JP2009200320A - Permanent magnet with low iron loss, and permanent magnet type motor using the same - Google Patents

Permanent magnet with low iron loss, and permanent magnet type motor using the same Download PDF

Info

Publication number
JP2009200320A
JP2009200320A JP2008041549A JP2008041549A JP2009200320A JP 2009200320 A JP2009200320 A JP 2009200320A JP 2008041549 A JP2008041549 A JP 2008041549A JP 2008041549 A JP2008041549 A JP 2008041549A JP 2009200320 A JP2009200320 A JP 2009200320A
Authority
JP
Japan
Prior art keywords
particles
permanent magnet
ndfeb
iron loss
smco
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008041549A
Other languages
Japanese (ja)
Other versions
JP4877609B2 (en
Inventor
Takaaki Yasumura
隆明 安村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP2008041549A priority Critical patent/JP4877609B2/en
Publication of JP2009200320A publication Critical patent/JP2009200320A/en
Application granted granted Critical
Publication of JP4877609B2 publication Critical patent/JP4877609B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a permanent magnet which has low iron loss and enhances efficiency of a motor without lowering magnetic characteristics. <P>SOLUTION: The permanent magnet is formed of magnetic particles 1 such as NdFeB particles or SmCo particles, and has ≤100 nm magnesia particles 3 at grain boundaries 2 or gaps of NdFeB or SmCo. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は鉄心やヨークなどと組み合せて用いられる低鉄損の永久磁石及びこれを用いた永久磁石型モータに関する。   The present invention relates to a low iron loss permanent magnet used in combination with an iron core, a yoke, or the like, and a permanent magnet type motor using the same.

従来の永久磁石には、モータの電機子により渦電流が流れ鉄損を生じるため、モータにロスを生じる。このため、永久磁石の絶縁抵抗を増加させ渦電流損を低下させることが提案されている。
従来の永久磁石の絶縁性を向上する方法として珪酸粒子を添加しボンド磁石を作製している(特許文献1参照)。
図5はこのボンド磁石の組織を示す摸式図である。珪酸6を磁性粒子7と樹脂8に混合し、ボンド磁石として使用している。
特開2006−186107
In a conventional permanent magnet, an eddy current flows due to the armature of the motor, causing iron loss, resulting in a loss in the motor. For this reason, it has been proposed to increase the insulation resistance of the permanent magnet and reduce the eddy current loss.
As a method for improving the insulation of a conventional permanent magnet, a bonded magnet is produced by adding silicic acid particles (see Patent Document 1).
FIG. 5 is a schematic diagram showing the structure of the bonded magnet. Silicic acid 6 is mixed with magnetic particles 7 and resin 8 and used as a bonded magnet.
JP 2006-186107 A

ところが、従来の永久磁石は金属体のみのためモータの電機子の電流が通り易くなるので、永久磁石内において鉄損が増加し、モータの効率が下がるという問題があった。また、永久磁石の絶縁性を高くするには、珪酸(Si02)などのセラミック等を添加する方法があるが、焼結時にNdFeBもしくSmCoなどの金属間化合物と反応し磁気特性を低下させるので、ボンド磁石にしか使用できないという問題もあった。
本発明はこのような問題点に鑑みてなされたものであり、永久磁石の絶縁性を高くするとともに、永久磁石における鉄損を低下させ、モータの誘起電圧を低下させずに効率を向上することのできる永久磁石の製造方法を提供することを目的とする。
However, since the conventional permanent magnet is only a metal body, the current of the armature of the motor can easily pass therethrough, which causes a problem that the iron loss increases in the permanent magnet and the efficiency of the motor decreases. Moreover, in order to increase the insulation of the permanent magnet, there is a method of adding ceramics such as silicic acid (Si02), but since it reacts with an intermetallic compound such as NdFeB or SmCo at the time of sintering, the magnetic properties are lowered. There is also a problem that it can be used only for bonded magnets.
The present invention has been made in view of such problems, and improves the efficiency without increasing the induction loss of the motor by reducing the iron loss in the permanent magnet while increasing the insulation of the permanent magnet. An object of the present invention is to provide a method for manufacturing a permanent magnet that can be used.

上記問題を解決するため、本発明は、次のように構成したものである。
請求項1に記載の発明は、NdFeB粒子またはSmCo粒子の磁性粒子からなる永久磁石において、前記NdFeBまたはSmCoの結晶粒界または隙間に100nm以下のマグネシア粒子を有している低鉄損永久磁石である。
請求項2に記載の発明は、NdFeB粒子またはSmCo粒子の磁性粒子からなる永久磁石において、前記NdFeBもしくSmCoの結晶粒界または隙間に100nm以下のマグネシア粒子を有した磁石体と、前記NdFeBもしくSmCoの磁性粒子のみの磁石体の2層で構成されている低鉄損永久磁石である。
請求項3に記載の発明は、前記マグネシア粒子の含有量を重量比で0.5〜4.0wt%としたものである。
請求項4に記載の発明は、前記NdFeB粒子またはSmCo粒子の平均粒径を6μm以下としたものである。
請求項5に記載の発明は、請求項1または請求項2記載の低鉄損永久磁石を用いて構成される永久磁石型モータである。
請求項6に記載の発明は、前記低鉄損永久磁石が円筒体の形状であり、前記円筒体の内周側が磁性粒子のみの磁石体であり、外周側がマグネシア粒子と磁性粒子とを混合した磁石体である。
In order to solve the above problems, the present invention is configured as follows.
The invention according to claim 1 is a low iron loss permanent magnet comprising a magnetic particle of NdFeB particles or SmCo particles, and having magnesia particles of 100 nm or less in the crystal grain boundaries or gaps of the NdFeB or SmCo. is there.
According to a second aspect of the present invention, there is provided a permanent magnet composed of magnetic particles of NdFeB particles or SmCo particles, and a magnet body having magnesia particles of 100 nm or less in the NdFeB or SmCo crystal grain boundaries or gaps, and the NdFeB Further, it is a low iron loss permanent magnet composed of two layers of a magnet body made of only SmCo magnetic particles.
According to a third aspect of the present invention, the content of the magnesia particles is 0.5 to 4.0 wt% by weight.
According to a fourth aspect of the present invention, the average particle diameter of the NdFeB particles or SmCo particles is 6 μm or less.
The invention described in claim 5 is a permanent magnet type motor configured by using the low iron loss permanent magnet described in claim 1 or claim 2.
According to a sixth aspect of the present invention, the low iron loss permanent magnet has a cylindrical shape, the inner peripheral side of the cylindrical body is a magnetic body only of magnetic particles, and the outer peripheral side is a mixture of magnesia particles and magnetic particles. It is a magnet body.

請求項1、3〜5に記載の発明によると永久磁石の絶縁性を高くすることができ、永久磁石の誘起電圧を低下させずに永久磁石の鉄損を低減でき、モータの効率を向上することができる。
請求項2、6に記載の発明によると永久磁石の鉄損が発生する部分のみに絶縁性を高
くすることができ、より効率よく鉄損を低減できるので、モータの効率を更に向上することができる。
According to the invention described in claims 1 and 3 to 5, the insulation of the permanent magnet can be increased, the iron loss of the permanent magnet can be reduced without lowering the induced voltage of the permanent magnet, and the efficiency of the motor is improved. be able to.
According to the second and sixth aspects of the invention, the insulation can be increased only in the portion where the iron loss of the permanent magnet occurs, and the iron loss can be reduced more efficiently, so that the efficiency of the motor can be further improved. it can.

以下、本発明の実施の形態について図を参照して説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

本実施例は、磁性粒子としてNdFeB粒子を用い、活性のマグネシア粒子として100nmの粒子を用いた。
本発明が従来磁石と異なる部分は、珪酸ではなく、焼結時にNdFeBもしくSmCoとは反応しないマグネシア粒子を用い焼結した部分である。
磁石はつぎのようにして作製した。
(1) 先ず、平均粒子径が5μmのNdFeB粒子に重量比で0.3〜6wt%の種々の量の活性のマグネシア粒子を添加し、ナノオーダの粒子の混合に用いられる遊星ボールミルにより混合した。
(2) 混合した粒子を金型に充填し圧力100MPaで円筒形に成形した。
(3) 温度1100℃で2時間焼結した。焼結温度は、1050〜1150℃の一定温度であればよい。
焼結後の組織を図1に示す。図において、1はNdFeBの磁性粒子、2は結晶粒界または隙間、3はマグネシア粒子である。磁性粒子(NdFeB)1の隙間2にマグネシア粒子3が分布した状態となっていることが分かる。
つぎに、作製した円筒状のロータ磁石を300Wの永久磁石形モータに組み込み、8極に着磁し1500回転における鉄損の一つである渦電流損と誘起電圧を測定し、評価した。
表1は、活性のマグネシア粒子の添加量と測定値を示したものである。なお、比較例としてマグネシア粒子の添加量0wt%のものを加えた。
表1から分かるように、マグネシア粒子の添加量が0.5から4.0wt%の#2〜#4はマグネシア粒子を添加しない比較例#1より渦電流損および誘起電圧が低く、効果のあることが分かった。また、マグネシア粒子の添加量が、0.3wt%の#1では渦電流損が小さくならず、6wt%の#5では誘起電圧が低くなり、効果のないことが分かった。
この結果は、モータ電機子より発生した電流が、永久磁石内部で渦電流として流れるが、NdFeB粒子1の結晶粒界2に偏析したマグネシア粒子3が絶縁体として渦電流の発生を防止するために、鉄損を防ぐことができたものと考えられる。すなわち、マグネシア粒子3がNdFeBの磁性粒子1とは反応しなかったことによるものと考えられる。
In this example, NdFeB particles were used as magnetic particles, and 100 nm particles were used as active magnesia particles.
The portion where the present invention is different from the conventional magnet is a portion sintered using magnesia particles that do not react with NdFeB or SmCo at the time of sintering, instead of silicic acid.
The magnet was produced as follows.
(1) First, various amounts of active magnesia particles having a weight ratio of 0.3 to 6 wt% were added to NdFeB particles having an average particle diameter of 5 μm and mixed by a planetary ball mill used for mixing nano-order particles.
(2) The mixed particles were filled in a mold and formed into a cylindrical shape at a pressure of 100 MPa.
(3) Sintered at a temperature of 1100 ° C. for 2 hours. The sintering temperature should just be a fixed temperature of 1050-1150 degreeC.
The structure after sintering is shown in FIG. In the figure, 1 is a magnetic particle of NdFeB, 2 is a crystal grain boundary or gap, and 3 is a magnesia particle. It can be seen that the magnesia particles 3 are distributed in the gaps 2 of the magnetic particles (NdFeB) 1.
Next, the produced cylindrical rotor magnet was incorporated into a 300 W permanent magnet motor, magnetized to 8 poles, and eddy current loss and induced voltage, which are one of iron losses at 1500 revolutions, were measured and evaluated.
Table 1 shows the amount of active magnesia particles added and the measured values. As a comparative example, a magnesia particle addition amount of 0 wt% was added.
As can be seen from Table 1, # 2 to # 4 in which the addition amount of magnesia particles is 0.5 to 4.0 wt% has an effect of lower eddy current loss and induced voltage than Comparative Example # 1 in which no magnesia particles are added. I understood that. In addition, it was found that eddy current loss was not reduced when # 1 of the magnesia particles added was 0.3 wt%, and that the induced voltage was low when # 5 of 6 wt% was not effective.
As a result, the current generated from the motor armature flows as an eddy current inside the permanent magnet, but the magnesia particles 3 segregated at the crystal grain boundaries 2 of the NdFeB particles 1 serve as an insulator to prevent the generation of eddy currents. It is thought that iron loss could be prevented. That is, it is considered that the magnesia particles 3 did not react with the magnetic particles 1 of NdFeB.

本実施例は、NdFeBの磁性粒子1の平均粒子径を2〜7μmに変えたものである。活性のマグネシア粒子は100nmの粒子を2wt%に固定し、成形圧力、焼結条件は実施例1と同じにした。この作製した円筒状のロータ磁石を実施例1と同様に永久磁石形モータに組み込んで着磁し、渦電流損と誘起電圧を測定し評価した。
表2に結果を示すように、平均粒子径が6μmより大きくなると、誘起電圧が低くなり、効果がなくなるが、平均粒子径が小さいと特性はよいことが分かった。
In this example, the average particle diameter of the magnetic particles 1 of NdFeB is changed to 2 to 7 μm. As active magnesia particles, 100 nm particles were fixed at 2 wt%, and the molding pressure and sintering conditions were the same as those in Example 1. The produced cylindrical rotor magnet was incorporated into a permanent magnet motor in the same manner as in Example 1 and magnetized, and eddy current loss and induced voltage were measured and evaluated.
As shown in Table 2, when the average particle diameter is larger than 6 μm, the induced voltage is lowered and the effect is lost. However, when the average particle diameter is small, the characteristics are good.

本実施例は、磁性粒子であるNdFeB粒子1の平均粒子径を5μmに一定にし、活マグネシア粒子の平均粒子径を変えたものである。マグネシア粒子の平均粒子径を50、100、200nmの三種類とし、マグネシア粒子の添加量を1.5wt%に固定した。なお、成形および焼結条件は実施例1と同じである。
表3に結果を示すように、平均粒子径は100nmより大きくなると、誘起電圧が低くなるが、100nmより小さいとよいことが分かる。
In this example, the average particle diameter of the NdFeB particles 1 as magnetic particles is made constant at 5 μm, and the average particle diameter of the active magnesia particles is changed. The average particle diameter of magnesia particles was set to three types of 50, 100, and 200 nm, and the amount of magnesia particles added was fixed at 1.5 wt%. The molding and sintering conditions are the same as in Example 1.
As shown in Table 3, it can be seen that when the average particle diameter is larger than 100 nm, the induced voltage is decreased, but it is preferable that the average particle diameter is smaller than 100 nm.


本実施例は、磁性粒子として平均粒子径が5μmのSmCo粒子を用い、マグネシア粒子として100nmの粒子を用いた。
磁石の作製方法は、磁性粒子がNdFeB粒子からSmCo粒子に変わっただけであり、その他の条件は実施例1と同じであるため、説明を省略する。
作製した円筒状のロータ磁石は、実施例1と同様に300Wの永久磁石形モータに組み込み、1500回転における鉄損の一つである渦電流損と誘起電圧を測定し、評価した。
表4から分かるように、マグネシア粒子の添加量が0.5から4.0wt%の#14〜#16はマグネシア粒子を添加しない比較例#1より渦電流損および誘起電圧が低く、効果のあることが分かった。
In this example, SmCo particles having an average particle diameter of 5 μm were used as magnetic particles, and 100 nm particles were used as magnesia particles.
The method for producing the magnet is that the magnetic particles are merely changed from NdFeB particles to SmCo particles, and the other conditions are the same as those in Example 1, and thus the description thereof is omitted.
The produced cylindrical rotor magnet was incorporated into a 300 W permanent magnet motor in the same manner as in Example 1, and eddy current loss and induced voltage, which are one of iron losses at 1500 revolutions, were measured and evaluated.
As can be seen from Table 4, # 14 to # 16 in which the addition amount of magnesia particles is 0.5 to 4.0 wt% has an effect of lower eddy current loss and induced voltage than Comparative Example # 1 in which no magnesia particles are added. I understood that.

本実施例は、NdFeB粒子に活性のマグネシア粒子を混合して成形した部分と、NdFeB粒子のみで成形した部分からなる二色成形したものである。
図2は本発明の二色成形した磁石を示す断面である。図において、4はNdFeB粒子のみで成形した磁性粒子成形体、5はNdFeB粒子にマグネシア粒子を混合し成形した混合粒子成形体である。磁性粒子成形体4は平均粒子径5μmのNdFeB粒子にて成形したものであり、混合粒子成形体5は平均粒子径5μmのNdFeB粒子に、マグネシア粒子として100nmの粒子2wt%を混合し成形した。
この二色成形は、図3に示すような三重構造を持ったパンチを有する金型を用いて行なった。図3(a)は上面図、図3(b)は断面図である。図において、9はダイス、10、15はシリンダ、11、12、13はパンチである。
先ず、ダイス9にパンチ13、14とシリンダ15を挿入する。シリンダ15と下部のパンチ13、14の隙間にNdFeB粒子を充填し、シリンダ10とパンチ11を下降させ50〜100MPa(0.5〜1t/cm)の圧力をかけ磁性粒子成形体4を成形する。次に図4に示すようにパンチ13を下降させ、磁性粒子成形体4とダイス9の隙間にNdFeB粒子とマグネシア粒子を混合した粒子を充填し、パンチ12を下降させ50〜100Mpaの圧力をかけ混合粒子成形体5を成形する。次にシリンダ10とパンチ11、パンチ12を上昇させ、ダイス9を下降することで、磁性粒子成形体4と混合粒子成形体5を取り出す。
つぎに、温度1100℃の温度で2時間焼結した。図4は、二色成形した磁石の断面を示す断面図である。NdFeB粒子にマグネシア粒子を2wt%混合し成形した部分5と、NdFeB粒子を成形した部分4からなる二色になっていることが分かる。
この二色成形し焼結した永久磁石をロータに組み込み、着磁後モータの渦電流損と誘起電圧を測定した結果を表5に示す。なお、比較例として実施例1の欄で述べた#1を用いた。表5から、従来例に比べ、渦電流損が低くなり、誘起電圧も向上しており効果のあることが分かる。すなわち、本実施例ではマグネシア粒子を混合した磁石の量を少なくすることができ、安価に製造できる。
In this example, NdFeB particles are mixed with active magnesia particles and molded in two colors, and a portion molded only with NdFeB particles.
FIG. 2 is a cross section showing the two-color molded magnet of the present invention. In the figure, 4 is a magnetic particle molded body formed only of NdFeB particles, and 5 is a mixed particle molded body formed by mixing magnesia particles with NdFeB particles. The magnetic particle compact 4 was formed from NdFeB particles having an average particle diameter of 5 μm, and the mixed particle compact 5 was formed by mixing 2 wt% of 100 nm particles as magnesia particles with NdFeB particles having an average particle diameter of 5 μm.
This two-color molding was performed using a mold having a punch having a triple structure as shown in FIG. 3A is a top view and FIG. 3B is a cross-sectional view. In the figure, 9 is a die, 10 and 15 are cylinders, and 11, 12 and 13 are punches.
First, the punches 13 and 14 and the cylinder 15 are inserted into the die 9. The gap between the cylinder 15 and the lower punches 13 and 14 is filled with NdFeB particles, the cylinder 10 and the punch 11 are lowered, and a pressure of 50 to 100 MPa (0.5 to 1 t / cm 2 ) is applied to form the magnetic particle compact 4. To do. Next, as shown in FIG. 4, the punch 13 is lowered, the gap between the magnetic particle compact 4 and the die 9 is filled with particles mixed with NdFeB particles and magnesia particles, the punch 12 is lowered, and a pressure of 50 to 100 MPa is applied. The mixed particle molded body 5 is molded. Next, the cylinder 10, the punch 11, and the punch 12 are raised and the die 9 is lowered to take out the magnetic particle molded body 4 and the mixed particle molded body 5.
Next, it sintered for 2 hours at the temperature of 1100 degreeC. FIG. 4 is a cross-sectional view showing a cross section of a two-color molded magnet. It can be seen that there are two colors consisting of a portion 5 formed by mixing 2 wt% of magnesia particles with NdFeB particles and a portion 4 formed by molding NdFeB particles.
Table 5 shows the results of measuring the eddy current loss and induced voltage of the motor after magnetizing the two-color molded and sintered permanent magnet in the rotor. As a comparative example, # 1 described in the column of Example 1 was used. From Table 5, it can be seen that the eddy current loss is reduced and the induced voltage is improved as compared with the conventional example. That is, in this embodiment, the amount of the magnet mixed with the magnesia particles can be reduced and can be manufactured at low cost.

このように、NdFeBもしくSmCoの磁性粒子の周りに絶縁体であるマグネシア粒子が取り囲んだ状態になっているので、永久磁石内部に発生する渦電流を防ぎ、モータの鉄損を低減し、誘起電圧を高くすることができる。   In this way, NdFeB or SmCo magnetic particles are surrounded by magnesia particles, which are insulators, preventing eddy currents generated in the permanent magnets, reducing motor iron loss, and inducing The voltage can be increased.

マグネシア粒子を添加した磁石は、鉄心やヨークなどと組み合せて用られるリニアモータ、磁気式のエンコーダ、リアクトルなどにも適用することができる。 A magnet to which magnesia particles are added can be applied to a linear motor, a magnetic encoder, a reactor, or the like used in combination with an iron core or a yoke.

本発明の第1実施例を示す永久磁石の組織の模式図The schematic diagram of the structure of the permanent magnet which shows 1st Example of this invention 本発明の第5実施例を示す内層を成形する金型の概略図Schematic of a mold for molding an inner layer showing a fifth embodiment of the present invention 本発明の第5実施例を示す外層を成形する金型の概略図Schematic of a mold for molding an outer layer showing a fifth embodiment of the present invention 本発明の第5実施例の磁石を示す断面図Sectional drawing which shows the magnet of 5th Example of this invention 従来の方法により作製したボンド磁石の組織を示す模式図Schematic diagram showing the structure of a bonded magnet produced by a conventional method

符号の説明Explanation of symbols

1 磁性粒子
2 結晶粒界
3 マグネシア粒子
4 混合粒子成形体
5 磁性粒子成形体
6 珪酸
7 磁性粒子
8 樹脂
9 ダイス
10、15 シリンダ
11、12、13、14 パンチ
DESCRIPTION OF SYMBOLS 1 Magnetic particle 2 Crystal grain boundary 3 Magnesia particle 4 Mixed particle molded object 5 Magnetic particle molded object 6 Silicic acid 7 Magnetic particle 8 Resin 9 Dice 10, 15 Cylinder 11, 12, 13, 14 Punch

Claims (6)

NdFeB粒子またはSmCo粒子の磁性粒子からなる永久磁石において、
前記NdFeBまたはSmCoの結晶粒界または隙間に100nm以下のマグネシア粒子を有していることを特徴とする低鉄損永久磁石。
In a permanent magnet composed of magnetic particles of NdFeB particles or SmCo particles,
A low iron loss permanent magnet having magnesia particles of 100 nm or less in the crystal grain boundary or gap of the NdFeB or SmCo.
NdFeB粒子またはSmCo粒子の金属粒子からなる永久磁石において、
前記NdFeBもしくSmCoの結晶粒界または隙間に100nm以下のマグネシア粒子を有した磁石体と、前記NdFeBもしくSmCoの磁性粒子のみの磁石体の2層で構成されていることを特徴とする低鉄損永久磁石。
In a permanent magnet composed of metal particles of NdFeB particles or SmCo particles,
It is composed of two layers, the magnet body having magnesia particles of 100 nm or less in the NdFeB or SmCo crystal grain boundaries or gaps, and the magnet body having only the magnetic particles of NdFeB or SmCo. Iron loss permanent magnet.
前記マグネシア粒子の含有量が重量比で0.5〜4.0wt%であることを特徴とする請求項1または請求項2記載の低鉄損永久磁石。   3. The low iron loss permanent magnet according to claim 1, wherein the content of the magnesia particles is 0.5 to 4.0 wt% in a weight ratio. 前記NdFeB粒子またはSmCo粒子の平均粒径が6μm以下であることを特徴とする請求項1または請求項2記載の低鉄損永久磁石。   The low iron loss permanent magnet according to claim 1 or 2, wherein an average particle diameter of the NdFeB particles or SmCo particles is 6 µm or less. 請求項1または請求項2記載の低鉄損永久磁石を用いて構成したことを特徴とする永久磁石型モータ。   A permanent magnet type motor comprising the low iron loss permanent magnet according to claim 1. 前記低鉄損永久磁石が円筒体の形状であり、前記円筒体の内周側が磁性粒子のみの磁石体であり、外周側がマグネシア粒子と磁性粒子とを混合した磁石体であることを特徴とする請求項5記載の永久磁石型モータ。
The low iron loss permanent magnet has a cylindrical shape, the inner peripheral side of the cylindrical body is a magnet body only of magnetic particles, and the outer peripheral side is a magnet body in which magnesia particles and magnetic particles are mixed. The permanent magnet type motor according to claim 5.
JP2008041549A 2008-02-22 2008-02-22 Low iron loss permanent magnet and permanent magnet type motor using the same Expired - Fee Related JP4877609B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008041549A JP4877609B2 (en) 2008-02-22 2008-02-22 Low iron loss permanent magnet and permanent magnet type motor using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008041549A JP4877609B2 (en) 2008-02-22 2008-02-22 Low iron loss permanent magnet and permanent magnet type motor using the same

Publications (2)

Publication Number Publication Date
JP2009200320A true JP2009200320A (en) 2009-09-03
JP4877609B2 JP4877609B2 (en) 2012-02-15

Family

ID=41143493

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008041549A Expired - Fee Related JP4877609B2 (en) 2008-02-22 2008-02-22 Low iron loss permanent magnet and permanent magnet type motor using the same

Country Status (1)

Country Link
JP (1) JP4877609B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0562851A (en) * 1991-09-04 1993-03-12 Furukawa Electric Co Ltd:The Manufacture of high-permeability magnetic core
JPH09186010A (en) * 1995-08-23 1997-07-15 Hitachi Metals Ltd Large electric resistance rare earth magnet and its manufacture
JPH11329809A (en) * 1998-05-07 1999-11-30 Sumitomo Special Metals Co Ltd Permanent magnet having inclination characteristic of electric resistance rate and manufacture thereof.
JP2000082610A (en) * 1998-09-03 2000-03-21 Sumitomo Special Metals Co Ltd High electric resitivity rare earth permanent magnet and its manufacture
JP2003022905A (en) * 2001-07-10 2003-01-24 Daido Steel Co Ltd High resistance rare earth magnet and its manufacturing method
JP2005175138A (en) * 2003-12-10 2005-06-30 Japan Science & Technology Agency Heat-resisting rare earth magnet and its manufacturing method
JP2005251995A (en) * 2004-03-04 2005-09-15 Nissan Motor Co Ltd Permanent magnet
JP2007173501A (en) * 2005-12-22 2007-07-05 Hitachi Ltd Pressed powder magnet and rotating machine using it

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0562851A (en) * 1991-09-04 1993-03-12 Furukawa Electric Co Ltd:The Manufacture of high-permeability magnetic core
JPH09186010A (en) * 1995-08-23 1997-07-15 Hitachi Metals Ltd Large electric resistance rare earth magnet and its manufacture
JPH11329809A (en) * 1998-05-07 1999-11-30 Sumitomo Special Metals Co Ltd Permanent magnet having inclination characteristic of electric resistance rate and manufacture thereof.
JP2000082610A (en) * 1998-09-03 2000-03-21 Sumitomo Special Metals Co Ltd High electric resitivity rare earth permanent magnet and its manufacture
JP2003022905A (en) * 2001-07-10 2003-01-24 Daido Steel Co Ltd High resistance rare earth magnet and its manufacturing method
JP2005175138A (en) * 2003-12-10 2005-06-30 Japan Science & Technology Agency Heat-resisting rare earth magnet and its manufacturing method
JP2005251995A (en) * 2004-03-04 2005-09-15 Nissan Motor Co Ltd Permanent magnet
JP2007173501A (en) * 2005-12-22 2007-07-05 Hitachi Ltd Pressed powder magnet and rotating machine using it

Also Published As

Publication number Publication date
JP4877609B2 (en) 2012-02-15

Similar Documents

Publication Publication Date Title
US20190362870A1 (en) Rare-earth magnet and method for manufacturing same
JP6791614B2 (en) motor
JP2010103346A (en) Magnet for ipm type concentrated winding motor and method of manufacturing the same, and ipm type concentrated winding motor using the magnet
JP2006320036A (en) Motor
EP2498267A1 (en) Layered magnet
JP2008218724A (en) Winding component
JP2006261433A (en) Compound magnet, method for manufacturing the same and motor
JP2009302262A (en) Permanent magnet and production process of the same
JP2008172037A (en) Rare earth magnet and its manufacturing method
KR20100043100A (en) Manufacturing method of rare earth-iron ring magnet with continuous orientation controlled anisotropy
JP2009027846A (en) Permanent magnet and surface magnet type motor employing the same
WO2012043139A1 (en) Alloy material for r-t-b system rare earth permanent magnet, method for producing r-t-b system rare earth permanent magnet, and motor
EP1956698B1 (en) Permanent magnet rotor and motor using the same
JP6384543B2 (en) Polar anisotropic ring magnet and rotor using the same
JP4710830B2 (en) Anisotropic rare earth bonded magnet with self-organized network boundary phase and permanent magnet type motor using the same
JP2017107889A (en) Isotropic bond magnet, electric motor element, electric motor and device
JP2015122395A (en) Method for manufacturing r-t-b-based sintered magnet
JP4877609B2 (en) Low iron loss permanent magnet and permanent magnet type motor using the same
JP2008163466A (en) Method for producing sintered permanent magnet, and die
KR20170076166A (en) Method for manufacturing of rare-earth pearmanent magnet
JP2006310660A (en) High electric resistance r-t-b based sintered magnet and its production process
JP2000082610A (en) High electric resitivity rare earth permanent magnet and its manufacture
JP6341115B2 (en) Polar anisotropic ring magnet and rotor using the same
JP4529598B2 (en) Fiber-reinforced layer integrated flexible rare earth bonded magnet
JP2017147920A (en) Surface magnet rotator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110419

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111104

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111117

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141209

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees