JP2005251995A - Permanent magnet - Google Patents

Permanent magnet Download PDF

Info

Publication number
JP2005251995A
JP2005251995A JP2004060609A JP2004060609A JP2005251995A JP 2005251995 A JP2005251995 A JP 2005251995A JP 2004060609 A JP2004060609 A JP 2004060609A JP 2004060609 A JP2004060609 A JP 2004060609A JP 2005251995 A JP2005251995 A JP 2005251995A
Authority
JP
Japan
Prior art keywords
permanent magnet
powder
magnet powder
magnet
coating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004060609A
Other languages
Japanese (ja)
Inventor
Nobuo Kawashita
宜郎 川下
Tetsuro Tayu
哲朗 田湯
Hideaki Ono
秀昭 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2004060609A priority Critical patent/JP2005251995A/en
Publication of JP2005251995A publication Critical patent/JP2005251995A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Landscapes

  • Hard Magnetic Materials (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a means which can sufficiently control an eddy-current loss and prevent the lowering of a magnet characteristic caused by an insulating material in a permanent magnet in which permanent magnet powder is closely densed where a covering layer formed of the insulating material is formed on the surface. <P>SOLUTION: In the permanent magnet, the permanent magnet powder is closely densed where the covering layer formed of the insulating material is formed on the surface. In the permanent magnet, a relation H≥23,000×d<SP>-1</SP>is satisfied, where covering resistance is H (= t×ρ<SB>r</SB>÷ρ<SB>m</SB>) defined as a value obtained by dividing the product of the thickness t(m) of the covering layer formed of the insulating material and the volume resistance ρ<SB>r</SB>(Ωm) of the permanent magnet powder with a volume resistance coefficient ρ<SB>m</SB>(Ωm) of the permanent magnet powder, and a grain size of the permanent magnet powder is d(mm). <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、回転機器、電子部品、電子機器、モーター等に使用される永久磁石に関する。   The present invention relates to a permanent magnet used for rotating equipment, electronic components, electronic equipment, motors, and the like.

永久磁石式回転機器には、電気抵抗値が高いフェライト永久磁石が主に使用されてきたが、近年の回転機の高性能化に伴い、より高性能な希土類永久磁石の使用頻度が増加している。   Permanent magnet rotating machines have mainly used ferrite permanent magnets with high electrical resistance. However, with the recent improvement in the performance of rotating machines, the use frequency of higher performance rare earth permanent magnets has increased. Yes.

しかし、希土類永久磁石は金属磁石であるために電気抵抗が低い。このため、回転機器等に組み込んだ場合、渦電流損失が増大し、モーター効率が低下する問題が生じる。また、温度上昇により磁石性能が低下するという問題がある。   However, since the rare earth permanent magnet is a metal magnet, its electric resistance is low. For this reason, when incorporated in a rotating device or the like, there arises a problem that eddy current loss increases and motor efficiency decreases. In addition, there is a problem that the magnet performance decreases due to the temperature rise.

以上の点を鑑み、希土類磁石粉末を絶縁性の材料で被覆することによって、希土類永久磁石の比電気抵抗を増大させ、渦電流損失を低減させようとする試みがなされている。   In view of the above, attempts have been made to increase the specific electric resistance of rare earth permanent magnets and reduce eddy current loss by coating rare earth magnet powder with an insulating material.

例えば、特許文献1には、ボンド磁石をゾルゲル法等により無機バインダで被覆し、その後に成形金型中で直接通電してフル密度磁石を得る方法が開示されている。   For example, Patent Document 1 discloses a method in which a bonded magnet is coated with an inorganic binder by a sol-gel method or the like, and then directly energized in a molding die to obtain a full density magnet.

また、特許文献2には、希土類磁石粉末と絶縁性の無機フッ化物または無機酸化物との混合物を、焼結等により緻密化して、希土類永久磁石を得る方法が開示されている。   Patent Document 2 discloses a method for obtaining a rare earth permanent magnet by densifying a mixture of a rare earth magnet powder and an insulating inorganic fluoride or inorganic oxide by sintering or the like.

さらに、特許文献3には、希土類磁石粉末と、パラフィン系炭化水素等のバインダと、無機フッ化物等の絶縁物とを混合し、成形後に脱バインダを行うことにより緻密化して、希土類磁石を得る方法が開示されている。   Furthermore, in Patent Document 3, a rare earth magnet powder is obtained by mixing rare earth magnet powder, a binder such as paraffinic hydrocarbon, and an insulator such as inorganic fluoride, and performing debinding after molding to obtain a rare earth magnet. A method is disclosed.

前記特許文献1〜3に記載の方法により製造された希土類永久磁石においては、いずれも、希土類磁石粉末が、絶縁性の材料により被覆されている。これにより、希土類永久磁石の電気抵抗が増大し、渦電流損失の低減が図られる。   In the rare earth permanent magnets manufactured by the methods described in Patent Documents 1 to 3, the rare earth magnet powder is coated with an insulating material. Thereby, the electrical resistance of the rare earth permanent magnet is increased, and the eddy current loss is reduced.

しかしながら、これらの方法を用いて得られる希土類永久磁石の比電気抵抗は、絶縁性の材料からなる被覆層の厚さや、希土類磁石粉末の粒径等に応じて変化しうる。このため、所望の比電気抵抗を有する磁石を製造することは困難であり、必ずしも充分に渦電流損失を低減させ得ない場合も生じていた。一方、充分な比電気抵抗を得る目的で、絶縁性の材料の使用量を増加させると、希土類磁石粉末の含有量が相対的に低下し、磁石特性が低下するという問題もあった。
特開平5−121220号公報 特開平9−186010号公報 特開平10−163055号公報
However, the specific electric resistance of the rare earth permanent magnet obtained by using these methods can vary depending on the thickness of the coating layer made of an insulating material, the particle size of the rare earth magnet powder, and the like. For this reason, it is difficult to produce a magnet having a desired specific electric resistance, and there have been cases in which eddy current loss cannot be reduced sufficiently. On the other hand, when the amount of the insulating material used is increased for the purpose of obtaining a sufficient specific electric resistance, there is a problem that the content of the rare earth magnet powder is relatively lowered and the magnet characteristics are deteriorated.
Japanese Patent Laid-Open No. 5-121220 JP-A-9-186010 JP 10-163055 A

そこで、本発明の目的は、絶縁性の材料からなる被覆層が表面に形成された永久磁石粉末が緻密化されてなる永久磁石において、渦電流損失を充分に抑制し、かつ、絶縁性の材料による磁石特性の低下を防止しうる手段を提供することである。   Accordingly, an object of the present invention is to sufficiently suppress eddy current loss in a permanent magnet formed by densifying a permanent magnet powder having a coating layer made of an insulating material formed on the surface, and to provide an insulating material. It is to provide a means capable of preventing the deterioration of the magnet characteristics due to the above.

本発明は、絶縁性の材料からなる被覆層が表面に形成された永久磁石粉末が緻密化されてなる永久磁石であって、前記絶縁性の材料からなる被覆層の厚さt(mm)と前記絶縁性の材料の体積抵抗率ρ(Ωm)との積を、前記永久磁石粉末の体積抵抗率ρ(Ωm)で除した値として定義される被覆抵抗H(=t×ρ÷ρ)と、前記永久磁石粉末の粒径d(mm)とが、H≧23000×d−1を満たすことを特徴とする、永久磁石である。 The present invention is a permanent magnet formed by densifying a permanent magnet powder having a coating layer made of an insulating material formed on its surface, and a thickness t (mm) of the coating layer made of the insulating material, Covering resistance H (= t × ρ r ÷ defined as a value obtained by dividing the product of the volume resistivity ρ r (Ωm) of the insulating material by the volume resistivity ρ m (Ωm) of the permanent magnet powder. ρ m ) and the particle size d (mm) of the permanent magnet powder satisfy H ≧ 23000 × d −1 .

本発明の永久磁石によれば、渦電流損失が充分に抑制され、かつ、絶縁性の材料による磁石特性の低下が防止され、高い磁石特性が維持される。   According to the permanent magnet of the present invention, the eddy current loss is sufficiently suppressed, the deterioration of the magnet characteristics due to the insulating material is prevented, and the high magnet characteristics are maintained.

電磁気学の法則は、周期的磁場中におかれた磁石内に誘導される渦電流は、磁石の磁場方向に垂直な断面積が大きいほど、大きくなることを示している。したがって、磁石粉末を絶縁性の材料で被覆して渦電流を抑制する場合、渦電流を抑制する効果を高めるには、磁石粉末の粒径と、絶縁性の材料からなる被覆層(以下、単に「被覆層」とも称する)の厚さとが、所定の関係を満足することが必要であると予想される。   The law of electromagnetism shows that the eddy current induced in a magnet placed in a periodic magnetic field increases as the cross-sectional area perpendicular to the magnetic field direction of the magnet increases. Therefore, when the magnetic powder is coated with an insulating material to suppress the eddy current, in order to increase the effect of suppressing the eddy current, the particle size of the magnetic powder and the coating layer made of the insulating material (hereinafter simply referred to as “magnetic powder”) It is expected that the thickness of the “coating layer”) needs to satisfy a predetermined relationship.

本発明者らは、磁石粉末の粒径と被覆層の厚さとの関係が、被覆層の絶縁性に及ぼす影響について調査すべく、磁石粉末を、高分子化合物またはセラミックスにより被覆し、得られた粉末を緻密化させて、異なる厚さの被覆層を有する種々の磁石を作製した。そして、これらの磁石について、一定の周期的磁場中での発熱量を比較した。その結果、磁石粉末の粒径および被覆層の厚さと、被覆層の絶縁性との関係を見出し、本発明を完成するに至った。具体的には、絶縁性の材料からなる被覆層の厚さをt(mm)、絶縁性の材料の体積抵抗率をρ(Ωm)、永久磁石粉末の体積抵抗率をρ(Ωm)としたとき、H=t×ρ÷ρで表される被覆抵抗Hと、永久磁石粉末の粒径d(mm)とが、0.001≦d≦1の範囲において、H≧23000×d−1を満たすように、永久磁石を設計する。好ましくは、H≧61500×d−1.1を満たすように永久磁石を設計する。前記関係を満たすように永久磁石を設計することによって、絶縁性の材料により被覆された永久磁石粉末が緻密化されてなる永久磁石における渦電流損失が効果的に抑制される。 In order to investigate the effect of the relationship between the particle size of the magnetic powder and the thickness of the coating layer on the insulating properties of the coating layer, the present inventors obtained the magnetic powder by coating it with a polymer compound or ceramics. Various magnets having coating layers with different thicknesses were prepared by densifying the powder. And about these magnets, the emitted-heat amount in a fixed periodic magnetic field was compared. As a result, the relationship between the particle size of the magnetic powder and the thickness of the coating layer and the insulating properties of the coating layer was found, and the present invention was completed. Specifically, the thickness of the coating layer made of an insulating material is t (mm), the volume resistivity of the insulating material is ρ r (Ωm), and the volume resistivity of the permanent magnet powder is ρ m (Ωm). When the coating resistance H expressed by H = t × ρ r ÷ ρ m and the particle size d (mm) of the permanent magnet powder are in the range of 0.001 ≦ d ≦ 1, H ≧ 23000 × The permanent magnet is designed so as to satisfy d- 1 . Preferably, the permanent magnet is designed to satisfy H ≧ 61500 × d −1.1 . By designing the permanent magnet so as to satisfy the above relationship, the eddy current loss in the permanent magnet formed by densifying the permanent magnet powder coated with the insulating material is effectively suppressed.

本発明において、永久磁石粉末の粒径とは、永久磁石に含まれる永久磁石粉末の平均粒径をいう。なお、永久磁石粉末の粒径は、通常の測定手段によって測定すればよい。   In the present invention, the particle size of the permanent magnet powder refers to the average particle size of the permanent magnet powder contained in the permanent magnet. In addition, what is necessary is just to measure the particle size of permanent magnet powder by a normal measuring means.

永久磁石粉末の粒径は、好ましくは0.001〜1mmであり、より好ましくは0.005〜0.7mmである。この粒径が小さすぎると、磁石の製造時に絶縁性の材料の体積率を制御することが困難となり、満足のいく磁化特性が得られない虞がある。一方、永久磁石粉末の粒径が大きすぎると、磁石の製造時に磁石粉末の緻密化が困難となる虞がある。   The particle size of the permanent magnet powder is preferably 0.001 to 1 mm, more preferably 0.005 to 0.7 mm. If this particle size is too small, it will be difficult to control the volume ratio of the insulating material during the manufacture of the magnet, and satisfactory magnetization characteristics may not be obtained. On the other hand, if the particle size of the permanent magnet powder is too large, it may be difficult to densify the magnet powder during the production of the magnet.

また、永久磁石粉末の粒径d(mm)と、被覆層の厚さt(mm)とは、好ましくはt<0.16×d0.99、より好ましくはt≦0.1×d、さらに好ましくはt≦0.025×dを満足する。永久磁石粉末の粒径dと被覆層の厚さtとが、このような関係を満足することによって、磁石特性の低下を最小限にとどめることが可能である。 The particle diameter d (mm) of the permanent magnet powder and the thickness t (mm) of the coating layer are preferably t <0.16 × d 0.99 , more preferably t ≦ 0.1 × d, More preferably, t ≦ 0.025 × d is satisfied. By satisfying such a relationship between the particle diameter d of the permanent magnet powder and the thickness t of the coating layer, it is possible to minimize degradation of the magnet characteristics.

以下、本発明の永久磁石について詳細に説明する。   Hereinafter, the permanent magnet of the present invention will be described in detail.

本発明の永久磁石は、永久磁石粉末からなる。永久磁石粉末とは、永久磁石を構成する磁石粉末であり、永久磁石粉末の表面には、絶縁性の材料により被覆されてなる被覆層が形成され、被覆層が形成された粉末は、種々の方法により緻密化され、永久磁石を構成する。   The permanent magnet of the present invention is made of permanent magnet powder. The permanent magnet powder is a magnet powder constituting a permanent magnet, and a coating layer formed by coating with an insulating material is formed on the surface of the permanent magnet powder. It is densified by the method to constitute a permanent magnet.

永久磁石および永久磁石粉末の形状については、特に限定されない。永久磁石が適用される部位に応じて、永久磁石の形状は決定されればよい。例えば、自動車のモーターに適用される場合には、モーターの大きさや形状に合わせて、永久磁石の大きさや形状が決定されればよい。   The shape of the permanent magnet and the permanent magnet powder is not particularly limited. The shape of the permanent magnet may be determined according to the part to which the permanent magnet is applied. For example, when applied to a motor of an automobile, the size and shape of the permanent magnet may be determined in accordance with the size and shape of the motor.

永久磁石の種類については、特に限定されず、各種金属磁石に適用可能であるが、好ましくは、本発明の永久磁石粉末は希土類磁石相を含有する。被覆層によって、多少は磁石の磁力が低下してしまうので、希土類磁石相のような磁力が強靭な磁石相を含有する磁石粉末を用いることによって、被覆層による磁石特性の低下を最小限に抑制することが可能である。ただし、磁力がそれほど求められない用途に用いる場合など、特別の理由が存在するのであれば、希土類磁石相を含有しない磁石粉末を用いてもよく、このような実施形態も本発明の技術的範囲に含まれうる。   The type of permanent magnet is not particularly limited and can be applied to various metal magnets. Preferably, the permanent magnet powder of the present invention contains a rare earth magnet phase. Since the magnetic force of the magnet is somewhat reduced by the coating layer, the use of magnet powder containing a magnetic phase with a strong magnetic force, such as a rare earth magnet phase, minimizes the deterioration of the magnet properties due to the coating layer. Is possible. However, if there is a special reason, such as when used in applications where magnetic force is not so required, magnet powder containing no rare earth magnet phase may be used, and such an embodiment is also within the technical scope of the present invention. Can be included.

希土類磁石相としては、R−T−B系磁石相またはR−T磁石相(Rは、希土類元素であり、Tは、遷移金属元素である)が挙げられる。具体的には、Nd−Fe−B系磁石相、Sm−Co系磁石相が挙げられる。希土類磁石を構成する主要元素は、必要に応じて、他の元素によって置換されてもよい。例えば、Ndの一部は、Pr、Dy、Tbなどによって置換されてもよいし、Feの一部はCoによって置換されてもよい。   Examples of the rare earth magnet phase include an R-T-B magnet phase or an RT magnet phase (R is a rare earth element, and T is a transition metal element). Specifically, an Nd—Fe—B based magnet phase and an Sm—Co based magnet phase are exemplified. The main elements constituting the rare earth magnet may be replaced with other elements as necessary. For example, a part of Nd may be substituted with Pr, Dy, Tb, etc., and a part of Fe may be substituted with Co.

これらの永久磁石粉末の中には、磁石性能を充分に確保するため、緻密化の工程で800℃以上の高温条件下で、液相を生成させる必要があるものもある。しかしながら、被覆層を構成する絶縁性の材料の種類によっては、液相との反応により絶縁特性が低下し、被覆層を設けることによる効果が低減してしまう虞がある。   Some of these permanent magnet powders require a liquid phase to be generated under a high temperature condition of 800 ° C. or higher in the densification step in order to ensure sufficient magnet performance. However, depending on the type of insulating material constituting the coating layer, the insulating properties may be reduced due to reaction with the liquid phase, and the effect of providing the coating layer may be reduced.

かような観点から、本発明に置いて、永久磁石粉末は、HDDR法により製造された磁石粉末(以下、「HDDR粉末」とも称する)であることが好ましい。HDDR粉末を用いると、緻密化の際の温度条件の制約が解除され、800℃未満の温度条件下においても、効率よく磁石粉末を緻密化させることが可能となる。なお、HDDR法とは、水素化−分解・脱水素−再結合(Hydrogenation−Decomposition・Desorption−Recombination)の工程を有する、磁石粉末の製造方法である。   From such a viewpoint, in the present invention, the permanent magnet powder is preferably a magnet powder produced by the HDDR method (hereinafter also referred to as “HDDR powder”). When HDDR powder is used, the restriction of the temperature condition during densification is released, and the magnet powder can be densified efficiently even under a temperature condition of less than 800 ° C. The HDDR method is a method for producing a magnetic powder having the steps of hydrogenation-decomposition / dehydrogenation-recombination (Hydrogenation-Decomposition / Desorption-Recombination).

永久磁石の形状は、前述のように特に限定されないが、本発明においては、永久磁石粉末の粒径d(mm)および永久磁石粉末の体積抵抗率ρ(Ωm)が、前述の関係を満たすように設計される。 The shape of the permanent magnet is not particularly limited as described above, but in the present invention, the particle size d (mm) of the permanent magnet powder and the volume resistivity ρ m (Ωm) of the permanent magnet powder satisfy the relationship described above. Designed as such.

永久磁石粉末の体積抵抗率ρ(Ωm)は、永久磁石粉末における電流の流れにくさを示す指標であり、単位断面積を持つ材料の電気抵抗値として定義される。体積抵抗率が高いほど絶縁性が高い。体積抵抗率は、JIS K6911などの公知の測定方法に準拠して測定されうる。特に限定されないが、永久磁石粉末の体積抵抗率ρは、通常は、0.5×10−4〜2.5×10−4μΩm程度である。 The volume resistivity ρ m (Ωm) of the permanent magnet powder is an index indicating the difficulty of current flow in the permanent magnet powder, and is defined as an electric resistance value of a material having a unit cross-sectional area. The higher the volume resistivity, the higher the insulation. The volume resistivity can be measured according to a known measurement method such as JIS K6911. Although not particularly limited, the volume resistivity ρ m of the permanent magnet powder is usually about 0.5 × 10 −4 to 2.5 × 10 −4 μΩm.

永久磁石粉末を被覆するための被覆層を構成する絶縁性の材料としては、電気伝導性の低い、セラミックス、エポキシ樹脂やビニル樹脂などの高分子樹脂、無機化合物などが用いられうる。ただし、これらに限定されるわけではなく、永久磁石粉末間を絶縁可能であり、本発明において規定する条件を満足する材料であれば、他の材料が用いられてもよい。   As the insulating material constituting the coating layer for coating the permanent magnet powder, ceramics, polymer resin such as epoxy resin or vinyl resin, inorganic compound, etc. having low electrical conductivity can be used. However, the present invention is not limited to these, and other materials may be used as long as they can insulate between permanent magnet powders and satisfy the conditions specified in the present invention.

被覆層の形状は、特に限定されないが、少なくとも、異なる永久磁石粉末間には、被覆層が存在し、永久磁石粉末が被覆層によって絶縁される。本発明においては、被覆層の厚さt(mm)および被覆層の体積抵抗率ρ(Ωm)が、前述の規定を満たすように設計される。 The shape of the coating layer is not particularly limited, but at least a coating layer exists between different permanent magnet powders, and the permanent magnet powder is insulated by the coating layer. In the present invention, the thickness t (mm) of the coating layer and the volume resistivity ρ r (Ωm) of the coating layer are designed to satisfy the above-mentioned definition.

被覆層の厚さt(mm)は、使用する絶縁性の材料の質量を調節することによって制御可能である。被覆層の厚さtは、例えば、Fe等の磁石成分の欠乏層の厚さをEPMA(電子線マイクロアナライザ:Electron Probe X−ray Micro Analyzer)分析により解析することによって、測定されうる。被覆層の厚さtは、安定した絶縁性能を発現させるためには、均一であることが好ましいが、絶縁性能に影響が出ない程度であれば、多少の変化があってもよい。厚さtが不均一である場合には、被覆層の厚さtとして、平均値が採用される。平均値は、例えば、電子顕微鏡を用いて試料の10点の被覆層の厚さtをそれぞれ測定し、それらの平均を算出することによって求めてもよいし、用いる絶縁性の材料の質量から平均の厚さを算出してもよい。特に限定されないが、磁石粉末に対する被覆層の厚さtは、通常、10−5〜10−1mm程度である。 The thickness t (mm) of the coating layer can be controlled by adjusting the mass of the insulating material used. The thickness t of the coating layer can be measured, for example, by analyzing the thickness of a layer lacking a magnet component such as Fe by EPMA (Electron Probe X-ray Micro Analyzer) analysis. The thickness t of the coating layer is preferably uniform in order to develop a stable insulating performance, but may be slightly changed as long as the insulating performance is not affected. When the thickness t is not uniform, an average value is adopted as the thickness t of the coating layer. The average value may be obtained, for example, by measuring the thickness t of each of the 10 coating layers of the sample using an electron microscope, and calculating the average thereof, or calculating the average from the mass of the insulating material used. The thickness may be calculated. Although not particularly limited, the thickness t of the coating layer with respect to the magnet powder is usually about 10 −5 to 10 −1 mm.

被覆層の体積抵抗率ρ(Ωm)は、永久磁石粉末の体積抵抗率ρ(Ωm)と同様、被覆層における電流の流れにくさを示す指標であり、単位断面積を持つ材料の電気抵抗値として定義される。体積抵抗率は、JIS K6911などの公知の測定方法に準拠して測定されうる。特に限定されないが、絶縁膜の体積抵抗率ρは、通常は、10〜1015Ωm程度である。 Like the volume resistivity ρ m (Ωm) of the permanent magnet powder, the volume resistivity ρ r (Ωm) of the coating layer is an index indicating the difficulty of current flow in the coating layer. Defined as a resistance value. The volume resistivity can be measured according to a known measurement method such as JIS K6911. Although not particularly limited, the volume resistivity ρ m of the insulating film is usually about 10 5 to 10 15 Ωm.

本発明の永久磁石において、絶縁性の材料により被覆された永久磁石粉末は、特に制限されず、従来公知の種々の方法により、緻密化される。磁石粉末を緻密化させるための方法としては、例えば、ホットプレス法、放電プラズマ焼結法、爆発圧搾法、および鍛造法が挙げられる。   In the permanent magnet of the present invention, the permanent magnet powder coated with an insulating material is not particularly limited, and is densified by various conventionally known methods. Examples of the method for densifying the magnet powder include a hot press method, a discharge plasma sintering method, an explosion pressing method, and a forging method.

本発明の永久磁石の用途は、特に限定されないが、モーターに適用されうる。本発明の永久磁石は、渦電流の発生が抑制され、その上、高い磁石性能を有する。このため、本発明の永久磁石を用いて製造されたモーターを利用すれば、モーターの連続出力を高めることが容易に可能であり、中から大出力のモーターとして好適といえる。また、本発明の永久磁石を用いたモーターは、磁石特性が優れるため、製品の小型軽量化が図れる。例えば、自動車用部品に適用した場合には、車体の軽量化に伴う燃費の向上が可能である。さらに、特に電気自動車やハイブリッド電気自動車の駆動用モーターとしても有効である。これまではスペースの確保が困難であった場所にも駆動用モーターを搭載することが可能となり、電気自動車やハイブリッド自動車の汎用化に寄与すると考えられる。   The use of the permanent magnet of the present invention is not particularly limited, but can be applied to a motor. In the permanent magnet of the present invention, generation of eddy current is suppressed, and in addition, it has high magnet performance. For this reason, if the motor manufactured using the permanent magnet of the present invention is used, the continuous output of the motor can be easily increased, and it can be said that it is suitable as a medium to large output motor. Moreover, since the motor using the permanent magnet of the present invention has excellent magnet characteristics, the product can be reduced in size and weight. For example, when applied to automotive parts, fuel efficiency can be improved as the vehicle body becomes lighter. Furthermore, it is particularly effective as a drive motor for electric vehicles and hybrid electric vehicles. Drive motors can be installed in places where it was difficult to secure space so far, which will contribute to the generalization of electric vehicles and hybrid vehicles.

以下、永久磁石粉末としての、Nd−Fe−B系磁石粉末またはSm−Co系磁石粉末を、絶縁性の材料である高分子またはセラミックスによって被覆し、得られた粉末を、ホットプレス法、放電プラズマ焼結法、爆発圧搾法、または鍛造法のいずれかの方法によって緻密化させて得された永久磁石について、各パラメータと磁石特性との相関性を示す。   Hereinafter, Nd-Fe-B magnet powder or Sm-Co magnet powder as permanent magnet powder is coated with a polymer or ceramics as an insulating material, and the obtained powder is subjected to hot pressing, discharge The correlation between each parameter and magnet characteristics is shown for a permanent magnet obtained by densification by any of the plasma sintering method, the explosive pressing method, or the forging method.

<実施例1>
Nd−Fe−B系希土類磁石粉末(体積抵抗率ρ:0.000002Ωm)を、篩を用いて分粒し、0.2mm(0.18mm〜0.23mm)の粒径を有する粉末を分離した。次いで、絶縁性の高分子材料であるシリコン樹脂(体積抵抗率ρ:1.0×10Ωm)をスプレーにより吹き付けて、シリコン樹脂により被覆された磁石粉末を得た。この際、スプレー吹き付けの時間を調節することによって、被覆層の厚さtを2μmに制御した。被覆層の厚さは、磁石成分であるFe成分の欠乏層の厚さをEPMA分析により解析することで、測定された。
<Example 1>
Nd—Fe—B rare earth magnet powder (volume resistivity ρ m : 0.000002 Ωm) is sized using a sieve to separate powder having a particle size of 0.2 mm (0.18 mm to 0.23 mm) did. Next, a silicon resin (volume resistivity ρ r : 1.0 × 10 7 Ωm), which is an insulating polymer material, was sprayed to obtain a magnet powder coated with the silicon resin. At this time, the thickness t of the coating layer was controlled to 2 μm by adjusting the spraying time. The thickness of the coating layer was measured by analyzing the thickness of the Fe component deficient layer, which is a magnet component, by EPMA analysis.

上記で得られた、シリコン樹脂により被覆された磁石粉末を、ホットプレス法により緻密化させて、Nd−Fe−B系希土類永久磁石を作製した。ホットプレスは、400℃の温度条件下で、15ton/cmの圧力を120分間保持することにより行った。 The magnet powder coated with the silicon resin obtained above was densified by a hot press method to produce an Nd—Fe—B rare earth permanent magnet. Hot pressing was performed by maintaining a pressure of 15 ton / cm 2 for 120 minutes under a temperature condition of 400 ° C.

作製した永久磁石を、磁場強度0.1T、周波数1000Hzの周期的磁場中で30分間放置し、その際の温度変化および発熱量を観察した。発熱量は、被覆層が設けられていない、同様の永久磁石における発熱量を1とし、この発熱量に対する相対発熱量として評価した。条件および評価結果について、表1に示す。   The produced permanent magnet was allowed to stand for 30 minutes in a periodic magnetic field having a magnetic field strength of 0.1 T and a frequency of 1000 Hz, and the temperature change and heat generation at that time were observed. The calorific value was evaluated as a relative calorific value with respect to this calorific value, assuming that the calorific value of a similar permanent magnet without a coating layer was 1. The conditions and evaluation results are shown in Table 1.

また、得られた永久磁石の残留磁化Br、および保磁力iHcを、BHトレーサーを用いて測定した。これらの測定結果を表1に示す。また、用いたNd−Fe−B系希土類磁石粉末の粒径dを0.99乗し、0.16を掛けて、被覆層の厚さtで除した値、すなわち、0.16×d0.99/tの値も、表1に示す。 Further, the residual magnetization Br and the coercive force iHc of the obtained permanent magnet were measured using a BH tracer. These measurement results are shown in Table 1. Further, the particle size d of the used Nd—Fe—B rare earth magnet powder is multiplied by 0.99, multiplied by 0.16, and divided by the thickness t of the coating layer, that is, 0.16 × d 0. The value of .99 / t is also shown in Table 1.

<実施例2〜40および比較例1〜4>
永久磁石粉末の種類(Nd−Fe−B系磁石粉末またはSm−Co系磁石粉末、HDDR粉末または焼結粉末)、粒径、体積抵抗率、被覆層を構成する絶縁性の材料の種類(高分子であるシリコン樹脂もしくはポリイミド樹脂、セラミックスであるDyペースト、MgOペースト、もしくはNdペースト、またはリン酸化合物)、被覆層の厚さ、体積抵抗率、被覆された磁石粉末を緻密化させる手段(ホットプレス法、放電プラズマ焼結法、爆発圧搾法、または鍛造法)を、表1に示すように変化させて、実施例1と同様の手順により種々の永久磁石を作製した。
<Examples 2 to 40 and Comparative Examples 1 to 4>
Type of permanent magnet powder (Nd-Fe-B magnet powder or Sm-Co magnet powder, HDDR powder or sintered powder), particle size, volume resistivity, type of insulating material constituting the coating layer (high Silicon resin or polyimide resin as a molecule, Dy 2 O 3 paste as ceramic, MgO paste, or Nd 2 O 3 paste, or phosphoric acid compound), coating layer thickness, volume resistivity, coated magnet powder Various permanent magnets were produced by the same procedure as in Example 1 by changing the means for densification (hot pressing method, spark plasma sintering method, explosion pressing method, or forging method) as shown in Table 1. .

Figure 2005251995
Figure 2005251995

図1は、横軸にH=t×ρ÷ρで表される被覆抵抗Hを、縦軸に相対発熱量をとり、作製した永久磁石の一部のデータをプロットしたグラフである。図1に示すように、被覆抵抗Hを大きくすると、発熱量は磁石粉末の粒径dによって決まる値に収束する。つまり、渦電流の発生による発熱を抑制するためには、粒径dによって決定される所定の値以上の被覆抵抗Hを有していればよい。例えば、粒径d=0.05mmの場合には、被覆抵抗Hは、10〜10(m)程度あれば充分であり、被覆抵抗Hがこの値以上となるように永久磁石を設計すればよい。 FIG. 1 is a graph in which data of a part of a produced permanent magnet is plotted, with the horizontal axis representing the coating resistance H represented by H = t × ρ r ÷ ρ m and the vertical axis representing the relative calorific value. As shown in FIG. 1, when the covering resistance H is increased, the calorific value converges to a value determined by the particle size d of the magnet powder. That is, in order to suppress the heat generation due to the generation of eddy current, it is sufficient that the coating resistance H is equal to or greater than a predetermined value determined by the particle diameter d. For example, when the particle size is d = 0.05 mm, it is sufficient that the covering resistance H is about 10 6 to 10 7 (m), and the permanent magnet should be designed so that the covering resistance H is greater than this value. That's fine.

図2は、横軸に磁石粉末の粒径d、縦軸に被覆抵抗Hをとり、作製した永久磁石の一部のデータをプロットしたグラフである。図2において、○は「サンプルの相対発熱量=その粒径における相対発熱量の下限値」である試料を示し、△は「その粒径における相対発熱量の下限値<サンプルの相対発熱量≦その粒径における相対発熱量の下限値×2」である試料を示し、×は「その粒径における相対発熱量の下限値×2<サンプルの相対発熱量」である試料を示す。図2に示すように、相対発熱量を収束させるためには、「H≧23000×d−1」を満足すればよく、好ましくは、「H≧61500×d−1.1」を満足すればよいことがわかる。 FIG. 2 is a graph in which data of a part of the produced permanent magnet is plotted with the horizontal axis representing the particle diameter d of the magnet powder and the vertical axis representing the covering resistance H. In FIG. 2, “◯” indicates a sample in which “the relative calorific value of the sample = the lower limit value of the relative calorific value of the particle size”, and Δ indicates “the lower limit value of the relative calorific value of the particle size <the relative calorific value of the sample ≦ A sample having a lower limit value of the relative calorific value of the particle size × 2 ”is indicated, and“ x ”indicates a sample of“ lower limit value of the relative calorific value of the particle size × 2 <relative heat value of the sample ”. As shown in FIG. 2, in order to converge the relative calorific value, “H ≧ 23000 × d −1 ” should be satisfied, and preferably “H ≧ 61500 × d −1.1 ”. I know it ’s good.

図3は、図2と同様に横軸に磁石粉末の粒径d、縦軸に被覆抵抗Hをとった座標系を用いて、本発明の永久磁石において渦電流の発生による発熱を抑制するために磁石粉末の粒径dと被覆抵抗Hとが満たすことが好ましい関係に対応する領域を図示したグラフである。本発明の永久磁石において、磁石粉末の粒径dと、被覆抵抗Hとは、図3に示す領域Xで表される関係を満足することが好ましい。また、図3に示す領域Yで表される関係を満足することが、より好ましい。ここで、図3に示す領域Xにおいては、H≧23000×d−1であり、dは、0.001≦d≦1の範囲の値である。また、領域Yにおいては、H≧61500×d−1.1であり、dは、0.005≦d≦0.7の範囲の値である。 FIG. 3 uses a coordinate system in which the horizontal axis represents the particle diameter d of the magnet powder and the vertical axis represents the coating resistance H, as in FIG. 2, to suppress heat generation due to the generation of eddy currents in the permanent magnet of the present invention. 6 is a graph illustrating a region corresponding to a preferable relationship that the particle diameter d of the magnetic powder and the covering resistance H satisfy. In the permanent magnet of the present invention, it is preferable that the particle diameter d of the magnet powder and the covering resistance H satisfy the relationship represented by the region X shown in FIG. Moreover, it is more preferable to satisfy the relationship represented by the region Y shown in FIG. Here, in region X shown in FIG. 3, H ≧ 23000 × d −1 , and d is a value in the range of 0.001 ≦ d ≦ 1. In the region Y, a H ≧ 61500 × d -1.1, d is a value in a range of 0.005 ≦ d ≦ 0.7.

図4は、横軸に磁石粉末の粒径d、縦軸に被覆層の厚さtをとり、作製した永久磁石の一部のデータをプロットしたグラフである。図4において、◎は「9kG<サンプルの残留磁化」である試料を示し、○は「8kG<サンプルの残留磁化≦9kG」である試料を示し、△は「7kG<サンプルの残留磁化≦8kG」である試料を示し、×は「サンプルの残留磁化≦7kG」である試料を示す。図4に示すように、残留磁化の値を向上させるためには、被覆層の厚さtと前記永久磁石粉末の粒径dとが、「t<0.16×d0.99」を満足する、すなわち、0.16×d0.99/tの値が1より大きいことが好ましい。より好ましくは「t≦0.1×d」を満足すればよく、さらに好ましくは「t≦0.025×d」を満足すればよい。表1および図4に示すように、t<0.16×d0.99を満足する永久磁石は、残留磁化が7kGより大きく、磁気特性が高度に維持されている。また、t≦0.1×dを満足する永久磁石は、残留磁化が8kGより大きく、t≦0.025×dを満足する永久磁石は、残留磁化が9kGより大きかった。 FIG. 4 is a graph in which data of a part of the produced permanent magnet is plotted with the particle diameter d of the magnet powder on the horizontal axis and the thickness t of the coating layer on the vertical axis. In FIG. 4, “◎” indicates a sample where “9 kG <residual magnetization of the sample”, ○ indicates a sample where “8 kG <residual magnetization of the sample ≦ 9 kG”, and Δ indicates “7 kG <residual magnetization of the sample ≦ 8 kG”. And x indicates a sample having “residual magnetization of the sample ≦ 7 kG”. As shown in FIG. 4, in order to improve the value of remanent magnetization, the thickness t of the coating layer and the particle size d of the permanent magnet powder satisfy “t <0.16 × d 0.99 ”. That is, it is preferable that the value of 0.16 × d 0.99 / t is larger than 1. More preferably, “t ≦ 0.1 × d” may be satisfied, and more preferably, “t ≦ 0.025 × d” may be satisfied. As shown in Table 1 and FIG. 4, the permanent magnet satisfying t <0.16 × d 0.99 has a residual magnetization larger than 7 kG and maintains a high magnetic property. Further, the permanent magnet satisfying t ≦ 0.1 × d has a residual magnetization larger than 8 kG, and the permanent magnet satisfying t ≦ 0.025 × d has a residual magnetization larger than 9 kG.

横軸にH=t×ρ÷ρで表される被覆抵抗Hを、縦軸に相対発熱量をとり、作製した永久磁石の一部のデータをプロットしたグラフである。It is the graph which plotted some data of the produced permanent magnet, with the horizontal axis representing the coating resistance H represented by H = t × ρ r ÷ ρ m and the vertical axis representing the relative calorific value. 横軸に磁石粉末の粒径d、縦軸に被覆抵抗Hをとり、作製した永久磁石の一部のデータをプロットしたグラフである。It is the graph which plotted the data of a part of the produced permanent magnet by taking the particle diameter d of a magnetic powder on a horizontal axis, and covering resistance H on a vertical axis | shaft. 横軸に磁石粉末の粒径d、縦軸に被覆抵抗Hをとり、本発明の永久磁石において磁石粉末の粒径dと被覆抵抗Hとが満たすことが好ましい関係に対応する領域を図示したグラフである。A graph illustrating a region corresponding to a preferable relationship between the particle size d of the magnetic powder and the coating resistance H in the permanent magnet of the present invention, where the horizontal axis represents the particle size d of the magnet powder and the vertical axis represents the coating resistance H. It is. 横軸に磁石粉末の粒径d、縦軸に被覆層の厚さtをとり、作製した永久磁石の一部のデータをプロットしたグラフである。It is the graph which plotted the data of a part of the produced permanent magnet, taking the particle diameter d of the magnet powder on the horizontal axis and the thickness t of the coating layer on the vertical axis.

Claims (9)

絶縁性の材料からなる被覆層が表面に形成された永久磁石粉末が緻密化されてなる永久磁石であって、
前記被覆層の厚さt(mm)と前記絶縁性の材料の体積抵抗率ρ(Ωm)との積を、前記永久磁石粉末の体積抵抗率ρ(Ωm)で除した値として定義される被覆抵抗H(=t×ρ÷ρ)と、前記永久磁石粉末の粒径d(mm)とが、H≧23000×d−1を満たすことを特徴とする、永久磁石。
A permanent magnet formed by densifying a permanent magnet powder having a coating layer made of an insulating material formed on its surface,
It is defined as a value obtained by dividing the product of the thickness t (mm) of the covering layer and the volume resistivity ρ r (Ωm) of the insulating material by the volume resistivity ρ m (Ωm) of the permanent magnet powder. A permanent magnet, wherein a covering resistance H (= t × ρ r ÷ ρ m ) and a particle diameter d (mm) of the permanent magnet powder satisfy H ≧ 23000 × d −1 .
前記被覆抵抗Hと前記永久磁石粉末の粒径dとが、H≧61500×d−1.1を満たすことを特徴とする、請求項1に記載の永久磁石。 The coating resistance H and the particle diameter d of the permanent magnet powder, and satisfies the H ≧ 61500 × d -1.1, permanent magnet according to claim 1. 前記永久磁石粉末の粒径dが、0.001≦d≦1を満たすことを特徴とする、請求項1または2に記載の永久磁石。   The permanent magnet according to claim 1, wherein a particle diameter d of the permanent magnet powder satisfies 0.001 ≦ d ≦ 1. 前記被覆層の厚さtと前記永久磁石粉末の粒径dとが、t<0.16×d0.99を満たすことを特徴とする、請求項1〜3のいずれか1項に記載の永久磁石。 The thickness t of the coating layer and the particle size d of the permanent magnet powder satisfy t <0.16 × d 0.99, according to any one of claims 1 to 3. permanent magnet. 前記永久磁石粉末は、希土類磁石相を含有することを特徴とする、請求項1〜4のいずれか1項に記載の永久磁石。   The permanent magnet according to claim 1, wherein the permanent magnet powder contains a rare earth magnet phase. 前記希土類磁石相は、R−T−B系磁石相またはR−T系磁石相(Rは、希土類元素であり、Tは、遷移金属元素である)であることを特徴とする、請求項5に記載の永久磁石。   6. The rare earth magnet phase is an R-T-B magnet phase or an R-T magnet phase (R is a rare earth element and T is a transition metal element). The permanent magnet described in 1. 前記永久磁石粉末は、HDDR法により製造された磁石粉末であることを特徴とする、請求項1〜6のいずれか1項に記載の永久磁石。   The permanent magnet according to claim 1, wherein the permanent magnet powder is a magnet powder manufactured by an HDDR method. 前記永久磁石粉末は、ホットプレス法、放電プラズマ焼結法、爆発圧搾法、および鍛造法からなる群から選択される1種または2種以上の方法により緻密化されてなる、請求項1〜7のいずれか1項に記載の永久磁石。   The permanent magnet powder is densified by one or more methods selected from the group consisting of a hot press method, a discharge plasma sintering method, an explosion pressing method, and a forging method. The permanent magnet of any one of these. 請求項1〜8のいずれか1項に記載の永久磁石を用いてなるモーター。   The motor using the permanent magnet of any one of Claims 1-8.
JP2004060609A 2004-03-04 2004-03-04 Permanent magnet Pending JP2005251995A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004060609A JP2005251995A (en) 2004-03-04 2004-03-04 Permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004060609A JP2005251995A (en) 2004-03-04 2004-03-04 Permanent magnet

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2011091796A Division JP2011181942A (en) 2011-04-18 2011-04-18 Permanent magnet

Publications (1)

Publication Number Publication Date
JP2005251995A true JP2005251995A (en) 2005-09-15

Family

ID=35032191

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004060609A Pending JP2005251995A (en) 2004-03-04 2004-03-04 Permanent magnet

Country Status (1)

Country Link
JP (1) JP2005251995A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009200320A (en) * 2008-02-22 2009-09-03 Yaskawa Electric Corp Permanent magnet with low iron loss, and permanent magnet type motor using the same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63147301A (en) * 1986-12-11 1988-06-20 Inoue Japax Res Inc Manufacture of resinated magnet
JPH04125907A (en) * 1990-09-17 1992-04-27 Matsushita Electric Ind Co Ltd Nanocomposite permanent magnet material
JPH0669009A (en) * 1992-08-19 1994-03-11 Matsushita Electric Ind Co Ltd Manufacture of rare earth-iron based magnet
JPH0757910A (en) * 1993-08-10 1995-03-03 Hitachi Metals Ltd Production of anisotropic magnetic powder and anisotropic bond magnet
JP2003007521A (en) * 2000-11-13 2003-01-10 Sumitomo Metal Mining Co Ltd High weather-resistant magnet powder and magnet using the same
JP2003257763A (en) * 2002-02-28 2003-09-12 Sumitomo Special Metals Co Ltd Manufacturing method for rare earth permanent magnet
JP2003318013A (en) * 2002-04-24 2003-11-07 Sumitomo Metal Mining Co Ltd Saline solution-resistant magnet alloy powder, method of manufacturing the same, resin composition for bonded magnet using the same, and bonded magnet or compact magnet manufacturing method,

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63147301A (en) * 1986-12-11 1988-06-20 Inoue Japax Res Inc Manufacture of resinated magnet
JPH04125907A (en) * 1990-09-17 1992-04-27 Matsushita Electric Ind Co Ltd Nanocomposite permanent magnet material
JPH0669009A (en) * 1992-08-19 1994-03-11 Matsushita Electric Ind Co Ltd Manufacture of rare earth-iron based magnet
JPH0757910A (en) * 1993-08-10 1995-03-03 Hitachi Metals Ltd Production of anisotropic magnetic powder and anisotropic bond magnet
JP2003007521A (en) * 2000-11-13 2003-01-10 Sumitomo Metal Mining Co Ltd High weather-resistant magnet powder and magnet using the same
JP2003257763A (en) * 2002-02-28 2003-09-12 Sumitomo Special Metals Co Ltd Manufacturing method for rare earth permanent magnet
JP2003318013A (en) * 2002-04-24 2003-11-07 Sumitomo Metal Mining Co Ltd Saline solution-resistant magnet alloy powder, method of manufacturing the same, resin composition for bonded magnet using the same, and bonded magnet or compact magnet manufacturing method,

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009200320A (en) * 2008-02-22 2009-09-03 Yaskawa Electric Corp Permanent magnet with low iron loss, and permanent magnet type motor using the same

Similar Documents

Publication Publication Date Title
US10381149B2 (en) Composite material, reactor, converter, and power conversion device
JP5462356B2 (en) Powder magnetic core and manufacturing method thereof
JP6427862B2 (en) Dust core, manufacturing method thereof, inductance element using the dust core, and rotating electric machine
WO2010073590A1 (en) Composite soft magnetic material and method for producing same
JP2009088502A (en) Method of manufacturing oxide-coated soft magnetic powder, oxide-coated soft magnetic powder, dust core, and magnetic element
JP5063861B2 (en) Composite dust core and manufacturing method thereof
JP2005175138A (en) Heat-resisting rare earth magnet and its manufacturing method
US20210142933A1 (en) Soft magnetic composite materials and methods and powders for producing the same
JPWO2010103709A1 (en) Powder magnetic core and magnetic element using the same
Bernier et al. Additive manufacturing of soft and hard magnetic materials used in electrical machines
JP2005220438A (en) Fe-Cr-Al BASED MAGNETIC POWDER, Fe-Cr-Al BASED MAGNETIC POWDER COMPACT, AND ITS PRODUCTION METHOD
WO2021033567A1 (en) Magnetic wedge, rotating electrical machine, and method for manufacturing magnetic wedge
JP2005336513A (en) Method for manufacturing soft-magnetic material and soft-magnetic material, and method for manufacturing dust core and dust core
JP4784173B2 (en) Rare earth magnet and manufacturing method thereof
JP4917355B2 (en) Dust core
JP2011216745A (en) Dust core and method of manufacturing the same
JP2009283568A (en) Magnet molded body and its method for manufacturing
JP2005251995A (en) Permanent magnet
EP1662518A1 (en) Soft magnetic material and method for producing same
CN107231044B (en) Rare earth magnet and motor
JP2011181942A (en) Permanent magnet
JP2010257999A (en) Coil component
JP2010206046A (en) Magnet molding and method of making the same
JP2018142642A (en) Powder magnetic core
JP2010185126A (en) Composite soft magnetic material and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090602

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090803

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090804

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100330

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100531

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110418