JP2003257763A - Manufacturing method for rare earth permanent magnet - Google Patents

Manufacturing method for rare earth permanent magnet

Info

Publication number
JP2003257763A
JP2003257763A JP2002053750A JP2002053750A JP2003257763A JP 2003257763 A JP2003257763 A JP 2003257763A JP 2002053750 A JP2002053750 A JP 2002053750A JP 2002053750 A JP2002053750 A JP 2002053750A JP 2003257763 A JP2003257763 A JP 2003257763A
Authority
JP
Japan
Prior art keywords
magnet
powder
insulating component
quenched
insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002053750A
Other languages
Japanese (ja)
Other versions
JP4337300B2 (en
Inventor
Takeshi Nishiuchi
武司 西内
Satoru Hirozawa
哲 広沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP2002053750A priority Critical patent/JP4337300B2/en
Publication of JP2003257763A publication Critical patent/JP2003257763A/en
Application granted granted Critical
Publication of JP4337300B2 publication Critical patent/JP4337300B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a simple manufacturing method for a high-density R-Fe-B quench bulk magnet of excellent magnet property and high electric resistance. <P>SOLUTION: An insulating-component coated powder is manufactured by forming an insulating layer comprising an insulating component whose volume resistivity is at least 1×10<SP>-1</SP>Ωcm on a surface of each of particles constituting a quench alloy powder for manufacturing an R-Fe-B quench magnet by a dry method in an inert gas atmosphere or in vacuum. Then, the insulating-component coated powder as an initial material is hot molded under a pressure of at least 10 MPa at 400-850°C to obtain a high-density bulk magnet of 6.5 g/cm<SP>3</SP>or higher in density which at least comprises a magnet and an insulating component. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、希土類系永久磁石
の製造方法に関する。より詳細には、優れた磁石特性を
有するとともに高い電気抵抗を示す高密度化R−Fe−
B系急冷バルク磁石の簡便な製造方法に関する。
TECHNICAL FIELD The present invention relates to a method for manufacturing a rare earth-based permanent magnet. More specifically, a densified R-Fe- having excellent magnetic properties and high electric resistance.
The present invention relates to a simple method for producing a B-type quenched bulk magnet.

【0002】[0002]

【従来の技術】単ロール法などのメルトスピニング技術
により、溶融した原料合金から非晶質急冷合金薄帯を
得、得られた非晶質急冷合金薄帯を粉砕して非晶質急冷
合金粉末とした後、これを結晶化熱処理して微結晶を析
出させることにより製造されるNd−Fe−B系急冷磁
石に代表されるR(希土類元素)−Fe−B系急冷磁石
は、微細な結晶粒(磁性相)を持つことで優れた磁石特
性を有する。急冷磁石粉末から高密度化バルク磁石を製
造する場合、常圧で1000℃以上に加熱するといった
ような一般的な焼結条件を適用すると、磁石中の微細な
結晶粒が粗大化することにより、磁石特性が大きく劣化
してしまうという問題が発生する。従って、急冷磁石粉
末から高密度化バルク磁石を製造する場合には、圧力を
加えながら加熱して成形する熱間成形が採用される。熱
間成形によれば、高密度化バルク磁石とするために必要
な焼結条件、特に焼結温度を緩和することができるた
め、磁石中の微細な結晶粒の粗大化が抑制されること
で、優れた磁石特性を劣化させることなく、高密度化バ
ルク磁石を製造することが可能になる。
2. Description of the Related Art An amorphous quenched alloy ribbon is obtained from a melted raw material alloy by a melt spinning technique such as a single roll method, and the obtained amorphous quenched alloy ribbon is crushed to obtain an amorphous quenched alloy powder. After that, the R (rare earth element) -Fe-B-based quenching magnet typified by the Nd-Fe-B-based quenching magnet produced by precipitating fine crystals by subjecting this to crystallization heat treatment is a fine crystal. It has excellent magnet characteristics by having grains (magnetic phase). When producing a densified bulk magnet from a quenched magnet powder, if general sintering conditions such as heating to 1000 ° C. or higher under normal pressure are applied, the fine crystal grains in the magnet become coarse, There is a problem that the magnet characteristics are greatly deteriorated. Therefore, in the case of producing a densified bulk magnet from the quenched magnet powder, hot forming is employed in which heating and forming are performed while applying pressure. Hot forming can relax the sintering conditions, especially the sintering temperature, required to obtain a densified bulk magnet, thus suppressing the coarsening of fine crystal grains in the magnet. Thus, it becomes possible to manufacture a densified bulk magnet without deteriorating excellent magnet characteristics.

【0003】このようにして製造される高密度化バルク
磁石は、希土類系永久磁石モータに利用されることが期
待される。しかしながら、R−Fe−B系永久磁石は本
質的に電気抵抗が低いという性質を有する。従って、優
れた磁石特性を有する高密度化バルク磁石であっても、
モータに組み込んで使用した場合には、渦電流損失が大
きくなり、モータ効率の低下を招くという問題がある。
この問題を解決するためには磁石の電気抵抗を高める措
置を講じなければならない。
The densified bulk magnet manufactured in this manner is expected to be used in a rare earth permanent magnet motor. However, the R-Fe-B based permanent magnet has a property of essentially low electric resistance. Therefore, even with a densified bulk magnet having excellent magnet characteristics,
When it is used by incorporating it into a motor, there is a problem that the eddy current loss increases and the motor efficiency decreases.
In order to solve this problem, it is necessary to take measures to increase the electric resistance of the magnet.

【0004】高密度化バルク磁石の電気抵抗を高める方
法として、急冷磁石粉末を構成する粒子同士を絶縁成分
の存在によって分離して熱間成形する方法が既に提案さ
れ、これまでに種々の検討がなされている。例えば、特
開平5−121220号公報には、急冷磁石粉末と絶縁
成分であるホウケイ酸ガラスなどの無機バインダとの混
練物を熱間成形する方法が記載されている。特開平6−
69009号公報には、急冷磁石粉末を構成する個々の
粒子の表面を絶縁成分である金属アルコキシドの加水分
解化合物で被覆した被覆粉末を熱間成形する方法が記載
されている。特開平9−186010号公報には、急冷
磁石粉末にLi,Na,Mg,Ca,Ba,Srから選
ばれる少なくとも一つの元素を含むフッ化物および/ま
たは酸化物からなる化合物を絶縁成分として混合して熱
間成形する方法が記載されている。特開平9−2321
22号公報には、急冷磁石粉末にGe粉末を絶縁成分と
して混合して熱間成形する方法が記載されている。
As a method of increasing the electric resistance of a densified bulk magnet, a method of separating particles forming a quenched magnet powder from each other by the presence of an insulating component and hot forming has been already proposed, and various studies have been made so far. Has been done. For example, Japanese Unexamined Patent Publication No. 5-121220 discloses a method of hot forming a kneaded product of a quenched magnet powder and an inorganic binder such as borosilicate glass which is an insulating component. JP-A-6-
Japanese Patent Publication No. 69090 describes a method of hot molding a coated powder in which the surface of each particle constituting the quenched magnet powder is coated with a hydrolyzed compound of a metal alkoxide as an insulating component. In Japanese Unexamined Patent Publication No. 9-186010, a quenching magnet powder is mixed with a compound consisting of a fluoride and / or an oxide containing at least one element selected from Li, Na, Mg, Ca, Ba and Sr as an insulating component. Hot forming is described. Japanese Patent Laid-Open No. 9-23221
Japanese Unexamined Patent Publication No. 22-22 describes a method of mixing Ge powder as an insulating component in a quenched magnet powder and performing hot forming.

【0005】[0005]

【発明が解決しようとする課題】これまでに提案された
いずれの方法も少なからず問題点を有している。例え
ば、特開平5−121220号公報には、急冷磁石粉末
と絶縁成分との混練物を調製する方法として、急冷磁石
粉末と絶縁成分をボールミルなどを用いて直接混合する
方法、絶縁成分とセルロース類やテルピネオールなどか
ら作成したスラリーと、急冷磁石粉末を混合した後に加
熱乾燥する方法、ゾル−ゲル化反応を利用して絶縁成分
の原料を含むゾル液に急冷磁石粉末を分散させた後に加
熱乾燥する方法が記載されている。しかしながら、上記
の方法のうち、直接混合する方法では、急冷磁石粉末を
構成する個々の粒子の表面に絶縁成分からなる絶縁層を
確実かつ均一に形成することは困難であるので、高密度
化バルク磁石とした際に十分な電気抵抗を付与すること
ができない恐れがある。また、急冷磁石粉末の酸化を引
き起こす場合があるので(特に大気中で混合した場合に
顕著である)、磁石特性の劣化を招く恐れがある。スラ
リーを混合して乾燥する方法では、熱間成形時におい
て、スラリーを作成する際に使用した溶剤などが残存
し、高密度化の過程における緻密化の進行を阻害した
り、急冷磁石粉末と反応することで磁石特性の劣化を招
いたりする恐れがある。ゾル−ゲル化反応を利用する方
法では、ゾル液に含まれる水などが加熱乾燥の際に急冷
磁石粉末の酸化を引き起こし、磁石特性の劣化を招く恐
れがある。特開平6−69009号公報に記載の方法も
ゾル−ゲル化反応を利用する方法であるので、ゾル液に
含まれる水などが加熱乾燥の際に急冷磁石粉末の酸化を
引き起こし、磁石特性の劣化を招く恐れがある。特開平
9−186010号公報に記載の方法や特開平9−23
2122号公報に記載の方法では、急冷磁石粉末と絶縁
成分を単に混合しているに過ぎないので、高密度化バル
ク磁石とした際に十分な電気抵抗を付与することができ
ない恐れがある。そこで本発明は、優れた磁石特性を有
するとともに高い電気抵抗を示す高密度化R−Fe−B
系急冷バルク磁石の簡便な製造方法を提供することを目
的とする。
All of the methods proposed so far have some problems. For example, in JP-A-5-121220, as a method for preparing a kneaded product of quenched magnet powder and an insulating component, a method of directly mixing the quenched magnet powder and an insulating component using a ball mill or the like, an insulating component and celluloses A method of mixing a slurry prepared from terpineol or the like with a quenching magnet powder and then heating and drying it, and utilizing a sol-gelation reaction to disperse the quenching magnet powder in a sol liquid containing a raw material of an insulating component and then heating and drying. The method is described. However, among the above methods, it is difficult to form an insulating layer made of an insulating component reliably and uniformly on the surface of each particle constituting the quenched magnet powder by the method of directly mixing, so that the densified bulk When used as a magnet, it may not be possible to provide sufficient electrical resistance. In addition, since the quenched magnet powder may be oxidized (especially when mixed in the atmosphere), the magnetic properties may be deteriorated. In the method of mixing and drying the slurry, at the time of hot forming, the solvent used when creating the slurry remains, which inhibits the progress of densification in the process of densification or reacts with the quenched magnet powder. Doing so may lead to deterioration of magnet characteristics. In the method utilizing the sol-gelation reaction, water or the like contained in the sol solution may cause oxidation of the rapidly cooled magnet powder during heating and drying, resulting in deterioration of magnet characteristics. Since the method described in JP-A-6-69009 is also a method utilizing a sol-gelation reaction, water or the like contained in the sol liquid causes oxidation of the rapidly cooled magnet powder at the time of heating and drying, and deterioration of magnet characteristics. May lead to The method described in JP-A-9-186010 and JP-A-9-23
In the method described in Japanese Patent No. 2122, since the quenched magnet powder and the insulating component are simply mixed, there is a possibility that sufficient electrical resistance cannot be imparted when the densified bulk magnet is used. Therefore, the present invention provides a densified R-Fe-B having excellent magnet characteristics and high electric resistance.
An object of the present invention is to provide a simple method for producing a system quenching bulk magnet.

【0006】[0006]

【課題を解決するための手段】上記の点に鑑みてなされ
た本発明の希土類系永久磁石の製造方法は、請求項1記
載の通り、R−Fe−B系急冷磁石を製造するための急
冷合金粉末を構成する個々の粒子の表面に、体積抵抗率
が1×10−1Ω・cm以上の絶縁成分からなる絶縁層
を、不活性ガス雰囲気中または真空中で乾式法により形
成することによって絶縁成分被覆粉末を作成した後、こ
の絶縁成分被覆粉末を出発材料として使用し、これを圧
力が10MPa以上、温度が400℃〜850℃の条件
下で熱間成形して、密度が6.5g/cm以上の、少
なくとも磁石部分と絶縁成分とからなる高密度化バルク
磁石とすることを特徴とする。また、請求項2記載の製
造方法は、請求項1記載の製造方法において、絶縁成分
が希土類酸化物、窒化硼素、窒化アルミニウム、窒化珪
素から選ばれる少なくとも一つであることを特徴とす
る。また、請求項3記載の製造方法は、請求項1または
2記載の製造方法において、不活性ガス雰囲気中または
真空中で行う乾式法が気相成膜法であることを特徴とす
る。また、請求項4記載の製造方法は、請求項1乃至3
のいずれかに記載の製造方法において、絶縁層の厚みを
5μm以下とすることを特徴とする。また、本発明の高
密度化R−Fe−B系急冷バルク磁石は、請求項5記載
の通り、請求項1乃至4のいずれかに記載の製造方法で
製造されたことを特徴とする。また、本発明の絶縁成分
被覆粉末は、請求項6記載の通り、R−Fe−B系急冷
磁石を製造するための急冷合金粉末を構成する個々の粒
子の表面に、体積抵抗率が1×10−1Ω・cm以上の
絶縁成分からなる絶縁層が、不活性ガス雰囲気中または
真空中で乾式法により形成されていることを特徴とす
る。
The method for producing a rare earth-based permanent magnet of the present invention, which has been made in view of the above points, is a quench for producing an R-Fe-B-based quenched magnet as set forth in claim 1. By forming an insulating layer composed of an insulating component having a volume resistivity of 1 × 10 −1 Ω · cm or more on the surface of each particle constituting the alloy powder by a dry method in an inert gas atmosphere or in a vacuum. After preparing the insulating component coating powder, this insulating component coating powder is used as a starting material, and this is hot-molded under the conditions of a pressure of 10 MPa or more and a temperature of 400 ° C. to 850 ° C., and a density of 6.5 g. / Cm 3 or more, which is a densified bulk magnet composed of at least a magnet portion and an insulating component. The manufacturing method according to claim 2 is the manufacturing method according to claim 1, characterized in that the insulating component is at least one selected from rare earth oxides, boron nitride, aluminum nitride, and silicon nitride. Further, the manufacturing method according to claim 3 is characterized in that, in the manufacturing method according to claim 1 or 2, the dry method performed in an inert gas atmosphere or in a vacuum is a vapor phase film forming method. The manufacturing method according to claim 4 is the method according to claims 1 to 3.
In any one of the above-mentioned manufacturing methods, the insulating layer has a thickness of 5 μm or less. Further, the densified R-Fe-B based quenched bulk magnet of the present invention is characterized by being manufactured by the manufacturing method according to any one of claims 1 to 4, as described in claim 5. Further, the insulating component-coated powder of the present invention has a volume resistivity of 1 × on the surface of each particle constituting the quenched alloy powder for producing an R—Fe—B-based quenched magnet as described in claim 6. It is characterized in that an insulating layer made of an insulating component of 10 −1 Ω · cm or more is formed by a dry method in an inert gas atmosphere or in a vacuum.

【0007】[0007]

【発明の実施の形態】本発明の希土類系永久磁石の製造
方法は、R−Fe−B系急冷磁石を製造するための急冷
合金粉末を構成する個々の粒子の表面に、体積抵抗率が
1×10−1Ω・cm以上の絶縁成分からなる絶縁層
を、不活性ガス雰囲気中または真空中で乾式法により形
成することによって絶縁成分被覆粉末を作成した後、こ
の絶縁成分被覆粉末を出発材料として使用し、これを圧
力が10MPa以上、温度が400℃〜850℃の条件
下で熱間成形して、密度が6.5g/cm以上の、少
なくとも磁石部分と絶縁成分とからなる高密度化バルク
磁石とすることを特徴とするものである。本発明の希土
類系永久磁石の製造方法において出発原料として使用さ
れる絶縁成分被覆粉末は、個々の粒子の表面に絶縁成分
からなる絶縁層が確実かつ均一に形成されているので、
優れた磁石特性を有するとともに高い電気抵抗を示す高
密度化R−Fe−B系急冷バルク磁石を簡便に製造する
ことが可能となる。
BEST MODE FOR CARRYING OUT THE INVENTION The method for producing a rare earth-based permanent magnet according to the present invention has a volume resistivity of 1 on the surface of each particle constituting a quenched alloy powder for producing an R—Fe—B based quenched magnet. After forming an insulating component-coated powder by forming an insulating layer composed of an insulating component having a density of × 10 −1 Ω · cm or more in an inert gas atmosphere or in a vacuum, the insulating component-coated powder is used as a starting material. And is hot-molded under the conditions of a pressure of 10 MPa or more and a temperature of 400 ° C. to 850 ° C., and a density of 6.5 g / cm 3 or more, which is at least a magnetic portion and an insulating component. It is characterized in that it is made into a bulk magnet. Insulating component coating powder used as a starting material in the method for producing a rare earth-based permanent magnet of the present invention, since the insulating layer made of an insulating component is formed reliably and uniformly on the surface of each particle,
It becomes possible to easily manufacture a densified R-Fe-B-based quenched bulk magnet having excellent magnet characteristics and high electric resistance.

【0008】本発明の製造方法は、R−Fe−B系急冷
磁石であれば、磁性相がRFe B相などだけで構
成される急冷磁石(多くの場合Rリッチ相を非磁性相と
して含む)の製造に対しても、磁性相がRFe14
相などの硬磁性相と鉄基硼化物相やα−Fe相などの軟
磁性相とで構成されるナノコンポジット磁石の製造に対
しても適用することができる。従って、出発材料として
使用する急冷合金粉末の組成は、R−Fe−B系急冷磁
石を製造することができるものであればどのようなもの
であってもよい。このうち、ナノコンポジット磁石は、
一般的には、Rが、RFe14Bの化学量論組成より
も小さい10原子%以下のもので、最終的に、磁石を構
成する硬磁性相がRFe14B相で、軟磁性相がFe
B相やFe23相などの鉄基硼化物相やα−Fe
相となるものが用いられる。磁石特性の向上を図るた
め、急冷合金の添加元素として、Co、Al、Si、T
i、V、Cr、Mn、Ni、Cu、Ga、Zr、Nb、
Mo、Hf、Ta、W、Pt、Pb、Au、Cなどの種
々の元素を含有させてもよい。
In the manufacturing method of the present invention, in the case of an R-Fe-B system quenching magnet, a quenching magnet whose magnetic phase is composed only of R 2 Fe 1 4 B phase (in many cases, R rich phase is non-magnetic) (Including as a phase), the magnetic phase is R 2 Fe 14 B
It can also be applied to the production of a nanocomposite magnet composed of a hard magnetic phase such as a phase and a soft magnetic phase such as an iron-based boride phase or an α-Fe phase. Therefore, the composition of the quenched alloy powder used as the starting material may be any as long as it can produce the R—Fe—B based quenched magnet. Of these, the nanocomposite magnet is
Generally, R is 10 atomic% or less, which is smaller than the stoichiometric composition of R 2 Fe 14 B, and finally the hard magnetic phase constituting the magnet is the R 2 Fe 14 B phase, Magnetic phase is Fe
Iron-based boride phases such as 3 B phase and Fe 23 B 6 phase and α-Fe
Phases are used. In order to improve the magnet characteristics, Co, Al, Si, T are added as additive elements to the quenched alloy.
i, V, Cr, Mn, Ni, Cu, Ga, Zr, Nb,
Various elements such as Mo, Hf, Ta, W, Pt, Pb, Au, and C may be contained.

【0009】通常、急冷合金粉末は、単ロール法などの
メルトスピニング技術により、溶融した原料合金から作
成される非晶質急冷合金薄帯を粉砕することにより取得
されるものである。当該粉末を構成する個々の粒子は、
結晶化熱処理により、平均結晶粒径が500nm以下の
範囲にある磁性相を有する粒子(ナノコンポジット磁石
を製造するための急冷合金粉末を構成する個々の粒子
は、平均結晶粒径が500nm以下の範囲にある硬磁性
相と軟磁性相とが混在して磁気的に結合した微細組織を
有する粒子)とされる。粉末の平均粒度は、300μm
を超えると高密度化の過程における緻密化が円滑に進行
しない恐れがあるので、300μm以下が望ましく、1
0μm〜200μmがより望ましい。
[0009] Usually, the quenched alloy powder is obtained by crushing an amorphous quenched alloy ribbon formed from a melted raw material alloy by a melt spinning technique such as a single roll method. The individual particles that make up the powder are
Particles having a magnetic phase having an average crystal grain size in the range of 500 nm or less by crystallization heat treatment (individual particles constituting a quenched alloy powder for producing a nanocomposite magnet have an average crystal grain size in the range of 500 nm or less. Particles having a fine structure in which a hard magnetic phase and a soft magnetic phase are mixed and magnetically coupled to each other). The average particle size of the powder is 300 μm
If it exceeds, there is a possibility that densification may not proceed smoothly in the process of densification, so 300 μm or less is desirable and 1
0 μm to 200 μm is more desirable.

【0010】体積抵抗率が1×10−1Ω・cm以上の
絶縁成分としては、酸化イットリウム(Y)など
の希土類酸化物、窒化硼素、窒化アルミニウム、窒化珪
素などが挙げられる。これらは体積抵抗率が1×10
−1Ω・cm以上であることから、高密度化バルク磁石
中において、十分な絶縁性を発揮するとともに、後述す
る熱間成形条件においては、急冷合金粉末との反応性が
低いので、磁石特性(特に保磁力:HcJ)の劣化を引
き起こすようなことがない。
Examples of the insulating component having a volume resistivity of 1 × 10 −1 Ω · cm or more include rare earth oxides such as yttrium oxide (Y 2 O 3 ), boron nitride, aluminum nitride and silicon nitride. These have a volume resistivity of 1 × 10
Since it is −1 Ω · cm or more, it exhibits sufficient insulating properties in the densified bulk magnet, and has low reactivity with the rapidly-quenched alloy powder under the hot forming conditions described later, so the magnet characteristics (In particular, coercive force: H cJ ) is not deteriorated.

【0011】以上の急冷合金粉末と絶縁成分を使用し、
急冷合金粉末を構成する個々の粒子の表面に、絶縁成分
からなる絶縁層を、不活性ガス雰囲気中または真空中で
乾式法により形成することによって絶縁成分被覆粉末を
作成する。このような絶縁成分被覆粉末を熱間成形する
ことで、高密度化バルク磁石とした際に当該磁石が高い
電気抵抗を示すようにすることができる。絶縁成分の使
用量についてであるが、高密度化バルク磁石に求められ
る磁石特性(特に残留磁束密度:B)を考慮すると、
当該バルク磁石中の磁石部分の体積比率は少なくとも8
5体積%以上である必要があり、その比率は高ければ高
いほど望ましい。従って、絶縁成分の使用量は、その下
限は作用を十分に発揮させる観点から、高密度化バルク
磁石中の体積比率として1体積%以上となるように使用
することが望ましいが、その上限は15体積%となるよ
うに使用することが望ましく、10体積%となるように
使用することがより望ましく、5体積%となるように使
用することがさらに望ましい。
Using the above quenched alloy powder and insulating component,
An insulating layer composed of an insulating component is formed on the surface of each particle forming the quenched alloy powder by a dry method in an inert gas atmosphere or in a vacuum to prepare an insulating component-coated powder. By hot forming such an insulating component-coated powder, it is possible to make the magnet exhibit high electrical resistance when it is made into a densified bulk magnet. Regarding the amount of the insulating component used, considering the magnetic properties required for the densified bulk magnet (in particular, the residual magnetic flux density: Br ),
The volume ratio of the magnet portion in the bulk magnet is at least 8
It should be 5% by volume or more, and the higher the ratio, the more desirable. Therefore, the lower limit of the amount of the insulating component used is preferably 1% by volume or more as a volume ratio in the densified bulk magnet from the viewpoint of sufficiently exerting the action, but the upper limit thereof is 15%. It is preferable to use it so as to be a volume%, it is more preferable to use so as to be 10% by volume, and it is further preferable to use so as to be 5% by volume.

【0012】急冷合金粉末を構成する個々の粒子の表面
への絶縁層の形成を、アルゴンガスや窒素ガスなどの不
活性ガス雰囲気中または真空中で乾式法により行うこと
で、急冷合金粉末の酸化による磁石特性の劣化を防止す
る。プラズマCVD(化学気相蒸着)法、イオンプレー
ティング法、スパッタリング法などの気相成膜法は、そ
の方法上、不活性ガス雰囲気中や真空中で行われるもの
であるので、絶縁層を形成する工程中において、急冷合
金粉末が酸化することがない。従って、気相成膜法によ
る絶縁層の形成は好適な態様であるといえる。また、急
冷合金粉末と粉末の絶縁成分(この場合、当該粉末の平
均粒度は、急冷合金粉末と混合した際における均一分散
性や磁石の有効体積確保などの観点から、0.01μm
〜5μm(六方晶窒化硼素のような扁平形状粉末を使用
する場合はその平均厚みの値)であることが望ましい)
を用い、両者に機械的エネルギーを付与して絶縁層を形
成する方法、例えば、高速気流中衝撃法やメカノフュー
ジョン法などを採用してもよい。
Oxidation of the quenched alloy powder is performed by forming the insulating layer on the surface of each particle constituting the quenched alloy powder by a dry method in an atmosphere of an inert gas such as argon gas or nitrogen gas or in vacuum. To prevent the deterioration of the magnet characteristics. Since vapor deposition methods such as plasma CVD (chemical vapor deposition), ion plating and sputtering are performed in an inert gas atmosphere or in vacuum, an insulating layer is formed. The quenched alloy powder does not oxidize during the process. Therefore, it can be said that the formation of the insulating layer by the vapor deposition method is a preferable mode. Further, the quenching alloy powder and the insulating component of the powder (in this case, the average particle size of the powder is 0.01 μm from the viewpoint of uniform dispersibility when mixed with the quenching alloy powder and securing an effective volume of the magnet).
~ 5 μm (when using a flat-shaped powder such as hexagonal boron nitride, it is desirable that the average thickness).
Alternatively, a method of applying mechanical energy to both to form an insulating layer, for example, a high-speed air current impact method or a mechanofusion method may be adopted.

【0013】急冷合金粉末を構成する個々の粒子の表面
に形成される絶縁層の厚みは、5μmを超えると、磁石
としての有効体積が小さくなり、ボンド磁石よりも磁石
特性が低くなる恐れや、高密度化の過程において絶縁成
分被覆粉末を構成する粒子と粒子の間に無視できない空
隙が残存してしまい、当該空隙が緻密化の進行を阻害す
る恐れがある。従って、絶縁層の厚みは、5μm以下で
あることが望ましく、0.1μm〜3μmであることが
より望ましい。
If the thickness of the insulating layer formed on the surface of the individual particles constituting the quenched alloy powder exceeds 5 μm, the effective volume as a magnet becomes small, and the magnet characteristics may be lower than those of the bonded magnet. During the densification process, non-negligible voids remain between the particles forming the insulating component-coated powder, and the voids may hinder the progress of densification. Therefore, the thickness of the insulating layer is preferably 5 μm or less, and more preferably 0.1 μm to 3 μm.

【0014】以上のような方法で作成された絶縁成分被
覆粉末を出発材料として使用し、これを圧力が10MP
a以上、温度が400℃〜850℃の条件下で熱間成形
して、密度が6.5g/cm以上の、少なくとも磁石
部分と絶縁成分とからなる高密度化バルク磁石とする。
最適な熱間成形条件は、急冷合金粉末の組成や使用する
絶縁成分の種類によって適宜設定されるべきものである
が、一般に、圧力は、得られるバルク磁石の密度を所望
する数値とするためや金型強度の観点から、50MPa
〜500MPaとすることが望ましい。一方、温度は、
熱間成形する急冷合金粉末の結晶化状態を考慮して設定
すべきである。例えば、急冷合金粉末を構成する個々の
粒子が30体積%以上非晶質状態にある粉末からなる絶
縁成分被覆粉末を熱間成形する場合、400℃以上であ
れば、比較的低温においても、高い非晶質状態の存在割
合によって高密度化の過程における緻密化を円滑に進行
させることができる(この現象は塑性変形しにくい結晶
相である鉄基硼化物相を軟磁性相として有するナノコン
ポジット磁石を製造するための急冷合金粉末からなる絶
縁成分被覆粉末を熱間成形する場合において特に有利に
作用する)。しかしながら、当該粉末の結晶化温度未満
の温度では当該粉末を構成する個々の粒子の結晶化は進
行しないのでバルク磁石にはなりえない。従って、この
ような急冷合金粉末からなる絶縁成分被覆粉末を出発材
料として使用し、熱間成形だけで高密度化バルク磁石と
する場合、熱間成形の温度は、急冷磁石粉末の結晶化温
度(その組成や熱処理条件によって異なるが概ね550
℃〜800℃である)〜850℃とするべきである。高
密度化バルク磁石中の磁石部分の90体積%以上が結晶
質状態になるまで結晶化させることで、より優れた磁石
特性を有する高密度化バルク磁石とすることができる。
また、急冷合金粉末を構成する個々の粒子が高い結晶質
状態の存在割合を有する粉末からなる絶縁成分被覆粉末
を熱間成形する場合、熱間成形の温度は、急冷合金粉末
の組成や使用する絶縁成分の種類に応じて、望ましくは
550℃〜850℃の範囲内から、より望ましくは60
0℃〜750℃の範囲内から適宜設定する。
The insulating component coating powder prepared by the above method is used as a starting material, and the pressure is 10MP.
It is hot-formed under the condition of a or more and a temperature of 400 ° C. to 850 ° C. to obtain a densified bulk magnet having a density of 6.5 g / cm 3 or more and at least a magnet portion and an insulating component.
The optimum hot forming conditions should be appropriately set depending on the composition of the quenched alloy powder and the type of insulating component used, but generally, the pressure is set to a desired value for the density of the obtained bulk magnet. From the viewpoint of mold strength, 50 MPa
It is desirable to set the pressure to 500 MPa. On the other hand, the temperature is
It should be set in consideration of the crystallization state of the quenched alloy powder to be hot-formed. For example, in the case of hot-molding an insulating component-coated powder consisting of powder in which 30% by volume or more of individual particles constituting the quenched alloy powder are in an amorphous state, if the temperature is 400 ° C. or higher, it is high even at a relatively low temperature. Densification in the process of densification can be smoothly promoted by the existence ratio of the amorphous state (This phenomenon is due to the nanocomposite magnet having an iron-based boride phase, which is a crystalline phase that is difficult to plastically deform, as a soft magnetic phase. Particularly advantageous in the case of hot forming an insulating component-coated powder consisting of a quenched alloy powder for producing a). However, at a temperature lower than the crystallization temperature of the powder, crystallization of individual particles constituting the powder does not proceed, so that the bulk magnet cannot be used. Therefore, when an insulating component coating powder made of such a quenched alloy powder is used as a starting material and a densified bulk magnet is formed only by hot forming, the temperature of hot forming is the crystallization temperature of the quenched magnet powder ( 550 depending on the composition and heat treatment conditions
C. to 800.degree. C.) to 850.degree. By crystallizing until 90% by volume or more of the magnet portion in the densified bulk magnet is in a crystalline state, it is possible to obtain a densified bulk magnet having more excellent magnet characteristics.
Also, when hot-molding the insulating component-coated powder consisting of powders in which the individual particles that make up the quenched alloy powder have a high crystalline state abundance, the temperature of the hot-molding depends on the composition of the quenched alloy powder and the type used. Depending on the type of insulating component, it is preferably within the range of 550 ° C to 850 ° C, more preferably 60
The temperature is appropriately set within the range of 0 ° C to 750 ° C.

【0015】急冷合金粉末を構成する個々の粒子が30
体積%以上非晶質状態にある粉末からなる絶縁成分被覆
粉末を出発材料として使用し、熱間成形だけで高密度化
バルク磁石とする場合、ともすれば、結晶化反応に伴う
発熱により、装置内部の絶縁成分被覆粉末の温度制御を
うまく行えなくなることで、磁石中の微細な結晶粒が粗
大化してしまい、磁石特性が大きく劣化してしまうこと
があるので注意を払うべきである。このような事態は、
圧力が10MPa以上、温度が400℃〜急冷合金粉末
の結晶化温度の条件下で熱間成形して、高密度化の過程
における緻密化のみを進行させて高密度化バルク体を
得、この高密度化バルク体に対する結晶化熱処理を、1
MPa以下の圧力下(例えば、アルゴンガスや窒素ガス
などの不活性ガス雰囲気中または真空中)で、温度を急
冷合金粉末の結晶化温度〜850℃に制御して行うこと
により回避することができる。前述のように、急冷合金
粉末の結晶化温度は、その組成や熱処理条件によって異
なるが、概ね550℃〜800℃である。ナノコンポジ
ット磁石を製造するための急冷合金磁石の場合、組成に
よっては硬磁性相と軟磁性相とで結晶化温度が異なるこ
とに依存して2段階以上の結晶化過程を経るために、示
差熱分析などの熱分析を行うと、2段階以上の発熱ピー
クが観察されるものがある。このような組成の急冷合金
粉末の場合、当該粉末の結晶化温度は、最も高い温度で
結晶化する結晶相の結晶化温度を基準とすべきである。
従って、上記のように、熱間成形と結晶化熱処理を別工
程で行う場合における、熱間成形を行うための温度は、
400℃〜最も高い温度で結晶化する結晶相の結晶化温
度である。しかしながら、熱間成形の際に結晶化反応に
伴う発熱をできるだけ引き起こさないようにするために
は、当該温度は、400℃〜最も低い温度で結晶化する
結晶相の結晶化温度であることが望ましい。
There are 30 individual particles that make up the quenched alloy powder.
When an insulating component-coated powder made of powder in an amorphous state of at least volume% is used as a starting material and a densified bulk magnet is formed only by hot forming, the heat generated by the crystallization reaction causes Attention should be paid to the fact that fine crystal grains in the magnet may be coarsened and the magnet characteristics may be greatly deteriorated due to poor temperature control of the insulating component coating powder inside. Such a situation
Hot compaction is performed under the conditions of a pressure of 10 MPa or more and a temperature of 400 ° C. to the crystallization temperature of the quenched alloy powder, and only the densification in the densification process proceeds to obtain a densified bulk body. 1 crystallization heat treatment for densified bulk
It can be avoided by controlling the temperature at a crystallization temperature of the quenched alloy powder to 850 ° C. under a pressure of MPa or less (for example, in an inert gas atmosphere such as argon gas or nitrogen gas or in vacuum). . As described above, the crystallization temperature of the quenched alloy powder is generally 550 ° C. to 800 ° C., although it varies depending on its composition and heat treatment conditions. In the case of a quenched alloy magnet for producing a nanocomposite magnet, depending on the composition, the crystallization temperature is different between the hard magnetic phase and the soft magnetic phase, and thus the crystallization process is performed in two or more steps, resulting in a differential heat When thermal analysis such as analysis is performed, in some cases, two or more stages of exothermic peaks are observed. In the case of a quenched alloy powder having such a composition, the crystallization temperature of the powder should be based on the crystallization temperature of the crystal phase that crystallizes at the highest temperature.
Therefore, as described above, when performing hot forming and crystallization heat treatment in separate steps, the temperature for performing hot forming is
It is a crystallization temperature of a crystal phase that is crystallized at 400 ° C. to the highest temperature. However, the temperature is preferably 400 ° C. to the crystallization temperature of the crystal phase that crystallizes at the lowest temperature in order to prevent as much heat generation as possible due to the crystallization reaction during hot forming. .

【0016】熱間成形するための方法は、種々知られて
いるが、本発明においてはそのいずれをも採用すること
ができ、バルク磁石の形状などに基づいて、圧縮成形、
押し出し成形、圧延成形などを適宜採用すればよい。例
えば、圧縮成形を行う場合、ホットプレス焼結(HP)
装置や放電プラズマ焼結(SPS)装置など公知の装置
を使用して行えばよい。
Although various methods for hot forming are known, any of them can be adopted in the present invention. Based on the shape of the bulk magnet and the like, compression molding,
Extrusion molding, roll molding and the like may be appropriately adopted. For example, when performing compression molding, hot press sintering (HP)
A known apparatus such as an apparatus or a spark plasma sintering (SPS) apparatus may be used.

【0017】熱間成形するに際し、高密度化の過程にお
ける緻密化の進行促進や磁石強度の向上を目的として、
出発材料に結合剤を添加してもよい。結合剤としては、
上記の熱間成形条件において容易に変形し、かつ、すぐ
れた絶縁性を示すガラス質材料や耐熱性樹脂(シリコー
ン樹脂やポリイミド樹脂など)などが挙げられる。結合
剤は、例えば、絶縁成分被覆粉末に混合して使用すれば
よい。絶縁成分被覆粉末に混合して使用すれば、急冷合
金粉末と結合剤との反応(特に急冷合金粉末を構成する
粒子に含まれるRと結合剤との反応)が絶縁成分の存在
により確実に抑制される。前述の希土類酸化物、窒化硼
素、窒化アルミニウム、窒化珪素などは、急冷合金粉末
と結合剤との反応を効果的に抑制する絶縁成分である。
結合剤の使用量は、絶縁成分の使用量との合計量とし
て、高密度化バルク磁石中の体積比率が15体積%以下
となるように使用することが望ましく、10体積%以下
となるように使用することがより望ましく、5体積%以
下となるように使用することがさらに望ましい。
At the time of hot forming, in order to promote the progress of densification and the improvement of magnet strength in the process of high density,
A binder may be added to the starting material. As a binder,
Examples thereof include glassy materials and heat-resistant resins (silicone resin, polyimide resin, etc.) that are easily deformed under the above hot molding conditions and exhibit excellent insulating properties. The binder may be used by being mixed with the insulating component coating powder, for example. When used as a mixture with the insulating component coating powder, the reaction between the quenching alloy powder and the binder (particularly the reaction between R contained in the particles forming the quenching alloy powder and the binder) is reliably suppressed by the presence of the insulating component. To be done. The above-mentioned rare earth oxide, boron nitride, aluminum nitride, silicon nitride and the like are insulating components that effectively suppress the reaction between the quenched alloy powder and the binder.
The total amount of the binder and the amount of the insulating component used is preferably such that the volume ratio in the densified bulk magnet is 15% by volume or less, and 10% by volume or less. It is more desirable to use it, and it is even more desirable to use it so as to be 5% by volume or less.

【0018】[0018]

【実施例】本発明を以下の実施例によってさらに詳細に
説明するが、本発明はこれに限定されるものではない。
The present invention will be explained in more detail by the following examples, but the present invention is not limited thereto.

【0019】実施例その1: 〈急冷合金粉末について〉Nd−Fe−B系急冷磁石を
製造するための急冷合金粉末として、市販のMQP−A
(MQI社製:平均粒径が150μmで個々の粒子は9
0体積%以上結晶質状態)を使用した。
Example 1: <Quenched alloy powder> A commercially available MQP-A is used as a quenched alloy powder for producing a Nd-Fe-B system quenched magnet.
(MQI: average particle size is 150 μm and each particle is 9
0 volume% or more crystalline state) was used.

【0020】〈サンプル粉末について〉 1.粉末A MQP−A自体をそのまま粉末Aとした。<Sample powder> 1. Powder A MQP-A itself was used as powder A as it was.

【0021】2.粉末B 粉末Aを構成する個々の粒子の表面に絶縁成分である窒
化硼素(体積抵抗率:約1014Ω・cm)からなる厚
みが約4μmの絶縁層を形成して窒化硼素被覆粉末を
得、当該粉末を粉末Bとした。なお、窒化硼素被覆粉末
の作成は、アルゴンガス雰囲気中での高周波プラズマC
VD法により、平均厚みが約0.4μmの六方晶窒化硼
素粉末を使用して行った。得られた窒化硼素被覆粉末を
粉砕して当該粉末中の窒化硼素量を蛍光X線装置で測定
したところ、約10体積%であった。
2. Powder B A boron nitride-coated powder was obtained by forming an insulating layer of boron nitride (volume resistivity: about 10 14 Ω · cm) having an thickness of about 4 μm on the surface of each particle constituting powder A. The powder was designated as powder B. It should be noted that the boron nitride coated powder was prepared by using high frequency plasma C in an argon gas atmosphere.
By the VD method, hexagonal boron nitride powder having an average thickness of about 0.4 μm was used. The obtained boron nitride-coated powder was pulverized and the amount of boron nitride in the powder was measured by a fluorescent X-ray apparatus, and it was about 10% by volume.

【0022】3.粉末C 粉末Aと平均厚みが約0.4μmの六方晶窒化硼素粉末
を均一に混合した後(体積比で9:1)、アルゴンガス
雰囲気中で、高速気流中衝撃法により、粉末Aを構成す
る個々の粒子の表面に窒化硼素からなる厚みが約4μm
の絶縁層を形成して窒化硼素被覆粉末を得、当該粉末を
粉末Cとした。
3. Powder C Powder A and hexagonal boron nitride powder having an average thickness of about 0.4 μm are uniformly mixed (volume ratio 9: 1), and then powder A is formed by an impact method in a high-speed air stream in an argon gas atmosphere. The thickness of boron nitride on the surface of each particle is about 4 μm
The insulating layer was formed to obtain a boron nitride-coated powder, which was designated as powder C.

【0023】4.粉末D アルゴンガス流気中で攪拌されている粉末Aに対し、平
均厚みが約0.4μmの六方晶窒化硼素粉末をエタノー
ルに分散させた分散液をスプレーで吹付けた後、アルゴ
ンガス雰囲気中、100℃で10分間乾燥させ、粉末A
と窒化硼素が体積比で9:1である、粉末Aを構成する
個々の粒子の表面に窒化硼素を被着させた粉末を得、当
該粉末を粉末Dとした。
4. Powder D After spraying a dispersion liquid prepared by dispersing hexagonal boron nitride powder having an average thickness of about 0.4 μm in ethanol to powder A stirred in flowing argon gas with a spray, and then in an argon gas atmosphere. , Dried at 100 ℃ for 10 minutes, powder A
A powder obtained by depositing boron nitride on the surface of each particle constituting the powder A having a volume ratio of boron nitride of 9: 1 and the powder was designated as powder D.

【0024】5.粉末E 粉末Aと平均厚みが約0.4μmの六方晶窒化硼素粉末
をアルゴンガス雰囲気中でボールミルを用いて均一に混
合し(体積比で9:1)、得られた粉末を粉末Eとし
た。
5. Powder E Powder A and hexagonal boron nitride powder having an average thickness of about 0.4 μm were uniformly mixed using a ball mill in an argon gas atmosphere (volume ratio 9: 1), and the obtained powder was designated as Powder E. .

【0025】〈バルク磁石の製造例1〜5〉上記の5種
類の粉末A〜粉末Eを使用し、各々の粉末35gから直
径20mmの円柱状バルク磁石を製造した。熱間成形は
放電プラズマ焼結装置を使用した圧縮成形により行っ
た。具体的には、図1に示すような、内側にスリーブを
設けた超硬合金製のダイと超硬合金製のパンチからなる
金型を用い、この金型に急冷合金粉末を充填してから放
電プラズマ焼結装置にセットし、装置内を1Pa以下に
減圧した後、196MPaの加圧下でパルス通電焼結を
行った。パルス通電焼結における昇温速度は40℃/m
inとし、650℃で5分間保持した後、通電を停止し
てから放冷してバルク磁石を得た。なお、放電プラズマ
焼結時の温度は、スリーブに接する部分にまでダイに孔
を開け、当該孔に熱電対を挿入して測定した。
<Manufacturing Examples 1 to 5 of Bulk Magnet> Using the above-mentioned five kinds of powder A to powder E, a cylindrical bulk magnet having a diameter of 20 mm was manufactured from 35 g of each powder. Hot forming was performed by compression molding using a discharge plasma sintering device. Specifically, as shown in FIG. 1, a die made of a cemented carbide die having a sleeve provided inside and a punch made of cemented carbide is used, and after this die is filled with the quenched alloy powder, The apparatus was set in a spark plasma sintering apparatus, the pressure inside the apparatus was reduced to 1 Pa or less, and pulse current sintering was performed under a pressure of 196 MPa. Temperature rising rate in pulse current sintering is 40 ° C / m
After being kept at in and held at 650 ° C. for 5 minutes, the energization was stopped and then allowed to cool to obtain a bulk magnet. The temperature at the time of spark plasma sintering was measured by forming a hole in the die up to the portion in contact with the sleeve and inserting a thermocouple into the hole.

【0026】〈バルク磁石の評価〉上記の製造例1〜5
で得られた5種類のバルク磁石を切断・研磨し、各々の
バルク磁石から5mm×5mm×5mmの立方体状試験
片を作成し、その寸法と重量から密度を求めた。また、
この試験片について3.2MA/mのパルス磁界を用い
て着磁を行い、BHトレーサーを使用してその磁石特性
を測定した。さらに、5種類のバルク磁石を切断・研磨
し、各々のバルク磁石から5mm×5mm×15mmの
直方体状試験片を作成し、この試験片について四端子法
にて比抵抗を測定した。結果を表1に示す。
<Evaluation of Bulk Magnet> Production Examples 1 to 5 above
The 5 types of bulk magnets obtained in 1. were cut and polished, and a cube-shaped test piece of 5 mm × 5 mm × 5 mm was prepared from each of the bulk magnets, and the density was determined from the dimensions and weight. Also,
This test piece was magnetized using a pulse magnetic field of 3.2 MA / m, and its magnet characteristics were measured using a BH tracer. Further, 5 types of bulk magnets were cut and polished to form a rectangular parallelepiped test piece of 5 mm × 5 mm × 15 mm from each bulk magnet, and the specific resistance of this test piece was measured by a four-terminal method. The results are shown in Table 1.

【0027】[0027]

【表1】 [Table 1]

【0028】表1から明らかなように、製造例2と3で
得られたバルク磁石は、粉末Bと粉末C、即ち、粉末A
を構成する個々の粒子の表面に絶縁成分である窒化硼素
からなる絶縁層が形成された窒化硼素被覆粉末を出発材
料として使用して製造されたものであるが、優れた磁石
特性を有するとともに高い電気抵抗を示し、密度が6.
5g/cm以上の高密度化されたバルク磁石であっ
た。一方、製造例1で得られたバルク磁石は、粉末Aを
出発材料として使用して製造されたものであるが、絶縁
成分を使用していないことから、磁石特性と高密度化の
点では優れるものの、電気抵抗が低いという欠点を有し
ていた。製造例4で得られたバルク磁石は、粉末Dを出
発材料として使用して製造されたものであるが、粉末A
を構成する個々の粒子の表面への窒化硼素の被着を湿式
法により行ったため、粉末Aが酸化してしまったことか
ら磁石特性の点で劣るという欠点を有していた。製造例
5で得られたバルク磁石は、粉末Eを出発材料として使
用して製造されたものであるが、粉末Aを構成する個々
の粒子の表面に窒化硼素からなる絶縁層を確実かつ均一
に形成できなかったことから、十分な電気抵抗が付与さ
れていなかった。
As is clear from Table 1, the bulk magnets obtained in Production Examples 2 and 3 are powder B and powder C, that is, powder A.
It is produced by using as a starting material a boron nitride-coated powder in which an insulating layer made of boron nitride, which is an insulating component, is formed on the surface of each particle that constitutes It has an electric resistance and a density of 6.
The bulk magnet had a high density of 5 g / cm 3 or more. On the other hand, the bulk magnet obtained in Production Example 1 is manufactured using the powder A as a starting material, but it is excellent in terms of magnet characteristics and densification because it does not use an insulating component. However, it had the drawback of low electrical resistance. The bulk magnet obtained in Production Example 4 was produced using Powder D as a starting material.
Since the deposition of boron nitride on the surface of each of the particles constituting the above was carried out by a wet method, the powder A was oxidized, so that it had a defect that the magnet characteristics were inferior. The bulk magnet obtained in Production Example 5 was produced by using the powder E as a starting material, but an insulating layer made of boron nitride was formed on the surface of each particle constituting the powder A reliably and uniformly. Since it could not be formed, sufficient electric resistance was not imparted.

【0029】実施例その2:絶対圧力が30kPaのア
ルゴンガス雰囲気中で、厚み5μm〜15μmのクロム
めっき層を形成した直径350mmの銅合金製冷却ロー
ルを15m/minの周速度で回転させ、単ロール法に
よって、NdFe14B(硬磁性相)とFeB(軟
磁性相)とで構成されるナノコンポジット磁石を製造す
るためのNd 5.5Fe6618.5CoCr
組成を有する急冷合金薄帯を作成した。得られた急冷合
金薄帯を透過電子顕微鏡で観察したところ、ほぼ100
%が非晶質であった。また、この急冷合金薄体の結晶化
温度を示差走査熱分析装置(DSC)を用いて測定した
ところ、570℃であった。この非晶質急冷合金薄帯を
パワーミルおよびビンディスクミルを用いて粉砕した
後、粒度調整を行って、平均粒径が約75μmの非晶質
急冷合金粉末を得た。実施例その1における粉末Bを作
成する方法と同様の方法で、この非晶質急冷合金粉末を
構成する個々の粒子の表面に絶縁成分である窒化硼素か
らなる厚みが約4μmの絶縁層を形成して窒化硼素被覆
粉末を得、当該粉末を出発材料として使用して実施例1
と同様の方法でバルク磁石を製造した。このバルク磁石
を実施例その1と同様の方法で評価したところ、優れた
磁石特性を有するとともに高い電気抵抗を示し、密度が
6.5g/cm以上の高密度化されたバルク磁石であ
った。
Example 2: Absolute pressure of 30 kPa
Chromium with a thickness of 5 μm to 15 μm in a Lgon gas atmosphere
A cooling alloy made of copper alloy with a diameter of 350 mm and a plating layer
Rotating at a peripheral speed of 15 m / min for single roll method
Therefore, NdTwoFe14B (hard magnetic phase) and FeThreeB (soft
Magnetic phase) and a nanocomposite magnet composed of
Nd for 5.5Fe66B18.5Co5Cr5of
A quenched alloy ribbon having a composition was prepared. Quenching obtained
When the gold ribbon was observed with a transmission electron microscope, it was almost 100
% Was amorphous. In addition, crystallization of this quenched alloy thin body
Temperature was measured using a differential scanning calorimeter (DSC)
However, it was 570 ° C. This amorphous quenched alloy ribbon
Grinded using power mill and bin disc mill
After that, the particle size is adjusted and the average particle size is about 75 μm.
A quenched alloy powder was obtained. Prepare powder B in Example 1
This amorphous quenched alloy powder is prepared by the same method as
Is boron nitride as an insulating component on the surface of each constituent particle?
Coating of boron nitride with a thickness of about 4 μm
A powder was obtained, which was used as a starting material in Example 1
A bulk magnet was manufactured in the same manner as in. This bulk magnet
Was evaluated in the same manner as in Example 1, and was excellent.
It has magnet characteristics, high electrical resistance, and density
6.5 g / cmThreeThese are bulk magnets with high density
It was.

【0030】[0030]

【発明の効果】本発明によれば、優れた磁石特性を有す
るとともに高い電気抵抗を示す高密度化R−Fe−B系
急冷バルク磁石の簡便な製造方法が提供される。
According to the present invention, there is provided a simple method for producing a densified R-Fe-B-based quenched bulk magnet having excellent magnet characteristics and high electric resistance.

【図面の簡単な説明】[Brief description of drawings]

【図1】 実施例においてバルク磁石を製造するために
使用した金型の模式図(一部透視図)。
FIG. 1 is a schematic diagram (partial perspective view) of a mold used to manufacture a bulk magnet in an example.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01F 1/08 H01F 1/08 A Fターム(参考) 4K018 AA27 BA18 BC25 BC28 DA31 DA32 EA01 EA21 KA45 5E040 AA04 BC01 BC08 CA01 HB07 HB11 HB17 NN05 NN18 5E062 CC05 CD04 CE04 CG02 CG03 CG07 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) H01F 1/08 H01F 1/08 AF Term (reference) 4K018 AA27 BA18 BC25 BC28 DA31 DA32 EA01 EA21 KA45 5E040 AA04 BC01 BC08 CA01 HB07 HB11 HB17 NN05 NN18 5E062 CC05 CD04 CE04 CG02 CG03 CG07

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 R−Fe−B系急冷磁石を製造するため
の急冷合金粉末を構成する個々の粒子の表面に、体積抵
抗率が1×10−1Ω・cm以上の絶縁成分からなる絶
縁層を、不活性ガス雰囲気中または真空中で乾式法によ
り形成することによって絶縁成分被覆粉末を作成した
後、この絶縁成分被覆粉末を出発材料として使用し、こ
れを圧力が10MPa以上、温度が400℃〜850℃
の条件下で熱間成形して、密度が6.5g/cm以上
の、少なくとも磁石部分と絶縁成分とからなる高密度化
バルク磁石とすることを特徴とする希土類系永久磁石の
製造方法。
1. An insulation comprising an insulating component having a volume resistivity of 1 × 10 −1 Ω · cm or more on the surface of each particle constituting a quenched alloy powder for producing an R—Fe—B system quenched magnet. After forming the insulating component coating powder by forming the layer by a dry method in an inert gas atmosphere or in a vacuum, this insulating component coating powder is used as a starting material, and the pressure is 10 MPa or more and the temperature is 400 MPa or more. ℃ ~ 850 ℃
The method for producing a rare earth-based permanent magnet, comprising hot-forming under the conditions described above to obtain a densified bulk magnet having a density of 6.5 g / cm 3 or more and at least a magnet portion and an insulating component.
【請求項2】 絶縁成分が希土類酸化物、窒化硼素、窒
化アルミニウム、窒化珪素から選ばれる少なくとも一つ
であることを特徴とする請求項1記載の製造方法。
2. The method according to claim 1, wherein the insulating component is at least one selected from rare earth oxides, boron nitride, aluminum nitride, and silicon nitride.
【請求項3】 不活性ガス雰囲気中または真空中で行う
乾式法が気相成膜法であることを特徴とする請求項1ま
たは2記載の製造方法。
3. The manufacturing method according to claim 1, wherein the dry method performed in an inert gas atmosphere or in a vacuum is a vapor phase film forming method.
【請求項4】 絶縁層の厚みを5μm以下とすることを
特徴とする請求項1乃至3のいずれかに記載の製造方
法。
4. The manufacturing method according to claim 1, wherein the thickness of the insulating layer is 5 μm or less.
【請求項5】 請求項1乃至4のいずれかに記載の製造
方法で製造されたことを特徴とする高密度化R−Fe−
B系急冷バルク磁石。
5. A densified R-Fe- which is manufactured by the manufacturing method according to any one of claims 1 to 4.
B type quench bulk magnet.
【請求項6】 R−Fe−B系急冷磁石を製造するため
の急冷合金粉末を構成する個々の粒子の表面に、体積抵
抗率が1×10−1Ω・cm以上の絶縁成分からなる絶
縁層が、不活性ガス雰囲気中または真空中で乾式法によ
り形成されていることを特徴とする絶縁成分被覆粉末。
6. An insulation comprising an insulating component having a volume resistivity of 1 × 10 −1 Ω · cm or more on the surface of each particle constituting a quenched alloy powder for producing an R—Fe—B system quenched magnet. An insulating component coating powder, wherein the layer is formed by a dry method in an inert gas atmosphere or in a vacuum.
JP2002053750A 2002-02-28 2002-02-28 Rare earth permanent magnet manufacturing method Expired - Lifetime JP4337300B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002053750A JP4337300B2 (en) 2002-02-28 2002-02-28 Rare earth permanent magnet manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002053750A JP4337300B2 (en) 2002-02-28 2002-02-28 Rare earth permanent magnet manufacturing method

Publications (2)

Publication Number Publication Date
JP2003257763A true JP2003257763A (en) 2003-09-12
JP4337300B2 JP4337300B2 (en) 2009-09-30

Family

ID=28665091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002053750A Expired - Lifetime JP4337300B2 (en) 2002-02-28 2002-02-28 Rare earth permanent magnet manufacturing method

Country Status (1)

Country Link
JP (1) JP4337300B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005142374A (en) * 2003-11-07 2005-06-02 Hitachi Ltd Powder for high-resistance rare earth magnet, manufacturing method thereof, rare earth magnet, manufacturing method thereof, rotor for motor, and motor
JP2005251995A (en) * 2004-03-04 2005-09-15 Nissan Motor Co Ltd Permanent magnet
JP2007005668A (en) * 2005-06-27 2007-01-11 Nissan Motor Co Ltd Rare earth magnet and its manufacturing method
JP2008130781A (en) * 2006-11-21 2008-06-05 Hitachi Ltd Magnet, motor using magnet, and manufacturing method of magnet
JP2011181942A (en) * 2011-04-18 2011-09-15 Nissan Motor Co Ltd Permanent magnet

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2730108T3 (en) 2005-11-18 2019-11-08 Mevion Medical Systems Inc Radiation therapy of charged particles
US8003964B2 (en) 2007-10-11 2011-08-23 Still River Systems Incorporated Applying a particle beam to a patient
CN104812443B (en) 2012-09-28 2018-02-02 梅维昂医疗系统股份有限公司 particle therapy system
CN104812444B (en) 2012-09-28 2017-11-21 梅维昂医疗系统股份有限公司 The energy adjustment of the particle beams
US10254739B2 (en) 2012-09-28 2019-04-09 Mevion Medical Systems, Inc. Coil positioning system
US9622335B2 (en) 2012-09-28 2017-04-11 Mevion Medical Systems, Inc. Magnetic field regenerator
WO2015048468A1 (en) 2013-09-27 2015-04-02 Mevion Medical Systems, Inc. Particle beam scanning
US10675487B2 (en) 2013-12-20 2020-06-09 Mevion Medical Systems, Inc. Energy degrader enabling high-speed energy switching
US9661736B2 (en) 2014-02-20 2017-05-23 Mevion Medical Systems, Inc. Scanning system for a particle therapy system
US10786689B2 (en) 2015-11-10 2020-09-29 Mevion Medical Systems, Inc. Adaptive aperture
WO2018009779A1 (en) 2016-07-08 2018-01-11 Mevion Medical Systems, Inc. Treatment planning
US10653892B2 (en) 2017-06-30 2020-05-19 Mevion Medical Systems, Inc. Configurable collimator controlled using linear motors
JP2022524103A (en) 2019-03-08 2022-04-27 メビオン・メディカル・システムズ・インコーポレーテッド Irradiation by column and generation of treatment plan for it

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005142374A (en) * 2003-11-07 2005-06-02 Hitachi Ltd Powder for high-resistance rare earth magnet, manufacturing method thereof, rare earth magnet, manufacturing method thereof, rotor for motor, and motor
JP2005251995A (en) * 2004-03-04 2005-09-15 Nissan Motor Co Ltd Permanent magnet
JP2007005668A (en) * 2005-06-27 2007-01-11 Nissan Motor Co Ltd Rare earth magnet and its manufacturing method
JP2008130781A (en) * 2006-11-21 2008-06-05 Hitachi Ltd Magnet, motor using magnet, and manufacturing method of magnet
JP2011181942A (en) * 2011-04-18 2011-09-15 Nissan Motor Co Ltd Permanent magnet

Also Published As

Publication number Publication date
JP4337300B2 (en) 2009-09-30

Similar Documents

Publication Publication Date Title
JP4337300B2 (en) Rare earth permanent magnet manufacturing method
JP4591633B2 (en) Nanocomposite bulk magnet and method for producing the same
EP3291249B1 (en) Manganese bismuth-based sintered magnet having improved thermal stability and preparation method therefor
JP5125818B2 (en) Magnetic compact and manufacturing method thereof
EP1154445A2 (en) Alloy for high-performance rare earth permanent magnet and manufacturing method thereof
JP2012253247A (en) Composite magnetic material and method for manufacturing the same
WO2011030387A1 (en) Magnet material, permanent magnet, and motor and electricity generator each utilizing the permanent magnet
JP2004146713A (en) Manufacturing methods of r-t-n-based magnetic powder and r-t-n-based bond magnet
JP4186478B2 (en) Rare earth permanent magnet manufacturing method
JP2000003808A (en) Hard magnetic material
JP2000357606A (en) Compound isotropic bonded magnet and rotary machine using the magnet
JPH07263210A (en) Permanent magnet, alloy powder for permanent magnet and their production
JP2002043110A (en) Magnetic anisotropic agglomerate of r2t17nx magnet material, its manufacturing method, and bonded magnet
JP3178848B2 (en) Manufacturing method of permanent magnet
JPH1171645A (en) Hard magnetic alloy sintered compact and its production
JP2999648B2 (en) Rare earth magnet, rare earth magnet alloy powder and method for producing the same
JP3547016B2 (en) Rare earth bonded magnet and method of manufacturing the same
JPH05135929A (en) Rare-earth magnet and alloy powder for rare-metal magnet and their production
JP2005272924A (en) Material for anisotropic exchange spring magnet, and manufacturing method therefor
JP3795694B2 (en) Magnetic materials and bonded magnets
JPH0657311A (en) Production of rare earth alloy magnet powder
JP2966168B2 (en) Rare earth magnet, alloy powder for rare earth magnet and method for producing the same
JP3459440B2 (en) Rare earth magnet, rare earth magnet alloy powder and method for producing the same
JP3411659B2 (en) Rare earth magnet, rare earth magnet alloy powder and method for producing the same
JP2004263275A (en) R-Fe-N MAGNET POWDER AND ITS PRODUCTION METHOD

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041213

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070607

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080819

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080902

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090609

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090622

R150 Certificate of patent or registration of utility model

Ref document number: 4337300

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120710

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130710

Year of fee payment: 4

EXPY Cancellation because of completion of term