JP2005272924A - Material for anisotropic exchange spring magnet, and manufacturing method therefor - Google Patents

Material for anisotropic exchange spring magnet, and manufacturing method therefor Download PDF

Info

Publication number
JP2005272924A
JP2005272924A JP2004086964A JP2004086964A JP2005272924A JP 2005272924 A JP2005272924 A JP 2005272924A JP 2004086964 A JP2004086964 A JP 2004086964A JP 2004086964 A JP2004086964 A JP 2004086964A JP 2005272924 A JP2005272924 A JP 2005272924A
Authority
JP
Japan
Prior art keywords
ribbon
exchange spring
spring magnet
magnet material
anisotropic exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004086964A
Other languages
Japanese (ja)
Inventor
Mikio Shindo
幹夫 新藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Neomax Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Neomax Co Ltd filed Critical Neomax Co Ltd
Priority to JP2004086964A priority Critical patent/JP2005272924A/en
Publication of JP2005272924A publication Critical patent/JP2005272924A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a material for an anisotropic exchange spring magnet through anisotropizing a hard magnetism phase by using the conventional step of rapidly quenching a molten metal and besides another anisotropizing means, and thereby to provide the material for the anisotropic exchange spring magnet which has a higher magnetic properties than ever. <P>SOLUTION: The method for manufacturing the material for the anisotropic exchange spring magnet comprises the steps of: forming a ribbon having an amorphous structure by rapidly quenching a magnet alloy; coating the surface of the ribbon with a film having a different composition from that of the ribbon; and heat-treating the ribbon coated with the film. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は広範囲な磁石応用品分野、例えば各種の回転機、静電現像方式のプリンタや複写機等に用いるマグネットロール、ボイスコイルモータやリニアモータ等に代表される各種のアクチュエータ、音響用スピーカ、ブザー、センサー、吸着又は磁界発生用磁石等に有用であり、Nd2Fe14BやSmFe7Nx等の硬磁性相、α-Fe相やFe3B相等の軟磁性相とする異方性交換スプリング磁石材料とその製造方法に関する。 The present invention is applicable to a wide range of magnet application fields, for example, various rolls, magnet rolls used in electrostatic development printers and copiers, various actuators typified by voice coil motors and linear motors, acoustic speakers, Useful for buzzers, sensors, magnets for adsorption or magnetic field generation, etc., anisotropy to make hard magnetic phase such as Nd 2 Fe 14 B and SmFe 7 N x , soft magnetic phase such as α-Fe phase and Fe 3 B phase The present invention relates to an exchange spring magnet material and a manufacturing method thereof.

エレクトロニクス機器の小型・軽量化に対応して、永久磁石材料の高性能化が進められている。希土類元素(R)、遷移金属(T)を使用したボンド磁石はフェライト焼結磁石に比べて形状自由度に富み、加工性に優れ、高い磁気特性を有することから、今後各種磁石応用品分野への採用が検討されている。従来のR−TM−B系またはR’-TM-N系等の超急冷薄帯は、薄帯のほぼ全体が硬磁性相であり、結晶粒の結晶格子が部分的に配向したものもあるが、磁石特性として十分な保磁力を有したものはない。現在、最高の磁石特性を有するR−TM−B系磁石の磁気特性を上回る可能性のある材料の一例として、交換スプリング磁石が挙げられる。交換スプリング磁石は、特許文献1等に記載されるように硬磁性相と軟磁性相の二相からなる超微細結晶組織で構成される永久磁石であり、磁化の大きい軟磁性相と保磁力の大きい硬磁性相とを組み合わせ、これらを交換相互作用により磁気的に結合させることで高いエネルギ−積を得ようというものである。一般的な製造方法として、Rリッチな組成の溶湯が回転冷却ロール上に噴出され、急冷凝固された薄帯となる。この薄帯が熱処理されることで薄帯の組織が硬磁性相と軟磁性相に分離され、交換スプリング型磁石の原料となる。これら薄帯は粉砕後、樹脂と混合・成形され、ボンド磁石として使用される。   In response to the reduction in size and weight of electronic equipment, the performance of permanent magnet materials has been improved. Bond magnets using rare earth elements (R) and transition metals (T) have a higher degree of freedom in shape than ferrite sintered magnets, have excellent workability, and have high magnetic properties. The adoption of is considered. In conventional ultra-quenched ribbons such as R-TM-B or R'-TM-N, almost all ribbons are in a hard magnetic phase, and some crystal lattices are partially oriented. However, no magnet has sufficient coercive force. An example of a material that may possibly exceed the magnetic properties of the R-TM-B magnet having the best magnet properties is an exchange spring magnet. The exchange spring magnet is a permanent magnet composed of an ultrafine crystal structure composed of two phases of a hard magnetic phase and a soft magnetic phase as described in Patent Document 1 and the like, and has a soft magnetic phase having a large magnetization and a coercive force. It is intended to obtain a high energy product by combining a large hard magnetic phase and magnetically coupling them by exchange interaction. As a general manufacturing method, a melt having an R-rich composition is ejected onto a rotating cooling roll to form a rapidly solidified ribbon. By heat-treating the ribbon, the ribbon structure is separated into a hard magnetic phase and a soft magnetic phase, and becomes a raw material for an exchange spring type magnet. These ribbons are pulverized, mixed and molded with resin, and used as bonded magnets.

交換スプリング磁石においては、R.Skomski and J.M.D.Coey:Phys.Rev.B,48,812 (1993)に述べられているように理論的にはBHmaxがNd2Fe14Bの理論値64MGOeを超える可能性があるのにもかかわらず、異方性化できていないためにその潜在能力を十分に発揮できていない。例えば、特許文献2では、その異方性化の手段として、内部に永久磁石を埋め込んだ回転金属ロールを用いて溶湯を急冷凝固すること、溶湯を噴出するノズルと回転金属ロール間に磁界を印加させることが記載されており、これにより異方性化された磁石粉ができるとしている。
特開2003−286548号公報((0023)〜(0026)、図1) 特開2003−234204号公報((0008)、図1) R.Skomski and J.M.D.Coey:Phys.Rev.B,48,812 (1993)
In exchange spring magnets, BHmax may theoretically exceed the theoretical value of 64 MGOe of Nd 2 Fe 14 B as described in R. Skomski and JMD Coey: Phys. Rev. B, 48, 812 (1993) Nevertheless, the potential cannot be fully exhibited because it is not anisotropic. For example, in Patent Document 2, as a means of anisotropy, a molten metal is rapidly solidified using a rotating metal roll having a permanent magnet embedded therein, and a magnetic field is applied between a nozzle for ejecting the molten metal and the rotating metal roll. It is described that an anisotropic magnet powder can be formed.
JP 2003-286548 A ((0023)-(0026), FIG. 1) Japanese Patent Laying-Open No. 2003-234204 ((0008), FIG. 1) R. Skomski and JMD Coey: Phys. Rev. B, 48, 812 (1993)

特許文献2の実施例では、その異方性化された磁石粉を用いることで、特性最大エネルギ積が300kJ/m3のボンド磁石が製造できると記載されている。しかしながら、溶湯の超急冷は超短時間で行われるため、溶湯の超急冷中に磁場が印加されても磁場に対する応答ができるか不明であり、安定した特性の磁粉や高特性の磁粉が製造できるかどうかは疑問の余地がある。
よって、本発明が解決しようとする課題は、溶湯を超急冷する工程は従来どおりでありながら別の異方性化手段を用いることで薄帯中の硬磁性相を異方性化する製造方法を提供し、かつこれにより従来より格段に磁気特性の高い異方性交換スプリング磁石材料を提供するものである。
In an example of Patent Document 2, it is described that a bonded magnet having a characteristic maximum energy product of 300 kJ / m 3 can be manufactured by using the anisotropic magnet powder. However, since the rapid quenching of the molten metal is performed in an extremely short time, it is unclear whether a response to the magnetic field can be applied even when a magnetic field is applied during the rapid quenching of the molten metal, and stable magnetic powder and high-performance magnetic powder can be produced. There is room for doubt.
Therefore, the problem to be solved by the present invention is that the process of super-cooling the molten metal is the same as the conventional process, but another anisotropy means is used to make the hard magnetic phase anisotropy in the ribbon. Thus, an anisotropic exchange spring magnet material having much higher magnetic properties than conventional ones is provided.

上記課題を解決した本発明の異方性交換スプリング磁石材料の製造方法は、磁石合金を超急冷法によりアモルファスの組織を有する薄帯とする工程と、前記薄帯の表面にこの薄帯と組成が異なる皮膜を被覆する工程と、この皮膜を被覆した薄帯に結晶化のための熱処理を行う工程からなることを特徴とするものである。
この製造方法を用いることで、薄帯形状の異方性交換スプリング磁石材料であって、前記異方性交換スプリング磁石材料の表面にこの磁石材料の組成とは異なる組成の皮膜が被覆されており、かつ薄帯内部の硬磁性相の結晶軸が配向していることを特徴とするものが得られる。また、この薄帯形状の異方性交換スプリング磁石材料を粉砕することで、粉末内部の硬磁性相の結晶軸が配向している粉末形状の異方性交換スプリング磁石材料が得られる。
The method for producing an anisotropic exchange spring magnet material of the present invention that has solved the above problems includes a step of forming a magnet alloy into a ribbon having an amorphous structure by a rapid quenching method, and the ribbon and composition on the surface of the ribbon. Is characterized by comprising a step of coating different coatings and a step of performing heat treatment for crystallization on the ribbon coated with this coating.
By using this manufacturing method, a ribbon-shaped anisotropic exchange spring magnet material is coated with a film having a composition different from the composition of the magnet material on the surface of the anisotropic exchange spring magnet material. In addition, the crystallographic axis of the hard magnetic phase inside the ribbon is oriented. Further, by pulverizing the ribbon-shaped anisotropic exchange spring magnet material, a powder-shaped anisotropic exchange spring magnet material in which the crystal axis of the hard magnetic phase inside the powder is oriented is obtained.

薄帯の表面に被覆する皮膜としては、例えばTi,Mo.Ta,Nb,Cr,W等が適用できる。その被覆手段としては、スパッタリング法、真空蒸着法、収着法等がある。薄帯表面の皮膜の厚みは5nm〜5umが好ましく、薄帯全体を包むように存在するものである。   As the film covering the surface of the ribbon, for example, Ti, Mo. Ta, Nb, Cr, W or the like can be applied. Examples of the covering means include a sputtering method, a vacuum deposition method, and a sorption method. The thickness of the film on the surface of the ribbon is preferably 5 nm to 5 μm, and exists so as to wrap the entire ribbon.

異方性交換スプリング磁石材料はR−T−B系(ただし、RはYを含めた希土類元素の1種または2種以上の元素でありNdを必ず含む、Tは、FeまたはFeとCo、不可避の不純物を含む)の硬磁性相、またはR−T(−N)系(ただし、RはYを含めた希土類元素の1種または2種以上の元素でありSmを必ず含む、TはFeまたはFeとCo、不可避の不純物を含む)の硬磁性相を有するものが有用である。ここでR’−T(−N)系としたが、窒化前では窒素は含有されていない。後述するR含有量は窒化前の範囲を記載したものである。本発明はR2T14B系またはR’T7Nx系結晶粒の結晶軸を一方向に配向させることを可能にし、従来より磁気特性の高い異方性交換スプリング型磁石を得ることができる。 The anisotropic exchange spring magnet material is an R-T-B system (where R is one or more of rare earth elements including Y and Nd is included, and T is Fe or Fe and Co, Hard magnetic phase including unavoidable impurities, or R—T (—N) system (where R is one or more elements of rare earth elements including Y, and S is always included, T is Fe Alternatively, those having a hard magnetic phase (including Fe and Co, inevitable impurities) are useful. Here, R'-T (-N) system is used, but nitrogen is not contained before nitriding. The R content described below describes the range before nitriding. The present invention makes it possible to orient the crystal axes of R 2 T 14 B system or R′T 7 N x system crystal grains in one direction, and to obtain an anisotropic exchange spring type magnet having higher magnetic characteristics than before. it can.

この異方性交換スプリング磁石材料の薄帯かまたは薄帯を粉砕して粉末にした磁粉に樹脂などを混合してコンパウンドとし、例えば磁場中で圧縮成形することで、磁気特性が従来より格段に高いボンド磁石を製造することができる。この磁石には磁石原料として異方性化された薄帯またはこの薄帯を粉砕して粉末状にした磁粉、およびバインダーが含まれ、磁石原料はボンド磁石中に分散されている。成形時に磁場を印加することにより個々の磁石原料が回転して磁化容易軸(c軸)が高配向し、磁気特性の高い異方性磁石を製造することができる。磁粉は薄帯を粉砕して得られるため、磁粉には被膜が一部残存することになる。磁粉の粒径を細かくすれば、この皮膜が残っている粒子と、皮膜がない粒子が混合することもある。よってある程度の数量の粒子を観察すれば、本発明に該当するか否か判別することは可能である。耐食性を向上させるために磁粉の表面全体にさらに別の被覆・化成処理を施すこともあるが、これも本発明の範囲に該当するものである。   This anisotropic exchange spring magnet material is a thin ribbon or a magnetic powder made by pulverizing a thin ribbon and mixing it with a resin to make a compound. For example, compression molding in a magnetic field makes the magnetic properties much more High bonded magnets can be manufactured. The magnet includes an anisotropic thin ribbon as a magnet raw material, or magnetic powder obtained by pulverizing the thin ribbon to form a powder, and a binder, and the magnetic raw material is dispersed in the bonded magnet. By applying a magnetic field at the time of molding, the individual magnet raw materials are rotated so that the easy magnetization axis (c-axis) is highly oriented, and an anisotropic magnet having high magnetic properties can be manufactured. Since the magnetic powder is obtained by pulverizing the ribbon, a part of the coating film remains on the magnetic powder. If the particle size of the magnetic powder is made fine, particles with this film remaining and particles without the film may be mixed. Therefore, if a certain amount of particles are observed, it is possible to determine whether or not the present invention is applicable. In order to improve the corrosion resistance, the entire surface of the magnetic powder may be further subjected to another coating / chemical conversion treatment, which falls within the scope of the present invention.

本発明によれば、アモルファス急冷薄帯表面をこの薄帯の組成と異なる物質で被覆し、その後熱処理により結晶化させることにより、良好な磁気特性を有する異方性R-T-B系またはR’-T(-N)系磁石用原料、及びそれを配合してなる高性能の異方性ボンド磁石を提供することができる。   According to the present invention, the surface of an amorphous quenching ribbon is coated with a material different from the composition of the ribbon, and then crystallized by heat treatment, whereby an anisotropic RTB system having good magnetic properties or R′-T ( -N) It is possible to provide a raw material for a system magnet and a high performance anisotropic bonded magnet formed by blending it.

本発明の異方性交換スプリング磁石材料は超急冷法によって作製される。超急冷法としてCuやFe製などの冷却ロールが用いられる。ロール周速度を早めることで冷却速度を大きくすることができる。まず、この冷却ロールを回転させ、所望の組成の磁石用合金溶湯を冷却ロール上に噴出し、アモルファス構造の薄帯を作成する。薄帯の平均厚みは10〜50μmが好ましい。厚みが10μm未満では、ボンド磁石として成形した成形体の密度が低下し(BH)maxが低下する。50μmより厚い場合は、後述する熱処理の工程において薄帯内部の配向が乱れるため、(BH)max が低下する。
次にこの薄帯の表面に薄帯の組成と異なる皮膜を被覆する。この薄帯表面を覆う皮膜の厚みは5nm〜5μmが好ましい。薄帯が5nmより薄いと後述する熱処理の工程において薄帯の配向性が低下し、5μmより厚いと磁性相の体積比率が減少するため、ともに(BH)maxが低下する。皮膜としては、例えばTi,Mo.Ta,Nb,Cr等が望ましい。
皮膜にて薄帯を被覆後、熱処理により微細結晶化を行い、薄帯中に硬磁性相あるいはαFe等の軟磁性相の結晶を育成させる。この薄帯中の結晶粒径は1nmから30nmとするのが好ましい。1nm以下では超常磁性のため保磁力が低下し、30nm以上では保磁力と角型性が悪化し(BH)maxが低下する。この結晶粒径を実現させるためには、急冷後の薄帯はアモルファスであること、結晶化の熱処理温度と時間を制御し、粗大結晶粒の生成を抑制することが肝要である。熱処理条件は不活性ガス中あるいは真空中にて温度が300〜800℃、好ましくは600〜700℃であり、保持時間は1〜60分程度が望ましい。
硬磁性相がR’-T-N系の場合は、熱処理後に窒化処理を施すことが必要である。窒化は窒素中、あるいはアンモニアと水素の混合ガス中で350〜500℃で熱処理することで成される。
The anisotropic exchange spring magnet material of the present invention is produced by a superquenching method. A cooling roll made of Cu, Fe or the like is used as the ultra-quenching method. The cooling speed can be increased by increasing the roll peripheral speed. First, this cooling roll is rotated, and the molten alloy for magnets having a desired composition is ejected onto the cooling roll to produce a thin ribbon having an amorphous structure. The average thickness of the ribbon is preferably 10 to 50 μm. If the thickness is less than 10 μm, the density of the molded body formed as a bonded magnet decreases, and (BH) max decreases. If it is thicker than 50 μm, the orientation inside the ribbon is disturbed in the heat treatment step to be described later, and (BH) max decreases.
Next, a film having a composition different from that of the ribbon is coated on the surface of the ribbon. The thickness of the film covering the surface of the ribbon is preferably 5 nm to 5 μm. If the ribbon is thinner than 5 nm, the orientation of the ribbon is lowered in the heat treatment step described later. If the ribbon is thicker than 5 μm, the volume ratio of the magnetic phase is reduced, so that (BH) max is lowered. As the film, for example, Ti, Mo.Ta, Nb, Cr or the like is desirable.
After the ribbon is coated with a film, it is finely crystallized by heat treatment to grow a hard magnetic phase or a soft magnetic phase crystal such as αFe in the ribbon. The crystal grain size in the ribbon is preferably 1 nm to 30 nm. If it is 1 nm or less, the coercive force is reduced due to superparamagnetism, and if it is 30 nm or more, the coercive force and squareness are deteriorated and (BH) max is lowered. In order to realize this crystal grain size, it is important that the ribbon after quenching is amorphous, and the heat treatment temperature and time for crystallization are controlled to suppress the formation of coarse crystal grains. As for the heat treatment conditions, the temperature is 300 to 800 ° C., preferably 600 to 700 ° C. in an inert gas or vacuum, and the holding time is desirably about 1 to 60 minutes.
When the hard magnetic phase is an R′-TN system, it is necessary to perform nitriding after the heat treatment. Nitriding is performed by heat treatment at 350 to 500 ° C. in nitrogen or a mixed gas of ammonia and hydrogen.

以下に本発明の薄帯の組成限定理由を説明する。%と単に記しているのは質量百分率を意味する。
R-T-B系の場合は、R含有量は15〜30%が好ましく、20〜25%がより好ましい。R含有量が15%未満では室温のHcJが398kA/m(5kOe)未満になり、30%超では(BH)maxが大きく低下する。RはNd,Pr及び不可避的R成分からなる。Y,Ce,Pm,Eu,Gd,Tb,Dy,Ho,Er,Tm,Yb及びLuの群から選択される少なくとも1種が不可避的R成分に該当する。Bは0.5%〜5%が好ましい。0.5%未満ではR2T14B相ではなくRT7相またはR2T17相が生成し、HcJが著しく低下する。5%以上では磁化が小さくなり(BH)maxが低下する。
Tの一部をCoで置換することによりキュリー点、磁化及び耐酸化性が向上するので好ましい。Co含有量は0.1〜20%とするのが好ましく、1〜10%とするのがより好ましい。Co含有量が0.1%未満では実質的な添加効果を得られず、20%超では磁化の低下が大きくなり好ましくない。
またTの一部をTi、V、Cr、Mn、Ni、Cu、Zn、Ga、Zr、Nb、Mo、Ag、Hf、Ta、W、Pt、Pb、Auから選択される少なくも1種の元素で置換することにより磁気特性や耐食性を向上できるので好ましい。これら元素の含有量の合計は0.5〜10%が好ましい。前記含有量が0.01%未満では実質的に添加効果が得られず、10%超では磁化の低下が顕著になる。
The reason for limiting the composition of the ribbon of the present invention will be described below. “%” Simply means mass percentage.
In the case of the RTB system, the R content is preferably 15 to 30%, more preferably 20 to 25%. When the R content is less than 15%, the H cJ at room temperature is less than 398 kA / m (5 kOe), and when it exceeds 30%, (BH) max is greatly reduced. R consists of Nd, Pr and inevitable R components. At least one selected from the group of Y, Ce, Pm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu corresponds to the inevitable R component. B is preferably 0.5% to 5%. If it is less than 0.5%, the R 7 T phase or the R 2 T 17 phase is formed instead of the R 2 T 14 B phase, and the H cJ is remarkably reduced. If it exceeds 5%, the magnetization becomes small and (BH) max decreases.
Substitution of a part of T with Co is preferable because the Curie point, magnetization, and oxidation resistance are improved. The Co content is preferably 0.1 to 20%, more preferably 1 to 10%. If the Co content is less than 0.1%, a substantial addition effect cannot be obtained, and if it exceeds 20%, the magnetization is greatly lowered, which is not preferable.
A part of T is at least one selected from Ti, V, Cr, Mn, Ni, Cu, Zn, Ga, Zr, Nb, Mo, Ag, Hf, Ta, W, Pt, Pb, and Au. Substitution with an element is preferable because magnetic properties and corrosion resistance can be improved. The total content of these elements is preferably 0.5 to 10%. If the content is less than 0.01%, substantially no effect of addition can be obtained, and if it exceeds 10%, the magnetization is remarkably reduced.

R’-T(-N)系の場合は、窒化前の合金組成が、R含有量は10〜25%が好ましく、15〜20%がより好ましい。R含有量が10%未満では室温のHcJが398kA/m(5kOe)未満になり、25%超では磁化の低下により(BH)maxが低下する。RはSm,La及び不可避的R成分からなり、La含有量は5%以下にするのが好ましく、3%以下にするのがより好ましい。Y,Ce,Pm,Eu,Gd,Tb,Dy,Ho,Er,Tm,Yb及びLuの群から選択される少なくとも1種が不可避的R成分に該当する。La含有量が5%超では(BH)maxの低下が顕著になる。室温のHcJ≧398kA/m(5kOe)を得るために、Rに占めるSm比率を50原子%以上にするのが好ましく、95原子%以上にするのがより好ましい。アモルファス薄帯を低周速度で得るためにBを添加することも可能であるが、添加量は0.5%未満にすることが好ましい。0.5%以上ではR’2T14B相が生成し、(BH)maxが低下する。薄帯中の窒素含有量は2.5〜4.0%が好ましい。窒素含有量が2.5%未満及び4.0%超ではHcJ及び(BH)maxが大きく低下し、有用な磁気特性を得ることが困難になる。
Tの一部をCoで置換することもできる。またTの一部をTi、V、Cr、Mn、Ni、Cu、Zn、Ga、Zr、Nb、Mo、Ag、Hf、Ta、W、Pt、Pb、Auから選択される少なくも1種の元素で置換するも可能である。
In the case of the R′-T (—N) system, the alloy composition before nitriding, the R content is preferably 10 to 25%, more preferably 15 to 20%. If the R content is less than 10%, the H cJ at room temperature is less than 398 kA / m (5 kOe), and if it exceeds 25%, (BH) max decreases due to a decrease in magnetization. R is composed of Sm, La and an inevitable R component, and the La content is preferably 5% or less, more preferably 3% or less. At least one selected from the group of Y, Ce, Pm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu corresponds to the inevitable R component. When the La content exceeds 5%, the decrease in (BH) max becomes remarkable. In order to obtain room temperature H cJ ≧ 398 kA / m (5 kOe), the Sm ratio in R is preferably 50 atomic% or more, and more preferably 95 atomic% or more. B can be added in order to obtain an amorphous ribbon at a low peripheral speed, but the addition amount is preferably less than 0.5%. If it is 0.5% or more, an R ′ 2 T 14 B phase is generated, and (BH) max is lowered. The nitrogen content in the ribbon is preferably 2.5 to 4.0%. When the nitrogen content is less than 2.5% and more than 4.0%, H cJ and (BH) max are greatly reduced, and it becomes difficult to obtain useful magnetic properties.
A part of T can be replaced by Co. A part of T is at least one selected from Ti, V, Cr, Mn, Ni, Cu, Zn, Ga, Zr, Nb, Mo, Ag, Hf, Ta, W, Pt, Pb, and Au. Substitution with elements is also possible.

本発明の異方性磁粉には製造上混入が避けられないAl,Si,F,Na,Mg,Ca及びLiの群から選択される少なくとも1種の不可避的不純物元素を合計で5%以下含有することが許容される。また、R−T−B系母合金、R−T(−N)系母合金は、例えば還元/拡散法、高周波溶解法、アーク溶解法など、公知の手段を用いて作製することができる。   The anisotropic magnetic powder of the present invention contains a total of 5% or less of at least one inevitable impurity element selected from the group consisting of Al, Si, F, Na, Mg, Ca and Li, which is unavoidable for production. Is allowed to do. Also, the RTB-based master alloy and RT (-N) -based master alloy can be produced using known means such as a reduction / diffusion method, a high frequency melting method, an arc melting method, and the like.

本発明の異方性交換スプリング磁石材料内の軟磁性相の体積比率は、本発明の組成範囲では0.1vol%から50vol%となる。硬磁性相、及びα-Fe等の軟磁性相の同定、並びに各相の面積比率の算出は、電子顕微鏡又は光学顕微鏡等により撮影した異方性磁粉の断面組織写真、電子回折結果、並びにX線回折結果等を考慮して求める。例えば、対象とする異方性磁粉粒子の断面組織を撮影した透過型電子顕微鏡写真及びその断面組織の同定結果を符合させて求めることができる。   The volume ratio of the soft magnetic phase in the anisotropic exchange spring magnet material of the present invention is 0.1 vol% to 50 vol% in the composition range of the present invention. The identification of the hard magnetic phase and the soft magnetic phase such as α-Fe, and the calculation of the area ratio of each phase were performed by taking a cross-sectional structure photograph of the anisotropic magnetic powder photographed by an electron microscope or an optical microscope, an electron diffraction result, and X Obtained in consideration of the result of line diffraction. For example, it can be obtained by matching a transmission electron micrograph of the cross-sectional structure of the target anisotropic magnetic powder particles and the identification result of the cross-sectional structure.

本発明の異方性交換スプリング磁石材料を用いた磁石は、この磁石材料を粉砕したものと樹脂等のバインダーを混合させたものを磁場中圧縮成形等によって磁石原料を配向させながら圧縮成形し、その後熱硬化処理を行い、配向方向に磁場を印加して着磁することによって得ることができる。   The magnet using the anisotropic exchange spring magnet material of the present invention is compression-molded while orienting the magnet raw material by compression molding in a magnetic field or the like, which is a mixture of a pulverized magnet material and a binder such as a resin, Thereafter, it can be obtained by performing a thermosetting treatment and applying a magnetic field in the orientation direction and magnetizing.

以下実施例により本発明を説明するが、本発明はそれら実施例により限定されるものではない。
(実施例1)
高周波溶解によりNd15-30FebalB1(wt%)の母合金溶湯を作製し、鋳型鋳造した。得られたインゴットをアルゴンガス雰囲気中、1050℃で5時間加熱し、次いで室温まで冷却する均質化熱処理を行った。この合金を液体急冷単ロール法にて超急冷薄帯を得た。ロールはCu製のものを用い、周速度は50m/secとした。これにより、アモルファスの薄帯が作製できた。この薄帯のロールに接触した面(ロール面)とその反対の面(自由面)の両方にスパッタリング法にてTi膜を100nmの厚みとなるように成膜した。次にこのTi膜で覆われた薄帯をArガス中600℃で5分間、微細結晶化のための熱処理を施した。TEM観察の結果、この熱処理によって微細結晶化されたNd2Fe14B相の平均結晶粒径は10nm、α-Fe相の平均結晶粒径も同じく10nmであることが解った。次に、この薄帯を150μm以下に粉砕した磁粉を用いて圧縮成形によりボンド磁石を成形した。まず、表面処理材としてシランカップリング剤を磁粉重量に対して0.25wt%添加し、混合後乾燥させた。その後、磁粉重量に対してエポキシ樹脂を3wt%混合し、攪拌してコンパウンドとした。この後、このコンパウンドを140℃で一次硬化を行い、10kOeの磁場中で6ton/cm2の圧力で金型プレスを行うことによって成形体を得た。更にこの成形体を170℃で二次硬化処理を行い、ボンド磁石を得た。この成形体を最大印加磁場20kOeのBHトレーサーで磁場配向方向に平行な方向の磁気特性を測定した。また、磁場配向方向に垂直な方向についても測定した。その結果、磁場配向方向に平行な方向の磁気特性が高いことが確認され、異方性化された交換スプリング磁石が得られていることが解った。
EXAMPLES The present invention will be described below with reference to examples, but the present invention is not limited to these examples.
(Example 1)
A master alloy melt of Nd 15-30 Fe bal B 1 (wt%) was prepared by high frequency melting and casted in a mold. The obtained ingot was heated in an argon gas atmosphere at 1050 ° C. for 5 hours, and then subjected to a homogenization heat treatment for cooling to room temperature. An ultra-quenched ribbon was obtained from this alloy by the liquid quenching single roll method. The roll made of Cu was used, and the peripheral speed was 50 m / sec. As a result, an amorphous ribbon could be produced. A Ti film having a thickness of 100 nm was formed by sputtering on both the surface (roll surface) in contact with the thin ribbon roll and the opposite surface (free surface). Next, the ribbon covered with the Ti film was subjected to heat treatment for fine crystallization in Ar gas at 600 ° C. for 5 minutes. As a result of TEM observation, it was found that the average crystal grain size of the Nd 2 Fe 14 B phase finely crystallized by this heat treatment was 10 nm, and the average crystal grain size of the α-Fe phase was also 10 nm. Next, a bonded magnet was formed by compression molding using magnetic powder obtained by pulverizing the ribbon to 150 μm or less. First, a silane coupling agent as a surface treatment material was added at 0.25 wt% with respect to the weight of the magnetic powder, mixed and dried. Thereafter, 3 wt% of epoxy resin was mixed with the weight of the magnetic powder and stirred to obtain a compound. Thereafter, the compound was subjected to primary curing at 140 ° C., and a mold was pressed in a magnetic field of 10 kOe at a pressure of 6 ton / cm 2 to obtain a molded body. Further, this molded body was subjected to secondary curing treatment at 170 ° C. to obtain a bonded magnet. The compact was measured for magnetic properties in a direction parallel to the magnetic field orientation direction with a BH tracer with a maximum applied magnetic field of 20 kOe. Measurement was also performed in a direction perpendicular to the magnetic field orientation direction. As a result, it was confirmed that the magnetic characteristics in the direction parallel to the magnetic field orientation direction were high, and it was found that an exchange spring magnet with anisotropy was obtained.

(実施例2)
高周波溶解によりSm10-25Febal(wt%)の母合金溶湯を作製し、鋳型鋳造した。得られたインゴットをアルゴンガス雰囲気中、1100℃で10時間加熱し、次いで室温まで冷却する均質化熱処理を行った。この合金を液体急冷単ロール法にて超急冷薄帯を得た。ロールはCu製のものを用い、周速度は75m/secとした。これにより、アモルファス薄帯が作製できた。次にこの薄帯のロール面と自由面の両方にスパッタリング法にてTi膜を100nmの厚みとなるように成膜した。次にこのTi膜で覆われた薄帯をArガス中650℃で5分間、微細結晶化のための熱処理を施した。次に窒素ガス中450℃で10時間窒化処理を行った。TEM観察の結果、この熱処理によって微細結晶化されたSmFe7Nx相の平均結晶粒径は15nm、α-Fe相の平均結晶粒径も同じく15nmであることが解った。次に、この薄帯を粉砕した磁粉を用いて圧縮成形によりボンド磁石を成形した。まず、表面処理材としてシランカップリング剤を磁粉重量に対して0.25wt%添加し、混合後乾燥させた。その後、磁粉重量に対してエポキシ樹脂を3wt%混合し、攪拌してコンパウンドとした。この後140℃で一次硬化を行い、10kOeの磁場中で6ton/cm2の圧力で金型プレスを行うことによって成形体を得た。更にこの成形体を170℃で二次硬化処理を行い、ボンド磁石を得た。この成形体を最大印加磁場20kOeのBHトレーサーで磁場配向方向に平行な方向の磁気特性を測定した。また、磁場配向方向に垂直な方向についても測定した。その結果、磁場配向方向に平行な方向の磁気特性が高いことが確認され、異方性化された交換スプリング磁石が得られていることが解った。
(Example 2)
A master alloy melt of Sm 10-25 Fe bal (wt%) was prepared by high frequency melting and casted in a mold. The obtained ingot was heated in an argon gas atmosphere at 1100 ° C. for 10 hours, and then subjected to a homogenization heat treatment for cooling to room temperature. An ultra-quenched ribbon was obtained from this alloy by the liquid quenching single roll method. The roll made of Cu was used, and the peripheral speed was 75 m / sec. Thereby, an amorphous ribbon could be produced. Next, a Ti film having a thickness of 100 nm was formed on both the roll surface and the free surface of the ribbon by sputtering. Next, the ribbon covered with this Ti film was subjected to heat treatment for fine crystallization in Ar gas at 650 ° C. for 5 minutes. Next, nitriding treatment was performed in nitrogen gas at 450 ° C. for 10 hours. As a result of TEM observation, it was found that the average crystal grain size of the SmFe 7 N x phase finely crystallized by this heat treatment was 15 nm, and the average crystal grain size of the α-Fe phase was also 15 nm. Next, a bonded magnet was formed by compression molding using the magnetic powder obtained by pulverizing the ribbon. First, a silane coupling agent as a surface treatment material was added at 0.25 wt% with respect to the weight of the magnetic powder, mixed and dried. Thereafter, 3 wt% of an epoxy resin was mixed with respect to the weight of the magnetic powder and stirred to obtain a compound. Thereafter, primary curing was performed at 140 ° C., and a molded body was obtained by performing die pressing at a pressure of 6 ton / cm 2 in a magnetic field of 10 kOe. Further, this molded body was subjected to secondary curing treatment at 170 ° C. to obtain a bonded magnet. The compact was measured for magnetic properties in a direction parallel to the magnetic field orientation direction with a BH tracer with a maximum applied magnetic field of 20 kOe. Measurement was also performed in a direction perpendicular to the magnetic field orientation direction. As a result, it was confirmed that the magnetic characteristics in the direction parallel to the magnetic field orientation direction were high, and it was found that an exchange spring magnet with anisotropy was obtained.

(比較例1、2)
実施例1の試料において、薄帯表面にTi膜を成膜しなかった場合のボンド磁石の磁気特性を測定した。磁場配向方向に平行な方向と垂直な方向の磁気特性を測定したが、どちらもほぼ同等の特性が測定され、異方性化されていないことが解った。また、実施例2の試料も同様に異方性化されていないことが解った。
(Comparative Examples 1 and 2)
In the sample of Example 1, the magnetic properties of the bonded magnet were measured when no Ti film was formed on the surface of the ribbon. The magnetic properties in the direction parallel to the magnetic field orientation direction and the direction perpendicular to the magnetic field orientation direction were measured. In both cases, almost the same properties were measured, and it was found that they were not anisotropic. It was also found that the sample of Example 2 was not anisotropy as well.

Claims (5)

磁石合金を超急冷法によりアモルファスの組織を有する薄帯とする工程と、前記薄帯の表面にこの薄帯とは組成が異なる皮膜を被覆する工程と、この皮膜を被覆した薄帯に熱処理を行う工程からなることを特徴とする異方性交換スプリング磁石材料の製造方法。 A step of forming a magnetic alloy into a ribbon having an amorphous structure by a super-quenching method, a step of coating a surface of the ribbon with a film having a composition different from that of the ribbon, and heat treatment of the ribbon coated with the coating The manufacturing method of the anisotropic exchange spring magnet material characterized by including the process to perform. 前記薄帯と組成が異なる皮膜とは、スパッタリング法、真空蒸着法、収着法により被覆された金属皮膜であることを特徴とする請求項1に記載の異方性交換スプリング磁石材料の製造方法。 2. The method for producing an anisotropic exchange spring magnet material according to claim 1, wherein the coating having a composition different from that of the ribbon is a metal coating coated by sputtering, vacuum deposition, or sorption. . 薄帯形状の異方性交換スプリング磁石材料であって、前記異方性交換スプリング磁石材料の表面にこの磁石材料とは組成が異なる皮膜が被覆されており、かつ薄帯内部の硬磁性相の結晶軸が配向していることを特徴とする異方性交換スプリング磁石材料。 A ribbon-shaped anisotropic exchange spring magnet material, the surface of the anisotropic exchange spring magnet material being coated with a film having a composition different from that of the magnet material, and the hard magnetic phase inside the ribbon is An anisotropic exchange spring magnet material characterized in that crystal axes are oriented. 請求項3に記載の薄帯形状の異方性交換スプリング磁石材料を粉砕して得られた粉末形状の異方性交換スプリング磁石材料であって、粉末内部の硬磁性相の結晶軸が配向していることを特徴とする異方性交換スプリング磁石材料。 A powder-shaped anisotropic exchange spring magnet material obtained by pulverizing the ribbon-shaped anisotropic exchange spring magnet material according to claim 3, wherein the crystal axis of the hard magnetic phase in the powder is oriented. An anisotropic exchange spring magnet material characterized in that 前記異方性交換スプリング磁石材料はR−T−B系(ただし、RはYを含めた希土類元素の1種または2種以上の元素でありNdを必ず含む、Tは、FeまたはFeとCo、不可避の不純物を含む)の硬磁性相、またはR’−T(−N)系(R’はYを含めた希土類元素の1種または2種以上でありSmを必ず含む、TはFeまたはFeとCo、不可避の不純物を含む)の硬磁性相を有することを特徴とする請求項3または4に記載の異方性交換スプリング磁石材料。
The anisotropic exchange spring magnet material is an R-T-B system (where R is one or more of rare earth elements including Y and must contain Nd, T is Fe or Fe and Co) , Including inevitable impurities), or R′—T (—N) system (where R ′ is one or more of rare earth elements including Y and necessarily contains Sm, T is Fe or 5. The anisotropic exchange spring magnet material according to claim 3, comprising a hard magnetic phase of Fe and Co (including inevitable impurities).
JP2004086964A 2004-03-24 2004-03-24 Material for anisotropic exchange spring magnet, and manufacturing method therefor Pending JP2005272924A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004086964A JP2005272924A (en) 2004-03-24 2004-03-24 Material for anisotropic exchange spring magnet, and manufacturing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004086964A JP2005272924A (en) 2004-03-24 2004-03-24 Material for anisotropic exchange spring magnet, and manufacturing method therefor

Publications (1)

Publication Number Publication Date
JP2005272924A true JP2005272924A (en) 2005-10-06

Family

ID=35172902

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004086964A Pending JP2005272924A (en) 2004-03-24 2004-03-24 Material for anisotropic exchange spring magnet, and manufacturing method therefor

Country Status (1)

Country Link
JP (1) JP2005272924A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010212501A (en) * 2009-03-11 2010-09-24 Tdk Corp Exchange spring magnetic powder
JP2011114149A (en) * 2009-11-26 2011-06-09 Toyota Motor Corp Method for manufacturing sintered rare earth magnet
US9607760B2 (en) 2012-12-07 2017-03-28 Samsung Electronics Co., Ltd. Apparatus for rapidly solidifying liquid in magnetic field and anisotropic rare earth permanent magnet

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010212501A (en) * 2009-03-11 2010-09-24 Tdk Corp Exchange spring magnetic powder
JP2011114149A (en) * 2009-11-26 2011-06-09 Toyota Motor Corp Method for manufacturing sintered rare earth magnet
US9640305B2 (en) 2009-11-26 2017-05-02 Toyota Jidosha Kabushiki Kaisha Method for producing sintered rare-earth magnet, sintered rare-earth magnet, and material for same
US9607760B2 (en) 2012-12-07 2017-03-28 Samsung Electronics Co., Ltd. Apparatus for rapidly solidifying liquid in magnetic field and anisotropic rare earth permanent magnet

Similar Documents

Publication Publication Date Title
JP4830024B2 (en) Composite magnetic material for magnet and manufacturing method thereof
US5872501A (en) Rare earth bonded magnet and rare earth-iron-boron type magnet alloy
RU2250524C2 (en) Nanocomposite magnets of iron base alloy incorporating rare-earth element
WO1999062081A1 (en) Nitride type rare-earth permanent magnet material and bonded magnet using the same
JP2705985B2 (en) MAGNETIC MATERIAL, MAGNET COMPRISING THE SAME, AND PROCESS FOR PRODUCING THEM
JP3715573B2 (en) Magnet material and manufacturing method thereof
JP2014132599A (en) Rare earth magnet powder, method for manufacturing the same, compound thereof, and bond magnet thereof
JPH1053844A (en) (rare earth)-iron-boron magnetic alloy and its production and bond magnet using the (rare earth)-iron-boron magnetic alloy
JP2004253697A (en) Permanent magnet and material thereof
JP2004146713A (en) Manufacturing methods of r-t-n-based magnetic powder and r-t-n-based bond magnet
JPH11288807A (en) Flat leaf-like rare earth-iron-boron magnet alloy particle powder for bonded magnet, manufacture thereof and the bonded magnet
JP3560387B2 (en) Magnetic material and its manufacturing method
JP2000003808A (en) Hard magnetic material
JP3264664B1 (en) Permanent magnet having a plurality of ferromagnetic phases and manufacturing method thereof
JPH07263210A (en) Permanent magnet, alloy powder for permanent magnet and their production
JP2002043110A (en) Magnetic anisotropic agglomerate of r2t17nx magnet material, its manufacturing method, and bonded magnet
JP2005272924A (en) Material for anisotropic exchange spring magnet, and manufacturing method therefor
JP3645312B2 (en) Magnetic materials and manufacturing methods
JP3488354B2 (en) Method for producing microcrystalline permanent magnet alloy and isotropic permanent magnet powder
JP4650218B2 (en) Method for producing rare earth magnet powder
JP2004193207A (en) Magnet material and bonded magnet using the same
JP2001313206A (en) R-t-n anisotropic magnetic powder, its manufacturing method, and r-t-n anisotropic bonded magnet
JP2002217010A (en) Anisotropic magnetic powder improved in magnetization factor and anisotropic bonded magnet
JP3710154B2 (en) Iron-based permanent magnet, method for producing the same, iron-based permanent magnet alloy powder for bonded magnet, and iron-based bonded magnet
JP3209291B2 (en) Magnetic material and its manufacturing method