JP6447804B2 - Method for manufacturing magnet compact - Google Patents

Method for manufacturing magnet compact Download PDF

Info

Publication number
JP6447804B2
JP6447804B2 JP2014102748A JP2014102748A JP6447804B2 JP 6447804 B2 JP6447804 B2 JP 6447804B2 JP 2014102748 A JP2014102748 A JP 2014102748A JP 2014102748 A JP2014102748 A JP 2014102748A JP 6447804 B2 JP6447804 B2 JP 6447804B2
Authority
JP
Japan
Prior art keywords
powder
magnet
rare earth
iron
hydrogenated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014102748A
Other languages
Japanese (ja)
Other versions
JP2015220336A (en
Inventor
一誠 嶋内
一誠 嶋内
麻子 渡▲辺▼
麻子 渡▲辺▼
前田 徹
前田  徹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2014102748A priority Critical patent/JP6447804B2/en
Publication of JP2015220336A publication Critical patent/JP2015220336A/en
Application granted granted Critical
Publication of JP6447804B2 publication Critical patent/JP6447804B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Description

本発明は、永久磁石などに利用される希土類磁石の素材である磁石用成形体を製造する磁石用成形体の製造方法、磁石用成形体、及び磁石用成形体に熱処理を施して得られる磁性部材に関する。特に、低い成形圧力で相対密度の高い磁石用成形体が得られる製造方法に関する。   The present invention relates to a method for producing a molded body for a magnet, which is a material for a rare earth magnet used for a permanent magnet, etc., a molded body for a magnet, and a magnet obtained by subjecting the molded body for a magnet to a heat treatment. It relates to members. In particular, the present invention relates to a method for producing a molded article for a magnet having a high relative density at a low molding pressure.

モータや発電機などの用途に、希土類元素とFeとを含有する希土類−鉄系化合物を主相とする希土類−鉄系合金を用いた希土類磁石が広く利用されている。希土類磁石としては、Nd−Fe−B系化合物(例、NdFe14B)を主相とするNd−Fe−B系合金を用いたネオジム磁石が代表的である。従来の希土類磁石は、希土類−鉄系合金の粉末を焼結した焼結磁石や、合金粉末をバインダー樹脂で固化したボンド磁石が主流である。また、ボンド磁石では、Sm−Fe−N系化合物(例、SmFe17)を主相とするSm−Fe−N系合金を用いることが検討されている。 For applications such as motors and generators, rare earth magnets using rare earth-iron alloys having a rare earth-iron compound containing rare earth elements and Fe as a main phase are widely used. As the rare earth magnet, a neodymium magnet using an Nd—Fe—B alloy having a Nd—Fe—B compound (eg, Nd 2 Fe 14 B) as a main phase is typical. Conventional rare earth magnets are mainly sintered magnets obtained by sintering rare earth-iron alloy powders and bonded magnets obtained by solidifying alloy powders with a binder resin. Further, it has been studied to use an Sm—Fe—N-based alloy having a Sm—Fe—N-based compound (eg, Sm 2 Fe 17 N 3 ) as a main phase for the bond magnet.

最近では、焼結磁石やボンド磁石以外の希土類磁石として、粉末を圧縮成形した圧粉磁石が開発されている(特許文献1、2を参照)。特許文献1、2では、以下の準備工程→粉砕工程→水素化工程→成形工程→脱水素工程、を経て磁性部材を製造し、この磁性部材を希土類磁石の素材に用いている。準備工程:Nd−Fe−B系合金やSm−Fe−N系合金などの希土類−鉄系合金のインゴットを準備する。粉砕工程:合金を粉砕する。水素化工程:粉砕した合金粉末を不均化温度以上で水素化(HD:Hydrogenation−Disproportionation)処理する。成形工程:水素化処理した磁石用粉末を圧縮成形する。脱水素工程:成形した粉末成形体を再結合温度以上で脱水素(DR:Desorption−Recombination)処理する。   Recently, as a rare earth magnet other than a sintered magnet or a bonded magnet, a dust magnet in which powder is compression-molded has been developed (see Patent Documents 1 and 2). In Patent Documents 1 and 2, a magnetic member is manufactured through the following preparation process → pulverization process → hydrogenation process → molding process → dehydrogenation process, and this magnetic member is used as a material for a rare earth magnet. Preparation step: An ingot of a rare earth-iron alloy such as an Nd—Fe—B alloy or an Sm—Fe—N alloy is prepared. Crushing step: The alloy is crushed. Hydrogenation step: The pulverized alloy powder is subjected to a hydrogenation (HD) treatment at a disproportionation temperature or higher. Molding process: compression-molding the hydrogenated magnet powder. Dehydrogenation step: The molded powder compact is subjected to a dehydrogenation (DR) process at a recombination temperature or higher.

このように、水素化工程後、脱水素工程前に、成形工程を行うことで、磁石用粉末の成形性を高められ、相対密度の高い粉末成形体(磁石用成形体)が得られる。合金粉末を水素化処理すれば、Fe含有相中に希土類元素の水素化物の相(例えば、NdHやSmH)が離散して存在する組織を有する磁石用粉末が得られるからである。即ち、磁石用粉末を構成する各磁性粒子が成形性に優れる軟質部分(α‐Feなど)を多く含むからである。 Thus, by performing the molding step after the hydrogenation step and before the dehydrogenation step, the moldability of the magnet powder can be improved, and a powder compact (magnet compact) having a high relative density can be obtained. This is because if the alloy powder is hydrotreated, a magnet powder having a structure in which rare earth element hydride phases (for example, NdH 2 and SmH 2 ) are dispersed in the Fe-containing phase can be obtained. That is, each magnetic particle constituting the magnet powder contains a lot of soft parts (α-Fe, etc.) excellent in moldability.

特開2011−236498号公報JP2011-236498A 特開2011−137218号公報JP 2011-137218 A

更なる成形性の改善が求められている。上述の工程を経ることで、いくら成形性を高められるといっても、磁石用粉末の各磁性粒子が成形性に劣る硬質部分(例えば、NdH、FeB、SmHなど)を含むため、相対密度の高い成形体を得るには成形圧力を高くする必要があった。成形圧力を高くすれば、金型が摩耗し易くなる。高圧で圧縮成形すると、成形後のスプリングバックが大きくなり、成形体を金型から抜き出す際、成形体と金型との摩擦力が高くなるからである。 There is a need for further improvement in formability. Even though it can be said that the moldability can be improved by going through the above-described steps, each magnetic particle of the magnet powder includes a hard portion (eg, NdH 2 , Fe 2 B, SmH 2, etc.) that is inferior in moldability. In order to obtain a molded article having a high relative density, it was necessary to increase the molding pressure. If the molding pressure is increased, the mold is easily worn. When compression molding is performed at a high pressure, the springback after molding becomes large, and when the molded body is extracted from the mold, the frictional force between the molded body and the mold increases.

本発明は、上記の事情に鑑みてなされたもので、その目的の一つは、低い成形圧力で相対密度の高い磁石用成形体が得られる磁石用成形体の製造方法を提供することにある。   The present invention has been made in view of the above circumstances, and one of its purposes is to provide a method for producing a molded body for a magnet that can obtain a molded body for a magnet having a high relative density at a low molding pressure. .

本発明の別の目的は、相対密度の高い磁石用成形体、及び磁石用成形体に熱処理を施した磁性部材を提供することにある。   Another object of the present invention is to provide a magnet molded body having a high relative density and a magnetic member obtained by subjecting the magnet molded body to a heat treatment.

本発明の一態様に係る磁石用成形体の製造方法は、水素化工程と、粉砕工程と、成形工程とを備える。水素化工程は、希土類−鉄系合金を水素を含む雰囲気中で不均化温度以上の温度で水素化処理した水素化合金を作製する。粉砕工程は、水素化合金を機械的に粉砕して水素化粉末を作製する。成形工程は、水素化粉末を含む磁石用粉末を圧縮成形して粉末成形体を作製する。そして、成形工程は、磁石用粉末を250℃以上600℃以下に加熱した状態で、588MPa以下の成形圧力で行う。   The manufacturing method of the molded object for magnets concerning one mode of the present invention comprises a hydrogenation process, a crushing process, and a forming process. In the hydrogenation step, a hydrogenated alloy obtained by hydrogenating a rare earth-iron-based alloy at a temperature equal to or higher than the disproportionation temperature in an atmosphere containing hydrogen is produced. In the pulverization step, the hydrogenated alloy is mechanically pulverized to produce a hydrogenated powder. In the forming step, a magnet powder containing hydrogenated powder is compression-molded to produce a powder compact. And a shaping | molding process is performed by the shaping pressure of 588 Mpa or less in the state which heated the powder for magnets to 250 to 600 degreeC.

上記磁石用成形体の製造方法は、低い成形圧力で相対密度の高い磁石用成形体が得られる。   According to the above method for producing a molded article for magnets, a molded article for magnets having a high relative density can be obtained at a low molding pressure.

実施形態1に係る磁石用成形体の製造方法を説明する工程説明図である。It is process explanatory drawing explaining the manufacturing method of the molded object for magnets which concerns on Embodiment 1. FIG. 実施形態2に係る磁石用成形体の製造方法を説明する工程説明図である。It is process explanatory drawing explaining the manufacturing method of the molded object for magnets which concerns on Embodiment 2. FIG. 従来の磁石用成形体の製造方法を説明する工程説明図である。It is process explanatory drawing explaining the manufacturing method of the conventional molded object for magnets.

《本発明の実施形態の説明》
本発明者らは、低い成形圧力で相対密度の高い磁石用成形体が得られる製造方法を鋭意検討した。具体的には、成形性に劣るNdHなどの上記硬質部分に着目し、この硬質部分を柔らかくすることで成形性を高めることを試みた。しかし、十分な効果を得るには至らなかった。その原因を考察したところ、希土類−鉄系合金を粉砕した後、水素化処理する従来の磁石用粉末の製造方法では、製造した磁石用粉末において、意図しない微細な粒子が発生し、粒径にばらつきが生じることが分かった。そして、この微細な粒子が発生することで、上述のように硬質部分を柔らかくしても、低い成形圧力では微細粒子に成形圧力を十分に伝達できず、相対密度を高めるに至らなかったと考えられる。この粒径にばらつきが生じるメカニズムは、次のように考えられる。
<< Description of Embodiments of the Present Invention >>
The inventors diligently studied a production method for obtaining a molded article for a magnet having a high relative density at a low molding pressure. Specifically, paying attention to the hard part such as NdH 2 which is inferior in formability, an attempt was made to improve the formability by softening the hard part. However, a sufficient effect was not achieved. When the cause was considered, in the conventional magnet powder manufacturing method in which the rare earth-iron alloy is pulverized and then hydrotreated, unintended fine particles are generated in the manufactured magnet powder, and the particle size is reduced. It was found that variations occurred. Then, it is considered that the generation of the fine particles did not sufficiently increase the relative density because the molding pressure could not be sufficiently transmitted to the fine particles at a low molding pressure even if the hard portion was softened as described above. . The mechanism that causes variation in the particle size is considered as follows.

従来の製造方法では、図3の下段に示すように、原料の希土類−鉄系合金100を準備し(左から1番目の図)、合金100を粉砕して合金粉末120とした後(左から2番目の図)、合金粉末120を水素化処理して水素化粉末(磁石用粉末)140を製造する(左から3番目の図)。その後、磁石用粉末140を圧縮成形して粉末成形体(磁石用成形体)150とした後(左から4番目の図)、磁石用成形体150を脱水素処理して磁性部材160を製造する(左から5番目の図)。   In the conventional manufacturing method, as shown in the lower part of FIG. 3, a raw material rare earth-iron alloy 100 is prepared (first figure from the left), and the alloy 100 is crushed into alloy powder 120 (from the left). The second figure), the alloy powder 120 is hydrogenated to produce a hydrogenated powder (magnet powder) 140 (third figure from the left). Thereafter, the magnet powder 140 is compression-molded to form a powder compact (magnet compact) 150 (fourth figure from the left), and then the magnet compact 150 is dehydrogenated to produce the magnetic member 160. (5th figure from the left).

図3の上段に示すように、希土類−鉄系合金(合金粉末120の粒子121)は、希土類−鉄系化合物の結晶粒を主相101とし、主相101の結晶粒界(主相101同士の間)に希土類元素を多く含有する粒界相102が存在する。従来の製造方法では、合金粉末120を水素化処理した際に、粒界相102が水素を吸蔵することによって粒界相102の脆化及び体積膨張が起こり、粒界相102にクラック(割れ)Cが発生する(中央図)。そのため、合金粉末120を水素化処理して水素化粉末(磁石用粉末)140を製造した場合、水素化粉末(磁石用粉末)140の粒子141が粒界相102に沿って粉砕され、磁石用粉末140中に微細な粒子141が発生すると共に、粒子141の粒径が不均一になる。従って、従来の製造方法では、粉砕工程において合金粉末120の粒径を目的とする粒径に制御しても、水素化処理により粒子に割れが生じることから、微細な粒子が発生して、磁石用粉末140の粒径のばらつきが大きくなる。   As shown in the upper part of FIG. 3, the rare earth-iron-based alloy (particles 121 of the alloy powder 120) has rare earth-iron-based compound crystal grains as the main phase 101, and crystal grain boundaries of the main phase 101 (the main phases 101 to each other) In the meantime, there is a grain boundary phase 102 containing a large amount of rare earth elements. In the conventional manufacturing method, when the alloy powder 120 is hydrogenated, the grain boundary phase 102 occludes hydrogen to cause embrittlement and volume expansion of the grain boundary phase 102, and the grain boundary phase 102 is cracked. C occurs (center view). Therefore, when the alloy powder 120 is hydrogenated to produce a hydrogenated powder (magnet powder) 140, the particles 141 of the hydrogenated powder (magnet powder) 140 are pulverized along the grain boundary phase 102 and are used for a magnet. Fine particles 141 are generated in the powder 140, and the particle sizes of the particles 141 are not uniform. Therefore, in the conventional manufacturing method, even if the particle size of the alloy powder 120 is controlled to the target particle size in the pulverization step, the particles are cracked by the hydrogenation treatment, so that fine particles are generated and the magnet The particle size variation of the powder 140 for use becomes large.

微細な粒子が発生しても、磁石用粉末の粒径が圧縮成形に適した範囲内となるように、例えば、成形前に磁石用粉末をふるいにかけるなどして範囲外の粒子を除去することが考えられる。しかし、その場合は、生産性や歩留りの低下を招く。また、微細な粒子は酸化され易いため、結果的に希土類磁石の磁気特性の低下につながる虞がある。   Even if fine particles are generated, particles outside the range are removed by, for example, sieving the magnet powder before molding so that the particle size of the magnet powder is within the range suitable for compression molding. It is possible. However, in this case, productivity and yield are reduced. Moreover, since fine particles are easily oxidized, there is a possibility that the magnetic properties of the rare earth magnet will be lowered as a result.

そこで、発生した微細な粒子を除去するのではなく、微細な粒子の発生を抑制でき、粒径のばらつきが小さい磁石用粉末が得られる手法を種々検討した。その結果、希土類−鉄系合金を水素化処理した後、機械的に粉砕すれば、微細な粒子の発生を抑制でき、磁石用粉末の粒径のばらつきを低減できる、との知見を得た。そして、その粒径のばらつきが小さい磁石用粉末を特定の温度に加熱して圧縮成形すれば、小さい成形圧力でも相対密度の高い磁石用成形体が得られるとの知見を得た。本発明は、これらの知見に基づくものである。最初に本発明の実施態様を列記して説明する   In view of this, various methods for obtaining magnet powders that can suppress the generation of fine particles and have a small variation in particle size, instead of removing the generated fine particles, were studied. As a result, it has been found that if the rare earth-iron-based alloy is hydrotreated and then mechanically pulverized, the generation of fine particles can be suppressed and the variation in the particle size of the magnet powder can be reduced. And the knowledge that the compact | molding | casting for magnets with a high relative density was obtained even if it was compression-molded by heating the powder for magnets with the small dispersion | variation in the particle size to a specific temperature was acquired. The present invention is based on these findings. First, embodiments of the present invention will be listed and described.

(1)本発明の一態様に係る磁石用成形体の製造方法は、水素化工程と、粉砕工程と、成形工程とを備える。水素化工程は、希土類−鉄系合金を水素を含む雰囲気中で不均化温度以上の温度で水素化処理した水素化合金を作製する。粉砕工程は、水素化合金を機械的に粉砕して水素化粉末を作製する。成形工程は、水素化粉末を含む磁石用粉末を圧縮成形して粉末成形体を作製する。そして、成形工程は、磁石用粉末を250℃以上600℃以下に加熱した状態で、588MPa以下の成形圧力で行う。   (1) The manufacturing method of the molded object for magnets which concerns on 1 aspect of this invention is equipped with a hydrogenation process, a grinding | pulverization process, and a shaping | molding process. In the hydrogenation step, a hydrogenated alloy obtained by hydrogenating a rare earth-iron-based alloy at a temperature equal to or higher than the disproportionation temperature in an atmosphere containing hydrogen is produced. In the pulverization step, the hydrogenated alloy is mechanically pulverized to produce a hydrogenated powder. In the forming step, a magnet powder containing hydrogenated powder is compression-molded to produce a powder compact. And a shaping | molding process is performed by the shaping pressure of 588 Mpa or less in the state which heated the powder for magnets to 250 to 600 degreeC.

上記の構成によれば、希土類−鉄系合金を水素化処理し、その後に粉砕した水素化粉末を含む磁石用粉末を上記温度に加熱した状態で圧縮成形することで、成形性を高められ、低い成形圧力でも相対密度の高い磁石用成形体を製造できる。   According to the above configuration, the formability can be improved by compressing and molding the magnet powder containing the hydrogenated powder that has been subjected to the hydrogenation treatment and then pulverized the hydrogenated powder to the above temperature, A molded article for a magnet having a high relative density can be produced even at a low molding pressure.

水素化工程により、柔らかくて変形し易い純鉄(Fe)を含む水素化合金が得られる。希土類−鉄系合金を水素を含む雰囲気中で不均化温度以上の温度で熱処理(水素化処理)することで不均化反応を生じさせる。それにより、希土類−鉄系化合物が、希土類元素の水素化合物(例、NdHやSmH)の相と、鉄を含有する鉄含有物(例、FeやFeBなどの鉄化合物)との相に分解されるからである。 By the hydrogenation process, a hydrogenated alloy containing pure iron (Fe) that is soft and easily deformed is obtained. A disproportionation reaction is caused by heat-treating the rare earth-iron-based alloy in a hydrogen-containing atmosphere at a temperature equal to or higher than the disproportionation temperature (hydrogenation treatment). Thereby, the rare earth-iron-based compound is composed of a phase of a rare earth element hydrogen compound (eg, NdH 2 or SmH 2 ) and an iron-containing material containing iron (eg, an iron compound such as Fe or Fe 2 B). This is because it is decomposed into phases.

粉砕工程で、上記水素化合金を機械的に粉砕することで、微細な粒子の発生を抑制でき、水素化粉末の粒径のばらつきを低減できる。粉砕する前の比較的サイズの大きい塊状の希土類−鉄系合金に対して水素化処理するので、従来のように合金粉末に対して水素化処理する場合に比較して、水素化処理により微細に粉砕されることを抑制でき、磁石用粉末において微細な粒子が発生することを抑制できるからである。また、水素化処理した後、機械的に粉砕することで、粒径を均一に制御し易く、目的とする粒径を安定的に得られる。   By mechanically pulverizing the hydrogenated alloy in the pulverization step, generation of fine particles can be suppressed and variation in the particle size of the hydrogenated powder can be reduced. Since the bulk of rare earth-iron alloy before pulverization is hydrotreated, it is finer by hydrotreating compared to the conventional case of hydrotreating the alloy powder. This is because pulverization can be suppressed and generation of fine particles in the magnet powder can be suppressed. Moreover, by carrying out the hydrogenation treatment and then mechanically pulverizing, it is easy to uniformly control the particle size, and the desired particle size can be stably obtained.

成形工程で、加熱温度を250℃以上とすることで、希土類元素の水素化合物や鉄化合物などの硬質部分を軟化させられ、磁石用粉末の成形性を高められる。成形する磁石用粉末は上述のように粒径のばらつきが小さいため、成形性を高めた磁石用粉末に成形圧力を十分に伝達できる。従って、従来よりも低い588MPa(6ton/cm)以下の成形圧力でも相対密度の高い(例えば、80%以上)磁石用成形体が得られる。加熱温度を600℃以下とすることで、昇温時間や磁石用成形体の冷却時間が長くなりすぎず、生産性を向上できる。 By setting the heating temperature to 250 ° C. or higher in the molding step, hard portions such as rare earth element hydrogen compounds and iron compounds can be softened, and the moldability of the magnet powder can be improved. Since the magnet powder to be molded has a small variation in particle size as described above, the molding pressure can be sufficiently transmitted to the magnet powder having improved moldability. Therefore, a molded article for a magnet having a high relative density (for example, 80% or more) can be obtained even at a molding pressure lower than that of 588 MPa (6 ton / cm 2 ). By setting the heating temperature to 600 ° C. or less, the temperature rise time and the cooling time of the magnet molded body do not become too long, and the productivity can be improved.

(2)上記磁石用成形体の製造方法の一形態として、磁石用粉末は、上記水素化粉末と、以下の構成(a)〜(c)を満たす異方性粉末とを含む混合粉末であることが挙げられる。
(a)10体積%以上40体積%未満の希土類元素と、鉄族元素と、B、C及びNから選択される少なくとも1種の元素とを含む
(b)平均結晶粒径が700nm以下
(c)平均粒径が3μm以上500μm以下
(2) As one form of the manufacturing method of the said molded object for magnets, the powder for magnets is a mixed powder containing the said hydrogenation powder and the anisotropic powder which satisfy | fills the following structures (a)-(c). Can be mentioned.
(A) containing 10% by volume or more and less than 40% by volume of a rare earth element, an iron group element, and at least one element selected from B, C, and N (b) an average crystal grain size of 700 nm or less (c ) The average particle size is 3μm or more and 500μm or less

上記の構成によれば、磁石用粉末は水素化粉末と異方性粉末とを含むことで、磁気特性に優れる希土類磁石が得られる磁石用成形体を製造できる。磁石用成形体は、異方性粉末を水素化粉末で結合して構成される。水素化粉末が有する形状の自由度が高いという特性、即ち塑性加工性に優れるという点を利用して、成形時、塑性加工性に劣る異方性粉末の粒子同士を変形した水素化粉末によって強固に結合できるからである。そして、この磁石用成形体を脱水素処理すると結合材である水素化粉末を最終的に磁性成分に変化させられ、実質的に磁性成分のみで構成される磁性部材が得られる。従って、磁気特性に優れる希土類磁石が得られる。   According to said structure, the magnet compact | molding | casting from which the rare earth magnet excellent in a magnetic characteristic is obtained can be manufactured because the powder for magnets contains hydrogenated powder and anisotropic powder. The magnet compact is formed by bonding anisotropic powder with hydrogenated powder. By utilizing the characteristic that hydrogenated powder has a high degree of freedom of shape, that is, excellent plastic workability, it is strong by the hydrogenated powder obtained by deforming particles of anisotropic powder inferior in plastic workability during molding. It is because it can couple | bond with. Then, when the magnet compact is dehydrogenated, the hydrogenated powder as a binder is finally changed to a magnetic component, and a magnetic member substantially composed of only the magnetic component is obtained. Therefore, a rare earth magnet having excellent magnetic properties can be obtained.

上記構成(a)のように、希土類元素を10体積%以上40体積%未満とすることで、磁気特性に優れる希土類磁石が得られる磁石用成形体を製造できる。   As in the configuration (a), by forming the rare earth element in an amount of 10% by volume or more and less than 40% by volume, it is possible to produce a molded article for a magnet that can obtain a rare earth magnet having excellent magnetic properties.

上記構成(b)のように、異方性粉末を構成するこれらの合金の平均結晶粒径を700nm以下とすることで、微細結晶に起因する保磁力の向上効果が期待できる。従って、磁気特性(特に残留磁束密度、保磁力)により優れる希土類磁石が得られる磁石用成形体を製造できる。   As in the configuration (b), the effect of improving the coercive force due to fine crystals can be expected by setting the average crystal grain size of these alloys constituting the anisotropic powder to 700 nm or less. Therefore, it is possible to produce a molded article for a magnet from which a rare earth magnet having excellent magnetic properties (particularly residual magnetic flux density and coercive force) can be obtained.

上記構成(c)のように、平均粒径を3μm以上とすることで、異方性粉末の各粒子が結合材となる水素化粉末の粒子と十分に接触でき、強固な磁石用成形体が得られる。従って、強固な希土類磁石が得られる。平均粒径を500μm以下とすることで、磁石用成形体の相対密度の低下を抑制できる。また、圧縮成形時、塑性加工性に劣る異方性粉末の割れを抑制できる。   As in the configuration (c), by setting the average particle size to 3 μm or more, each particle of the anisotropic powder can be sufficiently brought into contact with the hydrogenated powder particles serving as a binder, and a strong magnet molded body is obtained. can get. Therefore, a strong rare earth magnet can be obtained. By setting the average particle size to 500 μm or less, it is possible to suppress a decrease in the relative density of the magnet compact. Moreover, the crack of the anisotropic powder inferior to plastic workability at the time of compression molding can be suppressed.

(3)上記磁石用成形体の製造方法の一形態として、磁石用粉末が上記混合粉末である場合、異方性粉末の結晶配向度が、70%以上であることが挙げられる。   (3) As one form of the manufacturing method of the said molded object for magnets, when the powder for magnets is the said mixed powder, it is mentioned that the crystal orientation degree of anisotropic powder is 70% or more.

上記の構成によれば、異方性粉末の結晶配向度が高く磁気異方性に優れるため、磁気特性に優れる希土類磁石を製造できる。   According to said structure, since the degree of crystal orientation of anisotropic powder is high and it is excellent in magnetic anisotropy, the rare earth magnet excellent in a magnetic characteristic can be manufactured.

(4)上記磁石用成形体の製造方法の一形態として、磁石用粉末が上記混合粉末である場合、成形工程は、磁石用粉末に0.5T以上の磁場を印加して、前記異方性粉末の配向方向を揃えた状態で行うことが挙げられる。   (4) As one form of the manufacturing method of the said magnet molded object, when magnet powder is the said mixed powder, a shaping | molding process applies a magnetic field of 0.5T or more to magnet powder, and the said anisotropy It can be performed in a state where the orientation direction of the powder is aligned.

上記の構成によれば、成形工程で磁場を印加することで、異方性粉末が磁場の印加方向に従って回転するなどして異方性粉末の配向方向を一方向に略揃えられる。そのため、配向性に優れる磁石用成形体が得られ、ひいては配向性に優れる希土類磁石を製造できる。   According to said structure, by applying a magnetic field at a shaping | molding process, anisotropic powder rotates according to the application direction of a magnetic field, etc., and the orientation direction of anisotropic powder can be substantially aligned in one direction. Therefore, a magnet molded article having excellent orientation can be obtained, and as a result, a rare earth magnet having excellent orientation can be produced.

(5)上記磁石用成形体の製造方法の一形態として、水素化合金は以下の構成(a)〜(c)を備えることが挙げられる。
(a)10体積%以上40体積%未満の希土類元素の水素化合物の相と、残部が鉄含有物の相とからなる。
(b)希土類元素の水素化合物の相と鉄含有物の相とが隣接して存在している。
(c)鉄含有物の相を介して隣り合う希土類元素の水素化合物の相間の間隔が3μm以下である。
(5) As one form of the manufacturing method of the said molded object for magnets, it is mentioned that a hydrogenated alloy is equipped with the following structures (a)-(c).
(A) A rare earth element hydrogen compound phase of 10 volume% or more and less than 40 volume%, and the balance is a phase of an iron-containing material.
(B) The rare earth element hydrogen compound phase and the iron-containing material phase are adjacent to each other.
(C) The space between the phases of the rare earth element hydrogen compounds adjacent to each other through the phase of the iron-containing material is 3 μm or less.

上記の構成によれば、上記構成(a)のように、希土類元素の水素化合物の相を10体積%以上40体積%未満とすることで、磁気特性に優れる希土類磁石が得られる。また、希土類元素の水素化合物の相を除く残部が実質的に鉄含有物の相であり、柔らかく変形性に富む鉄含有物の相を主成分(60体積%以上90体積%以下)とすることで、磁石用粉末の成形性を高められる。   According to said structure, the rare earth magnet which is excellent in a magnetic characteristic is obtained by making the phase of the hydrogen compound of rare earth elements into 10 volume% or more and less than 40 volume% like the said structure (a). Moreover, the balance excluding the rare earth element hydrogen compound phase is substantially the phase of the iron-containing material, and the soft and highly deformable iron-containing material phase is the main component (60 vol% or more and 90 vol% or less). Thus, the moldability of the magnet powder can be improved.

上記構成(b)及び(c)を備えることで、鉄含有物の相が希土類元素の水素化合物の相間に存在し、両相が上記した特定の間隔で存在する組織は、両相が均一的に存在する組織である。そのため、水素化合金を粉砕した水素化粉末(磁石用粉末)を圧縮成形すると、粒子が均一的に変形するので、成形性を高められる。なお、「希土類元素の水素化合物の相間の間隔」とは、断面において、隣り合う希土類元素の水素化合物の相同士の中心間距離のことである。   By providing the above configurations (b) and (c), the structure in which the phase of the iron-containing material exists between the phases of the rare earth element hydrogen compound and both phases exist at the specific intervals described above is uniform in both phases. Is an organization that exists. Therefore, when the hydrogenated powder (magnet powder) obtained by pulverizing the hydrogenated alloy is compression-molded, the particles are uniformly deformed, so that the moldability can be improved. The “interval between phases of rare earth element hydrogen compounds” is the distance between the centers of adjacent rare earth element hydrogen compound phases in the cross section.

(6)上記磁石用成形体の製造方法の一形態として、希土類元素の水素化合物の相が粒状であり、鉄含有物の相中に、粒状の希土類元素の水素化合物の相が分散して存在することが挙げられる。   (6) As one form of the manufacturing method of the said compact | molding | casting for magnets, the phase of the rare earth element hydrogen compound is granular, and the phase of the granular rare earth element hydrogen compound is dispersed in the phase of the iron-containing material. To do.

上記の構成によれば、希土類元素の水素化合物の相の周囲に鉄含有物の相が均一的に存在する分散形態とすることで、希土類元素の水素化合物の相と鉄含有物の相とが積層構造となっている層状形態よりも成形性を高められる。   According to the above-described configuration, the phase of the rare earth element hydrogen compound and the phase of the iron containing substance can be obtained by forming a dispersed form in which the iron-containing substance phase uniformly exists around the rare earth element hydrogen compound phase. The moldability can be improved as compared with the layered form having a laminated structure.

(7)上記磁石用成形体の製造方法の一形態として、水素化粉末のD50粒径が100μm以上500μm以下であることが挙げられる。   (7) As one form of the manufacturing method of the said molded object for magnets, it is mentioned that D50 particle size of hydrogenation powder is 100 micrometers or more and 500 micrometers or less.

上記の構成によれば、D50粒径が上記範囲であることで、微細な粒子の割合が少なく、圧縮成形に適した粒径(例えば、75μm〜355μm)で、かつ、粒子の粒径が揃っているため、成形性に特に優れる。また、磁石用粉末中に含まれる微細な粒子の割合が少ないため、微細な粒子の酸化による磁気特性の低下も生じ難い。   According to the above configuration, since the D50 particle size is in the above range, the proportion of fine particles is small, the particle size is suitable for compression molding (for example, 75 μm to 355 μm), and the particle size is uniform. Therefore, the moldability is particularly excellent. Moreover, since the ratio of the fine particles contained in the magnet powder is small, the magnetic properties are hardly deteriorated due to the oxidation of the fine particles.

(8)上記磁石用成形体の製造方法の一形態として、成形工程は、酸素濃度が1体積%以下の雰囲気中で行うことが挙げられる。   (8) As one form of the manufacturing method of the said magnet molded object, performing a shaping | molding process in the atmosphere whose oxygen concentration is 1 volume% or less is mentioned.

上記の構成によれば、磁石用粉末及び磁石用成形体の酸化を抑制できるため、酸化による磁気特性の低下が生じ難い。   According to said structure, since the oxidation of the powder for magnets and the molded object for magnets can be suppressed, the fall of the magnetic characteristic by oxidation is hard to produce.

(9)本発明の一態様に係る磁石用成形体は、上記(1)〜(8)のいずれかに記載の磁石用成形体の製造方法により製造され、相対密度が80%以上である。   (9) The magnet molded body according to an aspect of the present invention is manufactured by the method for manufacturing a magnet molded body according to any one of (1) to (8), and the relative density is 80% or more.

上記の構成によれば、磁石用成形体の相対密度が80%以上であるので、この磁石用成形体を利用すれば、相対密度が80%以上の磁性部材を得られ、ひいては高密度の希土類磁石が得られる。希土類磁石を高密度化すれば、磁気特性が向上する。希土類磁石の相対密度は、製造過程の中間品である磁石用成形体の相対密度に依存し、成形後の熱処理に起因する熱収縮によって若干の増加がみられるものの、この磁石用成形体の相対密度を実質的に維持する。従って、相対密度の高い磁石用成形体とすれば、希土類磁石の相対密度を高められる。なお、相対密度は、真密度に対する実際の密度([磁石用成形体の見かけ密度/磁石用成形体の真密度]の百分率)のことである。   According to the above configuration, since the relative density of the magnet compact is 80% or more, by using this magnet compact, a magnetic member having a relative density of 80% or more can be obtained. A magnet is obtained. If the density of the rare earth magnet is increased, the magnetic properties are improved. The relative density of the rare earth magnet depends on the relative density of the magnet compact, which is an intermediate product in the manufacturing process, and although there is a slight increase due to thermal shrinkage caused by heat treatment after molding, the relative density of this magnet compact The density is substantially maintained. Therefore, the relative density of the rare earth magnet can be increased by using a molded article for a magnet having a high relative density. The relative density is an actual density (percentage of [apparent density of magnet compact / true density of magnet compact]) with respect to the true density.

(10)本発明の一態様に係る磁性部材は、上記磁石用成形体を不活性雰囲気中又は減圧雰囲気中で再結合温度以上の温度で脱水素処理したものである。   (10) A magnetic member according to an aspect of the present invention is obtained by dehydrogenating the above-described magnet molded body at a temperature equal to or higher than the recombination temperature in an inert atmosphere or a reduced pressure atmosphere.

上記の構成によれば、脱水素処理により、元の希土類−鉄系化合物に再結合し、希土類−鉄系化合物の結晶粒を微細化できるので、保磁力が高い希土類磁石が得られる。   According to said structure, since it recombines with the original rare earth-iron type compound and the crystal grain of a rare earth-iron type compound can be refined | miniaturized by a dehydrogenation process, a rare earth magnet with high coercive force is obtained.

《本発明の実施形態の詳細》
本発明の実施形態の詳細を説明する。なお、本発明は、これらの例示に限定されるものではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
<< Details of Embodiment of the Present Invention >>
Details of the embodiment of the present invention will be described. In addition, this invention is not limited to these illustrations, is shown by the claim, and is intended that all the changes within the meaning and range equivalent to the claim are included.

〔実施形態1〕
[磁石用成形体の製造方法]
実施形態1に係る磁石用成形体の製造方法は、磁石用粉末を準備する磁石用粉末準備工程と、磁石用粉末を圧縮成形して粉末成形体を作製する成形工程とを備える。磁石用成形体の製造方法の主たる特徴とするところは、以下の(1)と(2)とを備える点にある。(1)磁石用粉末準備工程では、希土類−鉄系合金を水素化処理した後に粉砕した水素化粉末を含む磁石用粉末を準備する。(2)成形工程では、磁石用粉末を特定の温度に加熱した状態で、低い成形圧力で圧縮成形する。この特定の工程を経ることで、詳しくは後述するが、低い成形圧力で相対密度の高い磁石用成形体を製造できる。以下、図1を適宜参照して各工程を詳細に説明する。
Embodiment 1
[Method for producing magnet compact]
The manufacturing method of the molded object for magnets which concerns on Embodiment 1 is equipped with the powder preparation process for magnets which prepares the powder for magnets, and the shaping | molding process which compresses and forms the powder for magnets and produces a powder molded object. The main feature of the method for manufacturing a magnet molded body is that it includes the following (1) and (2). (1) In the magnet powder preparation step, a magnet powder including a hydrogenated powder obtained by pulverizing a rare earth-iron alloy after hydrogenation is prepared. (2) In the molding step, compression molding is performed at a low molding pressure while the magnet powder is heated to a specific temperature. As will be described in detail later by passing through this specific step, a magnet molded body having a high relative density can be produced with a low molding pressure. Hereinafter, each step will be described in detail with reference to FIG.

(磁石用粉末準備工程)
磁石用粉末準備工程では、水素化粉末20を含む磁石用粉末40aを準備する(図1下段中央図)。磁石用粉末の準備は、希土類−鉄系合金10(図1下段左図)を準備する原料合金準備工程と、希土類−鉄系合金10を水素化処理した水素化合金10h(図1下段左から2番目の図)を作製する水素化工程と、水素化合金10hを機械的に粉砕して水素化粉末20を作製する粉砕工程とを経て行われる。水素化工程後に粉砕工程を行うことで、粒径のばらつきを抑制できるため、成形工程で成形性を高めるのに寄与する。
(Magnet powder preparation process)
In the magnet powder preparation step, a magnet powder 40a including the hydrogenated powder 20 is prepared (the lower middle diagram in FIG. 1). The preparation of the magnet powder includes a raw material alloy preparation step for preparing the rare earth-iron alloy 10 (lower left diagram in FIG. 1), and a hydrogenated alloy 10h (from the lower left in FIG. 2nd figure) and the pulverization process which mechanically pulverizes the hydrogenated alloy 10h to produce the hydrogenated powder 20 are performed. By performing the pulverization step after the hydrogenation step, variation in particle size can be suppressed, which contributes to improving moldability in the molding step.

〈原料合金準備工程〉
希土類−鉄系合金10は、希土類元素と鉄族元素とを含む希土類−鉄系化合物を主相とする。
<Raw alloy preparation process>
The rare earth-iron alloy 10 includes a rare earth-iron compound containing a rare earth element and an iron group element as a main phase.

希土類元素としては、スカンジウム(Sc)、イットリウム(Y)、ランタノイド及びアクチノイドから選択される1種以上の元素が挙げられる。中でも、希土類元素として、ネオジム(Nd)、サマリウム(Sm)、プラセオジム(Pr)、セリウム(Ce)、ジスプロシウム(Dy)、及びYから選択される少なくとも1種の元素を含むと、磁気特性に優れる希土類磁石が得られて好ましい。特に、Nd又はSmを含むと、磁気特性に優れる希土類磁石が得られる。   Examples of the rare earth element include one or more elements selected from scandium (Sc), yttrium (Y), lanthanoid, and actinoid. Among these, when the rare earth element contains at least one element selected from neodymium (Nd), samarium (Sm), praseodymium (Pr), cerium (Ce), dysprosium (Dy), and Y, the magnetic properties are excellent. A rare earth magnet is preferably obtained. In particular, when Nd or Sm is contained, a rare earth magnet having excellent magnetic properties can be obtained.

希土類元素の含有量は10質量%以上40質量%未満であることが好ましい。例えば、Ndを含む組成の場合、Ndの含有量は25質量%以上(更に28質量%以上)35質量%以下であることが好ましい。Smを含む組成の場合、Smの含有量は25質量%以上26.5質量%以下であることが好ましい。Nd又はSmの含有量が上記範囲内であることで、化学量論組成がNdFe14B又はSmFe17などの希土類−鉄系化合物(希土類−鉄系合金10)が得られ、図1上段左図に示すように、希土類−鉄系化合物の主相11の結晶粒界に粒界相12が均一な厚さで薄く存在する組織が得られる。このような組織は、粒界相12が強磁性相である主相11同士の磁気的な結合を切る働きをして、保磁力を高められる。 The rare earth element content is preferably 10% by mass or more and less than 40% by mass. For example, in the case of a composition containing Nd, the Nd content is preferably 25% by mass or more (further 28% by mass or more) and 35% by mass or less. In the case of a composition containing Sm, the Sm content is preferably 25% by mass or more and 26.5% by mass or less. When the content of Nd or Sm is within the above range, a rare earth-iron compound (rare earth-iron alloy 10) having a stoichiometric composition such as Nd 2 Fe 14 B or Sm 2 Fe 17 is obtained. 1 As shown in the upper left figure, a structure is obtained in which the grain boundary phase 12 is thin with a uniform thickness at the crystal grain boundary of the main phase 11 of the rare earth-iron-based compound. Such a structure works to break the magnetic coupling between the main phases 11 in which the grain boundary phase 12 is a ferromagnetic phase, thereby increasing the coercive force.

鉄族元素は、鉄(Fe)、コバルト(Co)、及びニッケル(Ni)から選択される1種以上の元素が挙げられる。代表的には、Feを希土類−鉄系合金の主体(50質量%超)とする形態が挙げられる。その他、例えば、FeとCoとの双方を含む形態が挙げられる。特に、添加元素としてCoを含む場合、酸化による希土類−鉄系化合物(主相11)の不均化分解に起因するFeの析出を抑制する効果が期待でき、この効果によって保磁力の更なる向上が望める。   Examples of the iron group element include one or more elements selected from iron (Fe), cobalt (Co), and nickel (Ni). A typical example is an embodiment in which Fe is a main component (greater than 50% by mass) of a rare earth-iron alloy. In addition, the form containing both Fe and Co is mentioned, for example. In particular, when Co is included as an additive element, an effect of suppressing precipitation of Fe due to disproportionation decomposition of the rare earth-iron compound (main phase 11) due to oxidation can be expected, and this effect further improves the coercive force. Can be expected.

希土類−鉄系合金10の希土類元素及び鉄族元素以外の元素としては、特にNdを含む組成の場合、ホウ素(B)、炭素(C)、及び窒素(N)から選択される少なくとも1種の元素を含むことが挙げられる。Bや、C、Nの含有量は、0.1質量%以上5.0質量%以下、更に0.5質量%以上1.5質量%以下が挙げられる。   The element other than the rare earth element and the iron group element of the rare earth-iron-based alloy 10 is at least one selected from boron (B), carbon (C), and nitrogen (N) particularly in the case of a composition containing Nd. The element is included. Examples of the content of B, C, and N include 0.1% by mass or more and 5.0% by mass or less, and further 0.5% by mass or more and 1.5% by mass or less.

希土類−鉄系合金10におけるその他の添加元素としては、遷移金属元素、ガリウム(Ga)、アルミニウム(Al)、及び珪素(Si)から選択される1種以上の元素が挙げられる。特に、Gaを含む場合、粒界相12を均質にする効果などが期待でき、この効果によって保磁力の更なる向上が望める。遷移金属元素としては、銅(Cu)、チタン(Ti)、マンガン(Mn)及びニオブ(Nb)などが挙げられる。希土類−鉄系合金10は、不可避不純物の含有を許容する。これらの添加元素の含有量(複数の場合には合計含有量)は、0.1質量%以上20質量%以下、更に0.1質量%以上5質量%以下が挙げられる。これらの元素を含有すれば、例えば、保磁力の向上などの効果が望める。これらの添加元素は、例えばFeの一部に置換されて存在する。   Other additive elements in the rare earth-iron-based alloy 10 include one or more elements selected from transition metal elements, gallium (Ga), aluminum (Al), and silicon (Si). In particular, when Ga is contained, an effect of homogenizing the grain boundary phase 12 can be expected, and a further improvement in coercive force can be expected by this effect. Examples of the transition metal element include copper (Cu), titanium (Ti), manganese (Mn), and niobium (Nb). The rare earth-iron alloy 10 allows the inclusion of inevitable impurities. The content of these additive elements (the total content in the case of plural elements) is 0.1% by mass or more and 20% by mass or less, and further 0.1% by mass or more and 5% by mass or less. When these elements are contained, for example, an effect such as an improvement in coercive force can be expected. These additive elements are present, for example, by being replaced with part of Fe.

希土類−鉄系合金10の具体的な組成は、希土類元素がNdを含む場合、Nd−Fe−B系化合物(例、NdFe14B)を主相とするNd−Fe−B系合金、Nd−Fe−C系化合物(例、NdFe14C)を主相とするNd−Fe−C系合金、Nd−Fe−Co−B系化合物(例、Nd(Fe13Co)B)を主相とするNd−Fe−Co−B合金、Nd−Fe−Co−C化合物(例、Nd(Fe13Co)C)を主相とするNd−Fe−Co−C合金などが挙げられる。希土類元素がSmを含む場合、Sm−Fe系化合物(例、SmFe17、SmTiFe11)を主相とするSm−Fe系合金が挙げられる。 When the rare earth element contains Nd, the specific composition of the rare earth-iron alloy 10 is an Nd—Fe—B alloy having a main phase of an Nd—Fe—B compound (eg, Nd 2 Fe 14 B), Nd-Fe-C-based alloys and Nd-Fe-Co-B-based compounds (eg, Nd 2 (Fe 13 Co 1 ) B having an Nd-Fe-C-based compound (eg, Nd 2 Fe 14 C) as a main phase Nd—Fe—Co—B alloy having a main phase of Nd—Fe—Co—C alloy, Nd—Fe—Co—C alloy having a main phase of Nd 2 (Fe 13 Co 1 ) C, etc. Is mentioned. When the rare earth element contains Sm, an Sm—Fe based alloy containing a Sm—Fe based compound (eg, Sm 2 Fe 17 , Sm 1 Ti 1 Fe 11 ) as a main phase may be mentioned.

希土類−鉄系合金10の最大径は100μm以上50mm以下であることが好ましい。最大径が100μm以上であることで、後工程の粉砕工程おいて中粒度に粉砕し易く、圧縮成形に適した粒径(75μm以上355μm以下)の磁石用粉末を製造し易い。最大径が50mm以下であることで、後工程の粉砕工程に要する時間を短縮できる。希土類−鉄系合金10の形状は、特に問わず、例えば球状、棒状、薄片状などの種々の形状とすることができる。なお、「最大径」とは、1つの希土類−鉄系合金10をあらゆる方向から平面視したときの希土類−鉄系合金10の最も長い部分の長さのことである。   The maximum diameter of the rare earth-iron alloy 10 is preferably 100 μm or more and 50 mm or less. When the maximum diameter is 100 μm or more, it is easy to pulverize to a medium particle size in the subsequent pulverization step, and it is easy to produce a magnet powder having a particle size (75 μm to 355 μm) suitable for compression molding. When the maximum diameter is 50 mm or less, the time required for the subsequent pulverization step can be shortened. The shape of the rare earth-iron-based alloy 10 is not particularly limited, and may be various shapes such as a spherical shape, a rod shape, and a flake shape. The “maximum diameter” is the length of the longest portion of the rare earth-iron alloy 10 when the rare earth-iron alloy 10 is viewed in plan from all directions.

希土類−鉄系合金10の製造方法は特に問わず、例えば、溶解鋳造法、急冷凝固法、ガスアトマイズ法などにより製造できる。希土類−鉄系合金10を急冷凝固法の一種であるストリップキャスト法により製造すると、薄片状の合金10が得られ、上記したサイズの合金10が製造し易く好ましい。   The manufacturing method of the rare earth-iron-based alloy 10 is not particularly limited, and can be manufactured by, for example, a melt casting method, a rapid solidification method, a gas atomizing method, or the like. When the rare earth-iron-based alloy 10 is manufactured by a strip casting method which is a kind of rapid solidification method, a flaky alloy 10 is obtained, and the alloy 10 having the above-mentioned size is preferable because it is easy to manufacture.

〈水素化工程〉
水素化工程は、希土類−鉄系合金10を水素を含む雰囲気中で不均化温度以上の温度で熱処理して水素化処理した水素化合金10hを作製する(図1下段左から2番目の図)。
<Hydrogenation process>
In the hydrogenation step, the rare earth-iron-based alloy 10 is heat-treated in a hydrogen-containing atmosphere at a temperature equal to or higher than the disproportionation temperature to produce a hydrogenated alloy 10h (second figure from the left in the lower part of FIG. 1). ).

水素化合金10hは、主相の希土類−鉄系化合物が希土類元素の水素化合物の相と、鉄を含有する鉄含有物の相と、に相分解した組織を有する。水素化合金10hの上記組織や両相の存在形態(後述)などは、粉砕工程を経た水素化粉末20に維持される。ここでは、上記組織などは図示せず、後述する水素化粉末20を示す図(図1下段中央図)で示す。希土類元素の水素化合物は、NdH、SmHなどが挙げられる。鉄を含有する鉄含有物は、純鉄(Fe)とFeBやFeCなどの鉄化合物との双方を含むことが挙げられる。水素化合金10hは、相分解前の希土類−鉄系化合物や希土類元素の水素化合物の相に比較して柔らかい軟質部分である純鉄(Fe)が存在することから、圧縮成形したときに変形して成形性を高められる。但し、成形性を高められるといっても、純鉄に比べて硬い希土類元素の水素化合物(NdH、SmH)や鉄化合物(FeB、FeCなど)などの硬質部分が存在することから、従来は、相対密度を高くするには成形工程で成形圧力を高くしていた。これに対して、詳しくは後述するが、成形工程で特定の温度に加熱することで上記硬質部分を軟質化して成形性を高められる。 The hydrogenated alloy 10h has a structure in which the main phase rare earth-iron-based compound is phase-decomposed into a rare earth element hydrogen compound phase and an iron-containing iron-containing phase. The structure of the hydrogenated alloy 10h, the presence form of both phases (described later), and the like are maintained in the hydrogenated powder 20 that has undergone the pulverization process. Here, the above-described structure and the like are not shown, and are shown in a diagram (a middle diagram in the lower part of FIG. 1) showing a hydrogenated powder 20 described later. Examples of the rare earth element hydrogen compound include NdH 2 and SmH 2 . Examples of the iron-containing material containing iron include both pure iron (Fe) and iron compounds such as Fe 2 B and Fe 2 C. The hydrogenated alloy 10h is deformed when it is compression-molded because pure iron (Fe), which is a soft soft part, is present in comparison with the rare earth-iron-based compound and the rare earth element hydrogen compound phase before phase decomposition. To improve moldability. However, even if the moldability can be improved, there are hard parts such as hydrogen compounds (NdH 2 , SmH 2 ) and iron compounds (Fe 2 B, Fe 2 C, etc.) of rare earth elements that are harder than pure iron. Therefore, conventionally, in order to increase the relative density, the molding pressure was increased in the molding process. On the other hand, although mentioned later in detail, the said hard part is softened by heating to a specific temperature at a formation process, and a moldability can be improved.

希土類元素の水素化合物の相と鉄含有物の相との存在形態は、希土類元素の水素化合物の相と鉄含有物の相とが積層構造となっている層状形態や、鉄含有物の相中に粒状の希土類元素の水素化合物の相が分散して存在する分散形態が挙げられる。これらの存在形態は、後述する水素化処理の際の熱処理条件(主に温度)に依存する。分散形態は、希土類元素の水素化合物の相の周囲に鉄含有物の相が均一的に存在することで、層状形態よりも成形性を高められる。そのため、円弧状、円筒状、円柱状、ポット形状といった複雑形状の粉末成形体(磁石用成形体)や、相対密度が80%以上、更に85%以上、90%以上、特に95%以上といった高密度の粉末成形体が得られ易い。   The existence form of the phase of the rare earth element hydrogen compound and the phase of the iron-containing material is a layered form in which the phase of the rare earth element hydrogen compound and the phase of the iron-containing substance are laminated, or in the phase of the iron-containing substance. And a dispersed form in which a phase of a particulate rare earth element hydrogen compound is dispersed. These forms of existence depend on heat treatment conditions (mainly temperature) in the hydrogenation treatment described later. In the dispersed form, the formability of the iron-containing material is uniformly present around the rare earth element hydride phase, so that the moldability can be improved as compared with the layered form. Therefore, complex shaped powder compacts (magnet compacts) such as arcs, cylinders, columns, and pots, and a relative density of 80% or higher, 85% or higher, 90% or higher, especially 95% or higher. It is easy to obtain a compacted powder compact.

水素化合金10hは、10体積%以上40体積%未満の希土類元素の水素化合物の相と、残部が鉄を含有する鉄含有物の相とからなる組織を有することが好ましい。希土類元素の水素化合物の相を除く残部が実質的に鉄含有物の相であり、鉄含有物の相を主成分(60体積%以上90体積%以下)とすれば、磁石用粉末の成形性を高められる。希土類元素の水素化合物の相と鉄含有物の相とは隣接して存在しており、かつ鉄含有物の相を介して隣り合う希土類元素の水素化合物の相の間隔は3μm以下が好ましい。鉄含有物の相が希土類元素の水素化合物の相間に存在し、両相が上記した特定の間隔で存在する組織は、両相が均一的に存在する組織であるため、圧縮成形したときに均一的に変形する。   The hydrogenated alloy 10h preferably has a structure composed of a rare earth element hydrogen compound phase of 10 volume% or more and less than 40 volume% and an iron-containing material phase containing iron. If the remainder of the rare earth element hydrogen compound phase is substantially an iron-containing material phase, and the iron-containing material phase is the main component (60 to 90 vol%), the moldability of the magnet powder Can be enhanced. The phase of the rare earth element hydrogen compound and the phase of the iron-containing material are adjacent to each other, and the interval between the phases of the rare earth element hydrogen compound adjacent to each other through the phase of the iron-containing material is preferably 3 μm or less. Since the phase of the iron-containing material exists between the phases of the rare earth element hydride and both phases exist at the specific intervals described above, both phases are uniformly present. Deforms.

上記した間隔の測定は、例えば、断面をエッチングして鉄含有物の相を除去して希土類元素の水素化合物の相を抽出したり、又は溶液の種類によっては希土類元素の水素化合物の相を除去して鉄含有物の相を抽出したり、若しくは断面をEDX(エネルギー分散型X線分析装置)により組成分析することで測定できる。上記間隔が3μm以下であると、後で脱水素処理により、希土類元素の水素化合物の相と鉄含有物の相とが元の希土類−鉄系化合物に再結合する際に、過度なエネルギーを投入しなくて済む上に、希土類−鉄系化合物の結晶粒の粗大化による特性の低下を抑制できる。希土類元素の水素化合物の相間に鉄含有物の相が十分に存在するためには、上記間隔は0.5μm以上、更に1μm以上が好ましい。上記間隔は、例えば、原料に用いる希土類−鉄系合金の組成を調整したり、水素化処理の条件、特に熱処理温度を調整することで制御できる。例えば、希土類−鉄系合金において鉄の比率(原子比)を多くしたり、上記した温度範囲で熱処理温度を高くしたりすると、上記間隔が大きくなる傾向がある。   The above-mentioned distance measurement can be performed, for example, by etching the cross section to remove the phase of the iron-containing material and extracting the rare earth element hydride phase, or removing the rare earth element hydride phase depending on the type of solution. Then, the phase of the iron-containing material can be extracted, or the cross section can be measured by analyzing the composition with an EDX (energy dispersive X-ray analyzer). When the distance is 3 μm or less, excessive energy is input when the rare earth element hydride phase and the iron-containing material phase are recombined with the original rare earth-iron compound by dehydrogenation later. In addition, the deterioration of characteristics due to the coarsening of crystal grains of the rare earth-iron compound can be suppressed. In order for the iron-containing material phase to be sufficiently present between the phases of the rare earth element hydrogen compound, the distance is preferably 0.5 μm or more, and more preferably 1 μm or more. The interval can be controlled, for example, by adjusting the composition of the rare earth-iron alloy used as a raw material, or adjusting the conditions of the hydrogenation treatment, particularly the heat treatment temperature. For example, when the iron ratio (atomic ratio) is increased in the rare earth-iron-based alloy or the heat treatment temperature is increased within the above temperature range, the interval tends to increase.

水素化合金10hは、図1上段中央図に示すように、粒界相12が水素を吸蔵することによって粒界相12の脆化及び体積膨張が起こり、粒界相12にクラック(割れ)Cが発生して粉砕されるが、比較的サイズの大きい希土類−鉄系合金10に対して水素化処理しているので、微細に粉砕されることが少ない。つまり、図1上段右図に示すように、水素化合金10hのサイズが不均一になるものの、微細な粒子が発生することは少ない。水素化合金10hのサイズが不均一であっても、後工程の粉砕工程で水素化合金10hを機械的に粉砕することにより、磁石用粉末の粒径が制御される。   In the hydrogenated alloy 10h, as shown in the center diagram in the upper part of FIG. 1, the grain boundary phase 12 embrittles and the volume expansion occurs when the grain boundary phase 12 occludes hydrogen, and cracks (cracks) C occur in the grain boundary phase 12. Is generated and pulverized, but the rare earth-iron-based alloy 10 having a relatively large size is subjected to a hydrogenation treatment, and therefore, it is rarely pulverized finely. That is, as shown in the upper right diagram in FIG. 1, although the size of the hydrogenated alloy 10h is not uniform, fine particles are rarely generated. Even if the size of the hydrogenated alloy 10h is not uniform, the particle size of the magnet powder is controlled by mechanically grinding the hydrogenated alloy 10h in the subsequent grinding step.

水素化処理の条件は、例えば、雰囲気:Hガス雰囲気、又はHガスとArやNなどの不活性ガスとの混合ガス雰囲気、温度:用意した合金の水素不均化温度以上(材質にもよるが、例えば、600℃以上1100℃以下)、保持時間:0.5時間以上5時間以下が挙げられる。熱処理の温度を不均化温度近傍に設定すると、上記両相の存在形態は上記層状形態となり、熱処理の温度を不均化温度+100℃以上といった高めに設定すると、上記両相の存在形態は上記分散形態となる。 The conditions of the hydrogenation treatment are, for example, atmosphere: H 2 gas atmosphere, or mixed gas atmosphere of H 2 gas and inert gas such as Ar or N 2 , temperature: hydrogen disproportionation temperature of prepared alloy (material Although it depends, for example, 600 degreeC or more and 1100 degrees C or less), Holding time: 0.5 hour or more and 5 hours or less are mentioned. When the heat treatment temperature is set in the vicinity of the disproportionation temperature, the existence form of both phases becomes the layered form, and when the heat treatment temperature is set to a high disproportionation temperature + 100 ° C. or more, the existence form of both phases is It becomes a distributed form.

〈粉砕工程〉
粉砕工程は、水素化合金10hを機械的に粉砕して水素化粉末20を含む磁石用粉末40aを作製する(図1下段中央図)。ここでは、磁石用粉末40aは水素化粉末20で構成される。
<Crushing process>
In the pulverizing step, the hydrogenated alloy 10h is mechanically pulverized to produce the magnet powder 40a including the hydrogenated powder 20 (lower center diagram in FIG. 1). Here, the magnet powder 40 a is composed of the hydrogenated powder 20.

粉砕工程では、水素化合金10hを所定の粒度に粉砕して、水素化粉末20の粒径を目的とする粒径に制御する。粉砕工程では、機械的に粉砕するため、水素化粉末20の粒子21の粒径を均一に制御し易い。具体的には、水素化処理した合金10hを中粒度に粉砕し、圧縮成形に適した粒径(75μm以上355μm以下)の水素化粉末20を製造することが挙げられる。   In the pulverization step, the hydrogenated alloy 10h is pulverized to a predetermined particle size, and the particle size of the hydrogenated powder 20 is controlled to the target particle size. In the pulverization step, the particles 21 of the hydrogenated powder 20 are easily controlled uniformly because they are mechanically pulverized. Specifically, the hydrogenated alloy 10h is pulverized to a medium particle size to produce a hydrogenated powder 20 having a particle size (75 μm or more and 355 μm or less) suitable for compression molding.

水素化合金10hを粉砕する装置は、例えば摩砕型粉砕機又は衝突型粉砕機が挙げられる。摩砕型粉砕機は、代表的にはブラウンミルなどが挙げられ、衝突型粉砕機は、代表的にはピンミルなどが挙げられる。これら装置は、水素化合金10hを中粒度に粉砕するのに適しており、粒径の制御も容易である。   Examples of the device for pulverizing the hydrogenated alloy 10h include a grinding pulverizer or a collision pulverizer. The grinding type pulverizer typically includes a brown mill, and the collision type pulverizer typically includes a pin mill. These apparatuses are suitable for pulverizing the hydrogenated alloy 10h to a medium particle size, and the particle size can be easily controlled.

粉砕する際の雰囲気は、水素化合金10h(水素化粉末20)の酸化を抑制するため、酸素濃度が体積割合で5%以下とすることが好ましい。より好ましい雰囲気中の酸素濃度は体積割合で1%以下である。このような雰囲気としては、不活性雰囲気(Ar雰囲気)又は減圧雰囲気(10Pa以下の真空雰囲気)が挙げられる。   In order to suppress the oxidation of the hydrogenated alloy 10h (hydrogenated powder 20), the atmosphere at the time of pulverization is preferably set so that the oxygen concentration is 5% or less by volume. A more preferable oxygen concentration in the atmosphere is 1% or less by volume. Examples of such an atmosphere include an inert atmosphere (Ar atmosphere) or a reduced pressure atmosphere (a vacuum atmosphere of 10 Pa or less).

水素化合金10hを機械的に粉砕して得られた水素化粉末20は、例えば、粒径が75μm以上355μm以下の中粒度の粒子の割合が90質量%以上(好ましくは95質量%以上)である。水素化粉末20は、粒径が75μm未満の微細な粒子の割合が5質量%以下、更に3質量%以下であることが好ましい。また、水素化粉末20は、50体積%粒径(D50)が100μm以上500μm以下で、かつ、90体積%粒径(D90)が200μm以上750μm以下であることが好ましい。このような水素化粉末20は、微細な粒子の割合が少なく、圧縮成形に適した粒径(75μm〜355μm)で、かつ、粒子21の粒径が揃っているため、成形性に特に優れる。また、水素化粉末20中に含まれる微細な粒子の割合が少ないため、微細な粒子の酸化による磁気特性の低下も生じ難い。D50は100μm以上300μm以下がより好ましく、D90は350μm以上550μm以下がより好ましい。50体積%粒径(D50)とは、レーザ回折式粒度分布測定装置により測定した場合において、体積基準の粒度分布の小径側から累積が50%となる粒径値のことであり、90体積%粒径(D90)とは、小径側から累積が90%となる粒径値のことである。   The hydrogenated powder 20 obtained by mechanically pulverizing the hydrogenated alloy 10h has, for example, a ratio of medium-sized particles having a particle size of 75 μm or more and 355 μm or less of 90% by mass or more (preferably 95% by mass or more). is there. In the hydrogenated powder 20, the proportion of fine particles having a particle size of less than 75 μm is preferably 5% by mass or less, more preferably 3% by mass or less. The hydrogenated powder 20 preferably has a 50 volume% particle size (D50) of 100 μm or more and 500 μm or less and a 90 volume% particle diameter (D90) of 200 μm or more and 750 μm or less. Such a hydrogenated powder 20 is particularly excellent in moldability because the proportion of fine particles is small, the particle size is suitable for compression molding (75 μm to 355 μm), and the particle size of the particles 21 is uniform. Moreover, since the ratio of the fine particles contained in the hydrogenated powder 20 is small, the magnetic properties are hardly deteriorated due to oxidation of the fine particles. D50 is more preferably from 100 μm to 300 μm, and D90 is more preferably from 350 μm to 550 μm. The 50% by volume particle size (D50) is a particle size value at which accumulation is 50% from the small diameter side of the volume-based particle size distribution when measured by a laser diffraction particle size distribution measuring device, and is 90% by volume. The particle size (D90) is a particle size value at which accumulation is 90% from the small diameter side.

水素化粉末20の各粒子21は、上述した水素化合金10hの上記組織や上記両相の存在形態等が実質的に維持される。即ち、水素化粉末20の各粒子21は、10体積%以上40体積%未満の希土類元素の水素化合物の相22と、残部が鉄を含有する鉄含有物の相23とからなる組織を有する。この希土類元素の水素化合物の相22は粒状であり、鉄含有物の相23中に分散して存在する分散形態である。希土類元素の水素化合物の相22と鉄含有物の相23とが隣接して存在しており、かつ鉄含有物の相23を介して隣り合う希土類元素の水素化合物の相22の間隔が3μm以下である。   Each particle 21 of the hydrogenated powder 20 substantially maintains the structure of the hydrogenated alloy 10h described above, the existence form of both phases, and the like. That is, each particle 21 of the hydrogenated powder 20 has a structure including a phase 22 of a rare earth element hydrogen compound of 10 volume% or more and less than 40 volume%, and a phase 23 of an iron-containing material containing iron as the balance. The phase 22 of the rare earth element hydride is granular and has a dispersed form in which it is dispersed in the phase 23 of the iron-containing material. The phase 22 of the rare earth element hydride and the phase 23 of the iron-containing substance are adjacent to each other, and the interval between the phases 22 of the rare earth element hydride adjacent to each other through the phase 23 of the iron-containing substance is 3 μm or less. It is.

(成形工程)
成形工程は、水素化粉末20(磁石用粉末40a)を圧縮成形して粉末成形体(磁石用成形体)50aを作製する(図1の下段左から4番目の図)。
(Molding process)
In the molding step, the hydrogenated powder 20 (magnet powder 40a) is compression-molded to produce a powder compact (magnet compact) 50a (fourth figure from the lower left in FIG. 1).

成形工程では、磁石用粉末40aを加熱した状態で行う。加熱温度は、磁石用粉末40aにおける硬質部分(NdH、SmH、FeB、FeCなど)を軟化させて磁石用粉末40aの成形性を高められる温度とする。例えば、加熱温度を250℃以上とすることが挙げられる。加熱温度は高いほど上記硬質部分を軟化させ易いが、加熱温度を高くしすぎると、磁石用粉末40aを加熱する時間や成形後に粉末成形体50aを冷却する時間が長くなることで生産性を低下させたりする。そこで、加熱温度を600℃以下とする。この加熱温度は、300℃以上が好ましい。磁石用粉末40aの加熱は、例えば、使用する金型を加熱することで行える。 In the forming step, the magnet powder 40a is heated. The heating temperature is set to a temperature at which the hard portion (NdH 2 , SmH 2 , Fe 2 B, Fe 2 C, etc.) in the magnet powder 40a is softened to improve the moldability of the magnet powder 40a. For example, the heating temperature may be 250 ° C. or higher. The higher the heating temperature is, the easier it is to soften the hard part. However, if the heating temperature is too high, the productivity decreases because the time for heating the magnet powder 40a and the time for cooling the powder compact 50a after molding become longer. I will let you. Therefore, the heating temperature is set to 600 ° C. or lower. The heating temperature is preferably 300 ° C. or higher. The magnet powder 40a can be heated, for example, by heating a mold to be used.

磁石用粉末40aへの成形圧力は、上述のように磁石用粉末40aを加熱することで低くできる。具体的には、成形圧力は588MPa(6ton/cm)以下にできる。成形圧力を588MPa以下としても、相対密度の高い粉末成形体50aが得られる。具体的には、相対密度を80%以上にでき、更には85%以上、90%以上、特に95%にできる。この成形圧力は、540MPa以下、更には490MPa以下にできる。成形圧力は、392MPa以上が好ましい。 The molding pressure on the magnet powder 40a can be lowered by heating the magnet powder 40a as described above. Specifically, the molding pressure can be 588 MPa (6 ton / cm 2 ) or less. Even when the molding pressure is 588 MPa or less, the powder compact 50a having a high relative density can be obtained. Specifically, the relative density can be 80% or more, more preferably 85% or more, 90% or more, and particularly 95%. This molding pressure can be 540 MPa or less, and further 490 MPa or less. The molding pressure is preferably 392 MPa or more.

圧縮成形する際の雰囲気は、磁石用粉末40a(粉末成形体50a)の酸化を抑制するため、粉砕工程と同様、酸素濃度が体積割合で5%以下、更には1%以下の不活性雰囲気(Ar雰囲気)又は減圧雰囲気(10Pa以下の真空雰囲気)が好ましい。   In order to suppress the oxidation of the magnet powder 40a (powder compact 50a), the atmosphere at the time of compression molding is an inert atmosphere in which the oxygen concentration is 5% or less by volume, and further 1% or less, as in the pulverization step. Ar atmosphere) or reduced pressure atmosphere (vacuum atmosphere of 10 Pa or less) is preferable.

成形には、所望の形状の金型90を利用するとよい。金型90は、代表的には、貫通孔を有するダイ91と、ダイ91の内周面と共に成形空間を形成し、上記貫通孔に挿入して磁石用粉末40aを圧縮成形する一対の上下パンチ92,93とを備える。貫通孔を有する筒状又は環状の粉末成形体を成形する場合には、ダイ91の貫通孔に挿入配置されるロッド(図示せず)を利用する。成形工程では磁石用粉末40aを加熱して行うことで成形性を高められて低い成形圧力でも相対密度を高められることから、成形時及び脱型時の金型との摩擦を低減するための潤滑剤や離型剤などを用いなくてもよい。その場合、成形後に熱処理(脱水素処理)しても、潤滑剤や離型剤などの使用に伴う炭化物が生成されないので、炭化物生成に伴う磁気特性の低下を防止できる。   For molding, a mold 90 having a desired shape may be used. The mold 90 typically includes a die 91 having a through hole and a pair of upper and lower punches that form a molding space together with the inner peripheral surface of the die 91 and insert into the through hole to compress the magnet powder 40a. 92, 93. When molding a cylindrical or annular powder compact having a through hole, a rod (not shown) inserted into the through hole of the die 91 is used. In the molding process, the magnet powder 40a is heated to increase the moldability, and the relative density can be increased even at a low molding pressure. Therefore, lubrication to reduce friction with the mold during molding and demolding. It is not necessary to use an agent or a release agent. In that case, even if heat treatment (dehydrogenation treatment) is performed after molding, carbides associated with the use of a lubricant, a mold release agent, and the like are not generated, so that it is possible to prevent a decrease in magnetic properties due to carbide generation.

[磁石用成形体の製造方法の作用効果]
実施形態1の磁石用成形体の製造方法によれば、希土類−鉄系合金を水素化処理後に粉砕した水素化粉末を250℃以上600℃以下に加熱することで、588MPa以下のような低い成形圧力で圧縮成形しても相対密度の高い磁石用成形体を製造できる。これは、(1)希土類−鉄系合金を水素化処理後に粉砕することで、粒径のばらつきの小さい水素化粉末を作製できる、(2)磁石用成形体の原料にこの水素化粉末を用いることで、粒径のばらつきが小さいことで圧縮成形時に成形圧力を水素化粉末に十分に伝達できる、(3)圧縮成形時に水素化粉末を250℃以上600℃以下に加熱することで、水素化粉末に含まれる硬質部分(NdHやFeBなど)を軟化させられるので、水素化粉末の成形性を高められる、からである。このように、相対密度の高い磁石用成形体を製造する際の成形圧力を低くできることで、高圧で圧縮成形する場合のような金型の摩耗を抑制できる。
[Effects of manufacturing method of magnet compact]
According to the method for producing a molded body for magnets of Embodiment 1, a hydrogenated powder obtained by pulverizing a rare earth-iron alloy after hydrogenation treatment is heated to 250 ° C. or more and 600 ° C. or less, so that the molding is as low as 588 MPa or less. A magnet molded body having a high relative density can be produced even by compression molding with pressure. This is because (1) a hydrogenated powder having a small variation in particle size can be produced by pulverizing a rare earth-iron-based alloy after the hydrogenation treatment. (2) This hydrogenated powder is used as a raw material for a compact for a magnet. Therefore, it is possible to sufficiently transfer the molding pressure to the hydrogenated powder at the time of compression molding because the variation in particle size is small. (3) Hydrogenation by heating the hydrogenated powder to 250 ° C. or more and 600 ° C. or less at the time of compression molding. This is because the hard part (NdH 2 , Fe 2 B, etc.) contained in the powder can be softened, so that the moldability of the hydrogenated powder can be improved. Thus, by reducing the molding pressure when producing a magnet compact having a high relative density, it is possible to suppress the wear of the mold as in the case of compression molding at a high pressure.

[磁石用成形体(粉末成形体)]
磁石用成形体(粉末成形体)50aは、上記した磁石用粉末40aを圧縮成形したものである(図1の下段左から4番目の図)。磁石用粉末40aは粒径のばらつきが小さく成形性に優れ、上記の成形工程により成形性をより一層高められることから、圧縮成形する際の成形圧力が上述のように比較的小さくても、高密度の磁石用成形体50aを得られる。例えば、相対密度が80%以上の磁石用成形体50aが得られる。より好ましい磁石用成形体50aの相対密度は85%以上、更に90%以上、特に95%以上である。磁石用成形体50a(後述の磁性部材60a)の相対密度が高いほど、希土類磁石を高密度化でき、磁気特性が向上できる。相対密度は、真密度に対する実際の密度([磁石用成形体の見かけ密度/磁石用成形体の真密度]の百分率)のことである。
[Magnet compact (powder compact)]
The magnet compact (powder compact) 50a is obtained by compression molding the above-described magnet powder 40a (fourth diagram from the lower left in FIG. 1). Since the magnet powder 40a has a small variation in particle size and excellent moldability, and the moldability can be further improved by the above-described molding process, even if the molding pressure during compression molding is relatively small as described above, Thus, a magnet compact 50a having a high density can be obtained. For example, the magnet compact 50a having a relative density of 80% or more is obtained. The relative density of the magnet molded body 50a is more preferably 85% or more, further 90% or more, and particularly 95% or more. The higher the relative density of the magnet compact 50a (the magnetic member 60a described later), the higher the density of the rare earth magnet, and the more the magnetic properties can be improved. The relative density is an actual density (percentage of [apparent density of magnet compact / true density of magnet compact]) with respect to the true density.

[磁性部材]
磁性部材60aは、磁石用成形体50aを不活性雰囲気中又は減圧雰囲気中で再結合温度以上の温度で熱処理して脱水素処理したものである(図1下段右図)。つまり、磁性部材60aを製造する場合は、上述の磁石用成形体の製造工程に加えて、磁石用成形体50aを脱水素処理して再結合する脱水素工程を備える。磁石用成形体50aを利用すれば、相対密度が80%以上の磁性部材60aを得られ、もって高密度の希土類磁石が得られる。また、脱水素処理における熱処理によって、磁性部材60aの相対密度は磁石用成形体50aの相対密度に比較して向上する場合がある。磁石用粉末40a(磁石用成形体50a)は、水素化処理により希土類元素の水素化合物の相22と鉄含有物の相23に相分解した状態であり(図1中央図)、脱水素処理することで、元の希土類−鉄系化合物に再結合する。即ち、磁性部材60aは、原料と同じ希土類−鉄系化合物を主相とする希土類−鉄系合金で形成されている。
[Magnetic member]
The magnetic member 60a is obtained by heat-treating the magnet compact 50a at a temperature equal to or higher than the recombination temperature in an inert atmosphere or a reduced-pressure atmosphere (lower right diagram in FIG. 1). That is, when manufacturing the magnetic member 60a, in addition to the above-described manufacturing process of the magnet molded body, a dehydrogenation process of dehydrogenating and recombining the magnet molded body 50a is provided. If the magnet compact 50a is used, a magnetic member 60a having a relative density of 80% or more can be obtained, thereby obtaining a high-density rare earth magnet. In addition, the relative density of the magnetic member 60a may be improved by the heat treatment in the dehydrogenation process as compared with the relative density of the magnet molded body 50a. The magnet powder 40a (magnet compact 50a) is in a state of being phase-decomposed into the phase 22 of the rare earth element hydrogen compound and the phase 23 of the iron-containing material by the hydrogenation treatment (center view in FIG. 1), and is dehydrogenated. Thus, it recombines with the original rare earth-iron compound. That is, the magnetic member 60a is formed of a rare earth-iron alloy having the same rare earth-iron compound as the raw material as a main phase.

(脱水素工程)
脱水素処理の条件は、例えば、雰囲気:非水素雰囲気(ArやNといった不活性ガス雰囲気、又は減圧雰囲気(例えば、標準の大気圧よりも圧力が低い真空雰囲気))、温度:水素化合金の再結合温度以上(材質にもよるが、例えば600℃以上1000℃以下)、保持時間:10分以上600分以下が挙げられる。特に、減圧雰囲気(例えば、真空度は100Pa以下、最終真空度は10Pa以下、更に1Pa以下)は、希土類元素の水素化合物が残存し難くて好ましい。上記温度とすることで、再結合合金の結晶の成長を抑制して微細な結晶組織が得られる。脱水素処理は、磁石用成形体50aに強磁場(例えば、4T以上)を印加した状態で行える。そうすれば、再結合合金の配向性を高められ、ひいては磁石用成形体50aの配向性を高められる。
(Dehydrogenation process)
The conditions for the dehydrogenation treatment are, for example, atmosphere: non-hydrogen atmosphere (inert gas atmosphere such as Ar or N 2 or reduced-pressure atmosphere (for example, vacuum atmosphere whose pressure is lower than the standard atmospheric pressure)), temperature: hydrogenated alloy (For example, 600 ° C. to 1000 ° C.) and holding time: 10 minutes to 600 minutes. In particular, a reduced-pressure atmosphere (for example, the degree of vacuum is 100 Pa or less, the final degree of vacuum is 10 Pa or less, and further 1 Pa or less) is preferable because rare earth element hydrogen compounds hardly remain. By setting it as the said temperature, the growth of the crystal | crystallization of a recombination alloy is suppressed and a fine crystal structure is obtained. The dehydrogenation process can be performed in a state where a strong magnetic field (for example, 4T or more) is applied to the magnet compact 50a. If it does so, the orientation of a recombination alloy can be raised and by extension, the orientation of the molded object 50a for magnets can be raised.

(窒化工程)
合金組成に応じて、磁性部材60aを窒素含有雰囲気中で窒化温度以上の温度で熱処理して窒化処理してもよい。この場合、上記した磁性部材の製造工程に加えて、磁性部材60aを窒化処理する窒化工程を備える。窒素含有雰囲気とは、窒素元素を含む雰囲気であって、例えば後述するように窒素(N)及びアンモニア(NH)の少なくとも一方を含む雰囲気を言う。例えば、磁性部材60aがSm−Fe系合金で形成されている場合、窒化処理により、Sm−Fe系合金をSm−Fe−N系合金にすることができる。
(Nitriding process)
Depending on the alloy composition, the magnetic member 60a may be subjected to nitriding by heat treatment at a temperature equal to or higher than the nitriding temperature in a nitrogen-containing atmosphere. In this case, in addition to the manufacturing process of the magnetic member described above, a nitriding process of nitriding the magnetic member 60a is provided. The nitrogen-containing atmosphere is an atmosphere containing nitrogen element, for example, an atmosphere containing at least one of nitrogen (N 2 ) and ammonia (NH 3 ) as will be described later. For example, when the magnetic member 60a is formed of an Sm—Fe based alloy, the Sm—Fe based alloy can be changed to an Sm—Fe—N based alloy by nitriding.

窒化処理の条件は、例えば、窒素含有雰囲気:NHガス雰囲気、NHガスとHガスとの混合ガス雰囲気、Nガス雰囲気、又はNガスとHガスとの混合ガス雰囲気、温度:200℃以上550℃以下、好ましくは300℃以上450℃以下、保持時間:10分以上1000分以下、好ましくは30分以上800分以下が挙げられる。窒化処理は、磁場を印加した状態で行える。磁場印加により、結晶格子を一方向に引き伸ばし易く、引き伸ばされた鉄原子−鉄原子間に窒素原子を優先的に侵入させて、理想的な化学量論組成(例、SmFe17)の希土類磁石を得易い。印加する磁場の大きさは、3T以上が挙げられる。 Nitriding conditions include, for example, nitrogen-containing atmosphere: NH 3 gas atmosphere, mixed gas atmosphere of NH 3 gas and H 2 gas, N 2 gas atmosphere, or mixed gas atmosphere of N 2 gas and H 2 gas, temperature : 200 ° C. or more and 550 ° C. or less, preferably 300 ° C. or more and 450 ° C. or less, Holding time: 10 minutes or more and 1000 minutes or less, preferably 30 minutes or more and 800 minutes or less. Nitriding can be performed with a magnetic field applied. By applying a magnetic field, it is easy to stretch the crystal lattice in one direction, and nitrogen atoms are preferentially penetrated between the stretched iron atoms-iron atoms, so that an ideal stoichiometric composition (eg, Sm 2 Fe 17 N 3 ) It is easy to obtain rare earth magnets. The magnitude | size of the magnetic field to apply is 3T or more.

[希土類磁石]
希土類磁石は、磁性部材60aを着磁したものである。希土類磁石は、希土類−鉄系合金で形成され、例えば相対密度が80%以上である。希土類磁石の相対密度は、素材に用いた磁石用成形体50a(磁性部材60a)の相対密度に依存し、成形後の熱処理(脱水素処理)に起因する熱収縮によって若干の増加がみられるものの、磁石用成形体50aの相対密度を実質的に維持する。希土類磁石の相対密度は、85%以上が好ましく、更に90%以上、特に95%以上が好ましい。希土類磁石を形成する希土類−鉄系合金の具体的な組成は、希土類元素がNdを含む場合、上述した原料の希土類−鉄系合金10の組成と同様であり、希土類元素がSmを含む場合、Sm−Fe−N合金(例、SmFe17)、Sm−Ti−Fe−N(例、SmTiFe11)、Sm−Mn−Fe−Nなどが挙げられる。
[Rare earth magnet]
The rare earth magnet is obtained by magnetizing the magnetic member 60a. The rare earth magnet is made of a rare earth-iron alloy, and has a relative density of 80% or more, for example. The relative density of the rare earth magnet depends on the relative density of the magnet compact 50a (magnetic member 60a) used as a raw material, although a slight increase is observed due to heat shrinkage caused by heat treatment (dehydrogenation treatment) after molding. The relative density of the magnet molded body 50a is substantially maintained. The relative density of the rare earth magnet is preferably 85% or more, more preferably 90% or more, and particularly preferably 95% or more. When the rare earth element contains Nd, the specific composition of the rare earth-iron alloy forming the rare earth magnet is the same as the composition of the rare earth-iron alloy 10 of the raw material described above, and when the rare earth element contains Sm, Sm—Fe—N alloys (eg, Sm 2 Fe 17 N 3 ), Sm—Ti—Fe—N (eg, Sm 1 Ti 1 Fe 11 N 2 ), Sm—Mn—Fe—N and the like can be mentioned.

〔実施形態2〕
[磁石用成形体の製造方法]
実施形態2として、図2を参照して、磁石用粉末40bとして実施形態1の水素化粉末20に加えて異方性粉末30を含む混合粉末を用いて磁石用成形体50bを製造する製造方法を説明する。磁石用粉末40bとして、異方性粉末30を含むと磁気特性に優れる希土類磁石が得られる磁石用成形体50bを作製できる。但し、異方性粉末30は水素化粉末20に比べて塑性変形性に劣ることから、本形態の磁石用成形体の製造方法では、塑性変形性に優れる水素化粉末20を異方性粉末30の結合材として用いる。以下、実施形態1と相違する点を中心に説明する。
[Embodiment 2]
[Method for producing magnet compact]
As Embodiment 2, with reference to FIG. 2, the manufacturing method which manufactures the compact 50b for magnets using the mixed powder containing the anisotropic powder 30 in addition to the hydrogenated powder 20 of Embodiment 1 as the powder 40b for magnets. Will be explained. When the anisotropic powder 30 is included as the magnet powder 40b, a magnet compact 50b can be produced from which a rare earth magnet having excellent magnetic properties can be obtained. However, since the anisotropic powder 30 is inferior in plastic deformability compared to the hydrogenated powder 20, in the method for manufacturing a molded article for magnets of this embodiment, the hydrogenated powder 20 having excellent plastic deformability is replaced with the anisotropic powder 30. Used as a binding material. Hereinafter, a description will be given focusing on differences from the first embodiment.

(磁石用粉末準備工程)
磁石用粉末準備工程は、水素化粉末20と異方性粉末30との混合粉末を含む磁石用粉末40bを準備する。具体的には、水素化粉末20を準備する水素化粉末準備工程と、異方性粉末30を準備する異方性粉末準備工程と、水素化粉末20と異方性粉末30との混合粉末を含む磁石用粉末40bを作製する混合工程とを備える。
(Magnet powder preparation process)
In the magnet powder preparation step, a magnet powder 40 b including a mixed powder of the hydrogenated powder 20 and the anisotropic powder 30 is prepared. Specifically, a hydrogenated powder preparing step for preparing the hydrogenated powder 20, an anisotropic powder preparing step for preparing the anisotropic powder 30, and a mixed powder of the hydrogenated powder 20 and the anisotropic powder 30 are prepared. And a mixing step for producing the magnet powder 40b.

〈水素化粉末準備工程〉
水素化粉末20の準備は、実施形態1と同様の原料合金準備工程と水素化工程と粉砕工程とを経ることで行える。
<Hydrogen powder preparation process>
The preparation of the hydrogenated powder 20 can be performed through the same raw material alloy preparation process, hydrogenation process and pulverization process as in the first embodiment.

〈異方性粉末準備工程〉
この工程で準備する異方性粉末30は、結晶磁気異方性を有する粉末である。結晶磁気異方性を有するとは、異方性粉末の飽和磁化Js(T)に対する異方性粉末の残留磁化Br(T)の比Br/Jsの百分率を異方性粉末の結晶配向度とするとき、この異方性粉末の結晶配向度が70%以上であることを言う。結晶配向度が高いほど磁気異方性に優れ、磁気特性に優れる希土類磁石が得られる。異方性粉末の結晶配向度はそれぞれ、75%以上、80%以上、85%以上、更に87%以上、更には90%以上であることが好ましい。異方性粉末の結晶配向度は、振動試料型磁力計(東英工業株式会社製 VSM‐5型)を用いて測定できる。例えば、振動試料型磁力計にて磁化曲線(B‐H曲線)を測定し、2300kA/mの磁化を飽和磁化Jsとして残留磁化Brとの比から配向度を算出できる。
<Anisotropic powder preparation process>
The anisotropic powder 30 prepared in this step is a powder having crystal magnetic anisotropy. Having crystal magnetic anisotropy means that the ratio Br / Js of the residual magnetization Br (T) of the anisotropic powder to the saturation magnetization Js (T) of the anisotropic powder is the crystal orientation degree of the anisotropic powder. In this case, it means that the degree of crystal orientation of this anisotropic powder is 70% or more. The higher the degree of crystal orientation, the better the magnetic anisotropy and the rare-earth magnet with excellent magnetic properties. The degree of crystal orientation of the anisotropic powder is preferably 75% or more, 80% or more, 85% or more, further 87% or more, and more preferably 90% or more. The degree of crystal orientation of the anisotropic powder can be measured using a vibrating sample magnetometer (VSM-5 type manufactured by Toei Kogyo Co., Ltd.). For example, the magnetization curve (BH curve) is measured with a vibrating sample magnetometer, and the degree of orientation can be calculated from the ratio of the magnetization of 2300 kA / m as the saturation magnetization Js and the residual magnetization Br.

異方性粉末30の構成材料は、希土類元素と鉄族元素とを含む希土類−鉄系化合物を主相とする希土類−鉄系合金が挙げられる。希土類元素の種類、鉄族元素の種類及び含有量、希土類元素及び鉄族元素以外の元素の種類及び含有量、希土類−鉄系合金におけるその他の添加元素の種類及び含有量は、それぞれ実施形態1の希土類−鉄系合金10と同様である。希土類元素の含有量は、10体積%以上40体積%未満が挙げられる。具体的な希土類−鉄系合金の組成は、実施形態1の希土類−鉄系合金10と同様、Nd−Fe−B系合金(例、NdFe14B)、Nd−Fe−C系合金(例、NdFe14C)、Nd−Fe−Co−B合金(例、Nd(Fe13Co)B)、Nd−Fe−Co−C合金(例、Nd(Fe13Co)C)などが挙げられる。 Examples of the constituent material of the anisotropic powder 30 include a rare earth-iron alloy having a rare earth-iron compound containing a rare earth element and an iron group element as a main phase. The types of rare earth elements, the types and contents of iron group elements, the types and contents of elements other than rare earth elements and iron group elements, and the types and contents of other additive elements in the rare earth-iron-based alloy are the same as in Embodiment 1. This is the same as the rare earth-iron alloy 10. The rare earth element content may be 10% by volume or more and less than 40% by volume. The specific composition of the rare earth-iron alloy is the same as that of the rare earth-iron alloy 10 of the first embodiment, such as an Nd—Fe—B alloy (eg, Nd 2 Fe 14 B), Nd—Fe—C alloy ( Example, Nd 2 Fe 14 C), Nd—Fe—Co—B alloy (eg, Nd 2 (Fe 13 Co 1 ) B), Nd—Fe—Co—C alloy (eg, Nd 2 (Fe 13 Co 1 )) C).

異方性粉末30は、全てが実質的に等しい組成で構成される形態、即ち、異方性粉末を構成する異方性粒子が全て単一組成で構成される形態としたり、複数の異なる組成で構成される形態としたりできる。   The anisotropic powder 30 may have a form in which all of the anisotropic powders are composed of substantially the same composition, that is, a form in which the anisotropic particles constituting the anisotropic powder are all composed of a single composition, or a plurality of different compositions. Or can be configured as

異方性粉末30を構成する希土類−鉄系合金の粒子31の平均結晶粒径は、700nm以下が挙げられる。平均結晶粒径が700nm以下と微細であることで、微細結晶組織に起因する磁気特性(特に保磁力)の向上効果が期待できる。上記平均結晶粒径は、小さいほど単磁区粒子臨界径に近くなり磁気特性に優れる。上記平均結晶粒径は、500nm以下、更に300nm以下が好ましい。異方性粉末30の平均結晶粒径は、以下のように測定する。異方性粉末30の表面又は断面(観察面)について走査型電子顕微鏡(SEM)観察を行い、観察像から各結晶粒の面積をそれぞれ調べ、各面積の円相当径の平均を平均結晶粒径とする。観察像を用いて算出する際、市販の画像処理ソフトを用いると容易に算出できる。   The average crystal grain size of the rare earth-iron alloy particles 31 constituting the anisotropic powder 30 is 700 nm or less. When the average crystal grain size is as fine as 700 nm or less, an effect of improving magnetic properties (particularly coercive force) due to the fine crystal structure can be expected. The smaller the average crystal grain size, the closer to the single domain particle critical diameter and the better the magnetic properties. The average crystal grain size is preferably 500 nm or less, more preferably 300 nm or less. The average crystal grain size of the anisotropic powder 30 is measured as follows. The surface or cross section (observation surface) of the anisotropic powder 30 is observed with a scanning electron microscope (SEM), the area of each crystal grain is examined from the observed image, and the average equivalent circle diameter of each area is the average crystal grain diameter. And When calculating using an observation image, it can be easily calculated using commercially available image processing software.

異方性粉末30の平均粒径は、3μm以上500μm以下が挙げられる。異方性粉末30の粒子31は、粒径が大きいと、表層酸化による磁気特性の劣化を抑えられる。そのため、比較的粒径の大きい粒子を備えると、磁気特性に優れる希土類磁石とすることができる。この平均粒径は、30μm以上400μm以下、更に50μm以上350μm以下、特に100μm以上300μm以下が好ましい。異方性粉末30の平均粒径とは、50体積%粒径(D50)を言う。   As for the average particle diameter of the anisotropic powder 30, 3 micrometers or more and 500 micrometers or less are mentioned. When the particle 31 of the anisotropic powder 30 has a large particle size, the deterioration of the magnetic properties due to surface layer oxidation can be suppressed. Therefore, when a particle having a relatively large particle size is provided, a rare earth magnet having excellent magnetic properties can be obtained. The average particle diameter is preferably 30 μm or more and 400 μm or less, more preferably 50 μm or more and 350 μm or less, and particularly preferably 100 μm or more and 300 μm or less. The average particle diameter of the anisotropic powder 30 refers to a 50 volume% particle diameter (D50).

異方性粉末30の平均粒径と水素化粉末20の平均粒径とは、同じとすることもできるし、異ならせることもできる。両粉末20,30の平均粒径が同程度であると(平均粒径の差が50μm以内程度)、後述する混合工程で均一的に混合し易いと考えられる。   The average particle diameter of the anisotropic powder 30 and the average particle diameter of the hydrogenated powder 20 can be the same or different. If the average particle sizes of both powders 20 and 30 are about the same (difference in average particle size is about 50 μm or less), it is considered that they are easily mixed uniformly in the mixing step described later.

異方性粉末30は、希土類元素がNdを含む場合、Ndを含む上記組成の希土類−鉄系合金の粉末に対して、水素圧と温度とを特定の条件とするHDDR(Hydrogenation Decomposition Desorption Recombination)処理を施すことで製造できる。このような特定のHDDR処理の条件は、公知の条件を利用できる。上記希土類−鉄系合金の粉末は、例えば、ストリップキャスト法やアトマイズ法などの公知の粉末の製造方法を利用して製造できる。又は、異方性粉末30は、例えば、メルトスパン法で作製した粉末に、ホットプレスとホットフォームなどの熱間加工とを組み合わせた処理を施すことで製造できる。   When the rare earth element contains Nd, the anisotropic powder 30 is an HDDR (Hydrogen Deposition Decomposition Recombination) with specific conditions of hydrogen pressure and temperature for the rare earth-iron alloy powder having the above composition containing Nd. It can be manufactured by processing. As such specific HDDR processing conditions, known conditions can be used. The rare earth-iron-based alloy powder can be manufactured using, for example, a known powder manufacturing method such as a strip casting method or an atomizing method. Or the anisotropic powder 30 can be manufactured by performing the process which combined hot processing, such as hot press and hot foam, to the powder produced by the melt span method, for example.

〈混合工程〉
混合工程では、水素化粉末20と異方性粉末30とを混合した混合粉末を含む磁石用粉末40bを作製する。混合粉末における異方性粉末30の配合割合は、異方性粉末30の配合割合が多いほど、異方性粉末30の存在割合が高い磁石用成形体50b(磁性部材60b)が得られる。ひいては、異方性粉末30の存在割合が高い希土類磁石が得られる。従って、異方性粉末30の配合割合は、過半数、具体的には質量割合で50%超が好ましい。異方性粉末30の配合割合は、質量割合で、60%以上、更に70%以上、更には75%以上が好ましい。異方性粉末30の配合割合が多すぎると、結合材となる水素化粉末20が相対的に少なくなって、異方性粉末30の粒子31同士が十分に結合できなくなる虞がある。従って、異方性粉末30の配合割合は、95%以下が好ましく、90%以下がより好ましい。水素化粉末20の配合割合は、質量割合で、5%以上であれば、異方性粉末30同士を十分に結合できる。異方性粉末30の配合割合は、得られる磁石用成形体50b(磁性部材60b)に含まれる異方性粉末30の存在割合に維持される。
<Mixing process>
In the mixing step, a magnet powder 40b including a mixed powder obtained by mixing the hydrogenated powder 20 and the anisotropic powder 30 is produced. As the blending ratio of the anisotropic powder 30 in the mixed powder is larger, the magnet compact 50b (magnetic member 60b) having a higher ratio of the anisotropic powder 30 is obtained. As a result, a rare earth magnet having a high proportion of the anisotropic powder 30 is obtained. Therefore, the blending ratio of the anisotropic powder 30 is preferably a majority, specifically, more than 50% by mass ratio. The blending ratio of the anisotropic powder 30 is 60% or more, more preferably 70% or more, and further preferably 75% or more by mass ratio. If the blending ratio of the anisotropic powder 30 is too large, the hydrogenated powder 20 serving as a binder becomes relatively small, and the particles 31 of the anisotropic powder 30 may not be sufficiently bonded. Therefore, the blending ratio of the anisotropic powder 30 is preferably 95% or less, and more preferably 90% or less. If the blending ratio of the hydrogenated powder 20 is 5% or more by mass ratio, the anisotropic powders 30 can be sufficiently bonded together. The blending ratio of the anisotropic powder 30 is maintained at the ratio of the anisotropic powder 30 contained in the obtained magnet compact 50b (magnetic member 60b).

(成形工程)
成形工程では、磁石用粉末40bを圧縮成形して磁石用成形体50bを作製する。成形工程は、実施形態1と同様の加熱温度(250℃以上600℃以下)に磁石用粉末40bを加熱した状態で、実施形態1と同様の成形圧力(588MPa以下)で圧縮成形する。
(Molding process)
In the molding step, the magnet powder 40b is compression molded to produce a magnet compact 50b. In the molding step, the magnet powder 40b is heated to the same heating temperature (250 ° C. or higher and 600 ° C. or lower) as in the first embodiment, and compression molding is performed at the same molding pressure (588 MPa or lower) as in the first embodiment.

磁石用粉末40bが異方性粉末30を含むため、成形工程は、磁石用粉末40b(異方性粉末30)に磁場を印加した状態で行うことが好ましい。そうすれば、結晶磁気異方性を有する異方性粉末30の各粒子31は、磁場の印加方向に従って回転するなどして金型90内で配列する。そのため、配向性に優れる磁石用成形体50bが得られ、ひいては配向性に優れる希土類磁石(異方性磁石)を製造できる。成形時に異方性粉末30の配向方向を一方向に略揃えると、脱水素処理時に上述したような強磁場を印加しなくても、配向性に優れる希土類磁石を製造できる。そのため、脱水素処理を行う際の制御などが容易である。また、磁場印加中で成形して配向性を高める場合には、異方性粉末30の各粒子31が斑なく配列し易いことから、配向性をより高め易い。即ち、磁気特性に優れる希土類磁石を生産性よく製造できる。磁場の印加の開始は、磁石用粉末40bを上述の温度に加熱する前の常温の状態で行うことが好ましい。そうすれば、配向方向を一方向に略揃え易くなる。   Since the magnet powder 40b includes the anisotropic powder 30, the molding step is preferably performed in a state where a magnetic field is applied to the magnet powder 40b (anisotropic powder 30). Then, the particles 31 of the anisotropic powder 30 having magnetocrystalline anisotropy are arranged in the mold 90 by rotating according to the application direction of the magnetic field. Therefore, the magnet compact 50b having excellent orientation can be obtained, and as a result, a rare earth magnet (anisotropic magnet) having excellent orientation can be produced. When the orientation direction of the anisotropic powder 30 is substantially aligned in one direction at the time of molding, a rare earth magnet having excellent orientation can be produced without applying a strong magnetic field as described above during the dehydrogenation treatment. Therefore, it is easy to control the dehydrogenation process. Moreover, when shape | molding in the application of a magnetic field and improving orientation, since each particle | grain 31 of the anisotropic powder 30 is easy to arrange without unevenness, it is easy to improve orientation. That is, a rare earth magnet having excellent magnetic properties can be produced with high productivity. It is preferable to start the application of the magnetic field in a normal temperature state before heating the magnet powder 40b to the above-described temperature. This makes it easy to align the alignment direction in one direction.

印加磁場の大きさは、0.5T以上が好ましい。印加磁場が大きいほど、配向性を高められ、磁気特性に優れる希土類磁石が得られる。印加磁場の大きさは、更に1.5T以上が好ましい。印加磁場の大きさは、10T以下程度が挙げられる。磁場の印加には、常電導コイルを備える常電導磁石、超電導コイルを備える超電導磁石のいずれも利用できる。磁場の印加方向は、適宜選択できる。図2下段左から4番目の図では、磁場の印加方向を一点鎖線矢印で示している。ここでは、磁場の印加方向は、圧縮方向(ここでは上下方向)に直交する場合を例示している。   The magnitude of the applied magnetic field is preferably 0.5 T or more. The larger the applied magnetic field, the higher the orientation and the rare earth magnet having excellent magnetic properties. The magnitude of the applied magnetic field is preferably 1.5 T or more. The magnitude of the applied magnetic field is about 10T or less. For the application of the magnetic field, either a normal conducting magnet having a normal conducting coil or a superconducting magnet having a superconducting coil can be used. The application direction of the magnetic field can be selected as appropriate. In the fourth diagram from the left in the lower part of FIG. 2, the direction in which the magnetic field is applied is indicated by a one-dot chain line arrow. Here, the case where the application direction of the magnetic field is orthogonal to the compression direction (the vertical direction here) is illustrated.

成形には、実施形態1と同様、ダイ91と一対の上下パンチ92,93とを備える金型90を利用するとよい。金型90の周囲には、磁場を印加するための磁石(図示せず)を配置する。   As in the first embodiment, a mold 90 including a die 91 and a pair of upper and lower punches 92 and 93 may be used for molding. A magnet (not shown) for applying a magnetic field is disposed around the mold 90.

[磁石用成形体の製造方法の作用効果]
実施形態2の磁石用成形体の製造方法によれば、磁石用粉末が塑性加工性に劣る異方性粉末を含んでいながらも希土類−鉄系合金を水素化処理後に粉砕した水素化粉末を含むので、磁石用粉末を250℃以上600℃以下に加熱することで、588MPa以下のような低い成形圧力で圧縮成形しても相対密度の高い磁石用成形体を製造できる。
[Effects of manufacturing method of magnet compact]
According to the method for manufacturing a molded article for magnets of Embodiment 2, a hydrogenated powder obtained by pulverizing a rare earth-iron alloy after hydrogenation treatment while the magnet powder contains an anisotropic powder inferior in plastic workability. Therefore, by heating the magnet powder to 250 ° C. or more and 600 ° C. or less, a compact for magnet having a high relative density can be produced even if compression molding is performed at a low molding pressure such as 588 MPa or less.

[磁石用成形体(粉末成形体)]
磁石用成形体(粉末成形体)50bは、上記した磁石用粉末40bを圧縮成形したものであり(図2の下段左から4番目の図)、異方性粉末30が水素化粉末20で結合されて構成されている。磁石用粉末40bの水素化粉末20は、粒径のばらつきが小さく成形性に優れると共に異方性粉末30を結合させられる。その上、水素化粉末20は、上記の成形工程により成形性及び結合性をより一層高められる。従って、圧縮成形する際の成形圧力が上述のように比較的小さくても、高密度の磁石用成形体50bが得られる。例えば、相対密度が80%以上の磁石用成形体50bが得られる。
[Magnet compact (powder compact)]
A magnet compact (powder compact) 50b is obtained by compression-molding the above-described magnet powder 40b (fourth diagram from the lower left in FIG. 2), and the anisotropic powder 30 is bonded by the hydrogenated powder 20. Has been configured. The hydrogenated powder 20 of the magnet powder 40b has a small variation in particle size and excellent moldability, and can be bonded to the anisotropic powder 30. Moreover, the moldability and bondability of the hydrogenated powder 20 can be further enhanced by the above-described molding process. Therefore, even if the molding pressure during compression molding is relatively small as described above, a high-density magnet molded body 50b can be obtained. For example, the magnet compact 50b having a relative density of 80% or more is obtained.

[磁性部材]
磁性部材60bは、作製した磁石用成形体50bに脱水素処理を施して、水素化粉末20を構成する水素化合金10hを希土類−鉄系合金10などの再結合合金に変化させたものである。つまり、磁性部材60bを製造する場合は、上述の磁石用成形体の製造工程に加えて、磁石用成形体50bを脱水素処理して再結合する脱水素工程を備える。脱水素処理の条件は、実施形態1の脱水素処理の条件と同様とすることができる。この工程を経ることで、異方性粉末30の粒子31が、水素化合金でなく、再結合合金によって結合された磁性部材60bが得られる。この結合工程を経ることで、磁石用成形体50bを構成していた水素化粉末20が磁性成分(例えば、Nd−Fe−B系合金などの再結合合金)に変化して、実質的に磁性成分のみで構成される磁性部材60bが得られる。
[Magnetic member]
The magnetic member 60b is obtained by subjecting the produced magnet compact 50b to a dehydrogenation process to change the hydrogenated alloy 10h constituting the hydrogenated powder 20 to a recombination alloy such as the rare earth-iron alloy 10. . That is, when manufacturing the magnetic member 60b, in addition to the above-described manufacturing process of the magnet molded body, a dehydrogenation process of dehydrogenating and recombining the magnet molded body 50b is provided. The dehydrogenation conditions can be the same as the dehydrogenation conditions of the first embodiment. By passing through this process, the magnetic member 60b in which the particles 31 of the anisotropic powder 30 are bonded by a recombination alloy instead of a hydrogenated alloy is obtained. Through this bonding step, the hydrogenated powder 20 constituting the magnet compact 50b is changed to a magnetic component (for example, a recombination alloy such as an Nd—Fe—B alloy), which is substantially magnetic. The magnetic member 60b comprised only with a component is obtained.

〔試験例1〕
磁石用成形体の試料No.1−1〜1−7、1−101を作製し、各試料の相対密度を測定した。その後、各試料を用いて磁性部材を作製し、各試料の磁気特性を評価した。
[Test Example 1]
Sample No. of molded body for magnet 1-1 to 1-7 and 1-101 were prepared, and the relative density of each sample was measured. Thereafter, a magnetic member was prepared using each sample, and the magnetic characteristics of each sample were evaluated.

[試料No.1−1〜1−7]
磁石用成形体の試料No.1−1〜1−7は、原料合金準備工程→水素化工程→粉砕工程→成形工程の手順で作製した。
[Sample No. 1-1 to 1-7]
Sample No. of molded body for magnet 1-1 to 1-7 were prepared in the order of raw material alloy preparation step → hydrogenation step → pulverization step → molding step.

まず、原料合金として、粒度が0.5mm〜30mmで、32.0質量%Nd−1.0質量%B−残部がFe及び不可避不純物からなる組成を有するNd−Fe−B系合金のインゴット(小片)を準備した。   First, as a raw material alloy, an ingot of an Nd—Fe—B alloy having a particle size of 0.5 mm to 30 mm and a composition of 32.0 mass% Nd-1.0 mass% B—the balance being Fe and inevitable impurities ( A small piece) was prepared.

次に、原料合金に水素化処理を施して水素化合金を作製した。水素化処理は、真空熱処理炉を用いて、条件を、水素雰囲気中、850℃×3時間として行った。   Next, the raw material alloy was subjected to hydrogenation treatment to produce a hydrogenated alloy. The hydrogenation treatment was performed using a vacuum heat treatment furnace under conditions of 850 ° C. × 3 hours in a hydrogen atmosphere.

次に、水素化合金を粉砕して水素化粉末を作製した。この粉砕は、超硬合金製の乳鉢を用いて、水素化合金を平均粒径(D50)が概ね150μmとなるように行った。得られた水素化粉末について、レーザ回折式粒度分布測定装置により体積粒度分布を測定したところ、D10が100μm、D50が150μm、D90が260μmであった。なお、「D10」とは、体積粒度分布における小径側から累積が10%となる粒径値(10体積%粒径)のことである。また、粒径が75μm未満の粒子の割合を求めたところ、その割合が2質量%であり、粒径が75μm以上355μm以下の粒子の割合を求めたところ、その割合が98質量%であった。   Next, the hydrogenated alloy was pulverized to produce a hydrogenated powder. This pulverization was performed using a mortar made of cemented carbide so that the average particle diameter (D50) of the hydrogenated alloy was approximately 150 μm. When the volume particle size distribution of the obtained hydrogenated powder was measured by a laser diffraction particle size distribution analyzer, D10 was 100 μm, D50 was 150 μm, and D90 was 260 μm. Note that “D10” is a particle size value (10 vol% particle size) at which accumulation is 10% from the small diameter side in the volume particle size distribution. Further, when the ratio of particles having a particle diameter of less than 75 μm was determined, the ratio was 2% by mass, and when the ratio of particles having a particle diameter of 75 μm or more and 355 μm or less was determined, the ratio was 98% by mass. .

次に、水素化粉末(磁石用粉末)を金型に充填し、圧縮成形して、直径約10mmで高さ約10mmの円柱状の粉末成形体(磁石用成形体)の試料No.1−1〜1−7を作製した。圧縮成形は、雰囲気を真空とし、表1に示す温度と成形圧力で行った。   Next, hydrogenated powder (magnet powder) was filled into a mold, compression-molded, and sample No. of a cylindrical powder compact (magnet compact) having a diameter of about 10 mm and a height of about 10 mm. 1-1 to 1-7 were produced. The compression molding was performed at a temperature and a molding pressure shown in Table 1, with the atmosphere being a vacuum.

[試料No.1−101]
水素化工程と粉砕工程の行う順番を入れ替えた点を除き、試料No.1−1などと同様にして磁石用成形体の試料No.1−101を作製した。即ち、試料No.1−101の磁石用成形体は、原料合金準備工程→粉砕工程→水素化工程→成形工程を経て作製した。
[Sample No. 1-101]
Except that the order of performing the hydrogenation step and the pulverization step was changed, the sample No. In the same manner as in 1-1, the sample No. 1-101 was produced. That is, sample no. The magnet molded body of 1-101 was produced through a raw material alloy preparation step → crushing step → hydrogenation step → forming step.

粉砕工程により得られた合金粉末の体積粒度分布を試料No.1−1などと同様にして測定したところ、D10が180μm、D50が335μm、D90が400μmであった。   The volume particle size distribution of the alloy powder obtained by the pulverization process is shown in Sample No. When measured in the same manner as 1-1, D10 was 180 μm, D50 was 335 μm, and D90 was 400 μm.

水素化工程により上記合金粉末を水素化処理して得られた水素化粉末の体積粒度分布を同様にして測定したところ、D10が95μm、D50が138μm、D90が275μmであった。また、粒径が75μm未満の粒子の割合を求めたところ、その割合が7.5質量%であり、粒径が75μm以上355μm以下の粒子の割合を求めたところ、その割合が92.5質量%であった。   When the volume particle size distribution of the hydrogenated powder obtained by hydrogenating the alloy powder in the hydrogenation step was measured in the same manner, D10 was 95 μm, D50 was 138 μm, and D90 was 275 μm. Further, when the ratio of particles having a particle diameter of less than 75 μm was determined, the ratio was 7.5% by mass, and when the ratio of particles having a particle diameter of 75 μm or more and 355 μm or less was determined, the ratio was 92.5 mass. %Met.

この水素化粉末を用いて試料No.1−1などと同様にして同サイズの粉末成形体(磁石用成形体)の試料No.1−101を作製した。圧縮成形は、雰囲気を真空とし、表1に示す温度と成形圧力で行った。   Using this hydrogenated powder, Sample No. Sample No. 1 of a powder compact (magnet compact) of the same size as in 1-1. 1-101 was produced. The compression molding was performed at a temperature and a molding pressure shown in Table 1, with the atmosphere being a vacuum.

[相対密度の測定]
各試料1−1〜1−7、1−101の磁石用成形体の相対密度は、「磁石用成形体の見かけ密度/磁石用成形体の真密度」の百分率から求めた。磁石用成形体の見かけ密度は、サイズと質量から算出した。磁石用成形体の真密度は、Nd−Fe−B合金の真密度(7.5g/cm)とした。各試料の密度と相対密度を表1に示す。
[Measurement of relative density]
The relative density of the magnet molded body of each of the samples 1-1 to 1-7 and 1-101 was determined from the percentage of “apparent density of the magnet molded body / true density of the magnet molded body”. The apparent density of the magnet compact was calculated from the size and mass. The true density of the magnet compact was the true density (7.5 g / cm 3 ) of the Nd—Fe—B alloy. Table 1 shows the density and relative density of each sample.

[磁気特性の評価]
各試料1−1〜1−7、1−101の磁石用成形体に脱水素処理を施して磁性部材を作製した。脱水素処理は、真空熱処理炉内の雰囲気を水素雰囲気から真空雰囲気に切り換えて、条件を、真空雰囲気中、800℃×3時間として行った。真空雰囲気の真空度は0.5Pa未満に設定した。
[Evaluation of magnetic properties]
Demagnetization treatment was performed on the magnet compacts of Samples 1-1 to 1-7 and 1-101 to produce magnetic members. The dehydrogenation treatment was performed by switching the atmosphere in the vacuum heat treatment furnace from a hydrogen atmosphere to a vacuum atmosphere, and in a vacuum atmosphere at 800 ° C. for 3 hours. The degree of vacuum in the vacuum atmosphere was set to less than 0.5 Pa.

各試料の磁性部材を3.5Tのパルス磁界で着磁した後、磁気特性を調べた。磁気特性は、BHトレーサ(理研電子株式会社製DCBHトレーサ)を用いて、残留磁束密度Br(T)、磁束密度Bと減磁界の大きさHとの積の最大値、即ち最大エネルギー積(BH)max(kJ/m)を調べた。その結果を表1に示す。 After magnetizing the magnetic member of each sample with a pulse magnetic field of 3.5 T, the magnetic properties were examined. The magnetic characteristics are obtained by using a BH tracer (DCBH tracer manufactured by Riken Denshi Co., Ltd.), the residual magnetic flux density Br (T), the maximum value of the product of the magnetic flux density B and the magnitude H of the demagnetizing field, that is, the maximum energy product (BH ) Max (kJ / m 3 ) was examined. The results are shown in Table 1.

Figure 0006447804
Figure 0006447804

表1に示すように、水素化処理した後に粉砕して作製した磁石用粉末を250℃以上600℃以下に加熱して圧縮成形した試料No.1−1、1−4,1−5の磁石用成形体は、成形圧力を588MPa以下としながらも、相対密度が80%以上であった。この試料No.1−1、1−4,1−5は、残留磁束密度Br、及び最大エネルギー積(BH)maxが高く、磁気特性に優れることが分かった。   As shown in Table 1, the magnet powder prepared by pulverization after the hydrogenation treatment was heated to 250 ° C. or more and 600 ° C. or less and subjected to compression molding. The magnet compacts 1-1, 1-4, and 1-5 had a relative density of 80% or more while the molding pressure was 588 MPa or less. This sample No. 1-1, 1-4, and 1-5 have high residual magnetic flux density Br and maximum energy product (BH) max, and were found to be excellent in magnetic characteristics.

一方、水素化処理した後に粉砕して作製した磁石用粉末を加熱せず常温で圧縮成形した試料No.1−2は、成形圧力を試料No.1−1と同様に588MPa以下としたところ、磁石用粉末が固まらず磁石用成形体が得られなかった。試料No.1−2と同様に常温で圧縮成形した試料No.1−3は、成形圧力を従来と同程度に高く(980MPa)して圧縮成形したところ、相対密度が80%程度の磁石用成形体が得られた。試料1−3は、残留磁束密度Br、及び最大エネルギー積(BH)maxが高く、磁気特性に優れることが分かった。但し、成形圧力が高すぎるため、金型が摩耗し易くなると考えられる。この結果から、水素化処理した後に粉砕して作製した磁石用粉末を成形する際に250℃以上600℃以下に加熱すると、成形圧力が600MPa以下、更には590MPa以下で、金型の摩耗を抑制した上で、相対密度の高い磁石用成形体を作製できると考えられる。   On the other hand, Sample No. No. 1 was compression-molded at room temperature without heating the magnet powder produced by pulverization after hydrogenation. 1-2 shows the molding pressure of sample No. 1-2. When the pressure was 588 MPa or less as in 1-1, the magnet powder was not hardened, and a magnet compact was not obtained. Sample No. Sample No. 1 compression-molded at room temperature as in 1-2. In 1-3, compression molding was carried out with the molding pressure as high as before (980 MPa), and a magnet compact having a relative density of about 80% was obtained. Sample 1-3 was found to have a high residual magnetic flux density Br and a maximum energy product (BH) max, and excellent magnetic properties. However, since the molding pressure is too high, the mold is considered to be easily worn. From this result, when the magnet powder produced by pulverization after the hydrogenation treatment is molded, if it is heated to 250 ° C. or more and 600 ° C. or less, the molding pressure is 600 MPa or less, and further 590 MPa or less, thereby suppressing the wear of the mold. In addition, it is considered that a molded article for a magnet having a high relative density can be produced.

粉砕して得られた合金粉末に水素化処理した磁石用粉末を用い、250℃以上600℃以下に加熱して磁石用成形体を作製した試料No.1−101は、相対密度が高いものの、同じ成形条件で磁石用成形体を作製した試料No.1−5に比べると相対密度が低かった。試料No.1−101は、粉砕後の合金粉末に水素化処理したことで、上述のように粒径が75μm未満の微細な粉末の割合が試料No.1−5に比べて多くなったと考えられる。そのため、試料No.1−5に比べると、相対密度が低くなったと考えられる。このことから、原料粉末を250℃以上600℃以下に加熱して成形して磁石用成形体を作製する際、この成形工程を同じ条件とすると、原料粉末には、水素化処理後に粉砕した磁石用粉末を用いる方が、粉砕後に水素化処理した磁石用粉末を用いる場合に比べて、相対密度を高くできると考えられる。   The magnet powder obtained by hydrating the alloy powder obtained by pulverization was heated to 250 ° C. or higher and 600 ° C. or lower to prepare a magnet compact. Sample No. 1-101, which has a high relative density, produced a magnet compact under the same molding conditions. Compared with 1-5, the relative density was low. Sample No. No. 1-101 was obtained by subjecting the pulverized alloy powder to a hydrogenation treatment, and the proportion of fine powder having a particle size of less than 75 μm as described above was changed to Sample No. It is thought that it increased compared with 1-5. Therefore, sample no. Compared to 1-5, it is considered that the relative density is low. For this reason, when the raw material powder is heated to 250 ° C. or higher and 600 ° C. or lower to form a molded body for a magnet, if this molding process is performed under the same conditions, the raw material powder includes a magnet pulverized after hydrogenation It is thought that the relative density can be increased by using the powder for use compared with the case of using the magnet powder that has been hydrogenated after pulverization.

本発明の磁石用成形体の製造方法は、永久磁石などに利用される希土類磁石の素材の製造に好適に利用できる。本発明の磁石用成形体の製造法により製造される磁石用成形体、及びその磁石用成形体を用いて得られる磁性部材は、永久磁石、例えば、各種のモータ、特に、ハイブリッド自動車やハードディスクドライブなどに具備される高速モータに用いられる永久磁石の素材に好適に利用できる。   The method for producing a molded body for magnet according to the present invention can be suitably used for producing a material for a rare earth magnet used for a permanent magnet or the like. A magnet molded body manufactured by the method for manufacturing a magnet molded body of the present invention and a magnetic member obtained by using the magnet molded body are permanent magnets such as various motors, in particular, hybrid cars and hard disk drives. It can utilize suitably for the raw material of the permanent magnet used for the high-speed motor with which it is equipped.

10 希土類−鉄系合金
10h 水素化合金
11 主相 12 粒界相 C クラック
20 水素化粉末 21 水素化粉末の粒子
22 希土類元素の水素化合物の相 23 鉄含有物の相
30 異方性粉末 31 異方性粉末の粒子
40a、40b 磁石用粉末
50a、50b 粉末成形体(磁石用成形体)
60a、60b 磁性部材
90 金型
91 ダイ 92 上パンチ 93 下パンチ
100 希土類−鉄系合金
101 主相 102 粒界相 C クラック
120 合金粉末 121 合金粉末の粒子
140 水素化粉末(磁石用粉末)
141 水素化粉末(磁石用粉末)の粒子
150 粉末成形体(磁石用成形体)
160 磁性部材
DESCRIPTION OF SYMBOLS 10 Rare earth-iron type alloy 10h Hydrogenated alloy 11 Main phase 12 Grain boundary phase C Crack 20 Hydrogenated powder 21 Particle of hydrogenated powder 22 Phase of hydrogen compound of rare earth element 23 Phase of iron-containing material 30 Anisotropic powder 31 Different Isotropic powder particles 40a, 40b Magnet powder 50a, 50b Powder compact (magnet compact)
60a, 60b Magnetic member 90 Die 91 Die 92 Upper punch 93 Lower punch 100 Rare earth-iron alloy 101 Main phase 102 Grain boundary phase C crack 120 Alloy powder 121 Alloy powder particle 140 Hydrogenated powder (magnet powder)
141 Particles of hydrogenated powder (magnet powder) 150 Powder compact (magnet compact)
160 Magnetic members

Claims (8)

希土類−鉄系合金を水素を含む雰囲気中で不均化温度以上の温度で水素化処理した水素化合金を作製する水素化工程と、
前記水素化合金を機械的に粉砕して水素化粉末を作製する粉砕工程と、
前記水素化粉末と、以下の構成(a)から(c)を満たす異方性粉末とを含む混合粉末である磁石用粉末を圧縮成形して粉末成形体を作製する成形工程とを備え、
前記成形工程は、前記磁石用粉末を250℃以上600℃以下に加熱した状態で、588MPa以下の成形圧力で行う磁石用成形体の製造方法。
(a)10体積%以上40体積%未満の希土類元素と、鉄族元素と、B、C及びNから選択される少なくとも1種の元素とを含む
(b)平均結晶粒径が700nm以下
(c)平均粒径が3μm以上500μm以下
A hydrogenation step of producing a hydrogenated alloy obtained by hydrotreating a rare earth-iron-based alloy at a temperature equal to or higher than the disproportionation temperature in an atmosphere containing hydrogen;
Crushing step of mechanically crushing the hydrogenated alloy to produce a hydrogenated powder;
A molding step of compressing and molding a powder for a magnet that is a mixed powder including the hydrogenated powder and an anisotropic powder satisfying the following configurations (a) to (c),
The said shaping | molding process is a manufacturing method of the molded object for magnets performed with the shaping | molding pressure of 588 MPa or less in the state which heated the said powder for magnets to 250 degreeC or more and 600 degrees C or less.
(A) containing 10% by volume or more and less than 40% by volume of a rare earth element, an iron group element, and at least one element selected from B, C, and N (b) an average crystal grain size of 700 nm or less (c ) The average particle size is 3μm or more and 500μm or less
前記異方性粉末の結晶配向度が、70%以上である請求項1に記載の磁石用成形体の製造方法。   The method for producing a molded body for a magnet according to claim 1, wherein a degree of crystal orientation of the anisotropic powder is 70% or more. 前記成形工程は、前記磁石用粉末に0.5T以上の磁場を印加して、前記異方性粉末の配向方向を揃えた状態で行う請求項1または請求項2に記載の磁石用成形体の製造方法。   The magnet forming body according to claim 1 or 2, wherein the forming step is performed in a state in which a magnetic field of 0.5 T or more is applied to the magnet powder and the orientation direction of the anisotropic powder is aligned. Production method. 前記水素化合金は、
10体積%以上40体積%未満の希土類元素の水素化合物の相と、残部が鉄含有物の相とからなり、
前記希土類元素の水素化合物の相と前記鉄含有物の相とが隣接して存在しており、
前記鉄含有物の相を介して隣り合う前記希土類元素の水素化合物の相間の間隔が3μm以下である請求項1から請求項3のいずれか1項に記載の磁石用成形体の製造方法。
The hydrogenated alloy is
10% by volume or more and less than 40% by volume of a rare earth element hydrogen compound phase, and the balance consisting of an iron-containing material phase,
The rare earth element hydrogen compound phase and the iron-containing material phase are adjacent to each other;
The method for producing a molded body for a magnet according to any one of claims 1 to 3, wherein an interval between phases of the hydrogen compound of the rare earth element adjacent to each other through the phase of the iron-containing material is 3 µm or less.
前記希土類元素の水素化合物の相が粒状であり、
前記鉄含有物の相中に、粒状の前記希土類元素の水素化合物の相が分散して存在する請求項4に記載の磁石用成形体の製造方法。
The phase of the rare earth element hydrogen compound is granular,
The method for producing a molded body for a magnet according to claim 4, wherein a phase of the particulate hydrogen compound of the rare earth element is dispersed in the phase of the iron-containing material.
前記水素化粉末のD50粒径が100μm以上500μm以下である請求項1から請求項5のいずれか1項に記載の磁石用成形体の製造方法。   The method for producing a molded body for a magnet according to any one of claims 1 to 5, wherein the D50 particle size of the hydrogenated powder is 100 µm or more and 500 µm or less. 前記成形工程は、酸素濃度が1体積%以下の雰囲気中で行う請求項1から請求項6のいずれか1項に記載の磁石用成形体の製造方法。   The said shaping | molding process is a manufacturing method of the molded object for magnets of any one of Claims 1-6 performed in the atmosphere whose oxygen concentration is 1 volume% or less. 前記混合粉末における前記異方性粉末の配合割合は、質量割合で50%超95%以下である請求項1から請求項7のいずれか1項に記載の磁石用成形体の製造方法。
The method for producing a molded body for a magnet according to any one of claims 1 to 7, wherein a blending ratio of the anisotropic powder in the mixed powder is more than 50% and not more than 95% by mass ratio.
JP2014102748A 2014-05-16 2014-05-16 Method for manufacturing magnet compact Expired - Fee Related JP6447804B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014102748A JP6447804B2 (en) 2014-05-16 2014-05-16 Method for manufacturing magnet compact

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014102748A JP6447804B2 (en) 2014-05-16 2014-05-16 Method for manufacturing magnet compact

Publications (2)

Publication Number Publication Date
JP2015220336A JP2015220336A (en) 2015-12-07
JP6447804B2 true JP6447804B2 (en) 2019-01-09

Family

ID=54779483

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014102748A Expired - Fee Related JP6447804B2 (en) 2014-05-16 2014-05-16 Method for manufacturing magnet compact

Country Status (1)

Country Link
JP (1) JP6447804B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017216298A (en) * 2016-05-30 2017-12-07 住友電気工業株式会社 Rare earth magnet material and method for manufacturing rare earth magnet material

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6383243A (en) * 1986-09-26 1988-04-13 Tdk Corp Production of sintered rare earth element-iron-boron magnet
JP3969691B2 (en) * 1999-09-13 2007-09-05 三菱マテリアルPmg株式会社 Method for producing rare earth-Fe-Co-B magnet
JP4648586B2 (en) * 2001-07-16 2011-03-09 昭和電工株式会社 Rare earth sintered magnet manufacturing method and rare earth sintered magnet
JP2010238761A (en) * 2009-03-30 2010-10-21 Honda Motor Co Ltd Permanent magnet and manufacturing method thereof
JP5059955B2 (en) * 2010-04-15 2012-10-31 住友電気工業株式会社 Magnet powder
JP2012186212A (en) * 2011-03-03 2012-09-27 Sumitomo Electric Ind Ltd Manufacturing method for magnetic member, and magnetic member

Also Published As

Publication number Publication date
JP2015220336A (en) 2015-12-07

Similar Documents

Publication Publication Date Title
JP6229783B2 (en) Method for producing microcrystalline alloy intermediate product and microcrystalline alloy intermediate product
CN102639266B (en) Powder for magnet
JP5218869B2 (en) Rare earth-iron-nitrogen alloy material, method for producing rare earth-iron-nitrogen alloy material, rare earth-iron alloy material, and method for producing rare earth-iron alloy material
JP5059955B2 (en) Magnet powder
CN105469917B (en) High temperature hybrid permanent magnet and method of forming the same
JP2013149862A (en) Method of manufacturing rare earth magnet
Gopalan et al. Anisotropic Nd–Fe–B nanocrystalline magnets processed by spark plasma sintering and in situ hot pressing of hydrogenation–decomposition–desorption–recombination powder
JP6598700B2 (en) Rare earth magnet manufacturing method and rare earth magnet
JP7167665B2 (en) Rare earth magnet and manufacturing method thereof
JP2013021015A (en) Rare earth nano composite magnet and manufacturing method thereof
JP7255514B2 (en) Method for producing rare earth magnet powder
JP6691666B2 (en) Method for manufacturing RTB magnet
JP5742733B2 (en) Rare earth magnet manufacturing method
JP6471594B2 (en) Rare earth magnet material and method for producing rare earth magnet material
JP6447804B2 (en) Method for manufacturing magnet compact
Xiaoya et al. Nanocrystalline NdFeB magnet prepared by mechanically activated disproportionation and desorption-recombination in-situ sintering
JP2015026795A (en) Powder for magnets, rare earth magnet, method for manufacturing powder for magnets, and method for manufacturing rare earth magnet
JP6691667B2 (en) Method for manufacturing RTB magnet
JP2015007275A (en) Method of producing powder for magnet, powder for magnet, molding for magnet, magnetic member, and compressed powder magnet
JP2015220337A (en) Method for manufacturing compact for magnet, compact for magnet and magnetic member
JP2016100519A (en) Production method of magnetic powder, production method of dust magnet member, and dust magnet member
WO2019078148A1 (en) Rare-earth magnet material and rare-earth magnet
JP2017216298A (en) Rare earth magnet material and method for manufacturing rare earth magnet material
JP2017098412A (en) Rare earth magnet, and manufacturing method thereof
JP2016044352A (en) Method for producing powder for magnet, and method for producing rare earth magnet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170322

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180327

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180507

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180910

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181030

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181120

R150 Certificate of patent or registration of utility model

Ref document number: 6447804

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees