JP2000082610A - High electric resitivity rare earth permanent magnet and its manufacture - Google Patents

High electric resitivity rare earth permanent magnet and its manufacture

Info

Publication number
JP2000082610A
JP2000082610A JP10267336A JP26733698A JP2000082610A JP 2000082610 A JP2000082610 A JP 2000082610A JP 10267336 A JP10267336 A JP 10267336A JP 26733698 A JP26733698 A JP 26733698A JP 2000082610 A JP2000082610 A JP 2000082610A
Authority
JP
Japan
Prior art keywords
magnet
rare earth
rtb
permanent magnet
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10267336A
Other languages
Japanese (ja)
Other versions
JP2000082610A5 (en
Inventor
Hitoshi Yamamoto
日登志 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP10267336A priority Critical patent/JP2000082610A/en
Publication of JP2000082610A publication Critical patent/JP2000082610A/en
Publication of JP2000082610A5 publication Critical patent/JP2000082610A5/ja
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets

Abstract

PROBLEM TO BE SOLVED: To obtain an RTB magnet for suppressing the generation of excess currents such as an RTB magnet whose electric resistance is made two times higher or more than that of a conventional permanent magnet, or an RTB magnet having an inclined function whose electric resistivity is changed to the magnetizing direction of the permanent magnet, and a method for manufacturing this RTB magnet. SOLUTION: A rare earth oxide with a relatively small mean grain size is mixed and stirred in material powder for a normal high performance RTB magnet with a required mean grain size, and then this is molded and sintered so that a structure in which the rare earth oxide is contained in the crystal grain boundary of a magnet alloy structure can be obtained. Thus, electric resistivity which is two times higher or mote than that of a conventional RTB magnet can be obtained. For example, it is possible to obtain a laminated structure by using alloy powder containing the oxide only to the surface, to apply any insulating film to the surface in a following process for reducing excess currents, and to manufacture this RTB magnet in a normal magnet manufacturing process without adding any process.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、モータなどに使
用する希土類(但しYを含む)と遷移金属とボロンを主
成分とする高性能希土類磁石(以下RTB系磁石とい
う)の改良に係り、RTB系磁石本来の高性能特性に加
えて電気抵抗率を高め、モータなどに使用した際の渦電
流の発生を低減した高電気抵抗率希土類永久磁石とその
製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement in a high performance rare earth magnet (hereinafter, referred to as an RTB magnet) mainly composed of a rare earth (including Y), a transition metal and boron used for a motor or the like. BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high electric resistivity rare earth permanent magnet in which, in addition to the inherent high performance characteristics of a system magnet, the electric resistivity is increased and the generation of eddy current when used in a motor or the like is reduced, and a method of manufacturing the same.

【0002】[0002]

【従来の技術】近年、電機機器用モータ、発電機の小
型、軽量化、高効率化、省エネルギー化の流れからRT
B系磁石を使用した構成が採用されてきた。また同様の
理由により、電気自動車のモータや発電機にも使われて
いる。
2. Description of the Related Art In recent years, the trend toward smaller, lighter, more efficient and energy-saving motors and generators for electric equipment has been
A configuration using a B-based magnet has been adopted. For the same reason, it is also used in motors and generators of electric vehicles.

【0003】RTB系磁石は、遷移金属を主成分とする
金属間化合物から構成される金属系の磁石であるため、
その電気抵抗は本質的に低いために磁石内部に渦電流を
発生しやすく、渦電流に伴う発熱による磁気特性や効率
低下の原因となっている。
An RTB magnet is a metal magnet composed of an intermetallic compound containing a transition metal as a main component.
Since the electric resistance is essentially low, an eddy current is easily generated inside the magnet, which causes a decrease in magnetic properties and efficiency due to heat generated by the eddy current.

【0004】そこで一般的には、モータの鉄心材料、例
えば珪素鋼板のように、最終的な磁石形状に加工した
後、磁石表面に絶縁皮膜を塗布することにより、渦電流
を低減する対策が採られている。
[0004] Therefore, in general, measures are taken to reduce eddy currents by processing the magnet into a final magnet shape, such as a core material of a motor, for example, a silicon steel plate, and then applying an insulating film on the magnet surface. Have been.

【0005】[0005]

【発明が解決しようとする課題】しかし、従来の絶縁皮
膜は、磁石表面のみを絶縁するため、使用分野、用途、
使用条件に対応できない問題があった。
However, since the conventional insulating film insulates only the magnet surface, the field of use, application,
There was a problem that could not cope with the usage conditions.

【0006】一方、RTB系磁石自体の組成などの変更
によって電気抵抗率を高めると、磁気特性が低下するた
め、RTB系磁石自体の改良により、電気抵抗率を高め
るための構成や手段は提案されていなかった。
On the other hand, if the electrical resistivity is increased by changing the composition or the like of the RTB magnet itself, the magnetic properties are reduced. Therefore, a configuration or means for increasing the electrical resistivity by improving the RTB magnet itself has been proposed. I didn't.

【0007】例えば、モータ用の磁石の場合、磁界が作
用する空隙側のみでも電気抵抗率が高いと渦電流の発生
を抑制できると予測されるが、従来、かかる磁石の容易
磁化方向に電気抵抗率の傾斜機能を持つRTB系磁石に
関して、何らの提案もされていなかった。
For example, in the case of a magnet for a motor, it is expected that the generation of an eddy current can be suppressed if the electric resistivity is high only on the air gap side where the magnetic field acts. No proposal has been made regarding an RTB magnet having a rate-grading function.

【0008】この発明は、上述したYを含む希土類元素
から選ばれた少なくとも1種の希土類元素RとボロンB
を含有して残余主体が遷移金属(但し遷移金属量の50
%までCoで置換可能)からなるRTB系磁石の電気抵
抗率に関する問題点に鑑み、電気抵抗を従来の永久磁石
に比較して2倍以上に高めたRTB系磁石や、永久磁石
の磁化方向に電気抵抗率を変化させた傾斜機能を有する
RTB系磁石など、渦電流の発生を抑制できるRTB系
磁石とその製造方法の提供を目的とする。
According to the present invention, at least one rare earth element R selected from the rare earth elements containing Y and boron B
Containing transition metal and transition metal (50% of transition metal amount)
% Can be replaced by Co), in view of the problem with respect to the electrical resistivity of the RTB-based magnet composed of RTB-based magnets whose electrical resistance is more than twice as high as that of conventional permanent magnets, and in the direction of magnetization of the permanent magnets. It is an object of the present invention to provide an RTB-based magnet capable of suppressing generation of eddy current, such as an RTB-based magnet having a tilting function with changed electric resistivity, and a method of manufacturing the same.

【0009】[0009]

【課題を解決するための手段】発明者は、RTB系磁石
自体の電気抵抗率を高くできる構成を目的に結晶組織に
ついて種々検討した結果、所要の平均粒度となした通常
の高性能RTB系磁石用原料粉末に、比較的平均粒度の
小さな希土類酸化物を混合撹拌した後、成形、焼結する
ことにより、磁石合金組織の結晶粒界に希土類酸化物が
含有される組織となり、従来のRTB系磁石の2倍以上
の電気抵抗率が得られることを知見した。
Means for Solving the Problems The inventors of the present invention conducted various studies on the crystal structure for the purpose of increasing the electrical resistivity of the RTB magnet itself, and as a result, obtained a normal high-performance RTB magnet having a required average particle size. A rare earth oxide having a relatively small average particle size is mixed and stirred with the raw material powder for use, and then molded and sintered to form a structure containing the rare earth oxide in the crystal grain boundaries of the magnet alloy structure. It has been found that an electrical resistivity twice or more that of a magnet can be obtained.

【0010】また、発明者は、上記の希土類酸化物を含
有するRTB系磁石において、例えば、希土類酸化物量
が磁石中心から表層へと増加するように含有量を変えた
成形体を作製してこれを焼結することにより、磁石中心
から表層方向へ電気抵抗が増加する傾斜機能を有するR
TB系磁石が得られること、さらに通常のRTB系磁石
原料の上にこの発明による高電気抵抗率のRTB系磁石
原料を載せて成形体を作製してこれを焼結することによ
り、磁石の表層部のみが高電気抵抗率を有した、モータ
用の最適な磁石が得られることを知見した。
In addition, the inventor of the present invention prepared a molded body in which the content of the rare-earth oxide-containing RTB magnet was changed such that the content of the rare-earth oxide increased from the center of the magnet to the surface layer. Having an inclination function of increasing the electric resistance from the center of the magnet toward the surface by sintering R
A TB-based magnet can be obtained, and a high-resistivity RTB-based magnet raw material according to the present invention is placed on a normal RTB-based magnet raw material to form a molded body, which is sintered to obtain a surface layer of the magnet. It has been found that an optimum magnet for a motor having only a portion having a high electric resistivity can be obtained.

【0011】さらに発明者は、上記の希土類酸化物を含
有するRTB系磁石において、酸化物量に比例して電気
抵抗を高めることができ、また希土類酸化物の代替とし
てアルミナ、マグネシア、カルシア等の酸化物セラミッ
クスを含有させることが可能で、例えば、周速度に比例
して渦電流が発生する問題がある永久磁石式の高速発電
機の回転子などに利用できることを知見し、この発明を
完成した。
Further, the inventor of the present invention has found that, in the RTB-based magnet containing the rare earth oxide, the electric resistance can be increased in proportion to the amount of the oxide, and the oxidation of alumina, magnesia, calcia or the like can be substituted for the rare earth oxide. The present invention has been found to be able to contain ceramics and can be used, for example, in a rotor of a permanent magnet type high-speed generator having a problem that eddy current is generated in proportion to the peripheral speed, and completed the present invention.

【0012】[0012]

【発明の実施の形態】希土類元素(但しYを含む)R
は、組成の10原子%〜30原子%を占めるが、Nd,
Pr,Dy,Ho,Tbのうち少なくとも1種、あるい
はさらに、La,Ce,Sm,Gd,Er,Eu,T
m,Yb,Lu,Yのうち少なくとも1種を含むものが
好ましい。また、通常Rのうち1種をもって足りるが、
実用上は2種以上の混合物(ミッシュメタル、シジム
等)を入手上の便宜等の理由により用いることができ
る。なお、このRは純希土類元素でなくてもよく、工業
上入手可能な範囲で製造上不可避な不純物を含有するも
のでも差し支えない。
BEST MODE FOR CARRYING OUT THE INVENTION Rare earth elements (including Y) R
Accounts for 10 to 30 atomic% of the composition, but Nd,
At least one of Pr, Dy, Ho, and Tb, or La, Ce, Sm, Gd, Er, Eu, T
Those containing at least one of m, Yb, Lu, and Y are preferable. Also, usually one of R is sufficient,
Practically, a mixture of two or more kinds (mish metal, sidinium, etc.) can be used for reasons such as convenience in obtaining. Note that R may not be a pure rare earth element, and may contain impurities that are unavoidable in production within the industrially available range.

【0013】Rは、上記系磁石粉末における必須元素で
あって、10原子%未満では結晶構造がα−鉄と同一構
造の立方晶組織となるため、高磁気特性、特に高保磁力
が得られず、30原子%を超えるとRリッチな非磁性相
が多くなり、残留磁束密度(Br)が低下してすぐれた
特性の永久磁石が得られない。よって、Rは、10原子
%〜30原子%の範囲が望ましい。
R is an essential element in the above-mentioned system magnet powder, and if it is less than 10 atomic%, the crystal structure has the same cubic structure as that of α-iron, so that high magnetic properties, especially high coercive force, cannot be obtained. , More than 30 atomic%, the R-rich nonmagnetic phase increases, the residual magnetic flux density (Br) decreases, and a permanent magnet having excellent characteristics cannot be obtained. Therefore, R is desirably in the range of 10 at% to 30 at%.

【0014】ボロンBは、上記系磁石粉末における必須
元素であって、2原子%未満では菱面体構造が主相とな
り、高い保磁力(iHc)は得られず、28原子%を超
えるとBリッチな非磁性相が多くなり、残留磁束密度
(Br)が低下するため、すぐれた永久磁石が得られな
い。よって、Bは2原子%〜28原子%の範囲が望まし
い。
Boron B is an essential element in the above-mentioned system magnet powder. If it is less than 2 atomic%, a rhombohedral structure becomes the main phase, and a high coercive force (iHc) cannot be obtained. Since the number of non-magnetic phases increases and the residual magnetic flux density (Br) decreases, an excellent permanent magnet cannot be obtained. Therefore, B is desirably in the range of 2 to 28 atomic%.

【0015】遷移金属、特にFeは、上記系磁石粉末に
おいて必須元素であり、65原子%未満では残留磁束密
度(Br)が低下し、80原子%を超えると高い保磁力
が得られないので、Feは65原子%〜80原子%の含
有が望ましい。Feの一部をCoで置換することは、得
られる磁石の磁気特性を損なうことなく、温度特性を改
善することができるが、Co置換量がFeの20%を超
えると、逆に磁気特性が劣化するため、好ましくない。
Coの置換量がFeとCoの合計量で5原子%〜15原
子%の場合は、(Br)は置換しない場合に比較して増
加するため、高磁束密度を得るために好ましい。
A transition metal, particularly Fe, is an essential element in the above-mentioned system magnet powder. When the content is less than 65 at%, the residual magnetic flux density (Br) decreases, and when it exceeds 80 at%, a high coercive force cannot be obtained. Fe is desirably contained at 65 to 80 atomic%. Replacing part of Fe with Co can improve the temperature characteristics without impairing the magnetic characteristics of the obtained magnet. However, when the amount of Co exceeds 20% of Fe, the magnetic characteristics are conversely increased. It is not preferable because it deteriorates.
When the substitution amount of Co is 5 atomic% to 15 atomic% in the total amount of Fe and Co, (Br) increases as compared with the case where the substitution is not performed, so that it is preferable to obtain a high magnetic flux density.

【0016】上記の主要成分の他、工業的生産上不可避
的不純物の存在を許容でき、例えばC,P,S,Cuな
ど、さらにはAl,Ti,V,Cr,Mn,Bi,N
b,Ta,Mo,W,Sb,Ge,Ga,Sn,Zr,
Ni,Si,Zn,Hfのうち少なくとも1種は、磁石
粉末に対してその保磁力、減磁曲線の角型性を改善ある
いは製造性の改善、低価格化に効果があるため添加する
ことができる。特に、磁気特性を高めるために少量の添
加元素としてCo,Al,Si,Mo,Ta,Wを添加
したり、耐食性を向上させるためにBの一部をCで置換
することも有効である。
In addition to the above-mentioned main components, the presence of unavoidable impurities in industrial production can be tolerated. For example, C, P, S, Cu, etc., and Al, Ti, V, Cr, Mn, Bi, N
b, Ta, Mo, W, Sb, Ge, Ga, Sn, Zr,
At least one of Ni, Si, Zn, and Hf may be added to the magnet powder because it is effective for improving the coercive force and the squareness of the demagnetization curve, improving the productivity, and reducing the price. it can. In particular, it is also effective to add Co, Al, Si, Mo, Ta, W as a small amount of additional element in order to enhance the magnetic characteristics, or to replace a part of B with C in order to improve the corrosion resistance.

【0017】磁石用原料には、所要のR−Fe−B系合
金を溶解し、鋳造後に粉砕する溶解粉砕法、Ca還元に
て直接粉末を得る直接還元拡散法、所要のR−Fe−B
系合金を溶解ジェットキャスターでリボン箔を得てこれ
を粉砕・焼鈍する急冷合金法、所要のR−Fe−B系合
金を溶解し、これをガスアトマイズで粉末化して熱処理
するガスアトマイズ法、所要原料金属を粉末化したの
ち、メカニカルアロイングにて微粉末化して熱処理する
メカニカルアロイ法及び所要のR−Fe−B系合金を水
素中で加熱して分解並びに再結晶させる方法(HDDR
法)などの各種製法で得た等方性、異方性粉末が利用で
きる。
The raw material for the magnet is prepared by dissolving a required R-Fe-B-based alloy and pulverizing it after casting, a melt-pulverization method, a direct reduction diffusion method of obtaining powder directly by Ca reduction, a required R-Fe-B
Quenching alloy method of obtaining a ribbon foil using a dissolving jet caster and crushing and annealing it, gas atomizing method of melting a required R-Fe-B alloy, pulverizing it with a gas atomizer and heat-treating it, required metal After mechanically pulverizing, pulverizing by mechanical alloying and heat treatment, and a method of decomposing and recrystallizing a required R-Fe-B alloy by heating it in hydrogen (HDDR
And isotropic and anisotropic powders obtained by various production methods such as

【0018】この発明によるRTB系磁石の製造方法に
ついては、R−Fe−B系磁石合金粉末に希土類酸化物
粉末を混合撹拌した後、成形、焼結する通常の粉末焼結
法を用いる。上記希土類元素Rと遷移金属T、ボロンB
を主成分とする合金粉末に混合する酸化物としては1種
類以上の希土類酸化物またはアルミナ、マグネシア、カ
ルシア等のセラミックス酸化物を用いる。
In the method of manufacturing an RTB magnet according to the present invention, a normal powder sintering method is used in which a rare earth oxide powder is mixed and stirred with an R-Fe-B magnet alloy powder, and then molded and sintered. Rare earth element R, transition metal T, boron B
As the oxide to be mixed with the alloy powder containing as a main component, one or more rare earth oxides or ceramic oxides such as alumina, magnesia, and calcia are used.

【0019】この発明において、希土類酸化物とその他
の酸化物は単独または混合して用いることも可能であ
る。酸化物はその含有量に比例して電気抵抗を高めるこ
とができるため僅かな量で抵抗値の上昇が可能である
が、実用上、0.5重量%以上含むことが望ましく、さ
らに、電気抵抗を高める必要のある用途には1.5%以
上が望ましい。特殊用途の永久磁石式高速発電機の用途
の場合は2%以上の酸化物の混合が有効である。
In the present invention, the rare earth oxides and other oxides can be used alone or as a mixture. Since the oxide can increase the electric resistance in proportion to its content, the resistance can be increased by a small amount. However, in practice, it is desirable that the oxide contains 0.5% by weight or more. 1.5% or more is desirable for applications that require an increase in In the case of a permanent magnet type high speed generator for special use, mixing of 2% or more oxide is effective.

【0020】この発明において、酸化物である希土類酸
化物、セラミックスの平均粒度は、0.05〜4μmが
好ましく、0.05μm未満では焼結工程で主相と反応
して、酸化物境界相を形成せず、また4μmを超えると
焼結密度が上がらず所望の磁気特性が得られない。特に
好ましい範囲は0.1〜2μmである。
In the present invention, the average particle size of the oxide rare earth oxide and ceramic is preferably 0.05 to 4 μm. If the average particle size is less than 0.05 μm, it reacts with the main phase in the sintering step to form the oxide boundary phase. If it is not formed, and if it exceeds 4 μm, the sintering density does not increase and desired magnetic properties cannot be obtained. A particularly preferred range is from 0.1 to 2 μm.

【0021】RTB系磁石合金粉末の平均粒径は、2μ
m未満では、粉砕、プレス、焼結工程での酸化が著しく
焼結密度が上昇しないため、磁気特性が劣化し、また8
μmを超えると、焼結工程で十分な焼結密度が得られ
ず、磁気特性が劣化するため、平均粒径は2〜8μmが
好ましい。さらに好ましい範囲は3〜6μmである。
The average particle size of the RTB magnet alloy powder is 2 μm.
If it is less than m, oxidation in the pulverization, pressing and sintering steps is remarkable, and the sintering density does not increase.
If it exceeds μm, a sufficient sintering density cannot be obtained in the sintering step and the magnetic properties deteriorate, so that the average particle size is preferably 2 to 8 μm. A more preferred range is 3 to 6 μm.

【0022】この発明において、上記酸化物を含有する
この発明の焼結磁石は、混合する酸化物との反応を抑制
し、かつ所望の磁気特性を得るため、焼結温度を従来の
希土類磁石より少し低い焼結温度で焼結する必要があ
る。従来のR,T,B3元の主成分の合金のみでの通常
焼結温度が、例えば1120℃である場合、1090℃
近傍での焼結が最適である。
In the present invention, the sintered magnet of the present invention containing the above-mentioned oxide has a sintering temperature lower than that of the conventional rare-earth magnet in order to suppress the reaction with the mixed oxide and obtain desired magnetic properties. It is necessary to sinter at a slightly lower sintering temperature. If the normal sintering temperature of only the conventional R, T, B ternary main component alloy is, for example, 1120 ° C., 1090 ° C.
Sintering in the vicinity is optimal.

【0023】この発明において、酸化物を含有するため
に焼結密度を低く設定することから、磁気特性はRTB
系磁石合金のみ場合よりも若干低下するが、実用的には
最大エネルギー積が(BH)max=25〜38MGO
eレベルのものが製造可能である。
In the present invention, since the sintering density is set low to contain the oxide, the magnetic characteristics are RTB.
Although it is slightly lower than the case where only the base magnet alloy is used, the maximum energy product is practically (BH) max = 25 to 38MGO
E-levels can be manufactured.

【0024】この発明によるRTB系磁石の電気抵抗率
は、酸化物の配合量、混合方法、焼結温度等を適宜選定
することにより、所望の値を得ることができるが、実用
的には希土類酸化物等を含有しない通常のRTB系磁石
合金のみ電気抵抗率の1.3倍以上さらには2倍以上が
望ましい。特殊な用途として回転数が40000rpm
以上の超高速発電機、電動機ではさらに3倍以上が必要
である。
The electric resistivity of the RTB magnet according to the present invention can be set to a desired value by appropriately selecting the compounding amount of the oxide, the mixing method, the sintering temperature, and the like. It is desirable that only an ordinary RTB magnet alloy containing no oxide or the like has an electric resistivity of 1.3 times or more, and more preferably 2 times or more of the electric resistivity. 40,000 rpm for special applications
The above ultra-high-speed generator and electric motor require three times or more.

【0025】この発明によるRTB系磁石において、高
電気抵抗率を有する特徴を生かすために、含有酸化物の
濃度勾配いわゆる傾斜組成を形成させることも有効であ
る。すなわち、添加する酸化物の組成濃度が異なる数種
類の合金粉末を作成し、粉末のプレス成形時に各粉末を
磁化方向(NS方向)に層状に金型内に充填することに
より、焼結後の磁石が酸化物組成量の傾斜機能構造、例
えば磁化方向に変化、表層側へ電気抵抗率が高くなる傾
斜機能を持たせることができる。
In the RTB magnet according to the present invention, it is also effective to form a concentration gradient of the contained oxide, that is, a gradient composition, in order to take advantage of the characteristic of having a high electric resistivity. That is, several kinds of alloy powders having different compositional concentrations of oxides to be added are prepared, and each powder is filled in a mold in a layered manner in a magnetization direction (NS direction) at the time of press molding of the powder, so that a sintered magnet is obtained. Can have a gradient function structure in which the oxide composition changes, for example, the magnetization direction changes, and the electrical resistivity increases toward the surface layer side.

【0026】また、この発明において、粒度の大きい合
金粉末や希土類またはボロン量の多い組成の合金粉末を
用いて電気抵抗率が高くする、粒度及び/又は組成の異
なる合金粉末を用いて電気抵抗率を変化させる手段と、
含有酸化物の濃度を変化させる手段とを併用して、種々
の用途に対応させることが可能である。
In the present invention, the electric resistivity is increased by using an alloy powder having a large particle size or an alloy powder having a composition containing a large amount of rare earth or boron, and the electric resistivity is increased by using an alloy powder having a different particle size and / or composition. Means for changing
It is possible to cope with various uses by using together with a means for changing the concentration of the contained oxide.

【0027】このように酸化物の組成濃度が異なる合金
粉末を利用することにより、得られた磁石の焼結後の密
度が異なるかあるいは酸化物組成配合比率の違いにより
当該箇所の電気抵抗率が異なり、傾斜機能構造をもつ永
久磁石を作成できる。表層あるいは所要箇所のみ電気抵
抗率を高めたり、電気抵抗率の高い層と通常の低い層と
を交互に積層したり、用途により位置、傾斜層の厚み、
構成など適宜選定することができる。高速発電機、高速
永久磁石式同期機では通常は傾斜層の厚みは1〜15m
m、好ましくは2〜10mmである。
By using alloy powders having different oxide composition concentrations, the obtained magnets have different densities after sintering, or the electric resistivity at the corresponding portions is changed depending on the oxide composition ratio. Alternatively, a permanent magnet with a functionally graded structure can be created. Only the surface layer or a required portion has an increased electric resistivity, or a layer having a high electric resistivity and a normal low layer are alternately laminated.
The configuration and the like can be appropriately selected. In high-speed generators and high-speed permanent magnet type synchronous machines, the thickness of the inclined layer is usually 1 to 15 m.
m, preferably 2 to 10 mm.

【0028】例えば、この、電気抵抗率の高い層や傾斜
層は、通常、渦電流の発生する磁気回路の空隙側、モー
タでいうとロータとステータの間の空隙に面する側のみ
でよいが、モータの構造によっては磁石の両面に形成さ
せた構成も有効である。
For example, the layer having a high electric resistivity or the inclined layer may be usually provided only on the gap side of the magnetic circuit where the eddy current is generated, that is, on the side facing the gap between the rotor and the stator in terms of the motor. Depending on the structure of the motor, a structure formed on both sides of the magnet is also effective.

【0029】[0029]

【実施例】実施例1 27.5wt%Nd−3.5wt%Dy−1.2wt%
B−0.2wt%Si−0.4wt%Al−0.6wt
%W−balFeの組成の合金を真空溶解にて作成し、
ボールミル粉砕により2.9μmに粉砕した粉末に、
2.8wt%のNd23の酸化物をロッキングミキサー
にて混合し、得られた粉末をプレス成型した後、高純度
アルゴン雰囲気中で1040℃×3hr焼結し、580
℃×3hrで熱処理して焼結磁石を作成した。
EXAMPLES Example 1 27.5 wt% Nd-3.5 wt% Dy-1.2 wt%
B-0.2wt% Si-0.4wt% Al-0.6wt
% W-balFe alloy is prepared by vacuum melting,
To a powder crushed to 2.9 μm by ball mill crushing,
2.8 wt% of Nd 2 O 3 oxide was mixed with a rocking mixer, and the obtained powder was press-molded, sintered at 1040 ° C. × 3 hr in a high-purity argon atmosphere, and 580
A heat treatment was performed at 3 ° C. × 3 hours to prepare a sintered magnet.

【0030】比較例として、27.5wt%Nd−3.
5wt%Dy−1.2wt%B−0.2wt%Si−
0.4wt%Al−0.6wt%W−balFeの組成
の合金を真空溶解にて作成し、ボールミル粉砕により
2.9μmの粉砕粉末を作成し、プレス成型して高純度
アルゴン雰囲気中で1100℃×3hr焼結し、580
℃×3hrで熱処理して焼結磁石を作成した。
As a comparative example, 27.5 wt% Nd-3.
5 wt% Dy-1.2 wt% B-0.2 wt% Si-
An alloy having a composition of 0.4 wt% Al-0.6 wt% W-balFe is prepared by vacuum melting, and a 2.9 μm pulverized powder is prepared by ball mill pulverization, and is press-molded to 1100 ° C. in a high-purity argon atmosphere. × 3hr sintered and 580
A heat treatment was performed at 3 ° C. × 3 hours to prepare a sintered magnet.

【0031】実施例1と比較例の焼結磁石を四端子法で
電気抵抗と(BH)トレーサにて磁気特性を測定し、そ
の測定結果を表1に示す。実施例1に示す如く、この発
明の焼結磁石は、磁気特性は若干低下するものの電気抵
抗率が大幅に上昇したことがわかる。
The sintered magnets of Example 1 and Comparative Example were measured for electrical resistance and magnetic properties using a (BH) tracer by a four-terminal method, and the measurement results are shown in Table 1. As shown in Example 1, it can be seen that the sintered magnet of the present invention has a slightly reduced magnetic property but a significantly increased electrical resistivity.

【0032】実施例2 27.5wt%Nd−3.5wt%Dy−1.2wt%
B−0.2wt%Si−0.4wt%Al−0.6wt
%W−balFeの組成の合金粉末と、この合金粉末に
3.5wt%のNd23の酸化物を混合した酸化物添加
合金粉末の2種のRTB系合金粉末を用い、酸化物の内
合金粉末層を6mm厚みの母層としてその両面に各1m
m厚みの酸化物添加合金粉末層を配置した3層構造の板
状成形体を成形し、高純度アルゴン雰囲気中で1080
℃×3hr焼結し、580℃×3hrで熱処理して焼結
磁石を作成した。
Example 2 27.5 wt% Nd-3.5 wt% Dy-1.2 wt%
B-0.2wt% Si-0.4wt% Al-0.6wt
% Of W-balFe, and two kinds of RTB-based alloy powders, an oxide-added alloy powder obtained by mixing this alloy powder with Nd 2 O 3 oxide of 3.5 wt%. The alloy powder layer is a 6 mm thick base layer, and each side is 1 m each.
A plate-shaped compact having a three-layer structure in which an oxide-added alloy powder layer having a thickness of m is arranged is formed, and is formed in a high-purity argon atmosphere at 1080 m.
And sintered at 580 ° C. for 3 hours to prepare a sintered magnet.

【0033】実施例1同様に焼結磁石を四端子法で電気
抵抗と(BH)トレーサにて磁気特性を測定し、その測
定結果を表1に示す。実施例1に示す如く、この発明の
焼結磁石は、磁気特性は若干低下するものの電気抵抗率
の大幅に上昇したことがわかる。
In the same manner as in Example 1, the sintered magnet was measured for electric resistance and magnetic properties by a (BH) tracer by a four-terminal method, and the measurement results are shown in Table 1. As shown in Example 1, it can be seen that the sintered magnet of the present invention showed a slight decrease in magnetic properties but a large increase in electric resistivity.

【0034】[0034]

【表1】 [Table 1]

【0035】[0035]

【発明の効果】この発明によるRTB系磁石は、希土類
磁石の高い磁気特性は適度に維持ながら磁石そのものの
電気抵抗率を著しく高めて高速発電機、高速永久磁石式
同期機等の用途に適する高電気抵抗率を磁石全体、また
は表層などの所要箇所、さらに磁化容易方向に電気抵抗
率の勾配を持たせることが可能で、渦電流の発生を低減
できる効果を有している。
According to the RTB magnet of the present invention, the electrical resistivity of the magnet itself is remarkably increased while the high magnetic properties of the rare-earth magnet are maintained at an appropriate level, and the RTB magnet is suitable for high-speed generators, high-speed permanent magnet type synchronous machines, and the like. The electric resistivity can be made to have a gradient in the electric resistivity in a required portion such as the whole magnet or a surface layer, and further in the direction of easy magnetization, which has the effect of reducing the generation of eddy current.

【0036】一般的には、モータの鉄心材料、例えば珪
素鋼板のように後工程で表面に絶縁皮膜を塗布すること
により渦電流を低減する対策が採られているが、この発
明では、後工程の絶縁処理をするなどの追加の工程がな
く、通常の磁石製造工程で製造でき、また、磁石自身の
電気抵抗を高め、用途によってはさらに傾斜機能を付加
することにより、使用分野、用途、使用条件により種々
の付加機能を具現できる利点がある。
In general, measures are taken to reduce the eddy current by applying an insulating film on the surface in a post-process, such as a core material of a motor, for example, a silicon steel plate. There is no additional process such as insulation treatment, so it can be manufactured in the usual magnet manufacturing process.In addition, the electric resistance of the magnet itself is increased, and depending on the application, the inclination function is further added, so that the field of use, application, use There is an advantage that various additional functions can be realized depending on conditions.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 希土類(但しYを含む)と遷移金属とボ
ロンを主成分とするRTB系磁石合金組織の結晶粒界に
少なくとも1種の希土類酸化物あるいはさらに少なくと
も1種のセラミックスを含有した高電気抵抗率希土類永
久磁石。
1. An RTB-based magnet alloy structure mainly composed of a rare earth element (including Y), a transition metal and boron, wherein at least one kind of rare earth oxide or at least one kind of ceramic is contained in a crystal grain boundary. Electric resistivity rare earth permanent magnet.
【請求項2】 請求項1において、含有する希土類酸化
物量あるいはさらにセラミックス量が磁化方向に増加し
て同方向に電気抵抗が増加する傾斜機能を有する高電気
抵抗率希土類永久磁石。
2. The high electric resistivity rare earth permanent magnet according to claim 1, wherein the amount of the rare earth oxide or the amount of the ceramic contained in the magnetizing direction increases and the electric resistance increases in the same direction.
【請求項3】 希土類(但しYを含む)と遷移金属とボ
ロンを主成分とするRTB系磁石合金の所要部に、RT
B系磁石合金組織の結晶粒界に希土類酸化物を含有した
高電気抵抗を有する磁石層を有する高電気抵抗率希土類
永久磁石。
3. A required portion of an RTB-based magnet alloy containing a rare earth element (including Y), a transition metal and boron as main components,
A high electric resistivity rare earth permanent magnet having a high electric resistance magnet layer containing a rare earth oxide at a crystal grain boundary of a B-based magnet alloy structure.
【請求項4】 請求項3において、高電気抵抗を有する
磁石層がRTB系磁石の表層に設けられた高電気抵抗率
希土類永久磁石。
4. The permanent magnet of claim 3, wherein the magnet layer having a high electric resistance is provided on a surface layer of the RTB magnet.
【請求項5】 請求項1または請求項3において、希土
類酸化物あるいはさらにセラミックスを総量で0.5重
量%以上を含有する高電気抵抗率希土類永久磁石。
5. The high electric resistivity rare earth permanent magnet according to claim 1, wherein the rare earth oxide or the ceramic further contains 0.5% by weight or more in total.
【請求項6】 希土類(但しYを含む)と遷移金属とボ
ロンを主成分とする平均粒径が2〜8μmのRTB系磁
石合金粉末に、平均粒径が0.05〜4μmの少なくと
も1種の希土類酸化物粉末あるいはさらに少なくとも1
種のセラミックス粉末を混合撹拌した後、成形、焼結す
る高電気抵抗率希土類磁石の製造方法。
6. An RTB-based magnet alloy powder containing a rare earth element (including Y), a transition metal and boron as main components and having an average particle size of 2 to 8 μm, and at least one of an average particle size of 0.05 to 4 μm. Rare earth oxide powder or at least 1
A method for producing a high electric resistivity rare earth magnet in which various ceramic powders are mixed and stirred, then molded and sintered.
【請求項7】 請求項6において、希土類酸化物あるい
はさらにセラミックスを総量で0.5重量%以上添加す
る高電気抵抗率希土類磁石の製造方法。
7. The method according to claim 6, wherein a rare earth oxide or a ceramic is added in a total amount of 0.5% by weight or more.
JP10267336A 1998-09-03 1998-09-03 High electric resitivity rare earth permanent magnet and its manufacture Pending JP2000082610A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10267336A JP2000082610A (en) 1998-09-03 1998-09-03 High electric resitivity rare earth permanent magnet and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10267336A JP2000082610A (en) 1998-09-03 1998-09-03 High electric resitivity rare earth permanent magnet and its manufacture

Publications (2)

Publication Number Publication Date
JP2000082610A true JP2000082610A (en) 2000-03-21
JP2000082610A5 JP2000082610A5 (en) 2005-11-04

Family

ID=17443414

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10267336A Pending JP2000082610A (en) 1998-09-03 1998-09-03 High electric resitivity rare earth permanent magnet and its manufacture

Country Status (1)

Country Link
JP (1) JP2000082610A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005142374A (en) * 2003-11-07 2005-06-02 Hitachi Ltd Powder for high-resistance rare earth magnet, manufacturing method thereof, rare earth magnet, manufacturing method thereof, rotor for motor, and motor
US6984271B2 (en) 2003-03-28 2006-01-10 Nissan Motor Co., Ltd. Rare earth magnet, process for producing same, and motor using rare earth magnet
US7147686B2 (en) 2002-06-27 2006-12-12 Nissan Motor Co., Ltd. Rare earth magnet, method for manufacturing the same, and motor using rare earth magnet
JP2009200320A (en) * 2008-02-22 2009-09-03 Yaskawa Electric Corp Permanent magnet with low iron loss, and permanent magnet type motor using the same
US7608153B2 (en) * 2003-12-22 2009-10-27 Nissan Motor Co., Ltd. Rare earth magnet and method therefor
WO2012003702A1 (en) * 2010-07-06 2012-01-12 烟台正海磁性材料股份有限公司 R-fe-b based magnet having gradient electric resistance and method for producing the same
JP2015507354A (en) * 2011-12-15 2015-03-05 ケース ウェスターン リザーヴ ユニヴァーシティ Rare earth element-free nitride magnet obtained by transition and method for producing the same
JP2017157625A (en) * 2016-02-29 2017-09-07 Tdk株式会社 Rare-earth sintered magnet
US10049798B2 (en) 2011-08-30 2018-08-14 General Electric Company High resistivity magnetic materials
US10867730B2 (en) 2011-12-15 2020-12-15 Case Western Reserve University Transformation enabled nitride magnets absent rare earths and a process of making the same

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7147686B2 (en) 2002-06-27 2006-12-12 Nissan Motor Co., Ltd. Rare earth magnet, method for manufacturing the same, and motor using rare earth magnet
US6984271B2 (en) 2003-03-28 2006-01-10 Nissan Motor Co., Ltd. Rare earth magnet, process for producing same, and motor using rare earth magnet
JP2005142374A (en) * 2003-11-07 2005-06-02 Hitachi Ltd Powder for high-resistance rare earth magnet, manufacturing method thereof, rare earth magnet, manufacturing method thereof, rotor for motor, and motor
US7608153B2 (en) * 2003-12-22 2009-10-27 Nissan Motor Co., Ltd. Rare earth magnet and method therefor
JP2009200320A (en) * 2008-02-22 2009-09-03 Yaskawa Electric Corp Permanent magnet with low iron loss, and permanent magnet type motor using the same
WO2012003702A1 (en) * 2010-07-06 2012-01-12 烟台正海磁性材料股份有限公司 R-fe-b based magnet having gradient electric resistance and method for producing the same
US20130093551A1 (en) * 2010-07-06 2013-04-18 Buzhuang Peng R-Fe-B based magnet having gradient electric resistance and method for producing the same
US10049798B2 (en) 2011-08-30 2018-08-14 General Electric Company High resistivity magnetic materials
JP2015507354A (en) * 2011-12-15 2015-03-05 ケース ウェスターン リザーヴ ユニヴァーシティ Rare earth element-free nitride magnet obtained by transition and method for producing the same
US9997285B2 (en) 2011-12-15 2018-06-12 Case Western Reserve University Transformation enabled nitride magnets absent rare earths and a process of making the same
US10867730B2 (en) 2011-12-15 2020-12-15 Case Western Reserve University Transformation enabled nitride magnets absent rare earths and a process of making the same
JP2017157625A (en) * 2016-02-29 2017-09-07 Tdk株式会社 Rare-earth sintered magnet

Similar Documents

Publication Publication Date Title
JP6440880B2 (en) Low-B rare earth magnet
JP5767788B2 (en) R-T-B rare earth permanent magnet, motor, automobile, generator, wind power generator
EP2590180A1 (en) R-t-b type rare earth permanent magnet, motor, automobile, power generator, and wind power generation system
US20110057756A1 (en) Rare Earth Composite Magnets with Increased Resistivity
US20150155082A1 (en) Rare Earth Laminated, Composite Magnets With Increased Electrical Rersistivity
JP4805998B2 (en) Permanent magnet and permanent magnet motor and generator using the same
JP3765793B2 (en) Method for manufacturing permanent magnet
KR20060102481A (en) Functionally graded rare earth permanent magnet
JP7418598B2 (en) Heavy rare earth alloys, neodymium iron boron permanent magnet materials, raw materials and manufacturing methods
JP2000188213A (en) R-t-b sintered permanent magnet
JP4371188B2 (en) High specific electric resistance rare earth magnet and method for manufacturing the same
JP2011021269A (en) Alloy material for r-t-b-based rare-earth permanent magnet, method for manufacturing r-t-b-based rare-earth permanent magnet, and motor
JP4951703B2 (en) Alloy material for RTB-based rare earth permanent magnet, method for manufacturing RTB-based rare earth permanent magnet, and motor
JP2000082610A (en) High electric resitivity rare earth permanent magnet and its manufacture
JPWO2011030387A1 (en) Magnet material, permanent magnet, and motor and generator using the same
JP5743458B2 (en) Alloy material for RTB-based rare earth permanent magnet, method for manufacturing RTB-based rare earth permanent magnet, and motor
JP4150983B2 (en) Permanent magnet having gradient function of electrical resistivity and manufacturing method thereof
JP2011210838A (en) Rare-earth sintered magnet, method of manufacturing the same, and rotary machine
JP2020155657A (en) Method for manufacturing r-t-b based sintered magnet
JPS6247455A (en) Permanent magnet material having high performance
JPH1083908A (en) High-resistance rare-earth magnet and manufacture thereof
JP5235264B2 (en) Rare earth sintered magnet and manufacturing method thereof
JPH064882B2 (en) Permanent magnet material processing method
CN117012485A (en) Neodymium-iron-boron magnet and preparation method thereof
JP2024512185A (en) Double shell layer neodymium iron boron magnet and its manufacturing method

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050812

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050812

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070611

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20080519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080521

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080926