, and the production conditions were changed to produce a rare earth magnet (Sm—Fe—N based magnet). 1-1-No. 1-4 and No.1. 1-11-No. 1-14 was obtained. And the magnet characteristic was evaluated about the sample of the obtained magnet.

〈試料No.1−1〉
SmFe17合金粉末の粒子表面にZnを真空蒸着法により蒸着して、Znを被覆した。被覆したZnの厚さは18nmである。その後、Znが被覆されたSmFe17合金粉末を、Arガス雰囲気中、450℃で1時間熱処理した。
<Sample No. 1-1>
Zn was deposited on the surface of the particles of the Sm 2 Fe 17 alloy powder by a vacuum deposition method to cover the Zn. The thickness of the coated Zn is 18 nm. Thereafter, the Zn-coated Sm 2 Fe 17 alloy powder was heat-treated at 450 ° C. for 1 hour in an Ar gas atmosphere.

熱処理後のSmFe17合金粉末の一部を採取し、これをX線回折装置(XRD;株式会社リガク製 SmartLab)により結晶相分析した。分析の結果、SmFe17,FeZn10が存在していた。また、SmFe17合金粉末の一部を樹脂に埋め込んで研磨して観察用試料を作製し、その断面を透過型電子顕微鏡(TEM;株式会社日立ハイテクノロジーズ製 H−9500)により観察した。そして、TEMに付属のエネルギー分散型X線分析装置(EDX)による元素マッピングから、Znを含有する表面層の厚さを求めた。具体的には、粉末の粒子表面から中心に向かってライン分析を行い、Znを含有する表面層の厚さを測定した。ここでは、表面層の厚さは、1つの粒子につき10点以上測定し、少なくとも10個以上の粒子について表面層の厚さを求め、その平均値とした。その結果、表面層の厚さは19nmであった。断面のTEM像とZnの元素マッピングから、表面層は粒子の略全周に亘って均一に形成されていることが確認された。 A part of the Sm 2 Fe 17 alloy powder after the heat treatment was collected, and crystal phase analysis was performed using an X-ray diffractometer (XRD; SmartLab, manufactured by Rigaku Corporation). As a result of the analysis, Sm 2 Fe 17 and Fe 3 Zn 10 were present. Further, a part of the Sm 2 Fe 17 alloy powder was embedded in a resin and polished to prepare an observation sample, and a cross section thereof was observed with a transmission electron microscope (TEM; H-9500 manufactured by Hitachi High-Technologies Corporation). And the thickness of the surface layer containing Zn was calculated | required from the elemental mapping by the energy dispersive X-ray analyzer (EDX) attached to TEM. Specifically, line analysis was performed from the powder particle surface toward the center, and the thickness of the surface layer containing Zn was measured. Here, the thickness of the surface layer was measured at 10 or more points per particle, the thickness of the surface layer was determined for at least 10 particles, and the average value was obtained. As a result, the thickness of the surface layer was 19 nm. From the TEM image of the cross section and the elemental mapping of Zn, it was confirmed that the surface layer was uniformly formed over the entire circumference of the particle.

更に、断面のTEM像とZnの元素マッピングから、このSmFe17合金粉末の粒子は、複数の主相(SmFe17)の結晶粒からなる多結晶粒子であり、結晶粒界にZnを含有する粒界相が形成されていることが確認された。粒界相は、主相結晶粒の周囲に均一に存在していた。また、断面のTEM像から、主相の結晶粒径を求めた。主相の結晶粒径は、少なくとも10個以上の粒子について、各結晶粒の等面積円相当径を算出し、その平均値とした。その結果、主相の結晶粒径は約300nmであった。 Furthermore, from the TEM image of the cross section and the elemental mapping of Zn, the particles of this Sm 2 Fe 17 alloy powder are polycrystalline particles composed of crystal grains of a plurality of main phases (Sm 2 Fe 17 ), and Zn is present at the grain boundaries. It was confirmed that a grain boundary phase containing was formed. The grain boundary phase was present uniformly around the main phase crystal grains. Further, the crystal grain size of the main phase was determined from the TEM image of the cross section. For the crystal grain size of the main phase, the equivalent area circle equivalent diameter of each crystal grain was calculated and averaged for at least 10 grains. As a result, the crystal grain size of the main phase was about 300 nm.

次に、上記表面層が形成されたSmFe17合金粉末を、NHガスとHガスの体積濃度比が1:3の混合ガス雰囲気中、400℃で10時間窒化処理した。窒化処理は、3Tの磁場を印加しながら行った。 Next, the Sm 2 Fe 17 alloy powder on which the surface layer was formed was subjected to nitriding treatment at 400 ° C. for 10 hours in a mixed gas atmosphere having a volume concentration ratio of NH 3 gas and H 2 gas of 1: 3. The nitriding treatment was performed while applying a 3T magnetic field.

窒化処理後のSmFe17合金粉末の一部をXRDにより結晶相分析した結果、SmFe17,FeZn10が存在していた。つまり、この合金粉末は、SmFe17を主相とするSmFe17合金の粉末である。 As a result of crystal phase analysis of a part of the Sm 2 Fe 17 alloy powder after nitriding by XRD, Sm 2 Fe 17 N 3 and Fe 3 Zn 10 were present. That is, the alloy powder is a powder of Sm 2 Fe 17 N 3 alloy of which main phase Sm 2 Fe 17 N 3.

最後に、SmFe17合金粉末を、13.5kA/cmの磁界中で、980MPaの面圧を加えて高圧プレス成形し、SmFe17合金粉末を圧縮成形したSm−Fe−N系磁石を製造した。この磁石を試料No.1−1とした。 Finally, Sm 2 Fe 17 N 3 alloy powder was subjected to high pressure press molding by applying a surface pressure of 980 MPa in a magnetic field of 13.5 kA / cm, and Sm 2 Fe 17 N 3 alloy powder was compression molded. -N magnets were produced. This magnet is connected to sample No. 1-1.

〈試料No.1−2〉
被覆材料をCuに変更して、Sm−Fe−N系磁石を製造した。
<Sample No. 1-2>
The coating material was changed to Cu, and an Sm—Fe—N magnet was produced.

SmFe17合金粉末の粒子表面にCuを真空蒸着法により蒸着して、Cuを被覆した。被覆したCuの厚さは4.3nmである。その後、Cuが被覆されたSmFe17合金粉末を、Arガス雰囲気中、700℃で0.5時間熱処理した。試料No.1−1と同様に、熱処理後のSmFe17合金粉末について、XRDにより結晶相分析した結果、SmFe17,SmCuが存在していた。また、TEM分析によりCuを含有する表面層の厚さを求めたところ、表面層の厚さは5.0nmであった。更に、断面のTEM像とCuの元素マッピングから、試料No.1−1と同じように、表面層が粒子の略全周に亘って均一に形成されていると共に、結晶粒界にCuを含有する粒界相が形成されていることが確認された。 Cu was deposited on the surface of the particles of the Sm 2 Fe 17 alloy powder by a vacuum deposition method to cover the Cu. The thickness of the coated Cu is 4.3 nm. Thereafter, the Cu-coated Sm 2 Fe 17 alloy powder was heat-treated at 700 ° C. for 0.5 hour in an Ar gas atmosphere. Sample No. As in 1-1, the Sm 2 Fe 17 alloy powder after the heat treatment was analyzed by XRD to find that Sm 2 Fe 17 and SmCu 5 were present. Moreover, when the thickness of the surface layer containing Cu was calculated | required by TEM analysis, the thickness of the surface layer was 5.0 nm. Further, from the cross-sectional TEM image and Cu element mapping, the sample No. As in 1-1, it was confirmed that the surface layer was formed uniformly over substantially the entire circumference of the particle, and a grain boundary phase containing Cu was formed at the crystal grain boundary.

次に、上記表面層が形成されたSmFe17合金粉末を、NHガスとHガスの体積濃度比が1:3の混合ガス雰囲気中、450℃で8時間窒化処理した。窒化処理は、5Tの磁場を印加しながら行った。試料No.1−1と同様に、窒化処理後のSmFe17合金粉末について、XRDにより結晶相分析した結果、SmFe17,SmCu,Cu,a−Smが存在していた。Cu及びa−Smが生成された理由は、窒化処理時にSmCuの一部がNと反応してCuとa−Smとに分解したことに起因するものと考えられる。 Next, the Sm 2 Fe 17 alloy powder with the surface layer formed thereon was subjected to nitriding treatment at 450 ° C. for 8 hours in a mixed gas atmosphere in which the volume concentration ratio of NH 3 gas and H 2 gas was 1: 3. The nitriding treatment was performed while applying a 5T magnetic field. Sample No. As in 1-1, the Sm 2 Fe 17 alloy powder after the nitriding treatment was subjected to crystal phase analysis by XRD. As a result, Sm 2 Fe 17 N 3 , SmCu 5 , Cu, and a-Sm were present. It is considered that the reason why Cu and a-Sm were produced was that a part of SmCu 5 reacted with N and decomposed into Cu and a-Sm during nitriding.

最後に、試料No.1−1と同じ圧縮成形条件で、得られたSmFe17合金粉末を高圧プレス成形し、SmFe17合金粉末を圧縮成形したSm−Fe−N系磁石を製造した。この磁石を試料No.1−2とした。 Finally, sample no. In the same compression molding conditions as 1-1, Sm 2 Fe 17 N 3 alloy powder was pressure press molding, to produce a Sm-Fe-N magnet obtained by compressing molding the Sm 2 Fe 17 N 3 alloy powder. This magnet is connected to sample No. 1-2.

〈試料No.1−3〉
被覆材料をAlに変更して、Sm−Fe−N系磁石を製造した。
<Sample No. 1-3>
The coating material was changed to Al, and an Sm—Fe—N magnet was produced.

SmFe17合金粉末の粒子表面にAlを真空蒸着法により蒸着して、Alを被覆した。被覆したAlの厚さは1nmである。その後、Alが被覆されたSmFe17合金粉末を、Arガス雰囲気中、750℃で0.5時間熱処理した。試料No.1−1と同様に、熱処理後のSmFe17合金粉末について、XRDにより結晶相分析した結果、SmFe17,FeAlが存在していた。また、TEM分析によりAlを含有する表面層の厚さを求めたところ、表面層の厚さは1.3nmであった。更に、断面のTEM像とAlの元素マッピングから、試料No.1−1と同じように、表面層が粒子の略全周に亘って均一に形成されていると共に、結晶粒界にAlを含有する粒界相が形成されていることが確認された。 Al was deposited on the particle surfaces of the Sm 2 Fe 17 alloy powder by a vacuum deposition method to coat the Al. The thickness of the coated Al is 1 nm. Thereafter, the Al-coated Sm 2 Fe 17 alloy powder was heat-treated at 750 ° C. for 0.5 hour in an Ar gas atmosphere. Sample No. As in 1-1, the Sm 2 Fe 17 alloy powder after the heat treatment was subjected to crystal phase analysis by XRD. As a result, Sm 2 Fe 17 and FeAl 3 were present. Moreover, when the thickness of the surface layer containing Al was calculated | required by TEM analysis, the thickness of the surface layer was 1.3 nm. Further, from the TEM image of the cross section and the elemental mapping of Al, the sample No. As in 1-1, it was confirmed that the surface layer was formed uniformly over substantially the entire circumference of the particle, and a grain boundary phase containing Al was formed at the crystal grain boundary.

次に、上記表面層が形成されたSmFe17合金粉末を、NHガスとHガスの体積濃度比が1:4の混合ガス雰囲気中、475℃で12時間窒化処理した。窒化処理は、5Tの磁場を印加しながら行った。試料No.1−1と同様に、窒化処理後のSmFe17合金粉末について、XRDにより結晶相分析した結果、SmFe17,FeAlが存在していた。 Next, the Sm 2 Fe 17 alloy powder having the surface layer formed thereon was subjected to nitriding treatment at 475 ° C. for 12 hours in a mixed gas atmosphere in which the volume concentration ratio of NH 3 gas and H 2 gas was 1: 4. The nitriding treatment was performed while applying a 5T magnetic field. Sample No. As in 1-1, the Sm 2 Fe 17 alloy powder after the nitriding treatment was subjected to crystal phase analysis by XRD. As a result, Sm 2 Fe 17 N 3 and FeAl 3 were present.

最後に、試料No.1−1と同じ圧縮成形条件で、得られたSmFe17合金粉末を高圧プレス成形し、SmFe17合金粉末を圧縮成形したSm−Fe−N系磁石を製造した。この磁石を試料No.1−3とした。 Finally, sample no. In the same compression molding conditions as 1-1, Sm 2 Fe 17 N 3 alloy powder was pressure press molding, to produce a Sm-Fe-N magnet obtained by compressing molding the Sm 2 Fe 17 N 3 alloy powder. This magnet is connected to sample No. 1-3.

〈試料No.1−4〉
被覆材料をCuSnに変更して、Sm−Fe−N系磁石を製造した。
<Sample No. 1-4>
The coating material was changed to Cu 6 Sn 5 to produce an Sm—Fe—N magnet.

SmFe17合金粉末の粒子表面にCuSnを真空蒸着法により蒸着して、CuSnを被覆した。被覆したCuSnの厚さは6.5nmである。その後、CuSnが被覆されたSmFe17合金粉末を、Arガス雰囲気中、630℃で1時間熱処理した。試料No.1−1と同様に、熱処理後のSmFe17合金粉末について、XRDにより結晶相分析した結果、SmFe17,SmCu,CuSnが存在していた。また、TEM分析によりCu又はSnを含有する表面層の厚さを求めたところ、表面層の厚さは7.2nmであった。更に、断面のTEM像とCu,Snの元素マッピングから、試料No.1−1と同じように、表面層が粒子の略全周に亘って均一に形成されていると共に、結晶粒界にCu又はSnを含有する粒界相が形成されていることが確認された。 Cu 6 Sn 5 was deposited on the particle surface of the Sm 2 Fe 17 alloy powder by a vacuum deposition method to cover the Cu 6 Sn 5 . The thickness of the coated Cu 6 Sn 5 is 6.5 nm. Thereafter, the Sm 2 Fe 17 alloy powder coated with Cu 6 Sn 5 was heat-treated at 630 ° C. for 1 hour in an Ar gas atmosphere. Sample No. As in 1-1, the Sm 2 Fe 17 alloy powder after the heat treatment was subjected to crystal phase analysis by XRD. As a result, Sm 2 Fe 17 , SmCu 5 and Cu 6 Sn 5 were present. Moreover, when the thickness of the surface layer containing Cu or Sn was determined by TEM analysis, the thickness of the surface layer was 7.2 nm. Furthermore, from the TEM image of the cross section and elemental mapping of Cu and Sn, sample No. As in 1-1, it was confirmed that the surface layer was uniformly formed over the entire circumference of the particle, and a grain boundary phase containing Cu or Sn was formed at the crystal grain boundary. .

次に、上記表面層が形成されたSmFe17合金粉末を、NHガスとHガスの体積濃度比が1:3の混合ガス雰囲気中、420℃で8時間窒化処理した。窒化処理は、4Tの磁場を印加しながら行った。試料No.1−1と同様に、窒化処理後のSmFe17合金粉末について、XRDにより結晶相分析した結果、SmFe17,SmCu,CuSn,Cu,a−Sm,Snが存在していた。Cu,a−Sm及びSnが生成された理由は、窒化処理時にSmCu及びCuSnの一部がNと反応してCuとa−Sm及びCuとSnにそれぞれ分解したことに起因するものと考えられる。 Next, the Sm 2 Fe 17 alloy powder on which the surface layer was formed was subjected to nitriding treatment at 420 ° C. for 8 hours in a mixed gas atmosphere in which the volume concentration ratio of NH 3 gas and H 2 gas was 1: 3. The nitriding treatment was performed while applying a 4T magnetic field. Sample No. As in 1-1, the Sm 2 Fe 17 alloy powder after nitriding was analyzed by XRD, and as a result, Sm 2 Fe 17 N 3 , SmCu 5 , Cu 6 Sn 5 , Cu, a-Sm, and Sn were Existed. The reason why Cu, a-Sm, and Sn were generated is that a part of SmCu 5 and Cu 6 Sn 5 reacted with N and decomposed into Cu and a-Sm and Cu and Sn, respectively, during nitriding. It is considered a thing.

最後に、試料No.1−1と同じ圧縮成形条件で、得られたSmFe17合金粉末を高圧プレス成形し、SmFe17合金粉末を圧縮成形したSm−Fe−N系磁石を製造した。この磁石を試料No.1−4とした。 Finally, sample no. In the same compression molding conditions as 1-1, Sm 2 Fe 17 N 3 alloy powder was pressure press molding, to produce a Sm-Fe-N magnet obtained by compressing molding the Sm 2 Fe 17 N 3 alloy powder. This magnet is connected to sample No. 1-4.

〈試料No.1−11,No.1−12〉
熱処理工程における熱処理条件を変更した以外は、試料No.1−1と同じ製造条件でSm−Fe−N系磁石を製造した。
<Sample No. 1-11, No. 1 1-12>
Except for changing the heat treatment conditions in the heat treatment step, Sample No. An Sm—Fe—N-based magnet was produced under the same production conditions as 1-1.

試料No.1−11では、SmFe17合金粉末の粒子表面にZnを真空蒸着法により被覆した後、Znが被覆されたSmFe17合金粉末を、Arガス雰囲気中、500℃で1時間熱処理した。試料No.1−1と同様に、熱処理後のSmFe17合金粉末について、XRDにより結晶相分析した結果、SmFe17,FeZn10,α−Feが存在していた。また、TEM分析により表面層の厚さを求めたところ、表面層の厚さは43nmであった。 Sample No. In 1-11, after covering by vacuum deposition of Zn on the surface of the particles of the Sm 2 Fe 17 alloy powder, a Sm 2 Fe 17 alloy powder Zn is coated, in an Ar gas atmosphere, and heat-treated for 1 hour at 500 ° C. . Sample No. As in 1-1, the Sm 2 Fe 17 alloy powder after the heat treatment was subjected to crystal phase analysis by XRD. As a result, Sm 2 Fe 17 , Fe 3 Zn 10 , and α-Fe were present. Moreover, when the thickness of the surface layer was calculated | required by TEM analysis, the thickness of the surface layer was 43 nm.

次に、試料No.1−1と同じ窒化処理条件で、上記表面層が形成されたSmFe17合金粉末を窒化処理した。試料No.1−1と同様に、窒化処理後のSmFe17合金粉末について、XRDにより結晶相分析した結果、SmFe17,FeZn10,α−Fe,SmFe17が存在していた。 Next, sample No. The Sm 2 Fe 17 alloy powder on which the surface layer was formed was nitrided under the same nitriding conditions as 1-1. Sample No. As in 1-1, the Sm 2 Fe 17 alloy powder after nitriding was analyzed by XRD, and as a result, Sm 2 Fe 17 N 3 , Fe 3 Zn 10 , α-Fe, Sm 2 Fe 17 was present. It was.

最後に、試料No.1−1と同じ圧縮成形条件で、得られたSmFe17合金粉末を高圧プレス成形し、SmFe17合金粉末を圧縮成形したSm−Fe−N系磁石を製造した。この磁石を試料No.1−11とした。 Finally, sample no. In the same compression molding conditions as 1-1, Sm 2 Fe 17 N 3 alloy powder was pressure press molding, to produce a Sm-Fe-N magnet obtained by compressing molding the Sm 2 Fe 17 N 3 alloy powder. This magnet was connected to Sample No. 1-11.

試料No.1−12では、SmFe17合金粉末の粒子表面にZnを真空蒸着法により被覆した後、Znが被覆されたSmFe17合金粉末を、Arガス雰囲気中、430℃で0.5時間熱処理した。試料No.1−1と同様に、熱処理後のSmFe17合金粉末について、XRDにより結晶相分析した結果、SmFe17,FeZn10が存在していた。また、TEM分析により表面層の厚さを求めたところ、表面層の厚さは0.5nmであった。 Sample No. In 1-12, after covering by vacuum deposition of Zn on the surface of the particles of the Sm 2 Fe 17 alloy powder, a Sm 2 Fe 17 alloy powder Zn is coated, in an Ar gas atmosphere, 0.5 hours at 430 ° C. Heat treated. Sample No. As in 1-1, the Sm 2 Fe 17 alloy powder after heat treatment was subjected to crystal phase analysis by XRD. As a result, Sm 2 Fe 17 and Fe 3 Zn 10 were present. Moreover, when the thickness of the surface layer was calculated | required by TEM analysis, the thickness of the surface layer was 0.5 nm.

次に、試料No.1−1と同じ窒化処理条件で、上記表面層が形成されたSmFe17合金粉末を窒化処理した。試料No.1−1と同様に、窒化処理後のSmFe17合金粉末について、XRDにより結晶相分析した結果、SmFe17,FeZn10が存在していた。 Next, sample No. The Sm 2 Fe 17 alloy powder on which the surface layer was formed was nitrided under the same nitriding conditions as 1-1. Sample No. As in 1-1, the Sm 2 Fe 17 alloy powder after the nitriding treatment was subjected to crystal phase analysis by XRD. As a result, Sm 2 Fe 17 N 3 and Fe 3 Zn 10 were present.

最後に、試料No.1−1と同じ圧縮成形条件で、得られたSmFe17合金粉末を高圧プレス成形し、SmFe17合金粉末を圧縮成形したSm−Fe−N系磁石を製造した。この磁石を試料No.1−12とした。 Finally, sample no. In the same compression molding conditions as 1-1, Sm 2 Fe 17 N 3 alloy powder was pressure press molding, to produce a Sm-Fe-N magnet obtained by compressing molding the Sm 2 Fe 17 N 3 alloy powder. This magnet is connected to sample No. 1-12.

〈試料No.1−13,No.1−14〉
窒化工程における窒化処理条件(具体的には、印加する磁場の強度)を変更した以外は、試料No.1−1と同じ製造条件でSm−Fe−N系磁石を製造した。
<Sample No. 1-13, No. 1 1-14>
Except for changing the nitriding conditions in the nitriding step (specifically, the strength of the applied magnetic field), the sample No. An Sm—Fe—N-based magnet was produced under the same production conditions as 1-1.

試料No.1−13,No.1−14では、SmFe17合金粉末の粒子表面にZnを真空蒸着法により被覆した後、試料No.1−1と同じ熱処理条件で、Znが被覆されたSmFe17合金粉末を熱処理した。熱処理後のSmFe17合金粉末のXRDによる結晶相分析の結果は、SmFe17,FeZn10であり、また、表面層の厚さは19nmであった。 Sample No. 1-13, No. 1 In No. 1-14, after coating the surface of the particles of the Sm 2 Fe 17 alloy powder with Zn by a vacuum deposition method, The Sm 2 Fe 17 alloy powder coated with Zn was heat-treated under the same heat treatment conditions as 1-1. The result of XRD crystal phase analysis of the Sm 2 Fe 17 alloy powder after the heat treatment was Sm 2 Fe 17 and Fe 3 Zn 10 and the thickness of the surface layer was 19 nm.

試料No.1−13では、上記表面層が形成されたSmFe17合金粉末を、1Tの磁場を印加しながら、NHガスとHガスの体積濃度比が1:3の混合ガス雰囲気中、400℃で10時間窒化処理した。試料No.1−1と同様に、窒化処理後のSmFe17合金粉末について、XRDにより結晶相分析した結果、SmFe17,FeZn10,SmFe17が存在していた。そして、試料No.1−1と同じ圧縮成形条件で、得られたSmFe17合金粉末を高圧プレス成形し、SmFe17合金粉末を圧縮成形したSm−Fe−N系磁石を製造した。この磁石を試料No.1−13とした。 Sample No. In No. 1-13, the Sm 2 Fe 17 alloy powder having the surface layer formed thereon was subjected to 400 in a mixed gas atmosphere having a volume concentration ratio of NH 3 gas and H 2 gas of 1: 3 while applying a 1T magnetic field. Nitriding was performed at a temperature of 10 ° C. for 10 hours. Sample No. As in 1-1, the Sm 2 Fe 17 alloy powder after the nitriding treatment was subjected to crystal phase analysis by XRD. As a result, Sm 2 Fe 17 N 3 , Fe 3 Zn 10 , and Sm 2 Fe 17 were present. And sample no. In the same compression molding conditions as 1-1, Sm 2 Fe 17 N 3 alloy powder was pressure press molding, to produce a Sm-Fe-N magnet obtained by compressing molding the Sm 2 Fe 17 N 3 alloy powder. This magnet was connected to Sample No. 1-13.

試料No.1−14では、上記表面層が形成されたSmFe17合金粉末を、17Tの磁場を印加しながら、NHガスとHガスの体積濃度比が1:3の混合ガス雰囲気中、400℃で10時間窒化処理した。試料No.1−1と同様に、窒化処理後のSmFe17合金粉末について、XRDにより結晶相分析した結果、SmFe17,FeZn10,SmFe17,α−Fe,a−Smが存在していた。そして、試料No.1−1と同じ圧縮成形条件で、得られたSmFe17合金粉末を高圧プレス成形し、SmFe17合金粉末を圧縮成形したSm−Fe−N系磁石を製造した。この磁石を試料No.1−14とした。 Sample No. In No. 1-14, the Sm 2 Fe 17 alloy powder having the surface layer formed thereon was subjected to 400 in a mixed gas atmosphere in which the volume concentration ratio of NH 3 gas and H 2 gas was 1: 3 while applying a magnetic field of 17T. Nitriding was performed at a temperature of 10 ° C. for 10 hours. Sample No. Similar to 1-1, the Sm 2 Fe 17 alloy powder after the nitriding treatment was subjected to crystal phase analysis by XRD. As a result, Sm 2 Fe 17 N 3 , Fe 3 Zn 10 , Sm 2 Fe 17 , α-Fe, a- Sm was present. And sample no. In the same compression molding conditions as 1-1, Sm 2 Fe 17 N 3 alloy powder was pressure press molding, to produce a Sm-Fe-N magnet obtained by compressing molding the Sm 2 Fe 17 N 3 alloy powder. This magnet is connected to sample No. 1-14.

〈磁石特性の評価〉
試料No.1−1〜No.1−4及びNo.1−11〜No.1−14について、相対密度を求めた。相対密度は、磁石の体積と質量から寸法密度(実測密度)を計算し、真密度をSmFe17合金の真密度(7.92g/cm)と等価として、[「寸法密度」/「真密度」]×100から求めた。その結果を表1に示す。
<Evaluation of magnet properties>
Sample No. 1-1-No. 1-4 and No.1. 1-11-No. The relative density was determined for 1-14. The relative density is calculated by calculating the dimensional density (measured density) from the volume and mass of the magnet, and assuming that the true density is equivalent to the true density of the Sm 2 Fe 17 N 3 alloy (7.92 g / cm 3 ). / “True density”] × 100. The results are shown in Table 1.

試料No.1−1〜No.1−4及びNo.1−11〜No.1−14について、磁気特性として保磁力及び残留磁化を測定した。保磁力及び残留磁化の測定は、振動試料型磁力計(東英工業株式会社製 VSM−5SC−5HF型)を使用した。その結果を表1に示す。   Sample No. 1-1-No. 1-4 and No.1. 1-11-No. For 1-14, coercive force and remanent magnetization were measured as magnetic properties. The coercive force and residual magnetization were measured using a vibrating sample magnetometer (VSM-5SC-5HF type manufactured by Toei Kogyo Co., Ltd.). The results are shown in Table 1.

Figure 2015142119
Figure 2015142119

表1に示すように、Sm−Fe系合金の粉末に非磁性の金属材料を被覆し、熱処理して表面層を形成した後、窒化処理し、これを圧縮成形する製造方法によって、相対密度が高く、磁気特性に優れる希土類磁石を得られることが分かる。特に、実施例1の製造方法により得られた試料No.1−1〜No.1−4は、相対密度が85%以上で、保磁力が798kA/m(10kOe)以上及び残留磁化が0.8T以上の磁気特性を有しており、高耐熱性と高磁力を兼ね備える。   As shown in Table 1, the Sm—Fe-based alloy powder is coated with a non-magnetic metal material, heat-treated to form a surface layer, and then subjected to nitriding treatment. It can be seen that a rare earth magnet having high magnetic properties can be obtained. In particular, the sample No. obtained by the production method of Example 1 was obtained. 1-1-No. 1-4 has magnetic properties of a relative density of 85% or more, a coercive force of 798 kA / m (10 kOe) or more, and a residual magnetization of 0.8 T or more, and has both high heat resistance and high magnetic force.

また、試料No.1−1〜No.1−4と試料No.1−11,No.1−12との比較結果から、熱処理工程において表面層の厚さが1nm以上27nm以下となるように熱処理することで、磁石の高密度化と、磁気特性を大幅に改善できることが分かる。試料No.1−1〜No.1−4と試料No.1−13,No.1−14との比較結果から、窒化工程において窒化処理する際の磁場の強度を3T以上12T以下とすることで、磁石の高密度化と、磁気特性を大幅に改善できることが分かる。試料No.1−13の相対密度が試料No.1−1などと比較して低くなった理由は、SmFe17の残留によりSmFe17合金粉末の変形が阻害され、密度が上がり難かったことが原因と考えられる。また、試料No.1−14の相対密度が試料No.1−1などと比較して低くなった理由は、窒化処理する際の磁場の影響によりSmFe17合金粉末の結晶相の組成分布に偏りが生じたため、密度が上がり難かったことが原因と考えられる。 Sample No. 1-1-No. 1-4 and Sample No. 1-11, No. 1 From the comparison result with 1-12, it can be seen that the heat treatment can be performed so that the thickness of the surface layer is 1 nm or more and 27 nm or less, so that the density of the magnet can be increased and the magnetic characteristics can be significantly improved. Sample No. 1-1-No. 1-4 and Sample No. 1-13, No. 1 From the comparison result with 1-14, it can be seen that the density of the magnet and the magnetic characteristics can be greatly improved by setting the strength of the magnetic field during nitriding in the nitriding step to 3T or more and 12T or less. Sample No. The relative density of 1-13 is Sample No. The reason for lower compared to like 1-1, the deformation of the Sm 2 Fe 17 N 3 alloy powder is inhibited by the residual of Sm 2 Fe 17, is believed to be caused by the density has been difficult up. Sample No. The relative density of 1-14 indicates sample no. The reason why it was lower than 1-1 and the like was that the composition distribution of the crystal phase of the Sm 2 Fe 17 N 3 alloy powder was biased due to the influence of the magnetic field at the time of nitriding, so that it was difficult to increase the density. Possible cause.

[実施例2]
実施例1で用いたSmFe17合金の粉末を原料粉末として用い、実施例1と被覆工程における被覆方法を変更して希土類磁石(Sm−Fe−N系磁石)を製造し、表2に示す試料No.2−1〜No.2−3を得た。そして、得られた磁石の試料について、磁石特性を評価した。
[Example 2]
Using the powder of the Sm 2 Fe 17 alloy used in Example 1 as a raw material powder, a rare earth magnet (Sm—Fe—N-based magnet) was manufactured by changing the coating method in Example 1 and the coating process. Sample No. shown 2-1. 2-3 was obtained. And the magnet characteristic was evaluated about the sample of the obtained magnet.

〈試料No.2−1〉
SmFe17合金粉末と粒子径(D50)が0.3μmのNb粉末とをボールミルによりトルエン溶媒中で、Arガス雰囲気下、室温で6時間混合して、SmFe17合金粉末の粒子表面にNbを被覆した。Nb粉末の添加量は4.0質量%である。その後、Nbが被覆されたSmFe17合金粉末を、Arガス雰囲気中、750℃で2時間熱処理した。実施例1の試料No.1−1と同様に、熱処理後のSmFe17合金粉末について、XRDにより結晶相分析した結果、SmFe17,NbFeが存在していた。また、TEM分析によりNbを含有する表面層の厚さを求めたところ、表面層の厚さは1.6nmであった。更に、断面のTEM像とNbの元素マッピングから、試料No.1−1と同じように、表面層が粒子の略全周に亘って均一に形成されていると共に、結晶粒界にNbを含有する粒界相が形成されていることが確認された。
<Sample No. 2-1>
Sm 2 Fe 17 alloy powder and Nb powder having a particle diameter (D50) of 0.3 μm were mixed in a toluene solvent in a toluene solvent in an Ar gas atmosphere at room temperature for 6 hours to obtain a particle surface of Sm 2 Fe 17 alloy powder. Was coated with Nb. The amount of Nb powder added is 4.0% by mass. Thereafter, the Sm 2 Fe 17 alloy powder coated with Nb was heat-treated at 750 ° C. for 2 hours in an Ar gas atmosphere. Sample No. 1 of Example 1 As in 1-1, the Sm 2 Fe 17 alloy powder after the heat treatment was subjected to crystal phase analysis by XRD. As a result, Sm 2 Fe 17 and NbFe 2 were present. Moreover, when the thickness of the surface layer containing Nb was calculated | required by TEM analysis, the thickness of the surface layer was 1.6 nm. Furthermore, from the TEM image of the cross section and the elemental mapping of Nb, the sample No. As in 1-1, it was confirmed that the surface layer was formed uniformly over substantially the entire circumference of the particle, and a grain boundary phase containing Nb was formed at the crystal grain boundary.

次に、上記表面層が形成されたSmFe17合金粉末を、NHガスとHガスの体積濃度比が1:4の混合ガス雰囲気中、500℃で10時間窒化処理した。窒化処理は、6Tの磁場を印加しながら行った。実施例1の試料No.1−1と同様に、窒化処理後のSmFe17合金粉末について、XRDにより結晶相分析した結果、SmFe17,NbFeが存在していた。 Next, the Sm 2 Fe 17 alloy powder having the surface layer formed thereon was subjected to nitriding treatment at 500 ° C. for 10 hours in a mixed gas atmosphere having a volume concentration ratio of NH 3 gas and H 2 gas of 1: 4. The nitriding treatment was performed while applying a 6T magnetic field. Sample No. 1 of Example 1 As in 1-1, the Sm 2 Fe 17 alloy powder after the nitriding treatment was subjected to crystal phase analysis by XRD. As a result, Sm 2 Fe 17 N 3 and NbFe 2 were present.

最後に、実施例1の試料No.1−1と同じ圧縮成形条件で、得られたSmFe17合金粉末を高圧プレス成形し、SmFe17合金粉末を圧縮成形したSm−Fe−N系磁石を製造した。この磁石を試料No.2−1とした。 Finally, sample no. In the same compression molding conditions as 1-1, Sm 2 Fe 17 N 3 alloy powder was pressure press molding, to produce a Sm-Fe-N magnet obtained by compressing molding the Sm 2 Fe 17 N 3 alloy powder. This magnet is connected to sample No. 2-1.

〈試料No.2−2〉
SmFe17合金粉末と粒子径(D50)が0.5μmのZr粉末とをボールミルによりトルエン溶媒中で、Arガス雰囲気下、室温で6時間混合して、SmFe17合金粉末の粒子表面にZrを被覆した。Zr粉末の添加量は3.7質量%である。その後、Zrが被覆されたSmFe17合金粉末を、Arガス雰囲気中、730℃で1.5時間熱処理した。試料No.2−1と同様に、熱処理後のSmFe17合金粉末について、XRDにより結晶相分析した結果、SmFe17,ZrFeが存在していた。また、TEM分析によりZrを含有する表面層の厚さを求めたところ、表面層の厚さは2.4nmであった。更に、断面のTEM像とCu,Snの元素マッピングから、試料No.2−1と同じように、表面層が粒子の略全周に亘って均一に形成されていると共に、結晶粒界にZrを含有する粒界相が形成されていることが確認された。
<Sample No. 2-2>
Sm 2 Fe 17 alloy powder and Zr powder having a particle size (D50) of 0.5 μm were mixed in a toluene solvent in a toluene solvent in an Ar gas atmosphere at room temperature for 6 hours to obtain a particle surface of Sm 2 Fe 17 alloy powder. Was coated with Zr. The amount of Zr powder added is 3.7% by mass. Thereafter, the Sm 2 Fe 17 alloy powder coated with Zr was heat-treated at 730 ° C. for 1.5 hours in an Ar gas atmosphere. Sample No. As in the case of 2-1, as a result of crystal phase analysis of the Sm 2 Fe 17 alloy powder after the heat treatment by XRD, Sm 2 Fe 17 and ZrFe 2 were present. Further, when the thickness of the surface layer containing Zr was determined by TEM analysis, the thickness of the surface layer was 2.4 nm. Furthermore, from the TEM image of the cross section and elemental mapping of Cu and Sn, sample No. As in 2-1, it was confirmed that the surface layer was formed uniformly over substantially the entire circumference of the particle and a grain boundary phase containing Zr was formed at the crystal grain boundary.

次に、上記表面層が形成されたSmFe17合金粉末を、NHガスとHガスの体積濃度比が1:4の混合ガス雰囲気中、480℃で12時間窒化処理した。窒化処理は、7Tの磁場を印加しながら行った。試料No.2−1と同様に、窒化処理後のSmFe17合金粉末について、XRDにより結晶相分析した結果、SmFe17,ZrFeが存在していた。 Next, the Sm 2 Fe 17 alloy powder having the surface layer formed thereon was subjected to nitriding treatment at 480 ° C. for 12 hours in a mixed gas atmosphere having a volume concentration ratio of NH 3 gas and H 2 gas of 1: 4. The nitriding treatment was performed while applying a 7T magnetic field. Sample No. As in the case of 2-1, as a result of XRD crystallographic analysis of the nitrided Sm 2 Fe 17 alloy powder, Sm 2 Fe 17 N 3 and ZrFe 2 were present.

最後に、試料No.2−1と同じ圧縮成形条件で、得られたSmFe17合金粉末を高圧プレス成形し、SmFe17合金粉末を圧縮成形したSm−Fe−N系磁石を製造した。この磁石を試料No.2−2とした。 Finally, sample no. In the same compression molding conditions as 2-1, Sm 2 Fe 17 N 3 alloy powder was pressure press molding, to produce a Sm-Fe-N magnet obtained by compressing molding the Sm 2 Fe 17 N 3 alloy powder. This magnet was connected to Sample No. 2-2.

〈試料No.2−3〉
SmFe17合金粉末と粒子径(D50)が1.0μmのTiZn粉末とをボールミルによりトルエン溶媒中で、Arガス雰囲気下、室温で6時間混合して、SmFe17合金粉末の粒子表面にTiZnを被覆した。TiZn粉末の添加量は8.0質量%である。その後、TiZnが被覆されたSmFe17合金粉末を、Arガス雰囲気中、650℃で1時間熱処理した。試料No.2−1と同様に、熱処理後のSmFe17合金粉末について、XRDにより結晶相分析した結果、SmFe17,FeZn10,TiFeが存在していた。また、TEM分析によりTi又はZnを含有する表面層の厚さを求めたところ、表面層の厚さは23nmであった。更に、断面のTEM像とTi,Znの元素マッピングから、試料No.2−1と同じように、表面層が粒子の略全周に亘って均一に形成されていると共に、結晶粒界にTi又はZnを含有する粒界相が形成されていることが確認された。
<Sample No. 2-3>
Sm 2 Fe 17 alloy powder and TiZn 5 powder having a particle diameter (D50) of 1.0 μm were mixed in a toluene solvent in a toluene solvent in an Ar gas atmosphere at room temperature for 6 hours to obtain particles of Sm 2 Fe 17 alloy powder. The surface was coated with TiZn 5 . The amount of TiZn 5 powder added is 8.0% by mass. Thereafter, the Sm 2 Fe 17 alloy powder coated with TiZn 5 was heat-treated at 650 ° C. for 1 hour in an Ar gas atmosphere. Sample No. As in the case of 2-1, as a result of crystal phase analysis of the Sm 2 Fe 17 alloy powder after the heat treatment by XRD, Sm 2 Fe 17 , Fe 3 Zn 10 and TiFe 2 were present. Moreover, when the thickness of the surface layer containing Ti or Zn was determined by TEM analysis, the thickness of the surface layer was 23 nm. Further, from the cross-sectional TEM image and elemental mapping of Ti and Zn, sample No. As in the case of 2-1, it was confirmed that the surface layer was uniformly formed over substantially the entire circumference of the particle and that a grain boundary phase containing Ti or Zn was formed at the crystal grain boundary. .

次に、上記表面層が形成されたSmFe17合金粉末を、NHガスとHガスの体積濃度比が1:5の混合ガス雰囲気中、405℃で8時間窒化処理した。窒化処理は、10Tの磁場を印加しながら行った。試料No.2−1と同様に、窒化処理後のSmFe17合金粉末について、XRDにより結晶相分析した結果、SmFe17,FeZn10,TiFeが存在していた。 Next, the Sm 2 Fe 17 alloy powder having the surface layer formed thereon was subjected to nitriding treatment at 405 ° C. for 8 hours in a mixed gas atmosphere in which the volume concentration ratio of NH 3 gas and H 2 gas was 1: 5. The nitriding treatment was performed while applying a 10T magnetic field. Sample No. As in the case of 2-1, as a result of crystal phase analysis of the Sm 2 Fe 17 alloy powder after the nitriding treatment by XRD, Sm 2 Fe 17 N 3 , Fe 3 Zn 10 and TiFe 2 were present.

最後に、試料No.2−1と同じ圧縮成形条件で、得られたSmFe17合金粉末を高圧プレス成形し、SmFe17合金粉末を圧縮成形したSm−Fe−N系磁石を製造した。この磁石を試料No.2−3とした。 Finally, sample no. In the same compression molding conditions as 2-1, Sm 2 Fe 17 N 3 alloy powder was pressure press molding, to produce a Sm-Fe-N magnet obtained by compressing molding the Sm 2 Fe 17 N 3 alloy powder. This magnet was connected to Sample No. 2-3.

〈磁石特性の評価〉
実施例1と同様にして、試料No.2−1〜No.2−3について、相対密度を求めた。また、実施例1と同様に、振動試料型磁力計を用いて、試料No.2−1〜No.2−3の保磁力及び残留磁化を測定した。その結果を表2に示す。
<Evaluation of magnet properties>
In the same manner as in Example 1, Sample No. 2-1. The relative density was determined for 2-3. Similarly to Example 1, using a vibrating sample magnetometer, the sample No. 2-1. The coercive force and residual magnetization of 2-3 were measured. The results are shown in Table 2.

Figure 2015142119
Figure 2015142119

表2に示すように、Sm−Fe系合金の粉末に非磁性の金属材料を被覆する方法をSm−Fe系合金粉末と金属材料の粉末の混合による被覆に変更しても、実施例1の製造方法と同じように、相対密度が高く、磁気特性に優れる希土類磁石を得られることが分かる。特に、実施例2の製造方法により得られた試料No.2−1〜No.2−3は、相対密度が85%以上で、保磁力が798kA/m(10kOe)以上及び残留磁化が0.8T以上の磁気特性を有しており、高耐熱性と高磁力を兼ね備える。   As shown in Table 2, even if the method of coating the nonmagnetic metal material on the Sm—Fe alloy powder is changed to the coating by mixing the Sm—Fe alloy powder and the metal material powder, It can be seen that a rare earth magnet having a high relative density and excellent magnetic properties can be obtained in the same manner as the manufacturing method. In particular, Sample No. obtained by the production method of Example 2 was used. 2-1. 2-3 has a magnetic property of a relative density of 85% or more, a coercive force of 798 kA / m (10 kOe) or more, and a residual magnetization of 0.8 T or more, and has both high heat resistance and high magnetic force.

また、試料No.2−1〜No.2−3と表1に示す実施例1の試料No.1−11,No.1−12との比較結果から、熱処理工程において表面層の厚さが1nm以上27nm以下となるように熱処理することで、磁石の高密度化と、磁気特性を大幅に改善できることが分かる。試料No.2−1〜No.2−3と表1に示す試料No.1−13,No.1−14との比較結果から、窒化工程において窒化処理する際の磁場の強度を3T以上12T以下とすることで、磁石の高密度化と、磁気特性を大幅に改善できることが分かる。   Sample No. 2-1. Sample No. 1 of Example 1 shown in 2-3 and Table 1. 1-11, No. 1 From the comparison result with 1-12, it can be seen that the heat treatment can be performed so that the thickness of the surface layer is 1 nm or more and 27 nm or less, so that the density of the magnet can be increased and the magnetic characteristics can be significantly improved. Sample No. 2-1. 2-3 and Sample No. 1 shown in Table 1. 1-13, No. 1 From the comparison result with 1-14, it can be seen that the density of the magnet and the magnetic characteristics can be greatly improved by setting the strength of the magnetic field during nitriding in the nitriding step to 3T or more and 12T or less.

本発明の希土類磁石の製造方法は、相対密度が高く、磁気特性に優れる希土類磁石の製造に好適に利用可能である。   The method for producing a rare earth magnet of the present invention can be suitably used for producing a rare earth magnet having a high relative density and excellent magnetic properties.

Claims (7)

SmとFeとを含有するSm−Fe系化合物を主相とするSm−Fe系合金の粉末を用意する準備工程と、
前記Sm−Fe系合金粉末の粒子表面に非磁性の金属材料を被覆する被覆工程と、
前記金属材料が被覆された前記Sm−Fe系合金粉末を熱処理して、前記粉末の粒子表層に前記金属材料の金属元素を含有する表面層を形成する熱処理工程と、
前記表面層が形成された前記Sm−Fe系合金粉末を磁場中で窒化処理して、前記主相のSm−Fe系化合物を窒化することにより、Sm−Fe−N系化合物を主相とするSm−Fe−N系合金の粉末を得る窒化工程と、
前記Sm−Fe−N系合金の粉末を磁場中で圧縮成形して、Sm−Fe−N系磁石を得る成形工程と、
を備える希土類磁石の製造方法。
A preparation step of preparing a powder of an Sm-Fe-based alloy containing a Sm-Fe-based compound containing Sm and Fe as a main phase;
A coating step of coating a particle surface of the Sm-Fe-based alloy powder with a nonmagnetic metal material;
A heat treatment step of heat-treating the Sm-Fe-based alloy powder coated with the metal material to form a surface layer containing the metal element of the metal material on a particle surface layer of the powder;
The Sm—Fe—N based compound powder having the surface layer formed thereon is nitrided in a magnetic field to nitride the Sm—Fe based compound of the main phase, thereby using the Sm—Fe—N based compound as the main phase. A nitriding step for obtaining a powder of an Sm-Fe-N alloy;
A step of compression-molding the Sm-Fe-N-based alloy powder in a magnetic field to obtain an Sm-Fe-N-based magnet;
A method for producing a rare earth magnet.
前記被覆工程において、前記Sm−Fe系合金粉末の粒子表面への前記金属材料の被覆は、前記Sm−Fe系合金の粉末の粒子表面に前記金属材料を気相法により蒸着することで行う請求項1に記載の希土類磁石の製造方法。   In the coating step, the metal material is coated on the particle surface of the Sm-Fe-based alloy powder by depositing the metal material on the particle surface of the Sm-Fe-based alloy powder by a vapor phase method. Item 2. A method for producing a rare earth magnet according to Item 1. 前記被覆工程において、前記Sm−Fe系合金粉末の粒子表面への前記金属材料の被覆は、前記Sm−Fe系合金の粉末と前記金属材料の粉末とを混合することで行う請求項1に記載の希土類磁石の製造方法。   2. The coating step according to claim 1, wherein the coating of the metal material onto the particle surface of the Sm—Fe alloy powder is performed by mixing the powder of the Sm—Fe alloy and the powder of the metal material. Method for producing rare earth magnets. 前記金属材料は、Cu,Zn,Al,Sn,Nb,Zr,及びTiから選択される少なくとも1種の金属元素からなる金属又はその金属元素を含む合金である請求項1〜請求項3のいずれか1項に記載の希土類磁石の製造方法。   The metal material is a metal composed of at least one metal element selected from Cu, Zn, Al, Sn, Nb, Zr, and Ti, or an alloy containing the metal element. A method for producing a rare earth magnet according to claim 1. 前記合金が、CuSn,CuTi,CuAl,及びTiZnから選択される少なくとも1種の合金である請求項4に記載の希土類磁石の製造方法。 The method for producing a rare earth magnet according to claim 4, wherein the alloy is at least one alloy selected from Cu 6 Sn 5 , CuTi, CuAl, and TiZn 5 . 前記熱処理工程において、表面層の厚さが1nm以上27nm以下となるように熱処理する請求項1〜請求項5のいずれか1項に記載の希土類磁石の製造方法。   The method for producing a rare earth magnet according to any one of claims 1 to 5, wherein in the heat treatment step, heat treatment is performed so that the thickness of the surface layer is 1 nm or more and 27 nm or less. 前記窒化工程において、前記磁場の強度を3T以上12T以下とする請求項1〜請求項6のいずれか1項に記載の希土類磁石の製造方法。   The method for producing a rare earth magnet according to any one of claims 1 to 6, wherein in the nitriding step, the strength of the magnetic field is 3T or more and 12T or less.
JP2014016142A 2014-01-30 2014-01-30 Method for manufacturing rare earth magnet Pending JP2015142119A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014016142A JP2015142119A (en) 2014-01-30 2014-01-30 Method for manufacturing rare earth magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014016142A JP2015142119A (en) 2014-01-30 2014-01-30 Method for manufacturing rare earth magnet

Publications (1)

Publication Number Publication Date
JP2015142119A true JP2015142119A (en) 2015-08-03

Family

ID=53772265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014016142A Pending JP2015142119A (en) 2014-01-30 2014-01-30 Method for manufacturing rare earth magnet

Country Status (1)

Country Link
JP (1) JP2015142119A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015199096A1 (en) * 2014-06-24 2015-12-30 日産自動車株式会社 Method for manufacturing rare earth magnetic mold
JP2017103442A (en) * 2015-11-19 2017-06-08 住友電気工業株式会社 Rare earth magnet manufacturing method, and rare earth magnet
JP2017112300A (en) * 2015-12-18 2017-06-22 トヨタ自動車株式会社 Rare earth magnet
JP2018041777A (en) * 2016-09-06 2018-03-15 株式会社豊田中央研究所 Metal bond magnet and method for manufacturing the same
CN108347105A (en) * 2017-01-25 2018-07-31 株式会社东芝 Permanent magnet, electric rotating machine and vehicle
JP2018127716A (en) * 2017-02-06 2018-08-16 国立大学法人東北大学 Rare-earth-iron-nitrogen based magnetic powder and method for producing the same
WO2018163967A1 (en) * 2017-03-10 2018-09-13 国立研究開発法人産業技術総合研究所 Magnetic powder containing sm-fe-n crystal grains, sintered magnet produced from same, method for producing said magnetic powder, and method for producing said sintered magnet
WO2019189440A1 (en) * 2018-03-29 2019-10-03 Tdk株式会社 Samarium-iron-nitrogen based magnetic powder and production method therefor, and samarium-iron-nitrogen based magnet and production method therefor
JP2020045544A (en) * 2018-09-21 2020-03-26 住友金属鉱山株式会社 Polycrystal rare earth transition metal alloy powder and method for producing the same
WO2020066811A1 (en) * 2018-09-28 2020-04-02 株式会社豊田自動織機 Magnetic material, magnet, and magnet production method
JP2020053434A (en) * 2018-09-21 2020-04-02 トヨタ自動車株式会社 Rare earth magnet and manufacturing method therefor
JP2020120112A (en) * 2019-01-28 2020-08-06 包頭天和磁気材料科技股▲ふん▼有限公司 Samarium cobalt magnet and method for manufacturing the same
JP2021086898A (en) * 2019-11-27 2021-06-03 株式会社豊田自動織機 Manufacturing method of powder for magnet, and powder for magnet
CN113628822B (en) * 2021-07-20 2023-07-18 华为技术有限公司 SmFeN permanent magnet, preparation method thereof and motor

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015199096A1 (en) * 2014-06-24 2015-12-30 日産自動車株式会社 Method for manufacturing rare earth magnetic mold
JPWO2015199096A1 (en) * 2014-06-24 2017-04-20 日産自動車株式会社 Method for producing rare earth magnet compact
JP2017103442A (en) * 2015-11-19 2017-06-08 住友電気工業株式会社 Rare earth magnet manufacturing method, and rare earth magnet
JP2017112300A (en) * 2015-12-18 2017-06-22 トヨタ自動車株式会社 Rare earth magnet
JP2018041777A (en) * 2016-09-06 2018-03-15 株式会社豊田中央研究所 Metal bond magnet and method for manufacturing the same
CN108347105A (en) * 2017-01-25 2018-07-31 株式会社东芝 Permanent magnet, electric rotating machine and vehicle
JP2018127716A (en) * 2017-02-06 2018-08-16 国立大学法人東北大学 Rare-earth-iron-nitrogen based magnetic powder and method for producing the same
WO2018163967A1 (en) * 2017-03-10 2018-09-13 国立研究開発法人産業技術総合研究所 Magnetic powder containing sm-fe-n crystal grains, sintered magnet produced from same, method for producing said magnetic powder, and method for producing said sintered magnet
CN110168674A (en) * 2017-03-10 2019-08-23 国立研究开发法人产业技术综合研究所 Magnet powder containing Sm-Fe-N system crystal grain and the sintered magnet manufactured by the magnet powder and their manufacturing method
US11594353B2 (en) 2017-03-10 2023-02-28 National Institute Of Advanced Industrial Science And Technology Magnetic powder containing Sm—Fe—N-based crystal particles, sintered magnet produced from same, method for producing said magnetic powder, and method for producing said sintered magnet
JPWO2018163967A1 (en) * 2017-03-10 2019-11-07 国立研究開発法人産業技術総合研究所 Magnet powder containing Sm-Fe-N-based crystal particles, sintered magnet produced therefrom, and production method thereof
JP7174962B2 (en) 2017-03-10 2022-11-18 国立研究開発法人産業技術総合研究所 Magnet powder containing Sm--Fe--N system crystal particles, sintered magnet produced therefrom, and production method thereof
JP2021122061A (en) * 2017-03-10 2021-08-26 国立研究開発法人産業技術総合研究所 MAGNETIC POWDER CONTAINING Sm-Fe-N-BASED CRYSTAL PARTICLE, SINTERED MAGNET PRODUCED FROM THE SAME, METHOD FOR PRODUCING THE MAGNETIC POWDER, AND METHOD FOR PRODUCING THE SINTERED MAGNET
JP7017744B2 (en) 2018-03-29 2022-02-09 Tdk株式会社 Samalium-iron-nitrogen magnet powder and its manufacturing method, and Samalium-iron-nitrogen magnet and its manufacturing method
JPWO2019189440A1 (en) * 2018-03-29 2021-04-08 Tdk株式会社 Samarium-iron-nitrogen magnet powder and its manufacturing method and samarium-iron-nitrogen magnet and its manufacturing method
WO2019189440A1 (en) * 2018-03-29 2019-10-03 Tdk株式会社 Samarium-iron-nitrogen based magnetic powder and production method therefor, and samarium-iron-nitrogen based magnet and production method therefor
US11798739B2 (en) 2018-03-29 2023-10-24 Tdk Corporation Samarium-iron-nitrogen based magnet powder and method of manufacturing same, and samarium-iron-nitrogen based magnet and method of manufacturing same
JP2020053434A (en) * 2018-09-21 2020-04-02 トヨタ自動車株式会社 Rare earth magnet and manufacturing method therefor
JP7099924B2 (en) 2018-09-21 2022-07-12 トヨタ自動車株式会社 Rare earth magnets and their manufacturing methods
JP2020045544A (en) * 2018-09-21 2020-03-26 住友金属鉱山株式会社 Polycrystal rare earth transition metal alloy powder and method for producing the same
JP7187920B2 (en) 2018-09-21 2022-12-13 住友金属鉱山株式会社 Polycrystalline rare earth transition metal alloy powder and method for producing the same
WO2020066811A1 (en) * 2018-09-28 2020-04-02 株式会社豊田自動織機 Magnetic material, magnet, and magnet production method
JP2020120112A (en) * 2019-01-28 2020-08-06 包頭天和磁気材料科技股▲ふん▼有限公司 Samarium cobalt magnet and method for manufacturing the same
JP2021086898A (en) * 2019-11-27 2021-06-03 株式会社豊田自動織機 Manufacturing method of powder for magnet, and powder for magnet
JP7282331B2 (en) 2019-11-27 2023-05-29 株式会社豊田自動織機 Method for producing magnet powder and magnet powder
CN113628822B (en) * 2021-07-20 2023-07-18 华为技术有限公司 SmFeN permanent magnet, preparation method thereof and motor

Similar Documents

Publication Publication Date Title
JP2015142119A (en) Method for manufacturing rare earth magnet
TWI707048B (en) R-(Fe,Co)-B SINTERED MAGNET AND MAKING METHOD
TWI509642B (en) Rare earth permanent magnet and its manufacturing method
CN101620904B (en) Process for producing magnet
JP5218869B2 (en) Rare earth-iron-nitrogen alloy material, method for producing rare earth-iron-nitrogen alloy material, rare earth-iron alloy material, and method for producing rare earth-iron alloy material
JP6693392B2 (en) R- (Fe, Co) -B system sintered magnet and its manufacturing method
CN108695033B (en) R-T-B sintered magnet
JP4968519B2 (en) Permanent magnet and method for manufacturing the same
JP7187920B2 (en) Polycrystalline rare earth transition metal alloy powder and method for producing the same
JP6598700B2 (en) Rare earth magnet manufacturing method and rare earth magnet
CN108695032B (en) R-T-B sintered magnet
JP7035682B2 (en) RTB-based sintered magnet
JP2018186255A (en) Manufacturing method of rare-earth magnet
JP7035683B2 (en) RTB-based sintered magnet
CN110942879A (en) Magnetic particles, magnetic particle molded body, and method for producing same
EP2947664B1 (en) Magnetic material and method for producing magnetic material
JPH01220803A (en) Magnetic anisotropic sintered magnet and manufacture thereof
JP6471594B2 (en) Rare earth magnet material and method for producing rare earth magnet material
WO2017090635A1 (en) Rare earth magnet, and method of producing rare earth magnet
JP2016100519A (en) Production method of magnetic powder, production method of dust magnet member, and dust magnet member
JP2016044352A (en) Method for producing powder for magnet, and method for producing rare earth magnet
WO2017191790A1 (en) Rare-earth permanent magnet, and method for manufacturing same
JP6331982B2 (en) Magnet molded body, magnetic member, method for manufacturing magnet molded body, and method for manufacturing magnetic member
JP7143605B2 (en) RTB system sintered magnet
JPH06124812A (en) Nitride magnet powder and its synthesizing method