JP2013149862A - Method of manufacturing rare earth magnet - Google Patents
Method of manufacturing rare earth magnet Download PDFInfo
- Publication number
- JP2013149862A JP2013149862A JP2012010424A JP2012010424A JP2013149862A JP 2013149862 A JP2013149862 A JP 2013149862A JP 2012010424 A JP2012010424 A JP 2012010424A JP 2012010424 A JP2012010424 A JP 2012010424A JP 2013149862 A JP2013149862 A JP 2013149862A
- Authority
- JP
- Japan
- Prior art keywords
- alloy
- rare earth
- earth magnet
- powder
- modified
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Powder Metallurgy (AREA)
- Hard Magnetic Materials (AREA)
- Manufacturing Cores, Coils, And Magnets (AREA)
Abstract
Description
本発明は、希土類磁石の製造方法に関するものである。 The present invention relates to a method for producing a rare earth magnet.
ランタノイド等の希土類元素を用いた希土類磁石は永久磁石とも称され、その用途は、ハードディスクやMRIを構成するモータのほか、ハイブリッド車や電気自動車等の駆動用モータなどに用いられている。 Rare earth magnets using rare earth elements such as lanthanoids are also called permanent magnets, and their uses are used in motors for driving hard disks and MRI, as well as drive motors for hybrid vehicles and electric vehicles.
この希土類磁石の磁石性能の指標として残留磁化(残留磁束密度)と保磁力を挙げることができるが、モータの小型化や高電流密度化による発熱量の増大に対し、使用される希土類磁石にも耐熱性に対する要求は一層高まっており、高温使用下で磁石の保磁力を如何に保持できるかが当該技術分野での重要な研究課題の一つとなっている。車両駆動用モータに多用される希土類磁石の一つであるNd-Fe-B系磁石を取り挙げると、結晶粒の微細化を図ることやNd量の多い組成合金を用いること、保磁力性能の高いDy、Tbといった重希土類元素を添加することなどによってその保磁力を増大させる試みがおこなわれている。 Residual magnetization (residual magnetic flux density) and coercive force can be cited as indicators of the magnet performance of this rare earth magnet. However, in response to increased heat generation due to miniaturization of motors and higher current density, rare earth magnets used also The demand for heat resistance is further increasing, and how to maintain the coercive force of a magnet under high temperature use is one of the important research subjects in the technical field. Taking Nd-Fe-B magnets, one of the rare-earth magnets frequently used in vehicle drive motors, to refine crystal grains, use a composition alloy with a large amount of Nd, Attempts have been made to increase the coercivity by adding heavy rare earth elements such as high Dy and Tb.
希土類磁石としては、組織を構成する結晶粒(主相)のスケールが3〜5μm程度の一般的な焼結磁石のほか、結晶粒を50nm〜300nm程度のナノスケールに微細化したナノ結晶磁石があるが、中でも、上記する結晶粒の微細化を図りながら高価な重希土類元素の添加量を低減すること(フリー化)のできるナノ結晶磁石が現在注目されている。 As rare earth magnets, in addition to general sintered magnets with a crystal grain (main phase) scale of 3 to 5 μm constituting the structure, nanocrystal magnets with crystal grains refined to a nanoscale of about 50 nm to 300 nm are available. Among them, nanocrystal magnets that can reduce the amount of expensive heavy rare earth elements added (free) while miniaturizing the crystal grains described above are currently attracting attention.
希土類磁石の製造方法の一例を概説すると、たとえばNd-Fe-B系の金属溶湯を急冷凝固して得られた微粉末を加圧成形しながら成形体とし、この成形体に磁気的異方性を付与するべく熱間塑性加工を施して希土類磁石(配向磁石)を製造する方法が一般に適用されている。 An outline of an example of a method for producing a rare earth magnet is as follows. For example, a fine powder obtained by rapid solidification of a Nd-Fe-B metal melt is formed into a compact while being pressed, and the magnetic anisotropy is applied to the compact. In general, a method of producing a rare earth magnet (orientated magnet) by performing hot plastic working to impart the above-mentioned properties is applied.
また、特許文献1には、Nd-Fe-B系合金粉末に重希土類改質合金粉末を混合もしくは被覆させた原料を、まず冷間成形して冷間成形体を製造し、この冷間成形体を熱間成形して熱間成形体を製造する、もしくは熱間成形体にさらに熱間塑性加工を施して熱間塑性加工体を製造する希土類磁石の製造方法が開示されている。この製造方法によれば、結晶粒界相に濃化したDy等の重希土類元素を均一に分布させることができ、残留磁束密度の低下を抑制しながら保磁力を向上させることができるとしている。
In
しかしながら、冷間成形した後に熱間成形する、さらには熱間成形後に熱間塑性加工をおこなう方法では、改質合金が溶融していない状態で冷間成形がおこなわれるためにこの改質合金がNd-Fe-B系合金粉末間の特に三重点に偏析もしくは凝集してしまい、改質合金が不均一な分布となった状態で熱間成形に移行することになる。そのため、熱間成形もしくは熱間塑性加工の際に溶融した改質合金を全ての結晶粒界に均一に拡散浸透させることができず、希土類磁石全体としての保磁力を十分に高めることができない。 However, in the method of performing hot forming after cold forming, and further performing hot plastic working after hot forming, cold forming is performed in a state where the modified alloy is not melted. The Nd—Fe—B based alloy powder segregates or agglomerates particularly at the triple points, and the reformed alloy shifts to hot forming in a non-uniform distribution. For this reason, the modified alloy melted during hot forming or hot plastic working cannot be uniformly diffused and penetrated into all crystal grain boundaries, and the coercivity of the entire rare earth magnet cannot be sufficiently increased.
本発明は上記する問題に鑑みてなされたものであり、改質合金を希土類磁石原料となる磁粉全体に均一に拡散浸透させることができ、もって、保磁力が高く、磁化も良好な希土類磁石を製造することのできる製造方法を提供することを目的とする。 The present invention has been made in view of the above-described problems, and can provide a rare earth magnet having a high coercive force and good magnetization, which can uniformly diffuse and infiltrate the modified alloy throughout the magnetic powder as a rare earth magnet raw material. It aims at providing the manufacturing method which can be manufactured.
前記目的を達成すべく、本発明による希土類磁石の製造方法は、RE-Fe-B系の主相(RE:Nd、Pr、Yの少なくとも一種)と、該主相の周りにある結晶粒界からなる磁粉と、RE-M-RH合金(M:遷移金属元素または典型金属元素、RH:重希土類元素)もしくはRE-M合金からなる改質合金粉を混合し、熱間プレス加工をおこなって改質合金粉を溶融させ、その融液を磁粉間の磁粉界面に浸透させながら成形体を製造する第1のステップ、前記成形体を熱間塑性加工して希土類磁石を製造する第2のステップからなるものである。 In order to achieve the above object, a method for producing a rare earth magnet according to the present invention includes a RE-Fe-B main phase (at least one of RE: Nd, Pr, and Y) and a grain boundary around the main phase. Mixing magnetic powder consisting of RE-M-RH alloy (M: transition metal element or typical metal element, RH: heavy rare earth element) or RE-M alloy modified alloy powder, and hot pressing A first step of producing a molded body while melting the modified alloy powder and infiltrating the melt into the magnetic powder interface between the magnetic powders, and a second step of producing a rare earth magnet by hot plastic working the molded body. It consists of
本発明の製造方法は、成形体(バルク体)を製造した段階で改質合金粉を溶融させて磁粉間の磁粉界面全体に改質合金粉の融液を十分に行き渡らせ、この成形体に熱間塑性加工を施すことにより、磁気的異方性を付与しながら、改質合金粉の融液を磁粉内に拡散浸透させるものである。 In the production method of the present invention, the reformed alloy powder is melted at the stage of producing the molded body (bulk body), and the melt of the modified alloy powder is sufficiently spread over the entire magnetic powder interface between the magnetic powders. By applying hot plastic working, the melt of the modified alloy powder is diffused and penetrated into the magnetic powder while giving magnetic anisotropy.
成形体を製造する過程で改質合金粉を溶融させるため、改質合金粉が磁粉間のたとえば三重点に偏析するといった問題は生じ得ない。 Since the reformed alloy powder is melted in the process of manufacturing the formed body, the problem that the reformed alloy powder segregates, for example, at triple points between the magnetic powders cannot occur.
また、改質合金粉の融液が磁粉間の磁粉界面に行き渡ることから、成形体の段階で各磁粉間の磁気的な分断が促進され、このことによっても、保磁力が高く、磁化も良好な希土類磁石が得られる。 In addition, since the melt of the modified alloy powder spreads to the magnetic powder interface between the magnetic powders, the magnetic separation between the magnetic powders is promoted at the stage of the compact, which also has a high coercive force and good magnetization. Rare earth magnets can be obtained.
ここで、「遷移金属元素または典型金属元素」としては、Cu、Mn、Co、Ni、Zn、Al、Ga、Snなどのうちのいずれか一種を適用することができる。また、「重希土類元素」としては、Dy、Tb、Hoなどのうちのいずれか一種を適用することができる。 Here, as the “transition metal element or typical metal element”, any one of Cu, Mn, Co, Ni, Zn, Al, Ga, Sn and the like can be applied. As the “heavy rare earth element”, any one of Dy, Tb, Ho, and the like can be applied.
中でも、改質合金粉がRE-M-RH合金からなる場合は、Nd-Cu-Dy合金、Nd-Cu-Tb合金、Nd-Al-Dy合金、Nd-Al-Tb合金のいずれか一種を適用し、改質合金粉がRE-M合金からなる場合は、Nd-Cu合金、Nd-Al合金のいずれか一種を適用するのが好ましい。 In particular, when the modified alloy powder is made of RE-M-RH alloy, one of Nd-Cu-Dy alloy, Nd-Cu-Tb alloy, Nd-Al-Dy alloy, and Nd-Al-Tb alloy is used. In the case where the modified alloy powder is made of a RE-M alloy, it is preferable to use one of Nd-Cu alloy and Nd-Al alloy.
たとえば、Nd-Cu-Dy合金からなる改質合金粉を使用する場合、その成分比率によって合金の融点は相違するものの(60Nd-30Cu-10Dy合金の融点は533℃、50Nd-30Cu-20Dy合金の融点は576℃等)、この改質合金の融点は概ね600℃未満となる。 For example, when using a modified alloy powder made of Nd-Cu-Dy alloy, although the melting point of the alloy differs depending on the component ratio (the melting point of 60Nd-30Cu-10Dy alloy is 533 ° C, 50Nd-30Cu-20Dy alloy The melting point of this modified alloy is generally less than 600 ° C.
また、改質合金がNd-Cu合金の場合には、その融点が520℃程度と低温であることから、520〜650℃の範囲で合金を溶融させることができ、改質合金がNd-Al合金の場合には、その融点が600〜650℃とやはり低温である。 In addition, when the modified alloy is an Nd-Cu alloy, the melting point is as low as about 520 ° C, so the alloy can be melted in the range of 520 to 650 ° C, and the modified alloy is Nd-Al In the case of an alloy, the melting point is as low as 600 to 650 ° C.
このように低融点の改質合金粉を使用して低温で溶融させることができるため、800℃以上の高温雰囲気下に置かれると結晶粒の粗大化が問題となるナノ結晶磁石(結晶粒径が50nm〜300nm程度)に対して、本発明の製造方法は好適である。 Because it can be melted at a low temperature by using a low melting point modified alloy powder in this way, a nanocrystalline magnet (crystal grain size) where coarsening of crystal grains becomes a problem when placed in a high temperature atmosphere of 800 ° C or higher Is about 50 nm to 300 nm), the production method of the present invention is suitable.
以上の説明から理解できるように、本発明の希土類磁石の製造方法によれば、成形体(バルク体)を製造した段階で改質合金粉を溶融させて磁粉間の磁粉界面全体に改質合金粉の融液を十分に行き渡らせ、この成形体に熱間塑性加工を施すことにより、保磁力が高く、磁化も良好な希土類磁石を製造することができる。 As can be understood from the above description, according to the method for producing a rare earth magnet of the present invention, the reformed alloy powder is melted at the stage of producing the compact (bulk body), and the reformed alloy is applied to the entire magnetic powder interface between the magnetic powders. A rare earth magnet having a high coercive force and good magnetization can be produced by sufficiently spreading the melt of the powder and subjecting the compact to hot plastic working.
以下、図面を参照して本発明の希土類磁石の製造方法の実施の形態を説明する。なお、図示例はナノ結晶磁石である希土類磁石の製造方法を説明したものであるが、本発明の希土類磁石の製造方法はナノ結晶磁石の製造に限定されるものではなく、結晶粒の相対的に大きな焼結磁石(たとえば1μm程度の粒径のもの)等の製造に適用できることは勿論のことである。 Embodiments of a method for producing a rare earth magnet according to the present invention will be described below with reference to the drawings. The illustrated example describes a method for producing a rare-earth magnet, which is a nanocrystalline magnet. However, the method for producing a rare-earth magnet of the present invention is not limited to the production of a nanocrystalline magnet, and relative crystal grains Of course, it can be applied to the production of large sintered magnets (for example, having a particle size of about 1 μm).
(希土類磁石の製造方法)
図1,2,3はその順で本発明の希土類磁石の製造方法の第1のステップを説明した模式図であり、図4は第1のステップで製造された成形体の組織を拡大した図であり、図5は図4のV部の拡大図であって、結晶組織のミクロ構造を示した図である。
(Rare earth magnet manufacturing method)
1, 2 and 3 are schematic views illustrating the first step of the method of manufacturing a rare earth magnet of the present invention in that order, and FIG. 4 is an enlarged view of the structure of the molded body manufactured in the first step. FIG. 5 is an enlarged view of a portion V in FIG. 4 and shows a microstructure of the crystal structure.
図1で示すように、たとえば50kPa以下に減圧したArガス雰囲気の不図示の炉中で、単ロールによるメルトスピニング法により、合金インゴットを高周波溶解し、希土類磁石を与える組成の溶湯を銅ロールWに噴射して急冷薄帯B(急冷リボン)を製作し、これを粗粉砕する。 As shown in FIG. 1, for example, in a furnace (not shown) in an Ar gas atmosphere whose pressure is reduced to 50 kPa or less, an alloy ingot is melted at a high frequency by a melt spinning method using a single roll, and a molten metal having a composition that gives a rare earth magnet is a copper roll W To produce a quenched ribbon B (quenched ribbon), which is coarsely pulverized.
次に、図2で示すように、急冷薄帯Bが粗粉砕されてできた磁粉Qと改質合金粉Tをそれぞれ容器に所定量ずつ投入して混合し、成形体原料を生成する。 Next, as shown in FIG. 2, a predetermined amount of magnetic powder Q and modified alloy powder T, which are obtained by roughly pulverizing the quenched ribbon B, are charged into a container and mixed to produce a green body raw material.
生成された成形体原料Rを図3で示すように超硬ダイスDとこの中空内を摺動する超硬パンチPで画成されたキャビティ内に充填し、超硬パンチPで加圧しながら(X方向)加圧方向に電流を流して通電加熱することにより、ナノ結晶組織のRE-Fe-B系の主相(RE:Nd、Pr、Yの少なくとも一種)(20nm〜200nm程度の結晶粒径)と、主相の周りにあるNd-X合金(X:金属元素)の結晶粒界相からなる成形体Sを熱間プレス加工にて製作する(第1のステップ)。 As shown in FIG. 3, the produced molded body raw material R is filled in a cavity defined by a carbide die D and a carbide punch P that slides inside the hollow, and is pressed with the carbide punch P ( X direction) The main phase of RE-Fe-B system (RE: Nd, Pr, Y) of nanocrystal structure (currently 20nm to 200nm crystal grains) by applying current in the pressurizing direction and conducting heating. And a compact S composed of a grain boundary phase of an Nd—X alloy (X: metal element) around the main phase is manufactured by hot pressing (first step).
ここで、結晶粒界相を構成するNd-X合金は、Ndと、Co、Fe、Ga等のうちの少なくとも1種以上の合金からなり、たとえば、Nd-Co、Nd-Fe、Nd-Ga、Nd-Co-Fe、Nd-Co-Fe-Gaのうちのいずれか一種、もしくはこれらの二種以上が混在したものであって、Ndリッチな状態となっている。 Here, the Nd—X alloy constituting the grain boundary phase is made of Nd and at least one of Co, Fe, Ga, and the like, for example, Nd—Co, Nd—Fe, Nd—Ga. , Nd—Co—Fe, Nd—Co—Fe—Ga, or a mixture of two or more of these, and is in an Nd rich state.
一方、改質合金粉は、RE-M-RH合金(M:遷移金属元素または典型金属元素、RH:重希土類元素)もしくはRE-M合金を素材とするものである。ここで、遷移金属元素または典型金属元素としては、Cu、Mn、Co、Ni、Zn、Al、Ga、Snなどのうちのいずれか一種を適用することができ、重希土類元素としては、Dy、Tb、Hoなどのうちのいずれか一種を適用することができる。 On the other hand, the modified alloy powder is made of RE-M-RH alloy (M: transition metal element or typical metal element, RH: heavy rare earth element) or RE-M alloy. Here, as the transition metal element or the typical metal element, any one of Cu, Mn, Co, Ni, Zn, Al, Ga, Sn and the like can be applied, and as the heavy rare earth element, Dy, Any one of Tb, Ho, etc. can be applied.
中でも、改質合金粉がRE-M-RH合金からなる場合は、Nd-Cu-Dy合金、Nd-Cu-Tb合金、Nd-Al-Dy合金、Nd-Al-Tb合金のいずれか一種を適用し、改質合金粉がRE-M合金からなる場合は、Nd-Cu合金、Nd-Al合金のいずれか一種を適用する。 In particular, when the modified alloy powder is made of RE-M-RH alloy, one of Nd-Cu-Dy alloy, Nd-Cu-Tb alloy, Nd-Al-Dy alloy, and Nd-Al-Tb alloy is used. When the modified alloy powder is made of RE-M alloy, either Nd-Cu alloy or Nd-Al alloy is applied.
Nd-Cu-Dy合金からなる改質合金粉を使用する場合、その成分比率によって合金の融点は相違するものの(60Nd-30Cu-10Dy合金の融点は533℃、50Nd-30Cu-20Dy合金の融点は576℃等)、この改質合金の融点は概ね600℃未満となる。また、改質合金がNd-Cu合金の場合には、その融点が520℃程度と低温であることから、520〜650℃の範囲で合金を溶融させることができ、改質合金がNd-Al合金の場合には、その融点が600〜650℃とやはり低温である。
また、改質合金粉はその平均粒径が10μm〜500μm程度のものを使用できる。
When using a modified alloy powder made of Nd-Cu-Dy alloy, although the melting point of the alloy differs depending on the component ratio (the melting point of 60Nd-30Cu-10Dy alloy is 533 ° C, the melting point of 50Nd-30Cu-20Dy alloy is 576 ° C.), the melting point of this modified alloy is generally less than 600 ° C. In addition, when the modified alloy is an Nd-Cu alloy, the melting point is as low as about 520 ° C, so the alloy can be melted in the range of 520 to 650 ° C, and the modified alloy is Nd-Al In the case of an alloy, the melting point is as low as 600 to 650 ° C.
The modified alloy powder having an average particle size of about 10 μm to 500 μm can be used.
図4で示す熱間プレス加工では、上記する低融点の改質合金粉Tを使用することから、500℃〜700℃程度の比較的低い温度(300℃程度に共晶点のあるNd合金を使用する場合は共晶点に応じた温度でプレス加工)で熱間プレス(たとえば50〜500MPaで15秒以上保持して高密度化)をおこなうことで、改質合金粉Tを溶融させることができ、したがって、ナノ結晶磁石を構成する結晶粒の粗大化を効果的に抑制することができる。 In the hot pressing shown in FIG. 4, the above-described modified alloy powder T having a low melting point is used, so that a relatively low temperature of about 500 ° C. to 700 ° C. (Nd alloy having a eutectic point at about 300 ° C. is used. If used, the modified alloy powder T can be melted by hot pressing (for example, holding at 50 to 500 MPa for 15 seconds or more to increase the density) by pressing at a temperature corresponding to the eutectic point. Therefore, the coarsening of the crystal grains constituting the nanocrystal magnet can be effectively suppressed.
そして、成形体Sを構成する磁粉間の磁粉界面には、改質合金粉Tが溶融してなる改質合金粉の融液T’が行き渡るため、磁粉Qの周囲を100%、もしくは100%に近い被覆率で被覆することができる。なお、この成形体Sの磁粉Qの組織のミクロ構造は、図5で示すようにナノ結晶粒MP(主相)間を結晶粒界相BPが充満する等方性の結晶組織を呈している。 And since the melt T ′ of the reformed alloy powder obtained by melting the reformed alloy powder T spreads over the magnetic powder interface between the magnetic powders constituting the compact S, the periphery of the magnetic powder Q is 100% or 100%. It is possible to coat with a coverage close to. The microstructure of the structure of the magnetic powder Q of the compact S exhibits an isotropic crystal structure in which the crystal grain boundary phase BP is filled between the nanocrystal grains MP (main phase) as shown in FIG. .
第1のステップで成形体Sが得られたら、次に、第1のステップと同様に、超硬ダイスDとこの中空内を摺動する超硬パンチPで画成されたキャビティ内に成形体Sを収容し、熱間塑性加工をおこなうことで、改質合金粉の融液T’が結晶粒界相に粒界拡散し、保磁力の高められた希土類磁石Cが製造される(第2のステップ)。 Once the molded body S is obtained in the first step, the molded body is then placed in the cavity defined by the cemented carbide die D and the cemented carbide punch P that slides in the hollow, as in the first step. By accommodating S and performing hot plastic working, the melt T ′ of the modified alloy powder diffuses into the grain boundary phase, and a rare earth magnet C having an increased coercive force is manufactured (second). Step).
この希土類磁石Cは、図7で示すように、熱間塑性加工によって磁気的異方性が付与され、磁化の高められた磁石となっている。 As shown in FIG. 7, the rare earth magnet C is a magnet whose magnetic anisotropy is imparted by hot plastic working and whose magnetization is increased.
図示する希土類磁石の製造方法によれば、成形体Sを製造した段階で改質合金粉を溶融させて磁粉間の磁粉界面全体に改質合金粉の融液を十分に行き渡らせ、磁粉の表面に100%か100%に近い被覆率で磁粉を被覆し、次いでこの成形体に熱間塑性加工を施して改質合金粉の融液を磁粉を構成する結晶粒界相に粒界拡散させることにより、全ての磁粉に対して均一に改質合金粉の融液を粒界拡散させることができ、保磁力の極めて高い希土類磁石を製造することができる。 According to the rare earth magnet manufacturing method shown in the figure, the reformed alloy powder is melted at the stage where the compact S is manufactured, and the melt of the modified alloy powder is sufficiently spread over the entire magnetic powder interface between the magnetic powders. Next, magnetic powder is coated at a coverage of 100% or close to 100%, and then the compact is subjected to hot plastic working to diffuse the melt of the modified alloy powder into the grain boundary phase constituting the magnetic powder. As a result, the melt of the modified alloy powder can be uniformly diffused into the grain boundary with respect to all the magnetic powders, and a rare earth magnet having an extremely high coercive force can be manufactured.
[成形体の改質合金粉の添加量と保磁力の関係を求めた実験、および、熱間塑性加工後の希土類磁石の保磁力と磁化の関係を求めた実験とそれらの結果]
本発明者等は、成形体の改質合金粉の添加量と保磁力の関係を求めた実験、および、熱間塑性加工後の希土類磁石の保磁力と磁化の関係を求めた実験をおこなった。
[Experiment to determine the relationship between the amount of reformed alloy powder added to the compact and the coercive force, and the experiment to determine the relationship between the coercive force and magnetization of a rare earth magnet after hot plastic working and their results]
The present inventors conducted experiments for determining the relationship between the amount of the modified alloy powder added to the compact and the coercive force, and experiments for determining the relationship between the coercive force and magnetization of the rare earth magnet after hot plastic working. .
本実験においてはNd-Fe-B磁粉(市販Nd-Fe-B急冷粉末)を使用し、この粉末は、組成:Nd30Co4B1Febal、平均結晶粒径:50nm〜300nm、平均粉末粒度:約200μmのものである。また、改質合金粉は、Nd、Cuインゴット(重量比80:20)をアーク溶解し、改質材合金インゴットを作製し、次に、作製したインゴットをカッターミルにより粉砕して、Nd-Cu合金粉末(重量比80:20、平均粒度:100μm)としたものである。 In this experiment, Nd-Fe-B magnetic powder (commercially available Nd-Fe-B rapidly cooled powder) was used, and this powder had a composition of Nd30Co4B1Febal, an average crystal grain size of 50 nm to 300 nm, and an average powder grain size of about 200 μm. is there. The modified alloy powder is prepared by arc melting Nd, Cu ingot (weight ratio 80:20) to produce a reformed alloy ingot. Next, the produced ingot is pulverized by a cutter mill, and Nd-Cu Alloy powder (weight ratio 80:20, average particle size: 100 μm).
上記するNd-Fe-B磁粉とNd-Cu改質合金粉をV型混粉機で30分間混合し、得られた混合粉末をカーボン製のダイスを用いてφ10×15mmの成形体を製作した。この際の実験水準を以下の表1に示す。次に、成形体を高周波によって700℃に加熱保持し、歪速度1/secで、試料高さ比で75%圧縮して熱間塑性加工をおこない、圧縮した試料のうちの中心の2×2×2mmを切り出して試験片とした。なお、比較例の試験片は、特許文献1の製造方法を再現して成形体とさらに熱間塑性加工後の希土類磁石を製造したものである。
The above-mentioned Nd-Fe-B magnetic powder and Nd-Cu modified alloy powder were mixed for 30 minutes with a V-type powder mixer, and the resulting mixed powder was manufactured into a 10 mm x 15 mm compact using a carbon die. . The experimental levels at this time are shown in Table 1 below. Next, the molded body was heated and held at 700 ° C. by high frequency, subjected to hot plastic working by compressing 75% at the sample height ratio at a strain rate of 1 / sec, and 2 × 2 at the center of the compressed sample A test piece was cut out by × 2 mm. In addition, the test piece of a comparative example reproduced the manufacturing method of
得られた2mm角の試験片を650℃、60分、Arガス雰囲気下で熱処理し、その後、磁気特性評価と組織観察をおこなった。ここで、磁気特性評価は、試料振動型磁力計(Vibrating Sample Magnetometer)を用いてRTでの保磁力、磁化を測定した。 The obtained 2 mm square test piece was heat-treated at 650 ° C. for 60 minutes in an Ar gas atmosphere, and then evaluated for magnetic properties and observed for the structure. Here, the magnetic characteristics were evaluated by measuring the coercive force and magnetization at RT using a vibrating sample magnetometer.
図8に比較例の成形体の組織を拡大した写真図を、図9に比較例のEPMA( Electron Probe Micro Analyzer電子線マイクロ分析)結果をそれぞれ示し、図10に実施例の成形体の組織を拡大した写真図を、図11に実施例のEPMA結果をそれぞれ示している。 FIG. 8 shows an enlarged photograph of the structure of the molded body of the comparative example, FIG. 9 shows the EPMA (Electron Probe Micro Analyzer) result of the comparative example, and FIG. 10 shows the structure of the molded body of the example. The enlarged photograph is shown in FIG. 11, and the EPMA results of the examples are shown in FIG.
また、以下の表2に比較例および実施例にかかる試験片のうち、成形体の保磁力および磁化に関する測定結果と熱間塑性加工後の希土類磁石の保磁力および磁化に関する測定結果を示している。また、図12において、実施例および比較例それぞれの成形体に関し、改質合金粉の添加量と保磁力の関係を求めた実験結果を示し、図13において、実施例および比較例それぞれの熱間塑性加工後の希土類磁石に関し、保磁力と磁化の関係を求めた実験結果を示している。さらに、図14aは実施例の添加率5%の試験片(No.3)の拡大写真図であり、図14bは比較例の添加率5%の試験片(No.3)の拡大写真図である。 Table 2 below shows the measurement results regarding the coercive force and magnetization of the compact and the measurement results regarding the coercivity and magnetization of the rare earth magnet after hot plastic working among the test pieces according to the comparative example and the example. . FIG. 12 shows the experimental results for determining the relationship between the amount of the modified alloy powder added and the coercive force for the compacts of the examples and comparative examples. In FIG. The experimental result which calculated | required the relationship between a coercive force and magnetization was shown about the rare earth magnet after plastic working. Further, FIG. 14a is an enlarged photograph of the test piece (No. 3) with an addition rate of 5% in the example, and FIG. 14b is an enlarged photograph of the test piece (No. 3) with an addition rate of 5% in the comparative example. is there.
実験結果および観察結果に関し、図8〜11より、比較例の成形体には改質合金の凝集部が確認できるのに対して、実施例の成形体は溶融した改質合金が磁粉間の磁粉界面に行き渡り、磁粉表面を均一に被覆しているのが確認できる。 Regarding the experimental results and the observation results, from FIG. 8 to FIG. 11, the molded body of the comparative example can confirm the agglomerated portion of the modified alloy, whereas the molded body of the example is the magnetic powder between the magnetic powders in the molten modified alloy. It can be confirmed that it has spread to the interface and uniformly coated the magnetic powder surface.
また、表2および図12より、比較例に比して実施例の成形体は、保磁力と磁化ともに性能が向上していることが実証されている。これは、改質合金粉の融液が個々の磁粉表面を高い被覆率(100%程度)で被覆しているためであると考えられる。 Further, from Table 2 and FIG. 12, it is demonstrated that the performance of the molded body of the example is improved in both the coercive force and the magnetization as compared with the comparative example. This is considered to be because the melt of the modified alloy powder coats the surface of each magnetic powder with a high coverage (about 100%).
一方、表2および図13より、比較例に比して実施例の熱間塑性加工後の希土類磁石に関しても、保磁力と磁化ともに性能が向上していることが実証されている。これは、その前駆体である成形体が既述するように改質合金粉の融液が個々の磁粉表面を高い被覆率(100%程度)で被覆しているため、この改質合金粉の融液が熱間塑性加工の際に各磁粉の結晶粒界相に均一に拡散浸透しているためであると考えられる。 On the other hand, Table 2 and FIG. 13 demonstrate that the performance of both the coercive force and the magnetization of the rare earth magnet after hot plastic working of the example is improved as compared with the comparative example. This is because the reformed alloy powder melt covers the surface of each magnetic powder at a high coverage (about 100%), as described above for the compact that is the precursor. This is considered to be because the melt uniformly diffuses and penetrates into the grain boundary phase of each magnetic powder during hot plastic working.
また、図14a,bより、実施例の試験片には割れは生じていなかったが、比較例の試験片には大きな割れが確認された。これは、比較例の試験片では、熱間塑性加工の際に応力集中が生じ、これが割れの原因になっているものと考えられる。 14A and 14B, no cracks occurred in the test pieces of the examples, but large cracks were confirmed in the test pieces of the comparative examples. This is considered to be caused by stress concentration in the test piece of the comparative example during hot plastic working, which causes cracking.
以上、本発明の実施の形態を図面を用いて詳述してきたが、具体的な構成はこの実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲における設計変更等があっても、それらは本発明に含まれるものである。 The embodiment of the present invention has been described in detail with reference to the drawings. However, the specific configuration is not limited to this embodiment, and there are design changes and the like without departing from the gist of the present invention. They are also included in the present invention.
W…銅ロール、B…急冷薄帯(急冷リボン)、Q…磁粉、T…改質合金粉、T’…改質合金粉の融液、R…成形体原料、D…超硬ダイス、P…超硬パンチ、S…成形体、C…希土類磁石(配向磁石)、MP…主相(ナノ結晶粒、結晶粒)、BP…結晶粒界相 W: Copper roll, B: Quenched ribbon (quenched ribbon), Q: Magnetic powder, T: Modified alloy powder, T ′: Molten liquid of modified alloy powder, R: Molded material raw material, D: Carbide die, P ... Carbide punch, S ... Molded body, C ... Rare earth magnet (orientation magnet), MP ... Main phase (nanocrystal grains, crystal grains), BP ... Grain boundary phase
Claims (2)
前記成形体を熱間塑性加工して希土類磁石を製造する第2のステップからなる希土類磁石の製造方法。 RE-Fe-B main phase (at least one of RE: Nd, Pr, Y), magnetic powder consisting of the grain boundary phase around the main phase, and RE-M-RH alloy (M: transition metal) Element or typical metal element, RH: heavy rare earth element) or RE-M alloy modified alloy powder is mixed, hot pressed to melt the modified alloy powder, and the melt is used as magnetic powder between magnetic powders. A first step of producing a molded body while penetrating the interface;
A method for producing a rare earth magnet comprising a second step of producing a rare earth magnet by hot plastic working the molded body.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012010424A JP2013149862A (en) | 2012-01-20 | 2012-01-20 | Method of manufacturing rare earth magnet |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012010424A JP2013149862A (en) | 2012-01-20 | 2012-01-20 | Method of manufacturing rare earth magnet |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2013149862A true JP2013149862A (en) | 2013-08-01 |
Family
ID=49047066
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012010424A Pending JP2013149862A (en) | 2012-01-20 | 2012-01-20 | Method of manufacturing rare earth magnet |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2013149862A (en) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104240888A (en) * | 2014-09-12 | 2014-12-24 | 沈阳中北通磁科技股份有限公司 | Sintered neodymium iron boron permanent magnet based on crystal grain recombination and manufacturing method |
KR20150033528A (en) * | 2013-09-24 | 2015-04-01 | 엘지전자 주식회사 | Hot-deformed magnet comprising nonmagnetic alloys and fabricating method thereof |
CN104700973A (en) * | 2015-03-05 | 2015-06-10 | 内蒙古科技大学 | Rare earth permanent magnet prepared from bayan obo accompany raw ore misch metal and preparation method of rare earth permanent magnet |
WO2015092524A1 (en) * | 2013-12-19 | 2015-06-25 | Toyota Jidosha Kabushiki Kaisha | Method of manufacturing rare earth magnet |
WO2015097523A1 (en) * | 2013-12-26 | 2015-07-02 | Toyota Jidosha Kabushiki Kaisha | Method of manufacturing rare earth magnet |
CN105321702A (en) * | 2015-11-19 | 2016-02-10 | 北京科技大学 | Method for improving coercivity of sintered NdFeB magnet |
CN104240888B (en) * | 2014-09-12 | 2017-01-04 | 沈阳中北通磁科技股份有限公司 | A kind of sintered NdFeB permanent magnet ferrum based on crystal grain restructuring and manufacture method |
CN106448986A (en) * | 2016-09-23 | 2017-02-22 | 四川大学 | Anisotropic nanocrystalline rare earth permanent magnet and preparation method therefor |
DE102015015930A1 (en) * | 2015-12-09 | 2017-06-14 | Wolfgang Kochanek | Process for the production of magnetic materials |
CN107077935A (en) * | 2014-12-08 | 2017-08-18 | Lg电子株式会社 | The magnet and its manufacture method of hot compression deformation comprising nonmagnetic alloy |
CN107146707A (en) * | 2017-05-18 | 2017-09-08 | 江苏大学 | A kind of neodymium iron boron magnetic body grain boundary decision equipment |
CN107533893A (en) * | 2015-04-30 | 2018-01-02 | 株式会社Ihi | The manufacture method of rare earth element permanent magnet and rare earth element permanent magnet |
CN107578912A (en) * | 2017-09-25 | 2018-01-12 | 烟台正海磁性材料股份有限公司 | A kind of preparation method of the neodymium iron boron magnetic body with high-coercive force |
WO2024106188A1 (en) * | 2022-11-18 | 2024-05-23 | 国立研究開発法人産業技術総合研究所 | Anisotropic rare earth magnet and method for producing same |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63114939A (en) * | 1986-04-11 | 1988-05-19 | Tokin Corp | R2t14b-type composite-type magnet material and its production |
JPH01196104A (en) * | 1988-02-01 | 1989-08-07 | Tdk Corp | Manufacture of rare earth alloy magnet |
JPH0786015A (en) * | 1993-06-30 | 1995-03-31 | Isuzu Motors Ltd | Permanent magnet having sufficient mechanical strength and manufacturing method thereof |
JPH09275004A (en) * | 1995-07-07 | 1997-10-21 | Daido Steel Co Ltd | Permanent magnet and its manufacture |
JP2010114200A (en) * | 2008-11-05 | 2010-05-20 | Daido Steel Co Ltd | Method of manufacturing rare-earth magnet |
JP2011187734A (en) * | 2010-03-09 | 2011-09-22 | Tdk Corp | Rare earth sintered magnet, and method for producing the same |
-
2012
- 2012-01-20 JP JP2012010424A patent/JP2013149862A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63114939A (en) * | 1986-04-11 | 1988-05-19 | Tokin Corp | R2t14b-type composite-type magnet material and its production |
JPH01196104A (en) * | 1988-02-01 | 1989-08-07 | Tdk Corp | Manufacture of rare earth alloy magnet |
JPH0786015A (en) * | 1993-06-30 | 1995-03-31 | Isuzu Motors Ltd | Permanent magnet having sufficient mechanical strength and manufacturing method thereof |
JPH09275004A (en) * | 1995-07-07 | 1997-10-21 | Daido Steel Co Ltd | Permanent magnet and its manufacture |
JP2010114200A (en) * | 2008-11-05 | 2010-05-20 | Daido Steel Co Ltd | Method of manufacturing rare-earth magnet |
JP2011187734A (en) * | 2010-03-09 | 2011-09-22 | Tdk Corp | Rare earth sintered magnet, and method for producing the same |
Cited By (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102215818B1 (en) * | 2013-09-24 | 2021-02-17 | 엘지전자 주식회사 | Hot-deformed magnet comprising nonmagnetic alloys and fabricating method thereof |
KR20150033528A (en) * | 2013-09-24 | 2015-04-01 | 엘지전자 주식회사 | Hot-deformed magnet comprising nonmagnetic alloys and fabricating method thereof |
CN105830178B (en) * | 2013-12-19 | 2018-07-06 | 丰田自动车株式会社 | The method for manufacturing rare-earth magnet |
US10347418B2 (en) | 2013-12-19 | 2019-07-09 | Toyota Jidosha Kabushiki Kaisha | Method of manufacturing rare earth magnet |
CN105830178A (en) * | 2013-12-19 | 2016-08-03 | 丰田自动车株式会社 | Method of manufacturing rare earth magnet |
WO2015092524A1 (en) * | 2013-12-19 | 2015-06-25 | Toyota Jidosha Kabushiki Kaisha | Method of manufacturing rare earth magnet |
WO2015097523A1 (en) * | 2013-12-26 | 2015-07-02 | Toyota Jidosha Kabushiki Kaisha | Method of manufacturing rare earth magnet |
CN105849828B (en) * | 2013-12-26 | 2019-07-12 | 丰田自动车株式会社 | The method for manufacturing rare-earth magnet |
CN105849828A (en) * | 2013-12-26 | 2016-08-10 | 丰田自动车株式会社 | Method of manufacturing rare earth magnet |
US10242795B2 (en) | 2013-12-26 | 2019-03-26 | Toyota Jidosha Kabushiki Kaisha | Method of manufacturing rare earth magnet |
CN104240888A (en) * | 2014-09-12 | 2014-12-24 | 沈阳中北通磁科技股份有限公司 | Sintered neodymium iron boron permanent magnet based on crystal grain recombination and manufacturing method |
CN104240888B (en) * | 2014-09-12 | 2017-01-04 | 沈阳中北通磁科技股份有限公司 | A kind of sintered NdFeB permanent magnet ferrum based on crystal grain restructuring and manufacture method |
US10950373B2 (en) | 2014-12-08 | 2021-03-16 | Lg Electronics Inc. | Hot-pressed and deformed magnet comprising nonmagnetic alloy and method for manufacturing same |
CN107077935A (en) * | 2014-12-08 | 2017-08-18 | Lg电子株式会社 | The magnet and its manufacture method of hot compression deformation comprising nonmagnetic alloy |
JP2018505540A (en) * | 2014-12-08 | 2018-02-22 | エルジー エレクトロニクス インコーポレイティド | Hot pressure deformed magnet containing non-magnetic alloy and method for producing the same |
CN104700973A (en) * | 2015-03-05 | 2015-06-10 | 内蒙古科技大学 | Rare earth permanent magnet prepared from bayan obo accompany raw ore misch metal and preparation method of rare earth permanent magnet |
CN107533893A (en) * | 2015-04-30 | 2018-01-02 | 株式会社Ihi | The manufacture method of rare earth element permanent magnet and rare earth element permanent magnet |
CN105321702A (en) * | 2015-11-19 | 2016-02-10 | 北京科技大学 | Method for improving coercivity of sintered NdFeB magnet |
DE102015015930A1 (en) * | 2015-12-09 | 2017-06-14 | Wolfgang Kochanek | Process for the production of magnetic materials |
CN106448986A (en) * | 2016-09-23 | 2017-02-22 | 四川大学 | Anisotropic nanocrystalline rare earth permanent magnet and preparation method therefor |
CN106448986B (en) * | 2016-09-23 | 2018-05-11 | 四川大学 | A kind of anisotropy nanocrystalline rare-earth permanent magnet and preparation method thereof |
CN107146707B (en) * | 2017-05-18 | 2018-06-26 | 江苏大学 | A kind of neodymium iron boron magnetic body grain boundary decision equipment |
CN107146707A (en) * | 2017-05-18 | 2017-09-08 | 江苏大学 | A kind of neodymium iron boron magnetic body grain boundary decision equipment |
CN107578912A (en) * | 2017-09-25 | 2018-01-12 | 烟台正海磁性材料股份有限公司 | A kind of preparation method of the neodymium iron boron magnetic body with high-coercive force |
WO2024106188A1 (en) * | 2022-11-18 | 2024-05-23 | 国立研究開発法人産業技術総合研究所 | Anisotropic rare earth magnet and method for producing same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2013149862A (en) | Method of manufacturing rare earth magnet | |
JP5742813B2 (en) | Rare earth magnet manufacturing method | |
JP6003920B2 (en) | Rare earth magnet manufacturing method | |
JP5640954B2 (en) | Rare earth magnet manufacturing method | |
JP5870914B2 (en) | Rare earth magnet manufacturing method | |
JP5790617B2 (en) | Rare earth magnet manufacturing method | |
JP6221233B2 (en) | R-T-B system sintered magnet and manufacturing method thereof | |
JP2014150119A (en) | Method of manufacturing r-t-b based sintered magnet | |
JP5915637B2 (en) | Rare earth magnet manufacturing method | |
JP2009302318A (en) | RL-RH-T-Mn-B-BASED SINTERED MAGNET | |
WO2014069181A1 (en) | Rare earth magnet and method for producing same | |
JP6471669B2 (en) | Manufacturing method of RTB-based magnet | |
JP5392435B2 (en) | Rare earth magnet manufacturing method | |
JPWO2012008623A1 (en) | Rare earth magnet manufacturing method and rare earth magnet | |
JP2015126081A (en) | Rare earth magnet and method for producing the same | |
JP2014160760A (en) | Method for manufacturing r-t-b-based sintered magnet | |
JP6274068B2 (en) | Rare earth magnet manufacturing method | |
JP6691666B2 (en) | Method for manufacturing RTB magnet | |
US10192679B2 (en) | Method of manufacturing rare earth magnet | |
JP5742733B2 (en) | Rare earth magnet manufacturing method | |
JP2013115156A (en) | Method of manufacturing r-t-b-based permanent magnet | |
JP6198103B2 (en) | Manufacturing method of RTB-based permanent magnet | |
JP2012195392A (en) | Method of manufacturing r-t-b permanent magnet | |
JP6691667B2 (en) | Method for manufacturing RTB magnet | |
JP2016076614A (en) | Method for manufacturing rare earth magnet |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20140319 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20150120 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150203 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20150602 |