JP2016044352A - Method for producing powder for magnet, and method for producing rare earth magnet - Google Patents

Method for producing powder for magnet, and method for producing rare earth magnet Download PDF

Info

Publication number
JP2016044352A
JP2016044352A JP2014171975A JP2014171975A JP2016044352A JP 2016044352 A JP2016044352 A JP 2016044352A JP 2014171975 A JP2014171975 A JP 2014171975A JP 2014171975 A JP2014171975 A JP 2014171975A JP 2016044352 A JP2016044352 A JP 2016044352A
Authority
JP
Japan
Prior art keywords
powder
rare earth
nitrogen
iron
magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014171975A
Other languages
Japanese (ja)
Inventor
基 永沢
Motoki Nagasawa
基 永沢
前田 徹
Toru Maeda
前田  徹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2014171975A priority Critical patent/JP2016044352A/en
Publication of JP2016044352A publication Critical patent/JP2016044352A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing powder for a magnet capable of producing powder for a magnet excellent in magnetic properties at high productivity, and a method for producing a rare earth magnet.SOLUTION: Provided is a method for producing powder 1 for a magnet comprising: a preparation step where rare earth-iron based alloy powder 10 composed of a plurality of rare earth-iron based alloy particles 11 is prepared; a surface nitriding step where the rare earth-iron based alloy powder is heat-treated in a nitrogen element-containing atmosphere to form nitrided powder 20 having a nitrogen holding region 21 where the respective rare earth-iron based alloy particles are intruded into the vicinity of the surface thereof; and a magnetic field treatment step where the nitrided powder is applied with a fixed magnetic field in a nitrogen element-free atmosphere and is heat-treated to diffuse the nitrogen in the nitrogen holding region into the rare earth-iron based alloy particles, thus powder 1 for a magnet composed of rare earth-iron-nitrogen based alloy particles substantially uniformly nitrided over the whole of the rare earth-iron based alloy particles is formed. In the magnetic field treatment step, heat treatment temperature is 280 to 430°C and magnetic field strength is 2 to 12T.SELECTED DRAWING: Figure 1

Description

本発明は、希土類磁石に用いられる磁石用粉末の製造方法、及び希土類磁石の製造方法に関する。特に、磁気特性に優れる磁石用粉末を生産性良く製造できる磁石用粉末の製造方法、及び磁気特性に優れる希土類磁石を生産性良く製造できる希土類磁石の製造方法に関する。   The present invention relates to a method for producing a magnet powder used in a rare earth magnet and a method for producing a rare earth magnet. In particular, the present invention relates to a method for producing a magnet powder capable of producing a magnet powder having excellent magnetic properties with high productivity, and a method for producing a rare earth magnet capable of producing a rare earth magnet excellent in magnetic properties with high productivity.

モータや発電機などの用途に、希土類元素(R)と鉄(Fe)とを含有する希土類−鉄(R−Fe)系化合物を主相とするR−Fe系合金を材料に用いた希土類磁石が広く利用されている。代表的な希土類磁石としては、NdFe14B化合物を主相とするNdFe14B合金を原料として使用したNdFe14B磁石(ネオジム磁石)が挙げられる。ネオジム磁石以外では、SmFe17化合物を主相とするSmFe17合金を原料とし、これを窒化したSmFe17化合物を主相とするSmFe17磁石が実用化されている。 Rare earth magnets using R-Fe alloys, whose main phase is a rare earth-iron (R-Fe) compound containing rare earth elements (R) and iron (Fe), for applications such as motors and generators Is widely used. As a typical rare earth magnet, an Nd 2 Fe 14 B magnet (neodymium magnet) using an Nd 2 Fe 14 B alloy whose main phase is an Nd 2 Fe 14 B compound as a raw material can be mentioned. Except neodymium magnets, Sm 2 the Sm 2 Fe 17 alloy as a main phase of Fe 17 compound as a raw material, Sm 2 Fe 17 N 3 magnet practical use as a main phase of which Sm 2 Fe 17 N 3 compound nitride Has been.

希土類磁石の種類としては、R−Fe系合金の磁粉を圧縮成形し、これを焼結した焼結磁石や、R−Fe系合金の磁粉にバインダ樹脂を混合し、これを圧縮成形して固化したボンド磁石が主流である。また、最近では、R−Fe系合金の磁粉を圧縮成形した圧粉磁石が開発されている(特許文献1を参照)。   As a kind of rare earth magnet, compression molding is performed on R-Fe alloy magnetic powder, and a sintered magnet obtained by sintering this, or binder resin is mixed with R-Fe alloy magnetic powder, and then compression molding to solidify. Bonded magnets are the mainstream. Recently, a dust magnet has been developed in which magnetic powder of an R—Fe-based alloy is compression-molded (see Patent Document 1).

特許文献1には、R−Fe系合金粉末に水素不均化温度以上で水素化(HD:Hydrogenation−Disproportionation)処理⇒圧縮成形⇒再結合温度以上で脱水素(DR:Desorption−Recombination)処理⇒窒化温度以上窒素不均化温度以下で窒化処理、することが記載されている。窒化処理では、R−Fe系合金材に3.5T以上の磁場を印加して行うことで、結晶格子の理想の位置にN原子を配置し易く、理想状態の原子比を有するR−Fe−N系合金材を形成でき、磁気特性に優れる希土類磁石が得られることが記載されている。   Patent Document 1 discloses that R-Fe-based alloy powder is hydrogenated at a hydrogen disproportionation temperature or higher (HD) (Hydrogenation-Disproportionation) ⇒ Compression molding ⇒ Dehydrogenation (Recombination-Recombination) at a temperature higher than the recombination temperature ⇒ It is described that nitriding is performed at a nitriding temperature or higher and a nitrogen disproportionation temperature or lower. The nitriding treatment is performed by applying a magnetic field of 3.5 T or more to the R—Fe based alloy material, so that N atoms can be easily arranged at ideal positions in the crystal lattice, and R—Fe— having an ideal atomic ratio. It is described that a rare earth magnet that can form an N-based alloy material and has excellent magnetic properties can be obtained.

特開2012−241280号公報JP 2012-241280 A

磁場中で窒化処理を行うことで、R−Fe−N系合金材の磁気特性の改善に一定の効果を奏するが、この窒化処理を安定して行い、生産性良くR−Fe−N系合金材を製造することが望まれている。磁場中で窒化処理を行うと、特に粗大な合金粉末粒子を用いた場合、R−Fe系合金材の表面から内部に向かって窒化状態にばらつきが生じることがある。そこで、R−Fe系合金材の全体に亘って実質的に均一に窒化処理を行い、生産性良くR−Fe−N系合金材を製造することが望まれている。   By performing nitriding in a magnetic field, there is a certain effect in improving the magnetic properties of the R—Fe—N alloy material. However, this nitriding treatment is performed stably and the R—Fe—N alloy has good productivity. It is desired to produce a material. When nitriding is performed in a magnetic field, especially when coarse alloy powder particles are used, the nitriding state may vary from the surface to the inside of the R—Fe-based alloy material. Therefore, it is desired to perform nitriding treatment substantially uniformly over the entire R—Fe alloy material to produce an R—Fe—N alloy material with high productivity.

本発明は上記事情に鑑みてなされたもので、本発明の目的の一つは、磁気特性に優れる磁石用粉末を生産性良く製造できる磁石用粉末の製造方法を提供することにある。また、本発明の他の目的は、磁気特性に優れる希土類磁石を生産性良く製造できる希土類磁石の製造方法を提供することにある。   This invention is made | formed in view of the said situation, and one of the objectives of this invention is to provide the manufacturing method of the powder for magnets which can manufacture the powder for magnets excellent in a magnetic characteristic with sufficient productivity. Another object of the present invention is to provide a method for producing a rare earth magnet capable of producing a rare earth magnet having excellent magnetic properties with high productivity.

本発明の一態様に係る磁石用粉末の製造方法は、準備工程と、表面窒化工程と、磁場熱処理工程とを備える。準備工程は、希土類元素を含有する複数の希土類−鉄系合金粒子から構成される希土類−鉄系合金粉末を準備する工程である。表面窒化工程は、前記希土類−鉄系合金粉末を、窒素元素を含む雰囲気中、当該希土類−鉄系合金の窒化温度以上窒素不均化温度以下の温度で熱処理して、前記希土類−鉄系合金粒子の各々がその表面近傍に窒素が侵入した窒素保持領域を有する窒化粉末を形成する工程である。磁場熱処理工程は、前記窒化粉末を、窒素元素を含まない雰囲気中、一定の磁場を印加して熱処理して、前記窒素保持領域の窒素を前記希土類−鉄系合金粒子の内部にまで拡散させ、当該希土類−鉄系合金粒子の全体に亘って実質的に均一に窒化させた希土類−鉄−窒素系合金粒子から構成される磁石用粉末を形成する工程である。   The manufacturing method of the powder for magnets which concerns on 1 aspect of this invention comprises a preparatory process, a surface nitriding process, and a magnetic field heat treatment process. The preparation step is a step of preparing a rare earth-iron alloy powder composed of a plurality of rare earth-iron alloy particles containing a rare earth element. In the surface nitriding step, the rare earth-iron-based alloy powder is heat-treated at a temperature not lower than the nitriding temperature of the rare-earth-iron-based alloy and not higher than the nitrogen disproportionation temperature in an atmosphere containing nitrogen element. In this step, each of the particles forms a nitride powder having a nitrogen holding region where nitrogen penetrates in the vicinity of the surface thereof. In the magnetic field heat treatment step, the nitride powder is heat-treated in a nitrogen-free atmosphere by applying a constant magnetic field to diffuse the nitrogen in the nitrogen holding region to the inside of the rare earth-iron alloy particles, This is a step of forming a magnet powder composed of rare earth-iron-nitrogen alloy particles nitrided substantially uniformly over the entire rare earth-iron alloy particles.

本発明の一態様に係る希土類磁石の製造方法は、準備工程と、水素化工程と、成形工程と、脱水素工程と、表面窒化工程と、磁場熱処理工程とを備える。準備工程は、希土類元素を含有する複数の希土類−鉄系合金粒子から構成される希土類−鉄系合金粉末を準備する工程である。水素化工程は、前記希土類−鉄系合金粉末を、水素元素を含む雰囲気中、当該希土類−鉄系合金の水素不均化温度以上の温度で熱処理して、水素化粉末を形成する工程である。成形工程は、前記水素化粉末を圧縮成形して、水素化粉末成形体を形成する工程である。脱水素工程は、前記水素化粉末成形体を、不活性雰囲気中又は減圧雰囲気中、当該水素化粉末成形体の再結合温度以上の温度で熱処理して、脱水素粉末成形体を形成する工程である。表面窒化工程は、前記脱水素粉末成形体を、窒素元素を含む雰囲気中、当該脱水素粉末成形体の窒化温度以上窒素不均化温度以下の温度で熱処理して、前記脱水素粉末成形体を構成する脱水素粉末成形体粒子の各々がその表面近傍に窒素が侵入した窒素保持領域を有する窒化粉末成形体を形成する工程である。磁場熱処理工程は、前記窒化粉末成形体を、窒素元素を含まない雰囲気中、一定の磁場を印加して熱処理して、前記窒素保持領域の窒素を前記脱水素粉末成形体粒子の全体に亘って実質的に均一に窒化させた磁石素材を形成する工程である。   The method for producing a rare earth magnet according to one aspect of the present invention includes a preparation step, a hydrogenation step, a forming step, a dehydrogenation step, a surface nitriding step, and a magnetic field heat treatment step. The preparation step is a step of preparing a rare earth-iron alloy powder composed of a plurality of rare earth-iron alloy particles containing a rare earth element. The hydrogenation step is a step of forming the hydrogenated powder by heat-treating the rare earth-iron-based alloy powder in an atmosphere containing hydrogen element at a temperature equal to or higher than the hydrogen disproportionation temperature of the rare-earth-iron-based alloy. . The forming step is a step of compression-molding the hydrogenated powder to form a hydrogenated powder molded body. The dehydrogenation step is a step of forming the dehydrogenated powder compact by heat-treating the hydrogenated powder compact in an inert atmosphere or a reduced pressure atmosphere at a temperature equal to or higher than the recombination temperature of the hydrogenated powder compact. is there. In the surface nitriding step, the dehydrogenated powder compact is heat-treated at a temperature not lower than the nitriding temperature of the dehydrogenated powder compact and not higher than the nitrogen disproportionation temperature in an atmosphere containing nitrogen element. This is a step of forming a nitrided powder molded body in which each of the dehydrogenated powder molded body particles to be formed has a nitrogen holding region where nitrogen has penetrated in the vicinity of the surface thereof. In the magnetic field heat treatment step, the nitride powder compact is heat-treated in a nitrogen-free atmosphere by applying a constant magnetic field, and nitrogen in the nitrogen holding region is spread over the entire dehydrogenated powder compact particles. This is a step of forming a magnet material that is substantially uniformly nitrided.

上記磁石用粉末の製造方法は、磁気特性に優れる磁石用粉末を生産性良く製造できる。また、上記希土類磁石の製造方法は、磁気特性に優れる希土類磁石を生産性良く製造できる。   The method for producing a magnet powder can produce a magnet powder having excellent magnetic properties with high productivity. In addition, the method for producing a rare earth magnet can produce a rare earth magnet having excellent magnetic properties with high productivity.

実施形態1の磁石用粉末の製造工程の一例を模式的に示す工程説明図である。It is process explanatory drawing which shows typically an example of the manufacturing process of the powder for magnets of Embodiment 1. FIG. 実施形態2の希土類磁石の製造工程の一例を模式的に示す工程説明図である。It is process explanatory drawing which shows an example of the manufacturing process of the rare earth magnet of Embodiment 2 typically.

[本発明の実施形態の説明]
R−Fe−N系合金材は、R−Fe系合金材の表面から窒素が侵入し、内部に向かって窒素が拡散されることで得られる。しかし、窒素の侵入速度に比較して拡散速度が遅いため、R−Fe系合金材の表面から内部に向かって窒化状態にばらつきが生じるとの着想の下、窒素の侵入速度と拡散速度に差があったとしても、全体に亘って実質的に均一に窒化状態にばらつきのないR−Fe−N系合金材を得られる構成を検討し、本発明を完成するに至った。以下、本発明の実施形態の内容を列記して説明する。
[Description of Embodiment of the Present Invention]
The R—Fe—N based alloy material is obtained by nitrogen entering from the surface of the R—Fe based alloy material and diffusing nitrogen toward the inside. However, since the diffusion rate is slower than the nitrogen penetration rate, the difference between the nitrogen penetration rate and the diffusion rate is based on the idea that the nitriding state varies from the surface to the inside of the R-Fe alloy material. Even if there is, there has been studied a configuration capable of obtaining an R—Fe—N based alloy material that is substantially uniformly distributed in the entire nitriding state, and has completed the present invention. The contents of the embodiments of the present invention will be listed and described below.

(1)実施形態に係る磁石用粉末の製造方法は、準備工程と、表面窒化工程と、磁場熱処理工程とを備える。準備工程は、希土類元素を含有する複数の希土類−鉄系合金粒子から構成される希土類−鉄系合金粉末を準備する工程である。表面窒化工程は、前記希土類−鉄系合金粉末を、窒素元素を含む雰囲気中、当該希土類−鉄系合金の窒化温度以上窒素不均化温度以下の温度で熱処理して、前記希土類−鉄系合金粒子の各々がその表面近傍に窒素が侵入した窒素保持領域を有する窒化粉末を形成する工程である。磁場熱処理工程は、前記窒化粉末を、窒素元素を含まない雰囲気中、一定の磁場を印加して熱処理して、前記窒素保持領域の窒素を前記希土類−鉄系合金粒子の内部にまで拡散させ、当該希土類−鉄系合金粒子の全体に亘って実質的に均一に窒化させた希土類−鉄−窒素系合金粒子から構成される磁石用粉末を形成する工程である。   (1) The manufacturing method of the powder for magnets which concerns on embodiment is equipped with a preparatory process, a surface nitridation process, and a magnetic field heat treatment process. The preparation step is a step of preparing a rare earth-iron alloy powder composed of a plurality of rare earth-iron alloy particles containing a rare earth element. In the surface nitriding step, the rare earth-iron-based alloy powder is heat-treated at a temperature not lower than the nitriding temperature of the rare-earth-iron-based alloy and not higher than the nitrogen disproportionation temperature in an atmosphere containing nitrogen element. In this step, each of the particles forms a nitride powder having a nitrogen holding region where nitrogen penetrates in the vicinity of the surface thereof. In the magnetic field heat treatment step, the nitride powder is heat-treated in a nitrogen-free atmosphere by applying a constant magnetic field to diffuse the nitrogen in the nitrogen holding region to the inside of the rare earth-iron alloy particles, This is a step of forming a magnet powder composed of rare earth-iron-nitrogen alloy particles nitrided substantially uniformly over the entire rare earth-iron alloy particles.

希土類−鉄系合金粉末に窒化処理を行って磁石用粉末(希土類−鉄−窒素系合金粉末)を形成するにあたり、表面窒化工程⇒磁場熱処理工程という二段階の工程を行うことで、窒化処理を安定して行うことができ、磁石用粉末を生産性良く製造できる。窒化処理を、窒素の粒子表面部への侵入を主に行う表面窒化工程と、窒素の粒子内部への拡散を主に行う磁場熱処理工程との二段階の工程に分けることで、窒素の侵入速度と拡散速度に差があったとしても、確実に各粒子の全体に亘って実質的に均一に窒化を行うことができる。磁場熱処理工程において磁場を印加することで、窒素の拡散速度を速めることができるため、磁石用粉末を生産性良く製造することができる。   When forming rare earth-iron alloy powder by nitriding to form magnet powder (rare earth-iron-nitrogen alloy powder), nitriding treatment is performed by performing two steps: surface nitriding process ⇒ magnetic field heat treatment process. This can be carried out stably, and the magnet powder can be produced with high productivity. Nitrogen treatment is divided into two steps: a surface nitriding process that mainly penetrates into the surface of nitrogen particles and a magnetic field heat treatment process that mainly diffuses nitrogen into the particles. Even if there is a difference in the diffusion rate, nitriding can be performed substantially uniformly over the entire particle. Since the diffusion rate of nitrogen can be increased by applying a magnetic field in the magnetic field heat treatment step, the magnet powder can be produced with high productivity.

(2)実施形態の磁石用粉末の製造方法として、前記磁場熱処理工程における磁場強度は、2T以上12T以下であることが挙げられる。   (2) As a manufacturing method of the powder for magnets of embodiment, it is mentioned that the magnetic field strength in the above-mentioned magnetic field heat treatment process is 2T or more and 12T or less.

窒化粉末に特定の磁場を印加することで、希土類−鉄系合金粒子を構成する結晶の結晶格子は、磁歪効果により歪む。具体的には、結晶格子を構成する鉄原子−鉄原子間が磁場の印加方向に引き伸ばされる。磁場強度が2T以上であることで、結晶格子において特定の方向(代表的には、配向している方向)の鉄原子−鉄原子間を引き伸ばし易く、引き伸ばされた鉄原子−鉄原子間に窒素を侵入させ易くなり、粒子全体に亘って実質的に均一に窒化を行わせ易くなる。一方、磁場強度が12T超であると、窒素の粒子内部への侵入を促進するよりも、粒子の構成材料(例えばSmFe17など)と窒素との反応に優位に費やされて過剰窒化する。過剰窒化するとα−Feが形成され磁気特性を劣化させる虞があるが、磁場強度が12T以下であることで、各粒子の表面側で過剰窒化することを抑制でき、磁気特性に優れる磁石用粉末を製造することができる。 By applying a specific magnetic field to the nitride powder, the crystal lattice of the crystals constituting the rare earth-iron alloy particles is distorted by the magnetostrictive effect. Specifically, between the iron atoms constituting the crystal lattice and the iron atoms is stretched in the direction in which the magnetic field is applied. When the magnetic field strength is 2T or more, it is easy to stretch between iron atoms and iron atoms in a specific direction (typically, the orientation direction) in the crystal lattice, and nitrogen is stretched between the stretched iron atoms and iron atoms. , And it becomes easy to perform nitriding substantially uniformly over the entire particle. On the other hand, when the magnetic field strength exceeds 12T, it is preferentially spent on the reaction between the constituent material of the particles (eg, Sm 2 Fe 17 ) and nitrogen rather than promoting the penetration of nitrogen into the particles, and excessive nitriding To do. Excessive nitridation may cause α-Fe to be formed and deteriorate the magnetic properties. However, when the magnetic field strength is 12 T or less, excessive nitridation on the surface side of each particle can be suppressed, and the magnet powder has excellent magnetic properties. Can be manufactured.

(3)実施形態の磁石用粉末の製造方法として、前記磁場熱処理工程における熱処理温度は、280℃以上430℃以下であることが挙げられる。   (3) As a manufacturing method of the powder for magnets of embodiment, it is mentioned that the heat processing temperature in the said magnetic field heat processing process is 280 degreeC or more and 430 degrees C or less.

熱処理温度が280℃以上であることで、各希土類−鉄系合金粒子の窒素保持領域の窒素を内部に拡散させ易く、粒子全体に亘って実質的に均一に窒化を行わせ易くなる。一方、熱処理温度が430℃以下であることで、粒子の構成材料(例えばSmFe17など)と窒素との反応を抑制し、各粒子の表面側で過剰窒化することを抑制でき、磁気特性に優れる磁石用粉末を製造できる。 When the heat treatment temperature is 280 ° C. or higher, the nitrogen in the nitrogen holding region of each rare earth-iron-based alloy particle can be easily diffused inside, and nitriding can be performed substantially uniformly over the entire particle. On the other hand, when the heat treatment temperature is 430 ° C. or lower, the reaction between the constituent material of the particles (for example, Sm 2 Fe 17 and the like) and nitrogen can be suppressed, and excessive nitridation on the surface side of each particle can be suppressed. Can be produced.

(4)実施形態の磁石用粉末の製造方法として、前記磁場熱処理工程における熱処理時間は、1時間以上10時間以下であることが挙げられる。   (4) As a manufacturing method of the powder for magnets of embodiment, the heat processing time in the said magnetic field heat processing process is 1 hour or more and 10 hours or less.

熱処理時間が1時間以上であることで、各希土類−鉄系合金粒子の窒素保持領域の窒素を内部にまで拡散させ易く、各粒子全体に亘って均一的に窒化を行わせることができる。一方、熱処理時間が10時間以下であることで、粒子の構成材料(例えばSmFe17など)と窒素との反応を抑制し、各粒子の表面側で過剰窒化することを抑制でき、磁気特性に優れる磁石用粉末を製造できる。 When the heat treatment time is 1 hour or longer, it is easy to diffuse nitrogen in the nitrogen holding region of each rare earth-iron-based alloy particle to the inside, and nitriding can be performed uniformly over the entire particle. On the other hand, when the heat treatment time is 10 hours or less, the reaction between the constituent material of the particles (for example, Sm 2 Fe 17 and the like) and nitrogen can be suppressed, and excessive nitridation on the surface side of each particle can be suppressed. Can be produced.

(5)実施形態の磁石用粉末の製造方法として、前記希土類−鉄系合金粒子の平均粒径は、30μm以上300μm以下であることが挙げられる。   (5) As a manufacturing method of the powder for magnets of embodiment, it is mentioned that the average particle diameter of the said rare earth-iron-type alloy particle is 30 micrometers or more and 300 micrometers or less.

希土類−鉄系合金粒子の平均粒径が30μm以上であることで、微粒子に比べて比表面積を小さくして粉末の酸化を抑制し易く、酸化雰囲気での取り扱いを容易にできる。また、合金粉末を圧縮成形したときに粉末成形体を形成し易く、高密度の希土類磁石の製造ができる。一方、希土類−鉄系合金粒子の平均粒径が300μm以下であることで、磁場熱処理工程において、結晶粒内部まで窒素が拡散し易い。特に、合金粒子の全体に亘る均一的な窒化を短時間で効率的に行うことが可能である。   When the average particle diameter of the rare earth-iron-based alloy particles is 30 μm or more, the specific surface area can be made smaller than that of the fine particles to easily suppress the oxidation of the powder, and the handling in an oxidizing atmosphere can be facilitated. Further, when the alloy powder is compression-molded, a powder compact can be easily formed, and a high-density rare earth magnet can be manufactured. On the other hand, when the average particle diameter of the rare earth-iron-based alloy particles is 300 μm or less, nitrogen easily diffuses into the crystal grains in the magnetic field heat treatment step. In particular, uniform nitriding over the entire alloy particles can be performed efficiently in a short time.

(6)実施形態の希土類磁石の製造方法は、準備工程と、水素化工程と、成形工程と、脱水素工程と、表面窒化工程と、磁場熱処理工程とを備える。準備工程は、希土類元素を含有する複数の希土類−鉄系合金粒子から構成される希土類−鉄系合金粉末を準備する工程である。水素化工程は、前記希土類−鉄系合金粉末を、水素元素を含む雰囲気中、当該希土類−鉄系合金の水素不均化温度以上の温度で熱処理して、水素化粉末を形成する工程である。成形工程は、前記水素化粉末を圧縮成形して、水素化粉末成形体を形成する工程である。脱水素工程は、前記水素化粉末成形体を、不活性雰囲気中又は減圧雰囲気中、当該水素化粉末成形体の再結合温度以上の温度で熱処理して、脱水素粉末成形体を形成する工程である。表面窒化工程は、前記脱水素粉末成形体を、窒素元素を含む雰囲気中、当該脱水素粉末成形体の窒化温度以上窒素不均化温度以下の温度で熱処理して、前記脱水素粉末成形体を構成する粉末成形体粒子の各々がその表面近傍に窒素が侵入した窒素保持領域を有する窒化粉末成形体を形成する工程である。磁場熱処理工程は、前記窒化粉末成形体を、窒素元素を含まない雰囲気中、一定の磁場を印加して熱処理して、前記窒素保持領域の窒素を前記脱水素粉末成形体粒子の全体に亘って実質的に均一に窒化させた磁石素材を形成する工程である。   (6) The method for producing a rare earth magnet of the embodiment includes a preparation step, a hydrogenation step, a forming step, a dehydrogenation step, a surface nitriding step, and a magnetic field heat treatment step. The preparation step is a step of preparing a rare earth-iron alloy powder composed of a plurality of rare earth-iron alloy particles containing a rare earth element. The hydrogenation step is a step of forming the hydrogenated powder by heat-treating the rare earth-iron-based alloy powder in an atmosphere containing hydrogen element at a temperature equal to or higher than the hydrogen disproportionation temperature of the rare-earth-iron-based alloy. . The forming step is a step of compression-molding the hydrogenated powder to form a hydrogenated powder molded body. The dehydrogenation step is a step of forming the dehydrogenated powder compact by heat-treating the hydrogenated powder compact in an inert atmosphere or a reduced pressure atmosphere at a temperature equal to or higher than the recombination temperature of the hydrogenated powder compact. is there. In the surface nitriding step, the dehydrogenated powder compact is heat-treated at a temperature not lower than the nitriding temperature of the dehydrogenated powder compact and not higher than the nitrogen disproportionation temperature in an atmosphere containing nitrogen element. This is a step of forming a nitride powder molded body having a nitrogen holding region in which nitrogen penetrates in the vicinity of the surface of each powder molded body particle constituting. In the magnetic field heat treatment step, the nitride powder compact is heat-treated in a nitrogen-free atmosphere by applying a constant magnetic field, and nitrogen in the nitrogen holding region is spread over the entire dehydrogenated powder compact particles. This is a step of forming a magnet material that is substantially uniformly nitrided.

上記構成によれば、窒化された磁石素材を形成するにあたり、表面窒化工程⇒磁場熱処理工程という二段階の工程を行うことで、窒化処理を安定して行うことができ、磁石素材を生産性良く製造できる。   According to the above configuration, in forming the nitrided magnet material, the nitriding process can be stably performed by performing the two-step process of the surface nitriding process → the magnetic field heat treatment process, and the magnet material can be produced with high productivity. Can be manufactured.

[本発明の実施形態の詳細]
本発明の実施形態の詳細を、以下に説明する。なお、本発明はこれらの例示に限定されるものではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。
[Details of the embodiment of the present invention]
Details of the embodiment of the present invention will be described below. In addition, this invention is not limited to these illustrations, is shown by the claim, and intends that all the changes within the meaning and range equivalent to the claim are included.

<実施形態1>
〔磁石用粉末の製造方法〕
磁石用粉末の製造方法は、希土類磁石に用いられる磁石用粉末を製造する方法であって、準備工程と、表面窒化工程と、磁場熱処理工程とを備える。以下、図1に基づいて、各工程について詳しく説明する。
<Embodiment 1>
[Method for producing magnet powder]
The method for producing a magnet powder is a method for producing a magnet powder for use in a rare earth magnet, and includes a preparation step, a surface nitriding step, and a magnetic field heat treatment step. Hereafter, each process is demonstrated in detail based on FIG.

(準備工程)
準備工程は、添加元素に希土類元素を含有する複数の希土類−鉄系合金粒子11から構成される希土類−鉄系合金粉末10を準備する工程である(図1の左図を参照)。希土類−鉄系合金粉末10は、所望の組成となるように、希土類−鉄系合金の構成元素を選択するとよい。
(Preparation process)
The preparation step is a step of preparing a rare earth-iron alloy powder 10 composed of a plurality of rare earth-iron alloy particles 11 containing a rare earth element as an additive element (see the left diagram in FIG. 1). The rare earth-iron alloy powder 10 may be selected from the constituent elements of the rare earth-iron alloy so as to have a desired composition.

添加元素として含有される希土類元素は、Sc、Y、ランタノイド及びアクチノイドから選択される1種以上の元素である。特に、Sm、Nd、Pr、Ce、Dy、Tb及びYから選択される少なくとも1種の元素を含むと、磁気特性の点で好ましい。特に、原料コスト及び磁気特性の観点から、Sm又はNdを必須元素として含むことが好ましい。希土類元素は単一の元素であっても、複数の元素の組み合わせであってもよい。複数の元素の組み合わせとは、例えば、希土類元素の一部を別の希土類元素で置換することをいう。希土類元素の含有量は、0質量%超とし、5質量%以上、さらに15質量%以上が好ましく、25質量%未満とすることが好適である。   The rare earth element contained as the additive element is at least one element selected from Sc, Y, lanthanoids and actinoids. In particular, when at least one element selected from Sm, Nd, Pr, Ce, Dy, Tb and Y is included, it is preferable in terms of magnetic properties. In particular, it is preferable to contain Sm or Nd as an essential element from the viewpoint of raw material cost and magnetic properties. The rare earth element may be a single element or a combination of a plurality of elements. The combination of a plurality of elements refers to, for example, replacing a part of a rare earth element with another rare earth element. The rare earth element content is more than 0% by mass, preferably 5% by mass or more, more preferably 15% by mass or more, and preferably less than 25% by mass.

添加元素として含有される鉄(Fe)は、Fe(純鉄)のみの形態や、Feの一部がCo、Ga、Cu、Al、Si及びNbから選択される少なくとも一種の元素に置換され、Feと当該置換元素とからなる形態などが挙げられる。Feの一部が上記元素で置換されることで、希土類磁石の磁気特性や耐食性を改善することができる。また、Feの一部が、Ti、Mn、Niなどから選択される少なくとも一種の元素に置換されていても良い。鉄および上記置換元素の合計含有量は、80質量%以上とする。含有量が80質量%以上であることで、硬質である希土類元素が相対的に少なくなり、合金粉末を圧縮成形し易い。一方、鉄および上記置換元素の合計含有量は、95質量%以下であることで、希土類元素が相対的に多くなり、磁気特性に優れる。鉄および上記置換元素の合計含有量は、より好ましくは85質量%以上95質量%以下が挙げられる。   Iron (Fe) contained as an additive element is a form of only Fe (pure iron) or a part of Fe is replaced with at least one element selected from Co, Ga, Cu, Al, Si and Nb, The form which consists of Fe and the said substitution element etc. are mentioned. By replacing part of Fe with the above element, the magnetic properties and corrosion resistance of the rare earth magnet can be improved. Further, a part of Fe may be substituted with at least one element selected from Ti, Mn, Ni and the like. The total content of iron and the above substitution elements is 80% by mass or more. When the content is 80% by mass or more, hard rare earth elements are relatively reduced, and the alloy powder is easily compression-molded. On the other hand, when the total content of iron and the above-described substitutional elements is 95% by mass or less, rare earth elements are relatively increased, and the magnetic properties are excellent. More preferably, the total content of iron and the above substitution elements is 85% by mass or more and 95% by mass or less.

希土類−鉄系合金粒子の大きさは、平均粒径が30μm以上300μm以下と比較的粗大である。希土類−鉄系合金粒子の大きさは、平均粒径が30μm以上であることで、微粒子に比べて比表面積を小さくして粉末の酸化を抑制し易く、酸化雰囲気での取り扱いを容易にできる。また、合金粉末を圧縮成形したときに高密度の粉末成形体を形成し易く、高密度の希土類磁石の作製ができる。一方、希土類−鉄系合金粒子の大きさは、平均粒径が300μm以下であることで、後述する磁場熱処理工程において、結晶粒内部まで窒素の拡散を生じさせることができる。特に、合金粒子の全体に亘る均一的な窒化を短時間で効率的に行うことが可能である。希土類−鉄系合金粒子の大きさは、より好ましくは平均粒径が35μm以上280μm以下、さらに50μm以上200μm以下が挙げられる。   The size of the rare earth-iron alloy particles is relatively coarse with an average particle size of 30 μm to 300 μm. Since the average particle size of the rare earth-iron-based alloy particles is 30 μm or more, the specific surface area can be made smaller than that of the fine particles to easily suppress the oxidation of the powder, and the handling in an oxidizing atmosphere can be facilitated. Further, when the alloy powder is compression-molded, a high-density powder compact can be easily formed, and a high-density rare earth magnet can be produced. On the other hand, the size of the rare earth-iron-based alloy particles is such that the average particle size is 300 μm or less, so that nitrogen can be diffused into the crystal grains in the magnetic field heat treatment step described later. In particular, uniform nitriding over the entire alloy particles can be performed efficiently in a short time. More preferably, the average particle size of the rare earth-iron-based alloy particles is 35 μm or more and 280 μm or less, and further 50 μm or more and 200 μm or less.

希土類−鉄系合金粉末は、例えば、所望の希土類−鉄系合金(例えば、SmFe17,SmFe11Ti)からなる溶湯鋳造インゴットや急冷凝固法で得られる箔状体を粉砕装置により粉砕することで製造できる。粉砕装置は、ジョークラッシャー、ジェットミルやボールミルなどが挙げられる。また、希土類−鉄系合金粉末は、ガスアトマイズ法といったアトマイズ法を利用したり、アトマイズ法により製造した粉末を更に粉砕したりすることでも製造できる。ガスアトマイズ法を利用する場合、非酸化雰囲気で粉末を形成することで、実質的に酸素が含有されない粉末(酸素濃度:500質量ppm以下)とすることができる。希土類-鉄系合金粉末の製造には、公知の製造方法を利用できる。粉砕条件や製造条件を適宜変更することで、磁石用粉末の粒度分布や粒子の形状を調整することができる。例えば、アトマイズ法を利用すると、真球度が高く、成形時の充填性に優れた粉末を製造し易い。上記希土類-鉄系合金粉末を構成する各粒子は多結晶体でも単結晶体でもよい。多結晶体からなる粒子に適宜熱処理を加えて単結晶体からなる粒子とすることができる。 The rare earth-iron-based alloy powder may be, for example, a molten metal casting ingot made of a desired rare earth-iron-based alloy (for example, Sm 2 Fe 17 , Sm 1 Fe 11 Ti 1 ) or a foil obtained by a rapid solidification method. It can manufacture by grind | pulverizing by. Examples of the pulverizer include a jaw crusher, a jet mill, and a ball mill. The rare earth-iron alloy powder can also be produced by utilizing an atomizing method such as a gas atomizing method, or by further pulverizing a powder produced by the atomizing method. When the gas atomization method is used, a powder containing substantially no oxygen (oxygen concentration: 500 mass ppm or less) can be obtained by forming the powder in a non-oxidizing atmosphere. A known production method can be used for the production of the rare earth-iron alloy powder. By appropriately changing the pulverization conditions and the production conditions, the particle size distribution and particle shape of the magnet powder can be adjusted. For example, when the atomizing method is used, it is easy to produce a powder having a high sphericity and excellent filling properties at the time of molding. Each particle constituting the rare earth-iron-based alloy powder may be a polycrystal or a single crystal. The particles made of a polycrystal can be appropriately heat treated to form particles made of a single crystal.

希土類−鉄系合金粉末は、水素化⇒脱水素を施したものを利用することができる。まず、希土類−鉄系合金粉末に水素化処理を施すことで、希土類元素の水素化合物と、鉄(或いは鉄及び鉄化合物)とに分離する。水素化処理を施した希土類−鉄系合金は、希土類元素の水素化合物の相と、鉄を含有する鉄含有物(純鉄を含む)の相とが混在する組織に変化する。次に、水素化処理を施した希土類−鉄系合金粉末に脱水素処理を施すことで、希土類−鉄系合金化を完全に起させることができ、磁気特性に優れる希土類磁石が得られる。水素化処理及び脱水素処理の条件などについては、実施形態2で詳述する。   As the rare earth-iron-based alloy powder, one subjected to hydrogenation → dehydrogenation can be used. First, the rare earth-iron-based alloy powder is subjected to a hydrogenation treatment to be separated into a rare earth element hydrogen compound and iron (or iron and an iron compound). The rare earth-iron-based alloy that has been subjected to the hydrogenation process changes to a structure in which a phase of a rare earth element hydrogen compound and a phase of an iron-containing material (including pure iron) containing iron are mixed. Next, the rare earth-iron-based alloy powder subjected to the hydrogenation treatment is subjected to a dehydrogenation treatment, whereby the rare-earth-iron-based alloying can be completely caused and a rare earth magnet having excellent magnetic properties can be obtained. The conditions for the hydrogenation treatment and dehydrogenation treatment will be described in detail in Embodiment 2.

(表面窒化工程)
表面窒化工程は、上記準備工程で準備した希土類−鉄系合金粉末10を、窒素元素を含む雰囲気中、希土類−鉄系合金の窒化温度以上窒素不均化温度以下の温度で熱処理して、窒化粉末20を形成する工程である(図1の中図を参照)。窒化粉末20は、上記熱処理によって、各希土類−鉄系合金粒子11が、その表面近傍に窒素が侵入した窒素保持領域21を有する。
(Surface nitriding process)
In the surface nitriding step, the rare earth-iron alloy powder 10 prepared in the above preparatory step is heat treated at a temperature not lower than the nitriding temperature of the rare earth-iron alloy and not higher than the nitrogen disproportionation temperature in an atmosphere containing nitrogen element. This is a step of forming the powder 20 (see the middle diagram of FIG. 1). The nitrided powder 20 has a nitrogen holding region 21 in which each rare earth-iron-based alloy particle 11 has nitrogen penetrated in the vicinity of the surface by the heat treatment.

窒素元素を含む雰囲気は、窒素(N)のみの単一雰囲気、或いはアンモニア(NH)雰囲気、或いは窒素(N)やアンモニアといった窒素元素を含むガスとArといった不活性ガスとの混合ガス雰囲気、或いは上記窒素元素を含むガスと水素(H)との混合ガス雰囲気が挙げられる。特に、水素ガスを含有する雰囲気は還元雰囲気であるため、生成した窒化物の酸化や過剰窒化を防止できて好ましい。 The atmosphere containing nitrogen element may be a single atmosphere of only nitrogen (N 2 ), an ammonia (NH 3 ) atmosphere, or a mixed gas of a gas containing a nitrogen element such as nitrogen (N 2 ) or ammonia and an inert gas such as Ar. An atmosphere or a mixed gas atmosphere of a gas containing nitrogen and hydrogen (H 2 ) can be given. In particular, since the atmosphere containing hydrogen gas is a reducing atmosphere, oxidation and excessive nitriding of the generated nitride can be prevented, which is preferable.

熱処理の温度は、希土類-鉄系合金が窒素元素と反応する温度(窒化温度)以上、窒素不均化温度(鉄含有物と希土類元素とがそれぞれ分離・独立して、窒素元素と反応する温度)以下とする。上記窒化温度や窒素不均化温度は、上記希土類-鉄系合金の組成により異なる。例えば、希土類-鉄系合金がSmFe17,SmFe11Tiの場合、熱処理時の温度は、200℃以上550℃以下が挙げられる。この熱処理温度は、より好ましくは300℃以上500℃以下、さらに320℃以上400℃以下が挙げられる。熱処理時の保持時間は、10分以上600分以下、より好ましくは20分以上550分以下、さらに40分以上480分以下が挙げられる。 The heat treatment temperature is equal to or higher than the temperature at which the rare earth-iron alloy reacts with the nitrogen element (nitriding temperature), the nitrogen disproportionation temperature (the temperature at which the iron-containing material and the rare earth element are separated and independently reacted with the nitrogen element) ) The following. The nitriding temperature and the nitrogen disproportionation temperature vary depending on the composition of the rare earth-iron alloy. For example, when the rare earth-iron alloy is Sm 2 Fe 17 , Sm 1 Fe 11 Ti 1 , the temperature during the heat treatment is 200 ° C. or higher and 550 ° C. or lower. The heat treatment temperature is more preferably 300 ° C. or more and 500 ° C. or less, and further 320 ° C. or more and 400 ° C. or less. The holding time during the heat treatment is 10 minutes to 600 minutes, more preferably 20 minutes to 550 minutes, and further 40 minutes to 480 minutes.

表面窒化工程により得られた窒化粉末20は、図1の中図に示されるように、各希土類−鉄系合金粒子11の表面から内部に向かって形成された窒素保持領域21と、この窒素保持領域21に続く内部領域22とを備える。窒素保持領域21は、各粒子11の表面から窒素が侵入した領域である。内部領域22は、窒素が存在しない、もしくは窒素保持領域21に比較して窒素量が不足した(窒素保持領域21が過剰に窒素を保持(過剰窒化)している)領域である。通常、窒素元素を含む雰囲気中で熱処理を行うと、各粒子の表面から内部に向かって窒素ポテンシャルの勾配が発生し、表面から内部に向かって窒素の存在状態が変化する。つまり、各粒子の表面側で窒化が進行し易く、内部に向かうほど窒化が行われ難くなる。   The nitrided powder 20 obtained by the surface nitriding step includes a nitrogen holding region 21 formed from the surface of each rare earth-iron-based alloy particle 11 toward the inside as shown in the middle diagram of FIG. And an internal region 22 following the region 21. The nitrogen holding region 21 is a region where nitrogen has entered from the surface of each particle 11. The internal region 22 is a region where nitrogen does not exist or the amount of nitrogen is insufficient compared to the nitrogen holding region 21 (the nitrogen holding region 21 holds excessive nitrogen (excess nitridation)). Usually, when heat treatment is performed in an atmosphere containing nitrogen element, a gradient of nitrogen potential is generated from the surface to the inside of each particle, and the existence state of nitrogen changes from the surface to the inside. That is, nitriding tends to proceed on the surface side of each particle, and nitriding becomes difficult as it goes inward.

(磁場熱処理工程)
磁場熱処理工程は、上記表面窒化工程で得られた窒化粉末20を、窒素元素を含まない雰囲気中、一定の磁場を印加して熱処理して、磁石用粉末1を形成する工程である(図1の右図を参照)。磁石用粉末1は、上記熱処理によって、各希土類−鉄系合金粒子11の窒素保持領域21の窒素が内部領域22にまで拡散され、各粒子11の全体に亘って実質的に均一に窒化された希土類−鉄−窒素系合金粒子31から構成される。
(Magnetic heat treatment process)
The magnetic field heat treatment step is a step of forming the magnet powder 1 by heat-treating the nitride powder 20 obtained in the surface nitriding step by applying a certain magnetic field in an atmosphere not containing nitrogen element (FIG. 1). (See the right figure). In the magnet powder 1, the nitrogen in the nitrogen holding region 21 of each rare earth-iron-based alloy particle 11 is diffused to the inner region 22 by the heat treatment, and is nitrided substantially uniformly over the entire particle 11. It is composed of rare earth-iron-nitrogen alloy particles 31.

窒素元素を含まない雰囲気は、真空度が10−2Pa以下の真空雰囲気とすることが挙げられる。より好ましい真空雰囲気の真空度は、5×10−3Pa以下、さらに1×10−3Pa以下が挙げられる。窒素元素を含まない真空雰囲気で熱処理を行うことで、各希土類−鉄系合金粒子に対してさらに窒素の侵入を抑制でき、各粒子の表面が過剰窒化されることを抑制できる。 The atmosphere containing no nitrogen element may be a vacuum atmosphere having a degree of vacuum of 10 −2 Pa or less. More preferable vacuum degree of the vacuum atmosphere is 5 × 10 −3 Pa or less, and further 1 × 10 −3 Pa or less. By performing the heat treatment in a vacuum atmosphere that does not contain a nitrogen element, it is possible to further suppress the penetration of nitrogen into each rare earth-iron-based alloy particle and to suppress the excessive nitridation of the surface of each particle.

熱処理の温度は、280℃以上430℃以下が挙げられる。熱処理温度が280℃以上であることで、各希土類−鉄系合金粒子の窒素保持領域の窒素を内部領域にまで拡散することができ、各粒子全体に亘って実質的に均一に窒化を行わせることができる。一方、熱処理温度が430℃以下であることで、粒子の構成材料(SmFe17など)と窒素との反応を抑制し、各粒子の表面側で過剰窒化することを抑制できる。過剰窒化すると、α−Feが形成され磁気特性を劣化させる。より好ましい熱処理温度は、300℃以上400℃以下、さらに320℃以上380℃以下が挙げられる。 As for the temperature of heat processing, 280 degreeC or more and 430 degrees C or less are mentioned. When the heat treatment temperature is 280 ° C. or more, nitrogen in the nitrogen holding region of each rare earth-iron alloy particle can be diffused to the inner region, and nitridation can be performed substantially uniformly over the entire particle. be able to. On the other hand, when the heat treatment temperature is 430 ° C. or lower, the reaction between the constituent material of the particles (such as Sm 2 Fe 17 ) and nitrogen can be suppressed, and excessive nitridation on the surface side of each particle can be suppressed. When excessive nitriding is performed, α-Fe is formed and the magnetic properties are deteriorated. More preferable heat treatment temperature is 300 ° C. or more and 400 ° C. or less, and further 320 ° C. or more and 380 ° C. or less.

熱処理の時間は、1時間以上10時間以下が挙げられる。熱処理時間が1時間以上であることで、各希土類−鉄系合金粒子の窒素保持領域の窒素を内部領域にまで拡散することができ、各粒子全体に亘って実質的に均一に窒化を行わせることができる。一方、熱処理時間が10時間以下であることで、粒子の構成材料(SmFe17など)と窒素との反応を抑制し、各粒子の表面側で過剰窒化することを抑制できる。より好ましい熱処理時間は、1.5時間以上8時間以下、さらに3時間以上6時間以下が挙げられる。 The heat treatment time is 1 hour or more and 10 hours or less. When the heat treatment time is 1 hour or more, nitrogen in the nitrogen holding region of each rare earth-iron alloy particle can be diffused to the inner region, and nitridation can be performed substantially uniformly over the entire particle. be able to. On the other hand, when the heat treatment time is 10 hours or less, the reaction between the constituent material of the particles (such as Sm 2 Fe 17 ) and nitrogen can be suppressed, and excessive nitridation on the surface side of each particle can be suppressed. More preferable heat treatment time is 1.5 hours or more and 8 hours or less, and further 3 hours or more and 6 hours or less.

磁場熱処理工程では、窒化粉末に一定の磁場を印加した状態で上記熱処理を施す。磁場強度は、2T以上12T以下の強磁場とする。磁場強度が2T以上であることで、各希土類−鉄系合金粒子を構成する結晶の結晶格子を一方向に引き伸ばすことができ、各粒子の窒素保持領域の窒素を内部領域にまで拡散することができ、各粒子全体に亘って実質的に均一に窒化を行わせることができる。磁場強度は、大きいほど結晶格子を一方向に引き伸ばし易く、引き伸ばされた鉄原子−鉄原子間に窒素原子を侵入させ易くなり、各粒子全体に亘って実質的に均一に窒化を行わせ易い。一方、磁場強度が12T以下であることで、粒子の構成材料(SmFe17など)と窒素との反応を抑制し、各粒子の表面側で過剰窒化することを抑制できる。より好ましい磁場強度は、3T以上10T以下、さらに4T以上7T以下が挙げられる。このような強磁場は、例えば、高温超電導磁石を用いることで安定して形成することができる。 In the magnetic field heat treatment step, the heat treatment is performed in a state where a constant magnetic field is applied to the nitride powder. The magnetic field strength is a strong magnetic field of 2T or more and 12T or less. When the magnetic field strength is 2T or more, the crystal lattice of the crystals constituting each rare earth-iron alloy particle can be extended in one direction, and the nitrogen in the nitrogen holding region of each particle can be diffused to the internal region. The nitridation can be performed substantially uniformly over the entire particle. The larger the magnetic field strength, the easier the crystal lattice is stretched in one direction, the easier it is for nitrogen atoms to penetrate between the stretched iron atoms and the iron atoms, and nitridation is performed substantially uniformly over the entire particle. On the other hand, when the magnetic field strength is 12 T or less, the reaction between the constituent material of the particles (Sm 2 Fe 17 and the like) and nitrogen can be suppressed, and excessive nitridation on the surface side of each particle can be suppressed. More preferable magnetic field strength is 3T or more and 10T or less, and further 4T or more and 7T or less. Such a strong magnetic field can be stably formed by using, for example, a high-temperature superconducting magnet.

磁場熱処理工程により得られた磁石用粉末1は、図1の右図に示されるように、各希土類−鉄系合金粒子11が全体に亘って均一的に窒化された希土類−鉄−窒素系合金粒子31から構成される。本実施形態1では、希土類−鉄系合金粉末に窒化を行うにあたり、まず窒素元素を含む雰囲気で熱処理を施し、各粒子の表面から窒素が侵入した領域を形成しておき、次に窒素元素を含まない雰囲気で熱処理を施し、上記窒素を各粒子の内部にまで拡散させることで、確実に各粒子の全体に亘って実質的に均一に窒化を行うことができる。窒素を拡散させる際は、磁場を印加することで、窒素の拡散速度を速めることができ、磁石用粉末を生産性良く製造することができる。   As shown in the right diagram of FIG. 1, the magnet powder 1 obtained by the magnetic field heat treatment step is a rare earth-iron-nitrogen alloy in which each rare earth-iron alloy particle 11 is uniformly nitrided throughout. It is composed of particles 31. In the first embodiment, when nitriding the rare earth-iron-based alloy powder, first, heat treatment is performed in an atmosphere containing nitrogen element to form a region where nitrogen enters from the surface of each particle, and then nitrogen element is introduced. By performing a heat treatment in an atmosphere that does not contain and diffusing the nitrogen into the interior of each particle, nitriding can be performed substantially uniformly over the entire particle. When diffusing nitrogen, by applying a magnetic field, the diffusion rate of nitrogen can be increased, and magnet powder can be manufactured with high productivity.

上記磁石用粉末は、希土類磁石に好適に用いることができる。希土類磁石は、上記磁石用粉末と結合樹脂とを混合した混合物を圧縮成形したり、射出成形したりして磁石素材を形成し、この磁石素材を適宜着磁することで得られる。   The magnet powder can be suitably used for rare earth magnets. The rare earth magnet can be obtained by compression-molding or injection-molding a mixture of the magnet powder and the binder resin to form a magnet material, and appropriately magnetizing the magnet material.

<実施形態2>
〔希土類磁石の製造方法〕
希土類磁石の製造方法は、準備工程と、水素化工程と、成形工程と、脱水素工程と、表面窒化工程と、磁場熱処理工程とを備える。以下、図2に基づいて、各工程について詳しく説明する。
<Embodiment 2>
[Production method of rare earth magnet]
The method for manufacturing a rare earth magnet includes a preparation step, a hydrogenation step, a forming step, a dehydrogenation step, a surface nitridation step, and a magnetic field heat treatment step. Hereinafter, each step will be described in detail with reference to FIG.

(準備工程)
準備工程は、添加元素に希土類元素を含有する複数の希土類−鉄系合金粒子11から構成される希土類−鉄系合金粉末10を準備する工程である(図2の上段左図を参照)。準備する希土類−鉄系合金粉末10については、実施形態1と同様である。
(Preparation process)
The preparation step is a step of preparing a rare earth-iron alloy powder 10 composed of a plurality of rare earth-iron alloy particles 11 containing a rare earth element as an additive element (see the upper left diagram in FIG. 2). The rare earth-iron-based alloy powder 10 to be prepared is the same as in the first embodiment.

(水素化工程)
水素化工程は、上記準備工程で準備した希土類−鉄系合金粉末10を、水素元素を含む雰囲気中、希土類−鉄系合金の水素不均化温度以上の温度で熱処理して、水素化粉末120を形成する工程である(図2の上段中図を参照)。
(Hydrogenation process)
In the hydrogenation step, the rare earth-iron alloy powder 10 prepared in the above preparation step is heat-treated at a temperature equal to or higher than the hydrogen disproportionation temperature of the rare earth-iron alloy in an atmosphere containing hydrogen element, and the hydrogenated powder 120 is obtained. (See the upper middle diagram of FIG. 2).

水素元素を含む雰囲気は、水素(H)のみの単一雰囲気や、水素(H)とArやNといった不活性ガスとの混合雰囲気が挙げられる。熱処理時の温度は、希土類−鉄系合金の不均化反応が進行する温度、即ち不均化温度以上とする。不均化反応とは、希土類元素の優先水素化により、希土類元素の水素化合物と、Fe(或いはFe及びFe化合物)とに分離する反応であり、この反応が生じる下限温度を不均化温度と呼ぶ。上記不均化温度は、上記希土類−鉄系合金の組成や希土類元素の種類により異なる。例えば、希土類−鉄系合金がSmFe17,SmFe11Tiの場合、600℃以上が挙げられる。熱処理時の温度を不均化温度近傍とすると、希土類元素の水素化合物の相と鉄含有物の相とが多層構造となっている層状形態が得られる。温度を不均化温度+100℃以上に高めると、図2に示すような、鉄含有物の相121を母相として、この母相中に粒状の希土類元素の水素化合物の相122が分散して存在する分散形態が得られる。熱処理時の温度は、高めるほど鉄含有物の相のマトリックス化が進行して成形性に優れる粉末が得られるが、高過ぎると粉末の溶融固着などの不具合が発生する上、後の脱水素による再結合が困難となるため、1100℃以下が好ましい。希土類-鉄系合金がSmFe17,SmFe11Tiの場合、熱処理時の温度を700℃以上900℃以下の比較的低めにすると、微細な組織の粉末となり、保磁力が高い希土類磁石が得られ易い。熱処理時の保持時間は、0.5時間以上5時間以下が挙げられる。この熱処理は、公知の不均化条件を適用することができる。熱処理には、一般的な加熱炉の他、ロータリーキルン炉といった揺動式炉を利用することができる。揺動式炉を利用すると、鋳造塊などの比較的大きな素材を利用しても、水素化の進行に伴って脆化により粉砕され、粉末になる。 Atmosphere containing hydrogen elements, hydrogen and a single atmosphere (H 2) only, a mixed atmosphere of inert gas and the like, such as hydrogen (H 2) and Ar and N 2. The temperature during the heat treatment is set to a temperature at which the disproportionation reaction of the rare earth-iron alloy proceeds, that is, the disproportionation temperature or higher. The disproportionation reaction is a reaction in which a rare earth element hydrogen compound and Fe (or Fe and Fe compound) are separated by preferential hydrogenation of the rare earth element, and the lower limit temperature at which this reaction occurs is defined as the disproportionation temperature. Call. The disproportionation temperature varies depending on the composition of the rare earth-iron alloy and the type of rare earth element. For example, when the rare earth-iron-based alloy is Sm 2 Fe 17 , Sm 1 Fe 11 Ti 1 , the temperature may be 600 ° C. or higher. When the temperature during the heat treatment is in the vicinity of the disproportionation temperature, a layered form is obtained in which the phase of the rare earth element hydrogen compound and the phase of the iron-containing material have a multilayer structure. When the temperature is increased to a disproportionation temperature + 100 ° C. or more, as shown in FIG. 2, a phase 121 of an iron-containing material is used as a parent phase, and a phase 122 of a granular rare earth element hydrogen compound is dispersed in the parent phase. An existing dispersion form is obtained. The higher the temperature during heat treatment, the more the matrix of the iron-containing material progresses, and a powder with excellent moldability can be obtained. However, if the temperature is too high, problems such as melting and fixing of the powder occur, and subsequent dehydrogenation Since recombination becomes difficult, 1100 degrees C or less is preferable. When the rare earth-iron-based alloy is Sm 2 Fe 17 , Sm 1 Fe 11 Ti 1 , if the temperature during the heat treatment is made relatively low at 700 ° C. or more and 900 ° C. or less, it becomes a powder with a fine structure and has a high coercive force. A magnet is easily obtained. Examples of the holding time during the heat treatment include 0.5 hours or more and 5 hours or less. Known heat disproportionation conditions can be applied to this heat treatment. In addition to a general heating furnace, an oscillating furnace such as a rotary kiln furnace can be used for the heat treatment. When a rocking furnace is used, even if a relatively large material such as a cast ingot is used, it is pulverized by embrittlement as the hydrogenation proceeds, and becomes powder.

上記熱処理により得られた水素化粉末を構成する各粒子は、主成分を鉄含有物とし、その含有量を60体積%以上とする。鉄含有物の含有量が60体積%以上であることで、硬質である希土類元素の水素化合物が相対的に少なくなり、圧縮成形時、鉄含有物を変形し易い。一方、鉄含有物の含有量は、75体積%以下であることで、希土類元素が相対的に多くなり、磁気特性に優れる。鉄含有物の含有量は、より好ましくは63体積%以上72体積%以下、さらに65体積%以上70体積%以下が挙げられる。希土類元素の水素化合物の含有量は、0体積%超とし、10体積%以上が好ましく、40体積%以下、さらに30体積%未満とすることが好適である。   Each particle constituting the hydrogenated powder obtained by the heat treatment has an iron-containing main component and a content of 60% by volume or more. When the content of the iron-containing material is 60% by volume or more, the hard rare earth element hydrogen compound is relatively reduced, and the iron-containing material is easily deformed during compression molding. On the other hand, when the content of the iron-containing material is 75% by volume or less, rare earth elements are relatively increased, and the magnetic properties are excellent. The content of the iron-containing material is more preferably 63% by volume to 72% by volume, and further 65% by volume to 70% by volume. The content of the rare earth element hydrogen compound is more than 0% by volume, preferably 10% by volume or more, preferably 40% by volume or less, and more preferably less than 30% by volume.

(成形工程)
成形工程は、上記水素化工程により得られた水素化粉末120を圧縮成形して、水素化粉末成形体130を得る工程である(図2の上段右図を参照)。水素化粉末120を圧縮成形することにより、高密度の水素化粉末成形体130が得られる。圧縮成形する際の成形圧力は、例えば294MPa(3ton/cm)以上1960MPa(20ton/cm)以下とすることが挙げられる。より好ましい成形圧力は、588MPa(6ton/cm)以上1470MPa(15ton/cm)以下である。また、水素化粉末成形体130の相対密度は、例えば80%以上95%以下程度、特に88%以上とすることが挙げられる。水素化粉末成形体130の相対密度が高いほど、緻密な水素化粉末成形体130(磁石素材160)が得られ、磁性相の存在割合が多い希土類磁石が得られる点で好ましい。ここでいう「相対密度」とは、水素化粉末成形体130を構成する希土類−鉄系合金の真密度に対する実際の密度([粉末成形体の実測密度/合金の真密度]の百分率)を意味する。その他、圧縮成形する際に成形用金型を適宜加熱することで、粉末の変形を促進することができ、高密度の水素化粉末成形体130が得られ易い。
(Molding process)
The forming step is a step in which the hydrogenated powder 120 obtained by the hydrogenation step is compression-molded to obtain a hydrogenated powder molded body 130 (see the upper right diagram in FIG. 2). By compressing and molding the hydrogenated powder 120, a high-density hydrogenated powder compact 130 is obtained. Molding pressure at the time of compression molding, and be, for example, 294MPa (3ton / cm 2) or more 1960MPa (20ton / cm 2) or less. A more preferable molding pressure is 588 MPa (6 ton / cm 2 ) or more and 1470 MPa (15 ton / cm 2 ) or less. In addition, the relative density of the hydrogenated powder molded body 130 is, for example, about 80% to 95%, particularly 88% or more. The higher the relative density of the hydrogenated powder molded body 130, the higher the density of the hydrogenated powder molded body 130 (magnet material 160), which is preferable in that a rare earth magnet having a high magnetic phase content can be obtained. Here, “relative density” means the actual density (percentage of [actual density of powder compact / true density of alloy]) with respect to the true density of the rare earth-iron alloy constituting the hydrogenated powder compact 130. To do. In addition, by appropriately heating the molding die during compression molding, the deformation of the powder can be promoted, and a high-density hydrogenated powder compact 130 can be easily obtained.

(脱水素工程)
脱水素工程は、上記成形工程により得られた水素化粉末成形体130を、不活性雰囲気中又は減圧雰囲気中、水素化粉末成形体130の再結合温度以上の温度で熱処理して、脱水素粉末成形体140を形成する工程である(図2の中段左図とその右図を参照)。
(Dehydrogenation process)
In the dehydrogenation step, the hydrogenated powder molded body 130 obtained by the molding step is heat-treated at a temperature equal to or higher than the recombination temperature of the hydrogenated powder molded body 130 in an inert atmosphere or a reduced pressure atmosphere. This is a step of forming the molded body 140 (see the middle left diagram and the right diagram in FIG. 2).

脱水素処理する際の雰囲気は、水素化粉末と反応せず、各水素を効率よく除去できるように非水素雰囲気とする。非水素雰囲気には、不活性雰囲気又は減圧雰囲気が挙げられる。例えば、ArやNなどの不活性ガス雰囲気、又は真空度が10Pa以下の真空雰囲気とすることが挙げられる。より好ましい真空雰囲気の真空度は、1Pa以下、更には0.1Pa以下である。特に、減圧雰囲気(真空雰囲気)中で脱水素処理した場合、再結合反応がより進行して、希土類元素の水素化合物が残存し難い。脱水素処理する際の熱処理の温度は、水素化粉末成形体130の再結合温度(分離していた鉄含有物と希土類元素とが化合する温度)以上とする。再結合温度は、水素化粉末成形体130を構成する粒子の組成により異なるものの、代表的には、600℃以上1000℃以下、より好ましくは650℃以上850℃以下、さらに700℃以上800℃以下とすることが挙げられる。脱水素処理する際の熱処理の時間は、例えば10分以上10時間以下、より好ましくは30分以上5時間以下、さらに1時間以上3時間以下とすることが挙げられる。脱水素粉末成形体140の相対密度は、熱処理の温度や時間によって多少変化するものの、水素化粉末成形体130の相対密度と実質的に等しい。 The atmosphere for the dehydrogenation treatment is a non-hydrogen atmosphere so that each hydrogen can be efficiently removed without reacting with the hydrogenated powder. The non-hydrogen atmosphere includes an inert atmosphere or a reduced pressure atmosphere. For example, an inert gas atmosphere such as Ar or N 2 or a vacuum atmosphere having a vacuum degree of 10 Pa or less can be used. The vacuum degree of a more preferable vacuum atmosphere is 1 Pa or less, and further 0.1 Pa or less. In particular, when dehydrogenation is performed in a reduced-pressure atmosphere (vacuum atmosphere), the recombination reaction further proceeds and the rare earth element hydrogen compound hardly remains. The temperature of the heat treatment during the dehydrogenation treatment is set to be equal to or higher than the recombination temperature of the hydrogenated powder molded body 130 (the temperature at which the separated iron-containing material and rare earth element combine). Although the recombination temperature varies depending on the composition of the particles constituting the hydrogenated powder molded body 130, it is typically 600 ° C or higher and 1000 ° C or lower, more preferably 650 ° C or higher and 850 ° C or lower, and further 700 ° C or higher and 800 ° C or lower. And so on. The heat treatment time for the dehydrogenation treatment is, for example, from 10 minutes to 10 hours, more preferably from 30 minutes to 5 hours, and further from 1 hour to 3 hours. The relative density of the dehydrogenated powder molded body 140 is substantially equal to the relative density of the hydrogenated powder molded body 130 although it varies somewhat depending on the temperature and time of the heat treatment.

(表面窒化工程)
表面窒化工程は、上記脱水素処理で得られた脱水素粉末成形体140を、窒素元素を含む雰囲気中、脱水素粉末成形体140の窒化温度以上窒素不均化温度以下の温度で熱処理を施して、窒化粉末成形体150を形成する工程である(図2の中段左から2番目と3番目の図を参照)。窒化粉末成形体150は、脱水素粉末成形体140を構成する脱水素粉末成形体粒子の各々がその表面近傍に窒素が侵入した窒素保持領域151と、この窒素保持領域151に続く内部領域152とを有する。窒素保持領域151は、内部領域152に比較して、窒素が多く侵入した状態である。表面窒化工程における熱処理の条件については、実施形態1と同様である。
(Surface nitriding process)
In the surface nitriding step, the dehydrogenated powder molded body 140 obtained by the above dehydrogenation treatment is subjected to heat treatment at a temperature not lower than the nitriding temperature of the dehydrogenated powder molded body 140 and not higher than the nitrogen disproportionation temperature in an atmosphere containing nitrogen element. This is a step of forming the nitride powder molded body 150 (see the second and third diagrams from the left in the middle of FIG. 2). The nitride powder molded body 150 includes a nitrogen holding region 151 in which nitrogen enters each of the dehydrogenated powder molded body particles constituting the dehydrogenated powder molded body 140 and an inner region 152 following the nitrogen holding region 151. Have The nitrogen holding region 151 is in a state where a larger amount of nitrogen has entered than the inner region 152. The heat treatment conditions in the surface nitriding step are the same as those in the first embodiment.

(磁場熱処理工程)
磁場熱処理工程は、上記表面窒化工程で得られた窒化粉末成形体150を、窒素元素を含まない雰囲気中、一定の磁場を印加して熱処理を施して、磁石素材160を形成する工程である(図2の中段右から2番目と右図を参照)。磁石素材160は、脱水素粉末成形体粒子の各々が有する窒素保持領域151の窒素が内部領域152にまで拡散され、各粒子の全体に亘って実質的に均一に窒化されている。磁場熱処理工程における熱処理の条件については、実施形態1と同様である。
(Magnetic heat treatment process)
The magnetic field heat treatment step is a step of forming the magnet material 160 by applying a certain magnetic field to the nitride powder molded body 150 obtained in the surface nitridation step in a nitrogen-free atmosphere and applying a heat treatment (see FIG. (See the second figure from the middle right of Fig. 2 and the right figure). In the magnet material 160, nitrogen in the nitrogen holding region 151 of each dehydrogenated powder compact particle is diffused to the inner region 152, and is substantially uniformly nitrided over the entire particle. The heat treatment conditions in the magnetic field heat treatment step are the same as in the first embodiment.

上記磁石素材160を適宜着磁することで、希土類磁石170が得られる(図2の下段図を参照)。本実施形態2の磁石素材160を用いて得られた希土類磁石170は、磁石素材160が全体に亘って実質的に均一に窒化されているため、磁気特性に優れる。   A rare earth magnet 170 is obtained by appropriately magnetizing the magnet material 160 (see the lower diagram of FIG. 2). The rare earth magnet 170 obtained by using the magnet material 160 of Embodiment 2 has excellent magnetic properties because the magnet material 160 is substantially uniformly nitrided throughout.

<試験例>
・試験例1
希土類元素を含有する磁石用粉末を種々作製し、得られた磁石用粉末を圧縮成形して、各磁石用粉末の磁気特性を調べた。磁石用粉末は、以下の準備工程⇒表面窒化工程⇒磁場熱処理工程という手順で作製した。
<Test example>
Test example 1
Various magnet powders containing rare earth elements were prepared, and the obtained magnet powders were compression molded to examine the magnetic properties of the magnet powders. The magnet powder was prepared according to the following preparation process ⇒ surface nitriding process ⇒ magnetic field heat treatment process.

24質量%のSmを含有するSmFe17合金粉末を準備した。SmFe17合金粉末を構成する粒子の平均粒径は、表1に示す。このSmFe17合金粉末を、NH:H=1:3の混合ガス雰囲気中、320℃×3時間の熱処理を施して窒化粉末を形成した。この窒化粉末を、真空度1×10−3Paの真空雰囲気中、表1に示す磁場(T)を印加した状態で、表1に示す熱処理条件(温度、時間)で熱処理を施して磁石用粉末(試料No.1〜7,101〜106)を作製した。 Sm 2 Fe 17 alloy powder containing 24% by mass of Sm was prepared. Table 1 shows the average particle diameter of the particles constituting the Sm 2 Fe 17 alloy powder. This Sm 2 Fe 17 alloy powder was heat-treated at 320 ° C. for 3 hours in a mixed gas atmosphere of NH 3 : H 2 = 1: 3 to form a nitrided powder. This nitrided powder is subjected to a heat treatment under the heat treatment conditions (temperature, time) shown in Table 1 in a vacuum atmosphere with a degree of vacuum of 1 × 10 −3 Pa and a magnetic field (T) shown in Table 1 is applied. Powders (Sample Nos. 1 to 7, 101 to 106) were prepared.

Figure 2016044352
Figure 2016044352

作製した試料No.1〜7,101〜106の磁石用粉末は、結合樹脂と混合して混合物とし、この混合物を用いて磁石用粉末をX線回析によって結晶相分析して、構成組成(出現相)を調べた。その結果を表2に示す。   The prepared sample No. The magnet powders 1 to 7 and 101 to 106 are mixed with a binder resin to form a mixture, and the magnetic powder is analyzed by crystal phase analysis by X-ray diffraction using this mixture to check the composition (appearance phase). It was. The results are shown in Table 2.

また、EPMA(Electron Probe Micro Analyzer:X線マイクロアナライザ)によって、磁石用粉末を構成する各粒子の窒化状態を観察した。その結果を表2に示す。   Further, the nitridation state of each particle constituting the magnet powder was observed by EPMA (Electron Probe Micro Analyzer: X-ray microanalyzer). The results are shown in Table 2.

各試料を3.98MA/m(≒49.9kOe)のパルス磁界で着磁した後、振動試料型磁力計(VSM−5SC−5HF型、東英工業株式会社製)により、保磁力(kOe=(10/4π)kA/m)及び残留磁化(emu/g=A・m/kg)を測定した。その結果を表2に示す。 Each sample was magnetized with a pulse magnetic field of 3.98 MA / m (≈49.9 kOe), and then the coercive force (kOe =) was measured with a vibrating sample magnetometer (VSM-5SC-5HF type, manufactured by Toei Industry Co., Ltd.). (10 3 / 4π) kA / m) and remanent magnetization (emu / g = A · m 2 / kg) were measured. The results are shown in Table 2.

また、試料No.8として、以下の準備工程⇒水素化工程⇒成形工程⇒脱水素工程⇒表面窒化工程⇒磁場熱処理工程という手順で磁石素材を作製した。まず、24質量%のSmを含有するSmFe17合金粉末を準備した。このSmFe17合金粉末を構成する粒子の平均粒径は、150μmであった。次に、SmFe17合金粉末を、水素雰囲気中、700℃×2時間の熱処理を施して水素化処理することにより、水素化粉末を形成した。この水素化粉末を金型に充填し、圧縮成形することで水素化粉末成形体を形成した。この圧縮成形時の面圧は980MPa(10ton/cm)とした。得られた水素化粉末成形体の相対密度は、85%であった。続いて、水素化粉末成形体を、真空度3×10−5Paの真空雰囲気中、750℃×1.5時間の熱処理を施して脱水素処理をすることにより、脱水素粉末成形体を形成した。得られた脱水素粉末成形体の相対密度は、87%であった。この脱水素粉末成形体を、NH:H=1:3の混合ガス雰囲気中、320℃×3時間の熱処理を施して窒化粉末成形体を形成した。得られた窒化粉末成形体の相対密度は、85%であった。この窒化粉末成形体を、真空度1×10−3Paの真空雰囲気中、磁場強度5Tの磁場を印加した状態で、320℃×5時間の熱処理を施して磁石素材を作製した。試料No.8の製造条件についても、表1に示す。 Sample No. As shown in Fig. 8, a magnet material was prepared by the following preparation process ⇒ hydrogenation process ⇒ molding process ⇒ dehydrogenation process ⇒ surface nitridation process ⇒ magnetic field heat treatment process. First, an Sm 2 Fe 17 alloy powder containing 24% by mass of Sm was prepared. The average particle diameter of the particles constituting the Sm 2 Fe 17 alloy powder was 150 μm. Next, a hydrogenated powder was formed by subjecting the Sm 2 Fe 17 alloy powder to a hydrogenation treatment by performing a heat treatment at 700 ° C. for 2 hours in a hydrogen atmosphere. The hydrogenated powder was filled in a mold and compression molded to form a hydrogenated powder molded body. The surface pressure during this compression molding was 980 MPa (10 ton / cm 2 ). The relative density of the obtained hydrogenated powder molded body was 85%. Subsequently, the hydrogenated powder compact is subjected to heat treatment at 750 ° C. for 1.5 hours in a vacuum atmosphere of 3 × 10 −5 Pa to form a dehydrogenated powder compact. did. The relative density of the obtained dehydrogenated powder molded body was 87%. This dehydrogenated powder compact was heat-treated at 320 ° C. for 3 hours in a mixed gas atmosphere of NH 3 : H 2 = 1: 3 to form a nitride powder compact. The relative density of the obtained nitrided powder molded body was 85%. This nitrided powder compact was heat-treated at 320 ° C. for 5 hours in a vacuum atmosphere with a vacuum degree of 1 × 10 −3 Pa and a magnetic field with a magnetic field strength of 5 T was applied to produce a magnet material. Sample No. The production conditions of 8 are also shown in Table 1.

作製した試料No.8の磁石素材は、この磁石素材を構成する粉末をX線回折によって結晶相分析して、構成組成(出現相)を調べた。その結果を表2に示す。また、得られた磁石素材を3.97MA/m(≒49.8kOe)のパルス磁界で着磁した後、交流B−H磁石材料評価装置(東英工業株式会社製)により、保磁力(kOe=(10/4π)kA/m)及び残留磁化(T)を測定した。その結果を表2に併せて示す。 The prepared sample No. As for the magnet material No. 8, the powder constituting the magnet material was subjected to crystal phase analysis by X-ray diffraction, and the constituent composition (appearing phase) was examined. The results are shown in Table 2. Further, after magnetizing the obtained magnet material with a pulse magnetic field of 3.97 MA / m (≈49.8 kOe), a coercive force (kOe) is measured by an AC B-H magnet material evaluation device (manufactured by Toei Industry Co., Ltd.). = (10 3 / 4π) kA / m) and remanent magnetization (T). The results are also shown in Table 2.

Figure 2016044352
Figure 2016044352

表2に示すように、SmFe17合金粉末を窒化するにあたり、窒素の粒子表面部への侵入を主に行う表面窒化工程と、窒素の粒子内部への拡散を主に行う磁場熱処理との二段階の工程に分け、かつ磁場熱処理工程を特定の条件で行った試料No.1〜8は、各粒子の全体に亘って均一にSmFe17が存在した。各粒子の全体に亘って均一にSmFe17が存在することで、保磁力及び残留磁化ともに高いことがわかる。 As shown in Table 2, in nitriding the Sm 2 Fe 17 alloy powder, a surface nitridation step that mainly penetrates into the surface of nitrogen particles and a magnetic field heat treatment that mainly diffuses nitrogen into the particles Sample No. 2 was divided into two steps and the magnetic field heat treatment step was performed under specific conditions. In Nos. 1 to 8, Sm 2 Fe 17 N 3 was present uniformly throughout the entire particle. It can be seen that both the coercive force and the remanent magnetization are high due to the presence of Sm 2 Fe 17 N 3 uniformly throughout the entire particle.

窒化を二段階の工程に分けたとしても、磁場熱処理工程において磁場を印加しなかった試料No.103では、未反応のSmFe17が存在してしまい、磁気特性が低かった。これは、磁場を印加しなかったため、内部にまで窒素を拡散できなかったことによると考えられる。磁場熱処理工程において磁場強度が高過ぎる試料No.104では、窒素量の異なるSm−Fe−N系合金の他に、α−Fe、a−Sm(アモルファス状態のSm)が存在し、窒素量のムラが生じて、磁気特性が低かった。これは、磁場強度が高過ぎるため、内部にまで窒素を拡散することはできたが、窒素の拡散と共に表面側が過剰に窒化されたことによると考えられる。また、窒化を二段階の工程に分けたとしても、磁場熱処理工程において熱処理温度を低くして熱処理時間を長くした試料No.105では、窒化に至らず、磁気特性が低かった。一方、磁場熱処理工程において熱処理温度を高くして熱処理時間を短くした試料No.106では、窒素量の異なるSm−Fe−N系合金の他に、α−Fe、a−Sm(アモルファス状態のSm)が存在し、窒素量のムラが生じて、磁気特性が悪かった。つまり、磁場を印加して熱処理を行うにあたり、特定の熱処理温度と熱処理時間とすることで、各粒子の全体に亘って均一に窒素を拡散することができると考えられる。さらに、各粒子の平均粒径が小さ過ぎる試料No.101では、窒素量の異なるSm−Fe−N系合金の他に、α−Fe、a−Sm(アモルファス状態のSm)が存在し、窒素量のムラが生じ、平均粒径が大き過ぎる試料No.102では、内部まで窒素を拡散できず、共に磁気特性が低かった。 Even if nitriding was divided into two steps, the sample No. in which no magnetic field was applied in the magnetic field heat treatment step was used. In 103, unreacted Sm 2 Fe 17 was present, and the magnetic properties were low. This is considered to be because nitrogen could not be diffused to the inside because no magnetic field was applied. In the magnetic field heat treatment step, the sample No. In 104, α-Fe and a-Sm (amorphous Sm) existed in addition to Sm—Fe—N alloys having different amounts of nitrogen, resulting in unevenness in the amount of nitrogen and low magnetic properties. This is probably because the magnetic field strength was too high, so that nitrogen could be diffused into the interior, but the surface side was excessively nitrided with the diffusion of nitrogen. In addition, even if nitriding is divided into two steps, the sample No. 1 in which the heat treatment temperature is lowered and the heat treatment time is lengthened in the magnetic field heat treatment step. In No. 105, nitriding did not occur and the magnetic characteristics were low. On the other hand, in the magnetic field heat treatment step, Sample No. In 106, α-Fe and a-Sm (amorphous Sm) existed in addition to the Sm—Fe—N alloys having different amounts of nitrogen, resulting in unevenness in the amount of nitrogen and poor magnetic properties. That is, it is considered that when heat treatment is performed by applying a magnetic field, nitrogen can be uniformly diffused over the entire particle by setting a specific heat treatment temperature and heat treatment time. Furthermore, sample No. 1 in which the average particle size of each particle is too small. In Sample 101, α-Fe and a-Sm (amorphous Sm) are present in addition to Sm—Fe—N alloys having different nitrogen contents, and the amount of nitrogen is uneven and the average particle size is too large. . In 102, nitrogen could not be diffused to the inside, and both had low magnetic properties.

以上の結果より、窒化処理を、窒素の粒子表面部への侵入を主に行う表面窒化工程と、窒素の粒子内部への拡散を主に行う磁場熱処理工程との二段階の工程に分け、磁場熱処理工程において、特定の磁場を印加し、特定の熱処理温度と熱処理時間とすることが好ましいことがわかる。   Based on the above results, the nitriding treatment is divided into two steps: a surface nitriding step that mainly penetrates into the surface of nitrogen particles, and a magnetic field heat treatment step that mainly diffuses nitrogen into the particles. It can be seen that in the heat treatment step, it is preferable to apply a specific magnetic field to a specific heat treatment temperature and heat treatment time.

・試験例2
試験例1で作製した試料No.8の磁石素材について歩留りを求めた。また、比較として、準備工程⇒水素化工程⇒成形工程⇒脱水素工程⇒窒化工程という従来の手順で磁石素材を作製し(試料No.201)、この試料No.201の磁石素材について歩留りを求めた。試料No.201の磁石素材の製造方法は、脱水素工程の熱処理時に5Tの磁場を印加したことと、窒化工程が窒素雰囲気中で5Tの磁場を印加した状態で熱処理を施したことが、試料No.8の磁石素材の製造方法との主な相違点であり、他の製造条件は試料No.8と同様である。作製した両試料について、保磁力及び残留磁化を上述した測定方法により測定した。歩留りは、保磁力及び残留磁化が共に規定値を満たした場合に良品、満たさない場合を不良品とし、全体(100個作製)のうち良品と判断したものの割合とした。その結果、従来の製造方法で作製した試料No.201では65%であり、本実施形態の製造方法で作製した試料No.8では95%であった。つまり、本実施形態の製造方法では、磁気特性に優れる磁石素材を従来と比較して生産性良く製造できることがわかる。
Test example 2
Sample No. produced in Test Example 1 Yield was obtained for 8 magnet materials. For comparison, a magnet material was prepared by a conventional procedure of preparation step ⇒ hydrogenation step ⇒ molding step ⇒ dehydrogenation step ⇒ nitridation step (sample No. 201). Yield was calculated for 201 magnet materials. Sample No. According to the manufacturing method of the magnet material of No. 201, sample No. 1 was that a 5T magnetic field was applied during the heat treatment in the dehydrogenation process, and that the heat treatment was performed in the nitriding process with a 5T magnetic field applied in a nitrogen atmosphere. 8 is the main difference from the manufacturing method of the magnet material of No. 8, and other manufacturing conditions are as follows. It is the same as 8. About both produced samples, coercive force and residual magnetization were measured by the measuring method mentioned above. Yield was defined as a non-defective product when the coercive force and residual magnetization both satisfy the specified values, and a defective product when the coercive force and residual magnetization did not satisfy the specified value. As a result, the sample No. produced by the conventional manufacturing method was obtained. No. 201 is 65%, and the sample No. produced by the manufacturing method of the present embodiment is used. 8 was 95%. That is, it can be seen that the manufacturing method of the present embodiment can manufacture a magnet material having excellent magnetic characteristics with higher productivity than the conventional method.

本発明の磁石用粉末の製造方法、及び本発明の希土類磁石の製造方法は、各種モータ、特に、ハイブリッド車(HEV)やハードディスクドライブ(HDD)などに具備される高速モータに用いられる永久磁石の原料、素材の製造に好適に利用することができる。   The manufacturing method of the magnet powder of the present invention and the manufacturing method of the rare earth magnet of the present invention can be applied to various motors, in particular, permanent magnets used in high-speed motors included in hybrid vehicles (HEV) and hard disk drives (HDD). It can utilize suitably for manufacture of a raw material and a raw material.

1 磁石用粉末
10 希土類−鉄系合金粉末 11 希土類−鉄系合金粒子
20 窒化粉末 21 窒素保持領域 22 内部領域
31 希土類−鉄−窒素系合金粒子
120 水素化粉末
121 鉄含有物の相 122 希土類元素の水素化合物の相
130 水素化粉末成形体
140 脱水素粉末成形体
150 窒化粉末成形体 151 窒素保持領域 152 内部領域
160 磁石素材
170 希土類磁石
DESCRIPTION OF SYMBOLS 1 Magnet powder 10 Rare earth-iron system alloy powder 11 Rare earth-iron system alloy particle 20 Nitride powder 21 Nitrogen retention area 22 Inner area 31 Rare earth-iron-nitrogen system alloy particle 120 Hydrogenated powder 121 Phase of iron inclusion 122 Rare earth element Phase of hydrogen compound 130 Hydrogenated powder compact 140 Dehydrogenated powder compact 150 Nitrided powder compact 151 Nitrogen retention area 152 Internal area 160 Magnet material 170 Rare earth magnet

Claims (6)

希土類元素を含有する複数の希土類−鉄系合金粒子から構成される希土類−鉄系合金粉末を準備する準備工程と、
前記希土類−鉄系合金粉末を、窒素元素を含む雰囲気中、当該希土類−鉄系合金の窒化温度以上窒素不均化温度以下の温度で熱処理して、前記希土類−鉄系合金粒子の各々がその表面近傍に窒素が侵入した窒素保持領域を有する窒化粉末を形成する表面窒化工程と、
前記窒化粉末を、窒素元素を含まない雰囲気中、一定の磁場を印加して熱処理して、前記窒素保持領域の窒素を前記希土類−鉄系合金粒子の内部にまで拡散させ、当該希土類−鉄系合金粒子の全体に亘って実質的に均一に窒化させた希土類−鉄−窒素系合金粒子から構成される磁石用粉末を形成する磁場熱処理工程とを備える磁石用粉末の製造方法。
A preparation step of preparing a rare earth-iron alloy powder composed of a plurality of rare earth-iron alloy particles containing a rare earth element;
The rare earth-iron-based alloy powder is heat-treated in an atmosphere containing nitrogen element at a temperature not lower than the nitriding temperature of the rare-earth-iron-based alloy and not higher than the nitrogen disproportionation temperature. A surface nitriding step for forming a nitrided powder having a nitrogen holding region in which nitrogen penetrates in the vicinity of the surface;
The nitride powder is heat-treated in a nitrogen-free atmosphere by applying a constant magnetic field to diffuse the nitrogen in the nitrogen holding region to the inside of the rare earth-iron alloy particles, the rare earth-iron system A magnetic powder manufacturing method comprising: a magnetic field heat treatment step of forming a magnetic powder composed of rare earth-iron-nitrogen based alloy particles nitrided substantially uniformly over the entire alloy particles.
前記磁場熱処理工程における磁場強度は、2T以上12T以下である請求項1に記載の磁石用粉末の製造方法。   The method for producing a magnet powder according to claim 1, wherein the magnetic field strength in the magnetic field heat treatment step is 2T or more and 12T or less. 前記磁場熱処理工程における熱処理温度は、280℃以上430℃以下である請求項1又は請求項2に記載の磁石用粉末の製造方法。   The method for producing a magnet powder according to claim 1 or 2, wherein a heat treatment temperature in the magnetic field heat treatment step is 280 ° C or higher and 430 ° C or lower. 前記磁場熱処理工程における熱処理時間は、1時間以上10時間以下である請求項1〜請求項3のいずれか1項に記載の磁石用粉末の製造方法。   The method for manufacturing a magnet powder according to any one of claims 1 to 3, wherein a heat treatment time in the magnetic field heat treatment step is 1 hour or more and 10 hours or less. 前記希土類−鉄系合金粒子の平均粒径は、30μm以上300μm以下である請求項1〜請求項4のいずれか1項に記載の磁石用粉末の製造方法。   The method for producing a magnet powder according to any one of claims 1 to 4, wherein the rare earth-iron-based alloy particles have an average particle size of 30 µm or more and 300 µm or less. 希土類元素を含有する複数の希土類−鉄系合金粒子から構成される希土類−鉄系合金粉末を準備する準備工程と、
前記希土類−鉄系合金粉末を、水素元素を含む雰囲気中、当該希土類−鉄系合金の水素不均化温度以上の温度で熱処理して、水素化粉末を形成する水素化工程と、
前記水素化粉末を圧縮成形して、水素化粉末成形体を形成する成形工程と、
前記水素化粉末成形体を、不活性雰囲気中又は減圧雰囲気中、当該水素化粉末成形体の再結合温度以上の温度で熱処理して、脱水素粉末成形体を形成する脱水素工程と、
前記脱水素粉末成形体を、窒素元素を含む雰囲気中、当該脱水素粉末成形体の窒化温度以上窒素不均化温度以下の温度で熱処理して、前記脱水素粉末成形体を構成する脱水素粉末成形体粒子の各々がその表面近傍に窒素が侵入した窒素保持領域を有する窒化粉末成形体を形成する表面窒化工程と、
前記窒化粉末成形体を、窒素元素を含まない雰囲気中、一定の磁場を印加して熱処理して、前記窒素保持領域の窒素を前記脱水素粉末成形体粒子の全体に亘って実質的に均一に窒化させた磁石素材を形成する磁場熱処理工程とを備える希土類磁石の製造方法。
A preparation step of preparing a rare earth-iron alloy powder composed of a plurality of rare earth-iron alloy particles containing a rare earth element;
A hydrogenation step of heat-treating the rare earth-iron alloy powder in a hydrogen element-containing atmosphere at a temperature equal to or higher than the hydrogen disproportionation temperature of the rare earth-iron alloy to form a hydrogenated powder;
Compression molding the hydrogenated powder to form a hydrogenated powder molded body,
A dehydrogenation step of forming a dehydrogenated powder molded body by heat-treating the hydrogenated powder molded body at a temperature equal to or higher than a recombination temperature of the hydrogenated powder molded body in an inert atmosphere or a reduced pressure atmosphere;
The dehydrogenated powder forming the dehydrogenated powder compact by heat-treating the dehydrogenated powder compact in a nitrogen element-containing atmosphere at a temperature not lower than the nitriding temperature of the dehydrogenated powder compact and not higher than the nitrogen disproportionation temperature. A surface nitridation step in which each of the molded body particles forms a nitrided powder molded body having a nitrogen holding region in which nitrogen penetrates in the vicinity of the surface;
The nitride powder compact is heat-treated in a nitrogen-free atmosphere by applying a constant magnetic field so that nitrogen in the nitrogen holding region is substantially uniform over the entire dehydrogenated powder compact particles. A method for producing a rare earth magnet comprising a magnetic field heat treatment step for forming a nitrided magnet material.
JP2014171975A 2014-08-26 2014-08-26 Method for producing powder for magnet, and method for producing rare earth magnet Pending JP2016044352A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014171975A JP2016044352A (en) 2014-08-26 2014-08-26 Method for producing powder for magnet, and method for producing rare earth magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014171975A JP2016044352A (en) 2014-08-26 2014-08-26 Method for producing powder for magnet, and method for producing rare earth magnet

Publications (1)

Publication Number Publication Date
JP2016044352A true JP2016044352A (en) 2016-04-04

Family

ID=55635193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014171975A Pending JP2016044352A (en) 2014-08-26 2014-08-26 Method for producing powder for magnet, and method for producing rare earth magnet

Country Status (1)

Country Link
JP (1) JP2016044352A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019087663A1 (en) * 2017-11-02 2019-05-09 住友電気工業株式会社 Rare-earth magnet material, magnet powder, method for producing rare-earth magnet material, and method for producing magnet powder
WO2022259949A1 (en) * 2021-06-10 2022-12-15 日亜化学工業株式会社 Smfen-based anisotropic magnetic powder, bonded maget, method for producing said smfen-based anisotropic magnetic powder, and method for producing said bonded maget
US12027294B2 (en) 2021-09-27 2024-07-02 Nichia Corporation Method of producing SmFeN-based rare earth magnet
US12027306B2 (en) 2021-06-10 2024-07-02 Nichia Corporation Method of producing SmFeN-based rare earth magnet

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019087663A1 (en) * 2017-11-02 2019-05-09 住友電気工業株式会社 Rare-earth magnet material, magnet powder, method for producing rare-earth magnet material, and method for producing magnet powder
WO2022259949A1 (en) * 2021-06-10 2022-12-15 日亜化学工業株式会社 Smfen-based anisotropic magnetic powder, bonded maget, method for producing said smfen-based anisotropic magnetic powder, and method for producing said bonded maget
US12027306B2 (en) 2021-06-10 2024-07-02 Nichia Corporation Method of producing SmFeN-based rare earth magnet
US12027294B2 (en) 2021-09-27 2024-07-02 Nichia Corporation Method of producing SmFeN-based rare earth magnet

Similar Documents

Publication Publication Date Title
JP5218869B2 (en) Rare earth-iron-nitrogen alloy material, method for producing rare earth-iron-nitrogen alloy material, rare earth-iron alloy material, and method for producing rare earth-iron alloy material
JP5892139B2 (en) Rare earth anisotropic magnet and manufacturing method thereof
CN106941038B (en) Rare-earth sintering magnet and its manufacturing method
JP5754232B2 (en) Manufacturing method of high coercive force NdFeB magnet
CN110942879B (en) Magnetic particles, magnetic particle molded body, and method for producing same
JP2015179841A (en) Method for manufacturing r-t-b-based sintered magnet
JP2013102122A (en) Magnetic member and manufacturing method for magnetic member
JP2012253247A (en) Composite magnetic material and method for manufacturing the same
JPWO2012114530A1 (en) Rare earth magnet manufacturing method
JPH06346101A (en) Magnetically anisotropic powder and its production
JP2016044352A (en) Method for producing powder for magnet, and method for producing rare earth magnet
JP2015128118A (en) Method of manufacturing rare-earth magnet
JP2014160729A (en) Manufacturing method of magnetic member and magnetic member
JP2020155740A (en) Method for producing rare earth magnet
JP2020053440A (en) Method of manufacturing rare earth magnet
JP2015026795A (en) Powder for magnets, rare earth magnet, method for manufacturing powder for magnets, and method for manufacturing rare earth magnet
JP6471594B2 (en) Rare earth magnet material and method for producing rare earth magnet material
JP2014192460A (en) Method of manufacturing r-t-x based powder-compacted magnet, and r-t-x based powder-compacted magnet
JP2016100519A (en) Production method of magnetic powder, production method of dust magnet member, and dust magnet member
JP2016046489A (en) Method for manufacturing rare-earth magnet and method for manufacturing magnet powders
JP6331982B2 (en) Magnet molded body, magnetic member, method for manufacturing magnet molded body, and method for manufacturing magnetic member
JP2014207341A (en) Iron carbide material, manufacturing method thereof, and magnet
JP6447804B2 (en) Method for manufacturing magnet compact
JP4618437B2 (en) Method for producing rare earth permanent magnet and raw material alloy thereof
JP2021009862A (en) Rare earth magnet material