JPH0786015A - Permanent magnet having sufficient mechanical strength and manufacturing method thereof - Google Patents

Permanent magnet having sufficient mechanical strength and manufacturing method thereof

Info

Publication number
JPH0786015A
JPH0786015A JP5183211A JP18321193A JPH0786015A JP H0786015 A JPH0786015 A JP H0786015A JP 5183211 A JP5183211 A JP 5183211A JP 18321193 A JP18321193 A JP 18321193A JP H0786015 A JPH0786015 A JP H0786015A
Authority
JP
Japan
Prior art keywords
rare earth
alloy powder
mechanical strength
permanent magnet
magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5183211A
Other languages
Japanese (ja)
Inventor
Akira Ishida
明 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP5183211A priority Critical patent/JPH0786015A/en
Publication of JPH0786015A publication Critical patent/JPH0786015A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To increase the mechanical strength by a method wherein rare earth- iron-boron alloy powder and rare earth-based alloy powder in a specific composition are wet-mixed with one another to be sintered later. CONSTITUTION:The title permanent magnet is mainly composed of 8-40atm% of R (R represents at least one kind out of rare earth elements including Y) 50-85atm% of Fe, 2-30atm% of B and not exceeding 0.15wt.% of O. This rare earth iron-boron alloy particles are wet-crushed to produce a slurry. Next, rare earth-based alloy powder is directly mixed with the slurry leaving the dried up state thereof intact further wet-molded in a magnetic field for sintering step later. Through these procedures, the oxygen concentration in the magnet is lowered for enhancing the mechanical characteristics in the grain boundry as well as the mechanical strength of the magnet. Furthermore, the wettability in the sintered step can be enhanced due to the decrease in the oxygen amount on the particle surface to make the surface of magnetic particles smooth thereby enhancing the magnetic characteristics thereof.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、機械的強度の大きい
永久磁石及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a permanent magnet having high mechanical strength and a method for manufacturing the same.

【0002】[0002]

【従来の技術】従来、ネオジム−鉄−ボロン(Nd−F
e−B)やサマリウム−コバルト(Sm−Co)系焼結
磁石は、高い磁気的特性(BHM A X )を有する磁石と
して実用化されている。近年、永久磁石は、エンジンに
設ける高速回転する電動・発電機を持つターボチャージ
ャやエネルギー回収装置に使用されるようになってき
た。このようなエネルギー回収装置やターボチャージャ
では、永久磁石は高速で回転するシャフトに取り付けら
れており、そのため、永久磁石については引張強度等の
機械的強度が大きいものが要求されるようになった。
2. Description of the Related Art Conventionally, neodymium-iron-boron (Nd-F)
The e-B) and samarium-cobalt (Sm-Co) sintered magnets have been put to practical use as magnets having high magnetic characteristics (BH MAX ). In recent years, permanent magnets have come to be used in turbochargers and energy recovery devices that have a high-speed rotating motor / generator installed in an engine. In such an energy recovery device and a turbocharger, the permanent magnet is attached to a shaft that rotates at high speed, and therefore, a permanent magnet having a large mechanical strength such as tensile strength has been required.

【0003】また、特開昭63−93841号公報に
は、希土類永久磁石合金が開示されている。該希土類永
久磁石合金は、重量百分比で20〜35%のR(Yを含
む希土類元素の少なくとも一種以上)と、0.5〜1.
5%のBと、残部M(Fe又はFeとCoとの混合物)
からなる合金と、35〜80%のR(上記と同じ)と、
残部X(Fe又はFeとS,Al,Ti,V,Co,Z
r,Nb,Moの内の少なくとも1種以上との混合物)
からなる溶融物の急冷により得られた合金とが、99.
9:0.1〜80:20の割合で構成されているもので
ある。該希土類永久磁石合金は、2種の粉末と湿式を組
み合わせることによって磁気特性を向上させ、希土類金
属の使用量を低減してコストを低下させるものである。
Further, JP-A-63-93841 discloses a rare earth permanent magnet alloy. The rare earth permanent magnet alloy has a weight percentage of 20 to 35% R (at least one or more rare earth elements including Y) and 0.5 to 1.
5% B and the balance M (Fe or a mixture of Fe and Co)
An alloy consisting of 35 to 80% R (same as above),
Remainder X (Fe or Fe and S, Al, Ti, V, Co, Z
Mixture of at least one of r, Nb and Mo)
And an alloy obtained by quenching a melt composed of 99.
It is composed of a ratio of 9: 0.1 to 80:20. The rare earth permanent magnet alloy improves magnetic properties by combining two kinds of powders and a wet type, reduces the amount of rare earth metal used, and lowers the cost.

【0004】また、特開平3−1504号公報には、永
久磁石の製造法が開示されている。該永久磁石の製造法
は、湿式により粉末の配向性を向上させることにより磁
気特性の向上を図ったものである。
Further, Japanese Laid-Open Patent Publication No. 3-1504 discloses a method of manufacturing a permanent magnet. The permanent magnet manufacturing method is intended to improve the magnetic properties by improving the orientation of the powder by a wet method.

【0005】また、特開昭64−10602号公報に
は、Al基希土類系磁石の製造方法が開示されている。
該Al基希土類系磁石の製造方法は、Al粉末又はAl
合金粉末を結合材に使用するものであり、Al粉末又は
Al合金粉末に希土類系磁石粉末を体積率で10〜80
%添加した混合物を磁場中で冷間プレスにて予備成形
し、次いで熱間プレス成形して固化成形体とした後、着
磁させたものである。
Further, Japanese Patent Laid-Open No. 64-10602 discloses a method for manufacturing an Al-based rare earth magnet.
The Al-based rare earth magnet is manufactured by using Al powder or Al powder.
The alloy powder is used as a binder, and the rare earth magnet powder is added to the Al powder or the Al alloy powder in a volume ratio of 10 to 80.
% Of the mixture was preformed by cold pressing in a magnetic field, then hot pressed to form a solidified molded body, and then magnetized.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、従来の
永久磁石では、主として、乾式プレスを用いたプロセス
を利用しており、磁気的特性を向上させることだけに力
が注がれていたため、機械的強度の大きい永久磁石が無
いのが現状である。
However, in the conventional permanent magnet, the process using the dry press is mainly used, and the effort is focused only on the improvement of the magnetic characteristics. Currently, there is no permanent magnet with high strength.

【0007】また、前掲各公報に開示された希土類永久
磁石合金、永久磁石の製造法及びAl基希土類系磁石の
製造方法は、いずれも機械的強度を大きくするという目
的意識は無いものである。
Further, none of the rare earth permanent magnet alloys, the permanent magnet manufacturing method and the Al-based rare earth magnet manufacturing method disclosed in the above publications have the purpose of increasing mechanical strength.

【0008】そこで、この発明の目的は、上記の課題を
解決することであり、磁気的特性に優れたNd系希土類
磁石合金において、結合材として希土類基合金粉末を使
用し、湿式粉砕と湿式プレスによって希土類基合金相に
希土類−Fe−B系合金相を分散させることによって、
酸化物相による機械強度の低下を防止し、磁石粉との濡
れ性を向上させ、磁気的特性を向上させると共に、特
に、機械的特性を向上させた機械的強度の大きい永久磁
石及びその製造方法を提供することである。
Therefore, an object of the present invention is to solve the above-mentioned problems, and in an Nd-based rare earth magnet alloy having excellent magnetic properties, a rare earth base alloy powder is used as a binder, and wet grinding and wet pressing are performed. By dispersing the rare earth-Fe-B based alloy phase in the rare earth-based alloy phase by
A permanent magnet having high mechanical strength and improved mechanical properties, which prevents deterioration of mechanical strength due to an oxide phase, improves wettability with magnet powder, improves magnetic properties, and a manufacturing method thereof Is to provide.

【0009】[0009]

【課題を解決するための手段】この発明は、上記の目的
を達成するために、次のように構成されている。即ち、
この発明は、希土類−鉄−ボロン合金粉末と希土類基合
金粉末とを混合して焼結するにあたって、8〜40at
m%のR(RはYを含む希土類元素のうち少なくとも1
種)、50〜85atm%のFe、2〜30atm%の
B及び0.15wt%以下のOを主成分としたことを特
徴とする機械的強度の大きい永久磁石に関する。
In order to achieve the above object, the present invention is configured as follows. That is,
According to the present invention, the rare earth-iron-boron alloy powder and the rare earth-based alloy powder are mixed and sintered at 8 to 40 at.
m% of R (R is at least 1 of rare earth elements including Y)
Seed), 50 to 85 atm% Fe, 2 to 30 atm% B and 0.15 wt% or less O as main components, and a permanent magnet having high mechanical strength.

【0010】また、この機械的強度の大きい永久磁石に
おいて、前記希土類基合金粉末はアトマイズ法によって
作製した合金粉末である。
In the permanent magnet having high mechanical strength, the rare earth-based alloy powder is an alloy powder produced by the atomizing method.

【0011】また、この機械的強度の大きい永久磁石に
おいて、前記希土類−鉄−ボロン合金粉末は湿式によっ
てボールミルで粉砕して作製したものである。
Further, in this permanent magnet having high mechanical strength, the rare earth-iron-boron alloy powder is prepared by pulverizing by a ball mill by a wet method.

【0012】また、この機械的強度の大きい永久磁石に
おいて、前記希土類−鉄−ボロン合金粉末を湿式によっ
て粉砕する場合に、水分量0.1%以下のヘキサンを使
用して粉砕したものである。
Further, in this permanent magnet having high mechanical strength, when the rare earth-iron-boron alloy powder is pulverized by a wet method, hexane having a water content of 0.1% or less is pulverized.

【0013】或いは、この発明は、希土類−鉄−ボロン
合金粉末を湿式によってボールミルで粉砕してスラリー
を作製し、該スラリーを乾燥させずに希土類基合金粉末
を直接添加して混合し、その状態で湿式で磁場中で成形
して成形体を作製し、該成形体を焼結して作製したこと
を特徴とする機械的強度の大きい永久磁石の製造方法に
関する。
Alternatively, according to the present invention, the rare earth-iron-boron alloy powder is wet-milled by a ball mill to prepare a slurry, and the rare earth-based alloy powder is directly added and mixed without drying the slurry, and the state The present invention relates to a method for producing a permanent magnet having high mechanical strength, which is characterized in that it is formed by wet-molding in a magnetic field to prepare a molded body, and sintering the molded body.

【0014】[0014]

【作用】この発明による機械的強度の大きい永久磁石及
びその製造方法は、上記のように構成されており、次の
ように作用する。即ち、この発明は、8〜40atm%
のR(RはYを含む希土類元素のうち少なくとも1
種)、50〜85atm%のFe、2〜30atm%の
B及び0.15wt%以下のOを主成分とし、希土類−
鉄−ボロン合金粉末を湿式粉砕して作製したスラリーを
乾燥させずに希土類基合金粉末を直接添加して混合し、
その状態で湿式で磁場中で成形して焼結したので、磁石
中の酸素の濃度を低くすることができ、粒界の機械的性
質が向上し、磁石の機械的強度が向上する。また、磁石
粉末表面の酸素量が減少することから、焼結時の濡れ性
が向上し、磁石粉末の表面が滑らかに成って磁気特性が
向上する。
The permanent magnet having a high mechanical strength and the method for manufacturing the same according to the present invention are configured as described above, and operate as follows. That is, the present invention is 8 to 40 atm%
R (R is at least 1 of the rare earth elements including Y)
Seeds), 50 to 85 atm% Fe, 2 to 30 atm% B and 0.15 wt% or less O as main components, and rare earth-
The iron-boron alloy powder is wet-milled and the slurry produced by wet pulverization is directly added and mixed with the rare earth-based alloy powder without drying,
In that state, since it was wet-molded and sintered in a magnetic field, the concentration of oxygen in the magnet can be lowered, the mechanical properties of the grain boundaries are improved, and the mechanical strength of the magnet is improved. Further, since the amount of oxygen on the surface of the magnet powder is reduced, the wettability during sintering is improved, the surface of the magnet powder is made smooth, and the magnetic characteristics are improved.

【0015】[0015]

【実施例】以下、この発明による機械的強度の大きい永
久磁石及びその製造方法の実施例を説明する。この発明
による機械的強度の大きい永久磁石は、希土類−鉄−ボ
ロン合金粉末と希土類基合金粉末とを混合して焼結した
ものであり、8〜40atm%のR(但し、RはYを含
む希土類元素のうち少なくとも1種)、50〜85at
m%のFe、2〜30atm%のB及び0.15atm
%以下のOを主成分としているものである。この永久磁
石では、希土類基合金粉末はアトマイズ法によって作製
した合金粉末を使用している。また、希土類−鉄−ボロ
ン合金粉末は、湿式によってボールミルで粉砕した。希
土類−鉄−ボロン合金粉末を湿式によって粉砕する場合
に、水分量0.1%以下のヘキサンを使用して粉砕した
ものである。
EXAMPLES Examples of permanent magnets having high mechanical strength and a method for producing the same according to the present invention will be described below. The permanent magnet with high mechanical strength according to the present invention is a mixture of rare earth-iron-boron alloy powder and rare earth-based alloy powder and sintered, and contains 8 to 40 atm% of R (where R includes Y). At least one of rare earth elements), 50 to 85 at
m% Fe, 2-30 atm% B and 0.15 atm
% Or less of O as a main component. In this permanent magnet, the rare earth-based alloy powder is an alloy powder produced by an atomizing method. The rare earth-iron-boron alloy powder was pulverized by a ball mill by a wet method. When the rare earth-iron-boron alloy powder is pulverized by a wet method, hexane having a water content of 0.1% or less is pulverized.

【0016】この機械的強度の大きい永久磁石の製造方
法は、希土類−鉄−ボロン合金粉末を湿式によってボー
ルミルで粉砕してスラリーを作製し、該スラリーを乾燥
させずに希土類基合金粉末を直接添加して混合し、その
状態で湿式で磁場中で成形して成形体を作製し、該成形
体を焼結して作製したものである。
In this method for producing a permanent magnet having high mechanical strength, a rare earth-iron-boron alloy powder is wet-milled by a ball mill to prepare a slurry, and the rare earth-based alloy powder is directly added without drying the slurry. Then, the mixture is mixed, and in that state, it is wet-molded in a magnetic field to prepare a molded body, and the molded body is sintered.

【0017】この機械的強度の大きい永久磁石の製造方
法において、まず、ネオジム−鉄−ボロン(Nd−Fe
−B)系合金粉末を作製するため、純度99.9%以上
の電界鉄、フェロボロン合金、純度99.7%以上のN
d及びCoを表1の組成になるように秤量し、A1,A
2,A3,A4及びA5のNd−Fe−B系合金組成の
合金粉末を作製した。
In this method of manufacturing a permanent magnet having high mechanical strength, first, neodymium-iron-boron (Nd-Fe) is used.
In order to produce a —B) -based alloy powder, electric field iron having a purity of 99.9% or more, ferroboron alloy, N having a purity of 99.7% or more
d and Co were weighed so as to have the composition shown in Table 1, and A1, A
Alloy powders of Nd-Fe-B based alloy compositions of 2, A3, A4 and A5 were prepared.

【表1】 [Table 1]

【0018】表1では、各元素の組成はアトミック%
(atm%)で示されており、これらのatm%は各元
素に添字として記載した数字で示している。即ち、試料
A1は、Nd:11.7、Fe:82.4及びB:5.
9(atm%)である。試料A2は、Nd:11.7、
Fe:75.0、Co:7.4及びB:5.9(atm
%)である。試料A3は、Nd:12.7、Fe:8
1.4及びB:5.9(atm%)である。試料A4
は、Nd:12.7、Fe:74.0、Co:7.4及
びB:5.9(atm%)である。また、試料A5は、
Nd:11.7、Fe:82.4及びB:5.9(at
m%)である。
In Table 1, the composition of each element is atomic%.
(Atm%), and these atm% are indicated by the numbers described as subscripts for each element. That is, the sample A1 has Nd: 11.7, Fe: 82.4, and B: 5.
It is 9 (atm%). Sample A2 has Nd: 11.7,
Fe: 75.0, Co: 7.4 and B: 5.9 (atm
%). Sample A3 is Nd: 12.7, Fe: 8
1.4 and B: 5.9 (atm%). Sample A4
Are Nd: 12.7, Fe: 74.0, Co: 7.4 and B: 5.9 (atm%). Further, the sample A5 is
Nd: 11.7, Fe: 82.4 and B: 5.9 (at
m%).

【0019】A1,A2,A3,A4及びA5の元素の
組成を有するネオジム−鉄−ボロン系合金をアルゴンA
r雰囲気中で高周波又はアークによって溶解して合金を
作製した。次に、作製した合金を、温度1100℃で2
0時間、真空中でアニールした。次に、スタンプミルに
より、250メッシュに粉砕し、約3〜4μmになるま
で湿式法でボールミルで微粉砕した。微粉砕には、水分
量0.1%以下のヘキサンを用いた。
A neodymium-iron-boron alloy having a composition of elements A1, A2, A3, A4 and A5 is argon A.
An alloy was prepared by melting in a r atmosphere by high frequency or arc. Next, the prepared alloy is subjected to 2
Annealed in vacuum for 0 hours. Next, it was pulverized to 250 mesh by a stamp mill and finely pulverized by a ball mill by a wet method until it became about 3 to 4 μm. Hexane having a water content of 0.1% or less was used for fine pulverization.

【0020】一方、希土類基合金粉末を作製するため、
アトマイザーによって、表2に示すB1,B2,B3,
B4及びB5の合金粉末を作製した。これらの合金粉末
の粒度は3〜10μmであった。
On the other hand, in order to produce a rare earth-based alloy powder,
Depending on the atomizer, B1, B2, B3 shown in Table 2
Alloy powders of B4 and B5 were produced. The particle size of these alloy powders was 3 to 10 μm.

【表2】 [Table 2]

【0021】表2は、希土類基合金粉末の組成を示すも
のである。希土類基合金粉末における各元素の組成はア
トミック%(atm%)で示されており、これらのat
m%は各元素に添字として記載した数字で示している。
即ち、試料B1は、Nd:50、Dy(ジスプロシウ
ム):39及びFe:11(atm%)である。試料B
2は、Nd:50、Dy:39、Fe:8及びAl:3
(atm%)である。試料B3は、Nd:50、Dy:
30、Y:8、Fe:10及びZr:2(atm%)で
ある。試料B4は、Nd:51、Dy:35、Fe:1
2及びCu:2(atm%)である。試料B5は、N
d:51、Dy:36、Fe:11及びZn:2(at
m%)である。
Table 2 shows the composition of the rare earth-based alloy powder. The composition of each element in the rare earth-based alloy powder is shown in atomic% (atm%).
m% is indicated by a number described as a subscript for each element.
That is, the sample B1 is Nd: 50, Dy (dysprosium): 39, and Fe: 11 (atm%). Sample B
2 is Nd: 50, Dy: 39, Fe: 8 and Al: 3
(Atm%). Sample B3 has Nd: 50, Dy:
30, Y: 8, Fe: 10 and Zr: 2 (atm%). Sample B4 is Nd: 51, Dy: 35, Fe: 1
2 and Cu: 2 (atm%). Sample B5 is N
d: 51, Dy: 36, Fe: 11 and Zn: 2 (at
m%).

【0022】上記のようにして作製した希土類即ちネオ
ジム−鉄−ボロン系合金粉末の試料A1,A2,A3,
A4,A5を湿式によってボールミルで粉砕することに
よって作製したスラリーを乾燥させることなく、表3に
示す組み合わせで、試料B1,B2,B3,B4,B5
の希土類基合金粉末を、全体の粉末の重量に対して20
wt%を添加して混合し、これらの混合スラリーを湿式
で磁場中で成形して成形体を作製し、これらの成形体を
直ちに焼結して熱処理を行った。
Samples A1, A2, A3 of rare earth, that is, neodymium-iron-boron alloy powder produced as described above.
Samples B1, B2, B3, B4, B5 were combined with each other in the combinations shown in Table 3 without drying the slurry prepared by pulverizing A4 and A5 by a ball mill.
Of rare earth-based alloy powder of 20 to the total weight of the powder
wt% was added and mixed, these mixed slurries were wet-molded in a magnetic field to prepare molded bodies, and these molded bodies were immediately sintered and heat-treated.

【表3】 [Table 3]

【0023】表3に示す組み合わせは、A1とB1,A
1とB1,A1とB1,A2とB2,A3とB3,A4
とB4,A5とB5との7種類である。混合比は、ネオ
ジム−鉄−ボロン系合金粉末が80%であり、希土類基
合金粉末が20%である。また、磁場中での成形は、
1.5ton/cm2 の圧力で、12kOeの磁場中で
成形して成形体を作製した。これらの成形体を1000
〜1100℃でアルゴン雰囲気中で1〜4時間焼結を行
い、熱処理を600℃で2時間行った。
The combinations shown in Table 3 are A1 and B1, A
1 and B1, A1 and B1, A2 and B2, A3 and B3, A4
And B4 and A5 and B5. The mixing ratio is 80% for the neodymium-iron-boron alloy powder and 20% for the rare earth-based alloy powder. Also, molding in a magnetic field
A molded body was produced by molding in a magnetic field of 12 kOe at a pressure of 1.5 ton / cm 2 . 1000 of these molded bodies
Sintering was performed at ˜1100 ° C. in an argon atmosphere for 1 to 4 hours, and heat treatment was performed at 600 ° C. for 2 hours.

【0024】上記のようにして作製した永久磁石の機械
強度は、4点曲げ強度試験によって測定し、測定結果を
表3に示す。また、これらの永久磁石の磁気特性は、振
動試料型磁気測定装置によって測定し、磁気特性を表3
に示す。
The mechanical strength of the permanent magnet manufactured as described above was measured by a 4-point bending strength test, and the measurement results are shown in Table 3. The magnetic characteristics of these permanent magnets were measured by a vibrating sample magnetometer, and the magnetic characteristics are shown in Table 3.
Shown in.

【0025】表3に示すように、試料A1とB1との混
合試料M1は、4点曲げ強度:30.5kg/mm2
磁気特性BHM A X :20.4MGOe及び磁石中酸素
濃度:0.30wt%であった。試料A1とB1との混
合試料M2は、4点曲げ強度:36.2kg/mm2
磁気特性BHM A X :26.7MGOe及び磁石中酸素
濃度:0.20wt%であった。試料A1とB1との混
合試料M3は、4点曲げ強度:41.7kg/mm2
磁気特性BHM A X :32.9MGOe及び磁石中酸素
濃度:0.15wt%であった。試料A2とB2では、
4点曲げ強度:43.2kg/mm2 、磁気特性BH
M A X :32.5MGOe及び磁石中酸素濃度:0.1
2wt%であった。試料A3とB3では、4点曲げ強
度:44.8kg/mm2 、磁気特性BHM A X :3
3.5MGOe及び磁石中酸素濃度:0.13wt%で
あった。試料A4とB4では、4点曲げ強度:47.4
kg/mm2 、磁気特性BHM A X :34.6MGOe
及び磁石中酸素濃度:0.10wt%であった。試料A
5とB5では、4点曲げ強度:46.9kg/mm2
磁気特性BHM A X :34.8MGOe及び磁石中酸素
濃度:0.10wt%であった。
As shown in Table 3, the mixed sample M1 of the samples A1 and B1 has a four-point bending strength: 30.5 kg / mm 2 ,
The magnetic property BH MAX was 20.4 MGOe and the oxygen concentration in the magnet was 0.30 wt%. The mixed sample M2 of the samples A1 and B1 has a four-point bending strength: 36.2 kg / mm 2 ,
The magnetic property BH MAX was 26.7 MGOe and the oxygen concentration in the magnet was 0.20 wt%. The mixed sample M3 of the samples A1 and B1 has a four-point bending strength of 41.7 kg / mm 2 ,
The magnetic property BH MAX was 32.9 MGOe and the oxygen concentration in the magnet was 0.15 wt%. For samples A2 and B2,
4-point bending strength: 43.2 kg / mm 2 , magnetic property BH
MAX : 32.5 MGOe and oxygen concentration in magnet: 0.1
It was 2 wt%. For samples A3 and B3, 4-point bending strength: 44.8 kg / mm 2 , magnetic property BH MAX : 3
Oxygen concentration in 3.5 MGOe and magnet: 0.13 wt%. For samples A4 and B4, 4-point bending strength: 47.4
kg / mm 2 , magnetic characteristic BH MAX : 34.6MGOe
And oxygen concentration in the magnet: 0.10 wt%. Sample A
5 and B5, 4-point bending strength: 46.9 kg / mm 2 ,
The magnetic property BH MAX was 34.8 MGOe and the oxygen concentration in the magnet was 0.10 wt%.

【0026】この機械的強度の大きい永久磁石の製造方
法で作製した永久磁石は、上記のことから、磁気特性が
高く、しかも機械的強度が大きいことが分かった。
From the above, it was found that the permanent magnet produced by this method for producing a permanent magnet having high mechanical strength has high magnetic properties and high mechanical strength.

【0027】また、この発明による永久磁石を、比較す
るため、希土類−鉄−ボロン合金粉末を湿式によって粉
砕する場合に、水分量を0.2%含んだエタノールを使
用して粉砕した試料A1,A2,A3,A4,A5を用
いて、A1とB1,A2とB2,A3とB3,A4とB
4,A5とB5の5種類の組み合わせで、上記と同様に
混合し、成形して焼結し、熱処理を行って比較の永久磁
石を作製した。これらの比較の永久磁石の機械強度は、
上記と同様に4点曲げ強度試験によって測定し、測定結
果を表4に示す。また、これらの永久磁石の磁気特性
は、上記と同様に、振動試料型磁気測定装置によって測
定し、磁気特性を表4に示す。
Further, in order to compare the permanent magnets according to the present invention, when the rare earth-iron-boron alloy powder is pulverized by a wet method, sample A1, which is pulverized by using ethanol containing 0.2% of water content, Using A2, A3, A4 and A5, A1 and B1, A2 and B2, A3 and B3, A4 and B
4, 5 types of combinations of A5 and B5 were mixed in the same manner as above, molded, sintered and heat-treated to produce a comparative permanent magnet. The mechanical strength of these comparative permanent magnets is
It measured by the 4-point bending strength test similarly to the above, and a measurement result is shown in Table 4. Further, the magnetic characteristics of these permanent magnets were measured by a vibrating sample type magnetometer as in the above, and the magnetic characteristics are shown in Table 4.

【表4】 [Table 4]

【0028】表4に示すように、試料A1とB1は、4
点曲げ強度:22.3kg/mm2、磁気特性BH
M A X :12.1MGOe及び磁石中酸素濃度:0.6
7wt%であった。試料A2とB2では、4点曲げ強
度:23.1kg/mm2 、磁気特性BHM A X :1
5.3MGOe及び磁石中酸素濃度:0.62wt%で
あった。試料A3とB3では、4点曲げ強度:21.9
kg/mm2 、磁気特性BHMA X :18.2MGOe
及び磁石中酸素濃度:0.65wt%であった。試料A
4とB4では、4点曲げ強度:23.2kg/mm2
磁気特性BHM A X :19.4MGOe及び磁石中酸素
濃度:0.60wt%であった。試料A5とB5では、
4点曲げ強度:24.8kg/mm2 、磁気特性BH
M A X :19.7MGOe及び磁石中酸素濃度:0.6
6wt%であった。
As shown in Table 4, the samples A1 and B1 are 4
Point bending strength: 22.3 kg / mm 2 , magnetic property BH
MAX : 12.1MGOe and oxygen concentration in magnet: 0.6
It was 7 wt%. For samples A2 and B2, 4-point bending strength: 23.1 kg / mm 2 , magnetic property BH MAX : 1
The oxygen concentration in 5.3 MGOe and the magnet was 0.62 wt%. For samples A3 and B3, 4-point bending strength: 21.9
kg / mm 2, magnetic properties BH MA X: 18.2MGOe
And oxygen concentration in the magnet: 0.65 wt%. Sample A
4 and B4, 4-point bending strength: 23.2 kg / mm 2 ,
The magnetic property BH MAX was 19.4 MGOe and the oxygen concentration in the magnet was 0.60 wt%. For samples A5 and B5,
4-point bending strength: 24.8 kg / mm 2 , magnetic property BH
MAX : 19.7 MGOe and oxygen concentration in magnet: 0.6
It was 6 wt%.

【0029】粉砕にエタノールを使用した比較の永久磁
石は、磁石中の酸素量が増加し、機械特性即ち機械的強
度及び磁気特性は低下することが分かった。
It has been found that the comparative permanent magnets using ethanol for grinding increase the amount of oxygen in the magnets and reduce the mechanical properties, ie mechanical strength and magnetic properties.

【0030】[0030]

【発明の効果】この発明による機械的強度の大きい永久
磁石及びその製造方法は、上記のように構成されてお
り、次のような効果を有する。即ち、この発明による機
械的強度の大きい永久磁石は、希土類−鉄−ボロン合金
粉末と希土類基合金粉末とを混合して焼結するにあたっ
て、8〜40atm%のR(RはYを含む希土類元素の
うち少なくとも1種)、50〜85atm%のFe、2
〜30atm%のB及び0.15wt%以下のOを主成
分としているので、永久磁石中の酸素濃度が低く、酸化
物相による機械強度の低下を防ぐことができ、また、磁
石粉との濡れ性を向上させることができる。
The permanent magnet having a high mechanical strength and the method for manufacturing the same according to the present invention are configured as described above, and have the following effects. That is, the permanent magnet having a high mechanical strength according to the present invention is 8 to 40 atm% of R (R is a rare earth element containing Y) when the rare earth-iron-boron alloy powder and the rare earth base alloy powder are mixed and sintered. At least one), 50 to 85 atm% Fe, 2
Since B of ˜30 atm% and O of 0.15 wt% or less are the main components, the oxygen concentration in the permanent magnet is low and the mechanical strength due to the oxide phase can be prevented from lowering. It is possible to improve the sex.

【0031】また、この発明によるNd系希土類磁石合
金では、希土類−鉄−ボロン合金粉末に対する湿式粉
砕、希土類−鉄−ボロン合金粉末と希土類基合金粉末と
の混合スラリーの湿式プレスによる成形によって、磁石
中の酸素の濃度を低くすることができ、粒界の機械的性
質を教条させることができ、磁石の機械的強度を向上さ
せることができる。しかも、磁石粉末表面の酸素濃度が
減少することによって、焼結時の濡れ性が向上し、磁石
粉末の表面が滑らかになって磁気特性が向上する。
Further, in the Nd-based rare earth magnet alloy according to the present invention, the magnet is obtained by wet-milling rare-earth-iron-boron alloy powder and forming a mixed slurry of rare-earth-iron-boron alloy powder and rare-earth-based alloy powder by wet-pressing. The concentration of oxygen in the inside can be lowered, the mechanical properties of the grain boundaries can be taught, and the mechanical strength of the magnet can be improved. Moreover, since the oxygen concentration on the surface of the magnet powder is reduced, the wettability during sintering is improved, the surface of the magnet powder is smoothed, and the magnetic characteristics are improved.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01F 1/053 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI technical display location H01F 1/053

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 希土類−鉄−ボロン合金粉末と希土類基
合金粉末とを混合して焼結するにあたって、8〜40a
tm%のR(RはYを含む希土類元素のうち少なくとも
1種)、50〜85atm%のFe、2〜30atm%
のB及び0.15wt%以下のOを主成分としたことを
特徴とする機械的強度の大きい永久磁石。
1. When mixing rare earth-iron-boron alloy powder and rare earth-based alloy powder and sintering, 8 to 40a
tm% R (R is at least one of rare earth elements including Y), 50 to 85 atm% Fe, 2 to 30 atm%
Of B and 0.15 wt% or less of O as a main component.
【請求項2】 前記希土類基合金粉末はアトマイズ法に
よって作製した合金粉末であることを特徴とする請求項
1に記載の機械的強度の大きい永久磁石。
2. The permanent magnet having high mechanical strength according to claim 1, wherein the rare earth-based alloy powder is an alloy powder produced by an atomizing method.
【請求項3】 前記希土類−鉄−ボロン合金粉末は湿式
によってボールミルで粉砕して作製したことを特徴とす
る請求項1に記載の機械的強度の大きい永久磁石。
3. The permanent magnet with high mechanical strength according to claim 1, wherein the rare earth-iron-boron alloy powder is prepared by pulverizing with a ball mill by a wet method.
【請求項4】 前記希土類−鉄−ボロン合金粉末を湿式
によって粉砕する場合に、水分量0.1%以下のヘキサ
ンを使用して粉砕したことを特徴とする請求項3に記載
の機械的強度の大きい永久磁石。
4. The mechanical strength according to claim 3, wherein when the rare earth-iron-boron alloy powder is pulverized by a wet method, hexane having a water content of 0.1% or less is pulverized. Big permanent magnet.
【請求項5】 希土類−鉄−ボロン合金粉末を湿式によ
ってボールミルで粉砕してスラリーを作製し、該スラリ
ーを乾燥させずに希土類基合金粉末を直接添加して混合
し、その状態で湿式で磁場中で成形して成形体を作製
し、該成形体を焼結して作製したことを特徴とする機械
的強度の大きい永久磁石の製造方法。
5. A rare earth-iron-boron alloy powder is wet-milled by a ball mill to prepare a slurry, and the rare earth-based alloy powder is directly added and mixed without drying the slurry, and the magnetic field is wet in that state. A method for producing a permanent magnet having high mechanical strength, which is characterized in that it is produced by molding in a medium to produce a compact, and sintering the compact.
JP5183211A 1993-06-30 1993-06-30 Permanent magnet having sufficient mechanical strength and manufacturing method thereof Pending JPH0786015A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5183211A JPH0786015A (en) 1993-06-30 1993-06-30 Permanent magnet having sufficient mechanical strength and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5183211A JPH0786015A (en) 1993-06-30 1993-06-30 Permanent magnet having sufficient mechanical strength and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JPH0786015A true JPH0786015A (en) 1995-03-31

Family

ID=16131729

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5183211A Pending JPH0786015A (en) 1993-06-30 1993-06-30 Permanent magnet having sufficient mechanical strength and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JPH0786015A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009224671A (en) * 2008-03-18 2009-10-01 Nitto Denko Corp Permanent magnet and method for manufacturing the same
JP2013149862A (en) * 2012-01-20 2013-08-01 Toyota Motor Corp Method of manufacturing rare earth magnet

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009224671A (en) * 2008-03-18 2009-10-01 Nitto Denko Corp Permanent magnet and method for manufacturing the same
US9275778B2 (en) 2008-03-18 2016-03-01 Nitto Denko Corporation Permanent magnet and method for manufacturing the same
JP2013149862A (en) * 2012-01-20 2013-08-01 Toyota Motor Corp Method of manufacturing rare earth magnet

Similar Documents

Publication Publication Date Title
CN101521068B (en) Rare earth permanent magnet and method of manufacturing the same
US5034146A (en) Rare earth-based permanent magnet
JP3143156B2 (en) Manufacturing method of rare earth permanent magnet
JPWO2002103719A1 (en) Rare earth permanent magnet material
JPH07105289B2 (en) Rare earth permanent magnet manufacturing method
JP2002038245A (en) Rare earth alloy powder for rermanent magnet and method for manufacturing rare earth permanent magnet
JP2000234151A (en) Rare earth-iron-boron system rare earth permanent magnet material
JPS6393841A (en) Rare-earth permanent magnet alloy
JP2853838B2 (en) Manufacturing method of rare earth permanent magnet
JP3781094B2 (en) Corrosion resistant rare earth magnet
JP2009010305A (en) Method for manufacturing rare-earth magnet
EP0414645B2 (en) Permanent magnet alloy having improved resistance to oxidation and process for production thereof
JP2000082610A (en) High electric resitivity rare earth permanent magnet and its manufacture
JP2747236B2 (en) Rare earth iron permanent magnet
JPH0786015A (en) Permanent magnet having sufficient mechanical strength and manufacturing method thereof
JPH10233306A (en) Rare-earth permanent magnet and preparation thereof
JPH0822909A (en) Permanent magnet having sufficient mechanical strength
JP3178848B2 (en) Manufacturing method of permanent magnet
JP2682619B2 (en) Manufacturing method of rare earth permanent magnet
JP2874392B2 (en) Production method of rare earth cobalt 1-5 permanent magnet alloy
JPH06248397A (en) Permanent magnet and manufacture thereof
JP3247460B2 (en) Production method of raw material powder for rare earth magnet
JPS6318603A (en) Permanent magnet
JPH06251922A (en) Permanent magnet and manufacture thereof
KR100394992B1 (en) Fabricating Method of NdFeB Type Sintered Magnet