JP4337300B2 - Rare earth permanent magnet manufacturing method - Google Patents

Rare earth permanent magnet manufacturing method Download PDF

Info

Publication number
JP4337300B2
JP4337300B2 JP2002053750A JP2002053750A JP4337300B2 JP 4337300 B2 JP4337300 B2 JP 4337300B2 JP 2002053750 A JP2002053750 A JP 2002053750A JP 2002053750 A JP2002053750 A JP 2002053750A JP 4337300 B2 JP4337300 B2 JP 4337300B2
Authority
JP
Japan
Prior art keywords
powder
magnet
insulating component
quenched
bulk
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002053750A
Other languages
Japanese (ja)
Other versions
JP2003257763A (en
Inventor
武司 西内
哲 広沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2002053750A priority Critical patent/JP4337300B2/en
Publication of JP2003257763A publication Critical patent/JP2003257763A/en
Application granted granted Critical
Publication of JP4337300B2 publication Critical patent/JP4337300B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、希土類系永久磁石の製造方法に関する。より詳細には、優れた磁石特性を有するとともに高い電気抵抗を示す高密度化R−Fe−B系急冷バルク磁石の簡便な製造方法に関する。
【0002】
【従来の技術】
単ロール法などのメルトスピニング技術により、溶融した原料合金から非晶質急冷合金薄帯を得、得られた非晶質急冷合金薄帯を粉砕して非晶質急冷合金粉末とした後、これを結晶化熱処理して微結晶を析出させることにより製造されるNd−Fe−B系急冷磁石に代表されるR(希土類元素)−Fe−B系急冷磁石は、微細な結晶粒(磁性相)を持つことで優れた磁石特性を有する。急冷磁石粉末から高密度化バルク磁石を製造する場合、常圧で1000℃以上に加熱するといったような一般的な焼結条件を適用すると、磁石中の微細な結晶粒が粗大化することにより、磁石特性が大きく劣化してしまうという問題が発生する。従って、急冷磁石粉末から高密度化バルク磁石を製造する場合には、圧力を加えながら加熱して成形する熱間成形が採用される。熱間成形によれば、高密度化バルク磁石とするために必要な焼結条件、特に焼結温度を緩和することができるため、磁石中の微細な結晶粒の粗大化が抑制されることで、優れた磁石特性を劣化させることなく、高密度化バルク磁石を製造することが可能になる。
【0003】
このようにして製造される高密度化バルク磁石は、希土類系永久磁石モータに利用されることが期待される。しかしながら、R−Fe−B系永久磁石は本質的に電気抵抗が低いという性質を有する。従って、優れた磁石特性を有する高密度化バルク磁石であっても、モータに組み込んで使用した場合には、渦電流損失が大きくなり、モータ効率の低下を招くという問題がある。この問題を解決するためには磁石の電気抵抗を高める措置を講じなければならない。
【0004】
高密度化バルク磁石の電気抵抗を高める方法として、急冷磁石粉末を構成する粒子同士を絶縁成分の存在によって分離して熱間成形する方法が既に提案され、これまでに種々の検討がなされている。例えば、特開平5−121220号公報には、急冷磁石粉末と絶縁成分であるホウケイ酸ガラスなどの無機バインダとの混練物を熱間成形する方法が記載されている。特開平6−69009号公報には、急冷磁石粉末を構成する個々の粒子の表面を絶縁成分である金属アルコキシドの加水分解化合物で被覆した被覆粉末を熱間成形する方法が記載されている。特開平9−186010号公報には、急冷磁石粉末にLi,Na,Mg,Ca,Ba,Srから選ばれる少なくとも一つの元素を含むフッ化物および/または酸化物からなる化合物を絶縁成分として混合して熱間成形する方法が記載されている。特開平9−232122号公報には、急冷磁石粉末にGe粉末を絶縁成分として混合して熱間成形する方法が記載されている。
【0005】
【発明が解決しようとする課題】
これまでに提案されたいずれの方法も少なからず問題点を有している。例えば、特開平5−121220号公報には、急冷磁石粉末と絶縁成分との混練物を調製する方法として、急冷磁石粉末と絶縁成分をボールミルなどを用いて直接混合する方法、絶縁成分とセルロース類やテルピネオールなどから作成したスラリーと、急冷磁石粉末を混合した後に加熱乾燥する方法、ゾル−ゲル化反応を利用して絶縁成分の原料を含むゾル液に急冷磁石粉末を分散させた後に加熱乾燥する方法が記載されている。しかしながら、上記の方法のうち、直接混合する方法では、急冷磁石粉末を構成する個々の粒子の表面に絶縁成分からなる絶縁層を確実かつ均一に形成することは困難であるので、高密度化バルク磁石とした際に十分な電気抵抗を付与することができない恐れがある。また、急冷磁石粉末の酸化を引き起こす場合があるので(特に大気中で混合した場合に顕著である)、磁石特性の劣化を招く恐れがある。スラリーを混合して乾燥する方法では、熱間成形時において、スラリーを作成する際に使用した溶剤などが残存し、高密度化の過程における緻密化の進行を阻害したり、急冷磁石粉末と反応することで磁石特性の劣化を招いたりする恐れがある。ゾル−ゲル化反応を利用する方法では、ゾル液に含まれる水などが加熱乾燥の際に急冷磁石粉末の酸化を引き起こし、磁石特性の劣化を招く恐れがある。特開平6−69009号公報に記載の方法もゾル−ゲル化反応を利用する方法であるので、ゾル液に含まれる水などが加熱乾燥の際に急冷磁石粉末の酸化を引き起こし、磁石特性の劣化を招く恐れがある。特開平9−186010号公報に記載の方法や特開平9−232122号公報に記載の方法では、急冷磁石粉末と絶縁成分を単に混合しているに過ぎないので、高密度化バルク磁石とした際に十分な電気抵抗を付与することができない恐れがある。
そこで本発明は、優れた磁石特性を有するとともに高い電気抵抗を示す高密度化R−Fe−B系急冷バルク磁石の簡便な製造方法を提供することを目的とする。
【0006】
【課題を解決するための手段】
上記の点に鑑みてなされた本発明の希土類系永久磁石の製造方法は、請求項1記載の通り、R−Fe−B系急冷磁石を製造するための急冷合金粉末を構成する個々の粒子の表面に、体積抵抗率が1×10−1Ω・cm以上の絶縁成分として窒化硼素からなる厚みが0.1μm〜5μm(但し0.1μmを除く)の絶縁層を、不活性ガス雰囲気中または真空中で乾式法により形成することによって絶縁成分被覆粉末を作成した後、この絶縁成分被覆粉末を出発材料として使用し、これを圧力が10MPa以上、温度が400℃〜850℃の条件下で熱間成形して、密度が6.5g/cm以上の、少なくとも磁石部分と絶縁成分とからなる高密度化バルク磁石とすることを特徴とする。
また、請求項2記載の製造方法は、請求項1記載の製造方法において、不活性ガス雰囲気中または真空中で行う乾式法が気相成膜法であることを特徴とする。
また、本発明の高密度化R−Fe−B系急冷バルク磁石は、請求項3記載の通り、請求項1または2記載の製造方法で製造されたことを特徴とする
【0007】
【発明の実施の形態】
本発明の希土類系永久磁石の製造方法は、R−Fe−B系急冷磁石を製造するための急冷合金粉末を構成する個々の粒子の表面に、体積抵抗率が1×10−1Ω・cm以上の絶縁成分として窒化硼素からなる厚みが0.1μm〜5μm(但し0.1μmを除く)の絶縁層を、不活性ガス雰囲気中または真空中で乾式法により形成することによって絶縁成分被覆粉末を作成した後、この絶縁成分被覆粉末を出発材料として使用し、これを圧力が10MPa以上、温度が400℃〜850℃の条件下で熱間成形して、密度が6.5g/cm以上の、少なくとも磁石部分と絶縁成分とからなる高密度化バルク磁石とすることを特徴とするものである。本発明の希土類系永久磁石の製造方法において出発原料として使用される絶縁成分被覆粉末は、個々の粒子の表面に絶縁成分からなる絶縁層が確実かつ均一に形成されているので、優れた磁石特性を有するとともに高い電気抵抗を示す高密度化R−Fe−B系急冷バルク磁石を簡便に製造することが可能となる。
【0008】
本発明の製造方法は、R−Fe−B系急冷磁石であれば、磁性相がRFe14B相などだけで構成される急冷磁石(多くの場合Rリッチ相を非磁性相として含む)の製造に対しても、磁性相がRFe14B相などの硬磁性相と鉄基硼化物相やα−Fe相などの軟磁性相とで構成されるナノコンポジット磁石の製造に対しても適用することができる。従って、出発材料として使用する急冷合金粉末の組成は、R−Fe−B系急冷磁石を製造することができるものであればどのようなものであってもよい。このうち、ナノコンポジット磁石は、一般的には、Rが、RFe14Bの化学量論組成よりも小さい10原子%以下のもので、最終的に、磁石を構成する硬磁性相がRFe14B相で、軟磁性相がFeB相やFe23相などの鉄基硼化物相やα−Fe相となるものが用いられる。磁石特性の向上を図るため、急冷合金の添加元素として、Co、Al、Si、Ti、V、Cr、Mn、Ni、Cu、Ga、Zr、Nb、Mo、Hf、Ta、W、Pt、Pb、Au、Cなどの種々の元素を含有させてもよい。
【0009】
通常、急冷合金粉末は、単ロール法などのメルトスピニング技術により、溶融した原料合金から作成される非晶質急冷合金薄帯を粉砕することにより取得されるものである。当該粉末を構成する個々の粒子は、結晶化熱処理により、平均結晶粒径が500nm以下の範囲にある磁性相を有する粒子(ナノコンポジット磁石を製造するための急冷合金粉末を構成する個々の粒子は、平均結晶粒径が500nm以下の範囲にある硬磁性相と軟磁性相とが混在して磁気的に結合した微細組織を有する粒子)とされる。粉末の平均粒度は、300μmを超えると高密度化の過程における緻密化が円滑に進行しない恐れがあるので、300μm以下が望ましく、10μm〜200μmがより望ましい。
【0010】
体積抵抗率が1×10−1Ω・cm以上の絶縁成分としては、酸化イットリウム(Y)などの希土類酸化物、窒化硼素、窒化アルミニウム、窒化珪素などが挙げられるが、窒化硼素を用いる。これらは体積抵抗率が1×10−1Ω・cm以上であることから、高密度化バルク磁石中において、十分な絶縁性を発揮するとともに、後述する熱間成形条件においては、急冷合金粉末との反応性が低いので、磁石特性(特に保磁力:HcJ)の劣化を引き起こすようなことがない。
【0011】
以上の急冷合金粉末と絶縁成分を使用し、急冷合金粉末を構成する個々の粒子の表面に、絶縁成分からなる絶縁層を、不活性ガス雰囲気中または真空中で乾式法により形成することによって絶縁成分被覆粉末を作成する。このような絶縁成分被覆粉末を熱間成形することで、高密度化バルク磁石とした際に当該磁石が高い電気抵抗を示すようにすることができる。絶縁成分の使用量についてであるが、高密度化バルク磁石に求められる磁石特性(特に残留磁束密度:B)を考慮すると、当該バルク磁石中の磁石部分の体積比率は少なくとも85体積%以上である必要があり、その比率は高ければ高いほど望ましい。従って、絶縁成分の使用量は、その下限は作用を十分に発揮させる観点から、高密度化バルク磁石中の体積比率として1体積%以上となるように使用することが望ましいが、その上限は15体積%となるように使用することが望ましく、10体積%となるように使用することがより望ましく、5体積%となるように使用することがさらに望ましい。
【0012】
急冷合金粉末を構成する個々の粒子の表面への絶縁層の形成を、アルゴンガスや窒素ガスなどの不活性ガス雰囲気中または真空中で乾式法により行うことで、急冷合金粉末の酸化による磁石特性の劣化を防止する。プラズマCVD(化学気相蒸着)法、イオンプレーティング法、スパッタリング法などの気相成膜法は、その方法上、不活性ガス雰囲気中や真空中で行われるものであるので、絶縁層を形成する工程中において、急冷合金粉末が酸化することがない。従って、気相成膜法による絶縁層の形成は好適な態様であるといえる。また、急冷合金粉末と粉末の絶縁成分(この場合、当該粉末の平均粒度は、急冷合金粉末と混合した際における均一分散性や磁石の有効体積確保などの観点から、0.01μm〜5μm(六方晶窒化硼素のような扁平形状粉末を使用する場合はその平均厚みの値)であることが望ましい)を用い、両者に機械的エネルギーを付与して絶縁層を形成する方法、例えば、高速気流中衝撃法やメカノフュージョン法などを採用してもよい。
【0013】
急冷合金粉末を構成する個々の粒子の表面に形成される絶縁層の厚みは、5μmを超えると、磁石としての有効体積が小さくなり、ボンド磁石よりも磁石特性が低くなる恐れや、高密度化の過程において絶縁成分被覆粉末を構成する粒子と粒子の間に無視できない空隙が残存してしまい、当該空隙が緻密化の進行を阻害する恐れがある。従って、絶縁層の厚みは、5μm以下とするが、0.1μm〜3μmであることが望ましい。
【0014】
以上のような方法で作成された絶縁成分被覆粉末を出発材料として使用し、これを圧力が10MPa以上、温度が400℃〜850℃の条件下で熱間成形して、密度が6.5g/cm以上の、少なくとも磁石部分と絶縁成分とからなる高密度化バルク磁石とする。最適な熱間成形条件は、急冷合金粉末の組成や使用する絶縁成分の種類によって適宜設定されるべきものであるが、一般に、圧力は、得られるバルク磁石の密度を所望する数値とするためや金型強度の観点から、50MPa〜500MPaとすることが望ましい。一方、温度は、熱間成形する急冷合金粉末の結晶化状態を考慮して設定すべきである。例えば、急冷合金粉末を構成する個々の粒子が30体積%以上非晶質状態にある粉末からなる絶縁成分被覆粉末を熱間成形する場合、400℃以上であれば、比較的低温においても、高い非晶質状態の存在割合によって高密度化の過程における緻密化を円滑に進行させることができる(この現象は塑性変形しにくい結晶相である鉄基硼化物相を軟磁性相として有するナノコンポジット磁石を製造するための急冷合金粉末からなる絶縁成分被覆粉末を熱間成形する場合において特に有利に作用する)。しかしながら、当該粉末の結晶化温度未満の温度では当該粉末を構成する個々の粒子の結晶化は進行しないのでバルク磁石にはなりえない。従って、このような急冷合金粉末からなる絶縁成分被覆粉末を出発材料として使用し、熱間成形だけで高密度化バルク磁石とする場合、熱間成形の温度は、急冷磁石粉末の結晶化温度(その組成や熱処理条件によって異なるが概ね550℃〜800℃である)〜850℃とするべきである。高密度化バルク磁石中の磁石部分の90体積%以上が結晶質状態になるまで結晶化させることで、より優れた磁石特性を有する高密度化バルク磁石とすることができる。また、急冷合金粉末を構成する個々の粒子が高い結晶質状態の存在割合を有する粉末からなる絶縁成分被覆粉末を熱間成形する場合、熱間成形の温度は、急冷合金粉末の組成や使用する絶縁成分の種類に応じて、望ましくは550℃〜850℃の範囲内から、より望ましくは600℃〜750℃の範囲内から適宜設定する。
【0015】
急冷合金粉末を構成する個々の粒子が30体積%以上非晶質状態にある粉末からなる絶縁成分被覆粉末を出発材料として使用し、熱間成形だけで高密度化バルク磁石とする場合、ともすれば、結晶化反応に伴う発熱により、装置内部の絶縁成分被覆粉末の温度制御をうまく行えなくなることで、磁石中の微細な結晶粒が粗大化してしまい、磁石特性が大きく劣化してしまうことがあるので注意を払うべきである。このような事態は、圧力が10MPa以上、温度が400℃〜急冷合金粉末の結晶化温度の条件下で熱間成形して、高密度化の過程における緻密化のみを進行させて高密度化バルク体を得、この高密度化バルク体に対する結晶化熱処理を、1MPa以下の圧力下(例えば、アルゴンガスや窒素ガスなどの不活性ガス雰囲気中または真空中)で、温度を急冷合金粉末の結晶化温度〜850℃に制御して行うことにより回避することができる。前述のように、急冷合金粉末の結晶化温度は、その組成や熱処理条件によって異なるが、概ね550℃〜800℃である。ナノコンポジット磁石を製造するための急冷合金磁石の場合、組成によっては硬磁性相と軟磁性相とで結晶化温度が異なることに依存して2段階以上の結晶化過程を経るために、示差熱分析などの熱分析を行うと、2段階以上の発熱ピークが観察されるものがある。このような組成の急冷合金粉末の場合、当該粉末の結晶化温度は、最も高い温度で結晶化する結晶相の結晶化温度を基準とすべきである。従って、上記のように、熱間成形と結晶化熱処理を別工程で行う場合における、熱間成形を行うための温度は、400℃〜最も高い温度で結晶化する結晶相の結晶化温度である。しかしながら、熱間成形の際に結晶化反応に伴う発熱をできるだけ引き起こさないようにするためには、当該温度は、400℃〜最も低い温度で結晶化する結晶相の結晶化温度であることが望ましい。
【0016】
熱間成形するための方法は、種々知られているが、本発明においてはそのいずれをも採用することができ、バルク磁石の形状などに基づいて、圧縮成形、押し出し成形、圧延成形などを適宜採用すればよい。例えば、圧縮成形を行う場合、ホットプレス焼結(HP)装置や放電プラズマ焼結(SPS)装置など公知の装置を使用して行えばよい。
【0017】
熱間成形するに際し、高密度化の過程における緻密化の進行促進や磁石強度の向上を目的として、出発材料に結合剤を添加してもよい。結合剤としては、上記の熱間成形条件において容易に変形し、かつ、すぐれた絶縁性を示すガラス質材料や耐熱性樹脂(シリコーン樹脂やポリイミド樹脂など)などが挙げられる。結合剤は、例えば、絶縁成分被覆粉末に混合して使用すればよい。絶縁成分被覆粉末に混合して使用すれば、急冷合金粉末と結合剤との反応(特に急冷合金粉末を構成する粒子に含まれるRと結合剤との反応)が絶縁成分の存在により確実に抑制される。前述の希土類酸化物、窒化硼素、窒化アルミニウム、窒化珪素などは、急冷合金粉末と結合剤との反応を効果的に抑制する絶縁成分である。結合剤の使用量は、絶縁成分の使用量との合計量として、高密度化バルク磁石中の体積比率が15体積%以下となるように使用することが望ましく、10体積%以下となるように使用することがより望ましく、5体積%以下となるように使用することがさらに望ましい。
【0018】
【実施例】
本発明を以下の実施例によってさらに詳細に説明するが、本発明はこれに限定されるものではない。
【0019】
実施例その1:
〈急冷合金粉末について〉
Nd−Fe−B系急冷磁石を製造するための急冷合金粉末として、市販のMQP−A(MQI社製:平均粒径が150μmで個々の粒子は90体積%以上結晶質状態)を使用した。
【0020】
〈サンプル粉末について〉
1.粉末A
MQP−A自体をそのまま粉末Aとした。
【0021】
2.粉末B
粉末Aを構成する個々の粒子の表面に絶縁成分である窒化硼素(体積抵抗率:約1014Ω・cm)からなる厚みが約4μmの絶縁層を形成して窒化硼素被覆粉末を得、当該粉末を粉末Bとした。なお、窒化硼素被覆粉末の作成は、アルゴンガス雰囲気中での高周波プラズマCVD法により、平均厚みが約0.4μmの六方晶窒化硼素粉末を使用して行った。得られた窒化硼素被覆粉末を粉砕して当該粉末中の窒化硼素量を蛍光X線装置で測定したところ、約10体積%であった。
【0022】
3.粉末C
粉末Aと平均厚みが約0.4μmの六方晶窒化硼素粉末を均一に混合した後(体積比で9:1)、アルゴンガス雰囲気中で、高速気流中衝撃法により、粉末Aを構成する個々の粒子の表面に窒化硼素からなる厚みが約4μmの絶縁層を形成して窒化硼素被覆粉末を得、当該粉末を粉末Cとした。
【0023】
4.粉末D
アルゴンガス流気中で攪拌されている粉末Aに対し、平均厚みが約0.4μmの六方晶窒化硼素粉末をエタノールに分散させた分散液をスプレーで吹付けた後、アルゴンガス雰囲気中、100℃で10分間乾燥させ、粉末Aと窒化硼素が体積比で9:1である、粉末Aを構成する個々の粒子の表面に窒化硼素を被着させた粉末を得、当該粉末を粉末Dとした。
【0024】
5.粉末E
粉末Aと平均厚みが約0.4μmの六方晶窒化硼素粉末をアルゴンガス雰囲気中でボールミルを用いて均一に混合し(体積比で9:1)、得られた粉末を粉末Eとした。
【0025】
〈バルク磁石の製造例1〜5〉
上記の5種類の粉末A〜粉末Eを使用し、各々の粉末35gから直径20mmの円柱状バルク磁石を製造した。熱間成形は放電プラズマ焼結装置を使用した圧縮成形により行った。具体的には、図1に示すような、内側にスリーブを設けた超硬合金製のダイと超硬合金製のパンチからなる金型を用い、この金型に急冷合金粉末を充填してから放電プラズマ焼結装置にセットし、装置内を1Pa以下に減圧した後、196MPaの加圧下でパルス通電焼結を行った。パルス通電焼結における昇温速度は40℃/minとし、650℃で5分間保持した後、通電を停止してから放冷してバルク磁石を得た。なお、放電プラズマ焼結時の温度は、スリーブに接する部分にまでダイに孔を開け、当該孔に熱電対を挿入して測定した。
【0026】
〈バルク磁石の評価〉
上記の製造例1〜5で得られた5種類のバルク磁石を切断・研磨し、各々のバルク磁石から5mm×5mm×5mmの立方体状試験片を作成し、その寸法と重量から密度を求めた。また、この試験片について3.2MA/mのパルス磁界を用いて着磁を行い、BHトレーサーを使用してその磁石特性を測定した。さらに、5種類のバルク磁石を切断・研磨し、各々のバルク磁石から5mm×5mm×15mmの直方体状試験片を作成し、この試験片について四端子法にて比抵抗を測定した。結果を表1に示す。
【0027】
【表1】

Figure 0004337300
【0028】
表1から明らかなように、製造例2と3で得られたバルク磁石は、粉末Bと粉末C、即ち、粉末Aを構成する個々の粒子の表面に絶縁成分である窒化硼素からなる絶縁層が形成された窒化硼素被覆粉末を出発材料として使用して製造されたものであるが、優れた磁石特性を有するとともに高い電気抵抗を示し、密度が6.5g/cm以上の高密度化されたバルク磁石であった。一方、製造例1で得られたバルク磁石は、粉末Aを出発材料として使用して製造されたものであるが、絶縁成分を使用していないことから、磁石特性と高密度化の点では優れるものの、電気抵抗が低いという欠点を有していた。製造例4で得られたバルク磁石は、粉末Dを出発材料として使用して製造されたものであるが、粉末Aを構成する個々の粒子の表面への窒化硼素の被着を湿式法により行ったため、粉末Aが酸化してしまったことから磁石特性の点で劣るという欠点を有していた。製造例5で得られたバルク磁石は、粉末Eを出発材料として使用して製造されたものであるが、粉末Aを構成する個々の粒子の表面に窒化硼素からなる絶縁層を確実かつ均一に形成できなかったことから、十分な電気抵抗が付与されていなかった。
【0029】
実施例その2:
絶対圧力が30kPaのアルゴンガス雰囲気中で、厚み5μm〜15μmのクロムめっき層を形成した直径350mmの銅合金製冷却ロールを15m/minの周速度で回転させ、単ロール法によって、NdFe14B(硬磁性相)とFeB(軟磁性相)とで構成されるナノコンポジット磁石を製造するためのNd5.5Fe6618.5CoCrの組成を有する急冷合金薄帯を作成した。得られた急冷合金薄帯を透過電子顕微鏡で観察したところ、ほぼ100%が非晶質であった。また、この急冷合金薄体の結晶化温度を示差走査熱分析装置(DSC)を用いて測定したところ、570℃であった。この非晶質急冷合金薄帯をパワーミルおよびビンディスクミルを用いて粉砕した後、粒度調整を行って、平均粒径が約75μmの非晶質急冷合金粉末を得た。
実施例その1における粉末Bを作成する方法と同様の方法で、この非晶質急冷合金粉末を構成する個々の粒子の表面に絶縁成分である窒化硼素からなる厚みが約4μmの絶縁層を形成して窒化硼素被覆粉末を得、当該粉末を出発材料として使用して実施例1と同様の方法でバルク磁石を製造した。このバルク磁石を実施例その1と同様の方法で評価したところ、優れた磁石特性を有するとともに高い電気抵抗を示し、密度が6.5g/cm以上の高密度化されたバルク磁石であった。
【0030】
【発明の効果】
本発明によれば、優れた磁石特性を有するとともに高い電気抵抗を示す高密度化R−Fe−B系急冷バルク磁石の簡便な製造方法が提供される。
【図面の簡単な説明】
【図1】 実施例においてバルク磁石を製造するために使用した金型の模式図(一部透視図)。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a rare earth permanent magnet. More specifically, the present invention relates to a simple manufacturing method of a densified R—Fe—B type quenched bulk magnet having excellent magnet characteristics and high electrical resistance.
[0002]
[Prior art]
An amorphous quenched alloy ribbon is obtained from the melted raw material alloy by melt spinning technology such as a single roll method, and the obtained amorphous quenched alloy ribbon is pulverized into an amorphous quenched alloy powder. R (rare earth element) -Fe-B quenching magnets represented by Nd-Fe-B quenching magnets produced by precipitating microcrystals by crystallization heat treatment are fine crystal grains (magnetic phase) It has excellent magnet characteristics. When manufacturing a densified bulk magnet from rapidly cooled magnet powder, applying general sintering conditions such as heating to 1000 ° C. or higher at normal pressure, coarsening the fine crystal grains in the magnet, There arises a problem that the magnet characteristics are greatly deteriorated. Therefore, when manufacturing a densified bulk magnet from rapidly cooled magnet powder, hot forming in which heating is performed while applying pressure is employed. According to hot forming, the sintering conditions necessary for obtaining a high-density bulk magnet, particularly the sintering temperature, can be relaxed, so that coarsening of fine crystal grains in the magnet is suppressed. It becomes possible to manufacture a high-density bulk magnet without deteriorating excellent magnet characteristics.
[0003]
The high-density bulk magnet manufactured in this way is expected to be used for rare earth permanent magnet motors. However, R-Fe-B permanent magnets have the property that the electrical resistance is essentially low. Therefore, even if a high-density bulk magnet having excellent magnet characteristics is used by being incorporated in a motor, there is a problem that eddy current loss becomes large and motor efficiency is reduced. To solve this problem, measures must be taken to increase the electrical resistance of the magnet.
[0004]
As a method for increasing the electric resistance of a high-density bulk magnet, a method for separating and forming hot-cold magnet powder particles by the presence of an insulating component has already been proposed, and various studies have been made so far. . For example, Japanese Patent Application Laid-Open No. 5-121220 describes a method of hot forming a kneaded product of a quenched magnet powder and an inorganic binder such as borosilicate glass which is an insulating component. Japanese Patent Laid-Open No. 6-69009 describes a method of hot forming a coated powder in which the surface of each particle constituting a quenched magnet powder is coated with a hydrolyzed compound of metal alkoxide as an insulating component. In JP-A-9-186010, a compound comprising a fluoride and / or an oxide containing at least one element selected from Li, Na, Mg, Ca, Ba, and Sr is mixed as an insulating component in a quenched magnet powder. A method of hot forming is described. Japanese Patent Application Laid-Open No. 9-232122 discloses a method of hot forming by mixing Ge powder as an insulating component into a quenched magnet powder.
[0005]
[Problems to be solved by the invention]
All of the methods proposed so far have problems. For example, in Japanese Patent Laid-Open No. 5-121220, as a method for preparing a kneaded product of a quenched magnet powder and an insulating component, a method of directly mixing the quenched magnet powder and the insulating component using a ball mill or the like, an insulating component and celluloses A method of heating and drying after mixing a slurry made from terpineol, etc. and a quenched magnet powder, using a sol-gelation reaction to disperse the quenched magnet powder in a sol solution containing an insulating component material, and then drying by heating A method is described. However, among the above methods, in the direct mixing method, it is difficult to reliably and uniformly form an insulating layer made of an insulating component on the surface of each particle constituting the quenched magnet powder. When a magnet is used, there is a possibility that sufficient electric resistance cannot be imparted. Moreover, since the quenching magnet powder may be oxidized (particularly when mixed in the air), there is a risk of deteriorating the magnet characteristics. In the method of mixing and drying the slurry, during hot forming, the solvent used when creating the slurry remains, hindering the progress of densification during the densification process, or reacting with the quenched magnet powder. Doing so may cause deterioration of the magnet characteristics. In the method using the sol-gelation reaction, water contained in the sol solution may cause oxidation of the rapidly cooled magnet powder during heat drying, leading to deterioration of magnet characteristics. Since the method described in JP-A-6-69009 is also a method using a sol-gelation reaction, water contained in the sol solution causes oxidation of the rapidly cooled magnet powder during heating and drying, resulting in deterioration of magnet characteristics. There is a risk of inviting. In the method described in Japanese Patent Application Laid-Open No. 9-186010 and the method described in Japanese Patent Application Laid-Open No. 9-232122, the quenched magnet powder and the insulating component are simply mixed. There is a possibility that sufficient electric resistance cannot be provided.
Therefore, an object of the present invention is to provide a simple method for producing a densified R—Fe—B type quenched bulk magnet having excellent magnet characteristics and high electrical resistance.
[0006]
[Means for Solving the Problems]
The method for producing a rare earth-based permanent magnet of the present invention made in view of the above points, as described in claim 1, includes the individual particles constituting the quenched alloy powder for producing an R—Fe—B quenched magnet. An insulating layer having a thickness of 0.1 μm to 5 μm (excluding 0.1 μm) made of boron nitride as an insulating component having a volume resistivity of 1 × 10 −1 Ω · cm or more is provided on the surface in an inert gas atmosphere or After forming the insulating component-coated powder by forming it in a vacuum by a dry method, this insulating component-coated powder is used as a starting material, which is heated under conditions of a pressure of 10 MPa or more and a temperature of 400 ° C. to 850 ° C. It is characterized in that it is formed into a densified bulk magnet having at least a magnet portion and an insulating component and having a density of 6.5 g / cm 3 or more.
The manufacturing method according to claim 2 is characterized in that, in the manufacturing method according to claim 1, the dry method performed in an inert gas atmosphere or in a vacuum is a vapor phase film forming method.
In addition, the densified R—Fe—B type quenched bulk magnet of the present invention is manufactured by the manufacturing method according to claim 1 or 2 as described in claim 3 .
[0007]
DETAILED DESCRIPTION OF THE INVENTION
The method for producing a rare earth-based permanent magnet of the present invention has a volume resistivity of 1 × 10 −1 Ω · cm on the surface of each particle constituting a quenched alloy powder for producing an R—Fe—B quenched magnet. By forming an insulating layer made of boron nitride having a thickness of 0.1 μm to 5 μm (excluding 0.1 μm) as an insulating component as described above by a dry method in an inert gas atmosphere or vacuum, an insulating component-coated powder is obtained. After the preparation, this insulating component-coated powder is used as a starting material, which is hot-molded under the conditions of a pressure of 10 MPa or more and a temperature of 400 ° C. to 850 ° C., and a density of 6.5 g / cm 3 or more. , A high-density bulk magnet comprising at least a magnet portion and an insulating component. The insulating component-coated powder used as a starting material in the method for producing a rare earth permanent magnet of the present invention has an excellent magnetic property because an insulating layer made of an insulating component is reliably and uniformly formed on the surface of each particle. It is possible to easily manufacture a densified R—Fe—B-based quenched bulk magnet having high electrical resistance.
[0008]
If the manufacturing method of the present invention is an R-Fe-B quenching magnet, the quenching magnet whose magnetic phase is composed only of the R 2 Fe 14 B phase or the like (in many cases includes the R-rich phase as a nonmagnetic phase) In the production of nanocomposite magnets, the magnetic phase is composed of a hard magnetic phase such as R 2 Fe 14 B phase and a soft magnetic phase such as iron-based boride phase and α-Fe phase. Can also be applied. Therefore, the composition of the quenched alloy powder used as a starting material may be any as long as it can produce an R—Fe—B type quenched magnet. Of these, nanocomposite magnets generally have R of 10 atomic% or less, which is smaller than the stoichiometric composition of R 2 Fe 14 B. Finally, the hard magnetic phase constituting the magnet is R 2 Fe 14 B phase is used in which the soft magnetic phase becomes an iron-based boride phase such as Fe 3 B phase or Fe 23 B 6 phase or α-Fe phase. In order to improve the magnet characteristics, as an additive element of the quenched alloy, Co, Al, Si, Ti, V, Cr, Mn, Ni, Cu, Ga, Zr, Nb, Mo, Hf, Ta, W, Pt, Pb Various elements such as Au, C, etc. may be contained.
[0009]
Usually, the quenched alloy powder is obtained by pulverizing an amorphous quenched alloy ribbon formed from a molten raw material alloy by a melt spinning technique such as a single roll method. The individual particles constituting the powder are particles having a magnetic phase having an average crystal grain size in the range of 500 nm or less by crystallization heat treatment (the individual particles constituting the quenched alloy powder for producing a nanocomposite magnet are , Particles having a microstructure in which a hard magnetic phase and a soft magnetic phase having an average crystal grain size in the range of 500 nm or less are mixed and magnetically coupled). If the average particle size of the powder exceeds 300 μm, the densification in the process of densification may not proceed smoothly, so 300 μm or less is desirable, and 10 μm to 200 μm is more desirable.
[0010]
Examples of the insulating component having a volume resistivity of 1 × 10 −1 Ω · cm or more include rare earth oxides such as yttrium oxide (Y 2 O 3 ), boron nitride, aluminum nitride, and silicon nitride. Use . Since these have a volume resistivity of 1 × 10 −1 Ω · cm or more, they exhibit sufficient insulation in a high-density bulk magnet, and under hot forming conditions described later, Therefore, the magnetic properties (particularly the coercive force: H cJ ) are not deteriorated.
[0011]
Using the above quenched alloy powder and insulating component, insulation is formed by forming an insulating layer made of the insulating component on the surface of each particle constituting the quenched alloy powder by a dry method in an inert gas atmosphere or vacuum. An ingredient coating powder is prepared. By hot forming such an insulating component-coated powder, when the densified bulk magnet is formed, the magnet can exhibit high electric resistance. Regarding the amount of the insulating component used, in consideration of the magnet characteristics (particularly residual magnetic flux density: B r ) required for the high-density bulk magnet, the volume ratio of the magnet portion in the bulk magnet is at least 85% by volume or more. There must be, and the higher the ratio, the better. Therefore, the lower limit of the amount of the insulating component used is desirably 1% by volume or more as the volume ratio in the high-density bulk magnet from the viewpoint of sufficiently exerting the action, but the upper limit is 15 It is desirable to use so that it may become volume%, It is more desirable to use so that it may become 10 volume%, It is further more desirable to use so that it may become 5 volume%.
[0012]
Magnetic properties due to oxidation of the quenched alloy powder by forming an insulating layer on the surface of the individual particles constituting the quenched alloy powder by dry method in an inert gas atmosphere such as argon gas or nitrogen gas or in vacuum To prevent deterioration. Vapor deposition methods such as plasma CVD (chemical vapor deposition), ion plating, and sputtering are performed in an inert gas atmosphere or in vacuum, so an insulating layer is formed. During the process, the quenched alloy powder is not oxidized. Therefore, it can be said that the formation of the insulating layer by the vapor deposition method is a preferable mode. In addition, the quenched alloy powder and the insulating component of the powder (in this case, the average particle size of the powder is 0.01 μm to 5 μm (hexagonal) from the viewpoint of uniform dispersibility and ensuring the effective volume of the magnet when mixed with the quenched alloy powder. When using a flat-shaped powder such as crystalline boron nitride, it is desirable to have an average thickness value), and a mechanical energy is applied to both to form an insulating layer, for example, in a high-speed air flow An impact method or a mechano-fusion method may be employed.
[0013]
When the thickness of the insulating layer formed on the surface of the individual particles constituting the rapidly cooled alloy powder exceeds 5 μm, the effective volume as a magnet is reduced, and the magnet characteristics may be lower than that of a bonded magnet, and the density may be increased. In this process, non-negligible voids remain between the particles constituting the insulating component-coated powder, and the voids may hinder the progress of densification. Therefore, the thickness of the insulating layer is to 5μm or less, it is desirable is 0.1Myuemu~3myuemu.
[0014]
The insulating component-coated powder prepared by the method as described above is used as a starting material, and this is hot-molded under conditions of a pressure of 10 MPa or more and a temperature of 400 ° C. to 850 ° C., and a density of 6.5 g / A high-density bulk magnet of at least cm 3 and composed of at least a magnet portion and an insulating component. Optimum hot forming conditions should be set as appropriate depending on the composition of the quenched alloy powder and the type of insulating component used. In general, the pressure is set to a desired value for the density of the obtained bulk magnet. From the viewpoint of mold strength, the pressure is preferably 50 MPa to 500 MPa. On the other hand, the temperature should be set in consideration of the crystallization state of the rapidly cooled alloy powder to be hot formed. For example, when hot forming an insulating component-coated powder composed of a powder in which the individual particles constituting the quenched alloy powder are in an amorphous state of 30% by volume or more, if it is 400 ° C. or higher, it is high even at a relatively low temperature. Density in the process of densification can proceed smoothly due to the existence ratio of the amorphous state (this phenomenon is a nanocomposite magnet having an iron-based boride phase, which is a crystalline phase that is difficult to plastically deform, as a soft magnetic phase) This is particularly advantageous in the case of hot-forming an insulating component-coated powder made of a rapidly cooled alloy powder for producing a glass). However, since the crystallization of individual particles constituting the powder does not proceed at a temperature lower than the crystallization temperature of the powder, it cannot be a bulk magnet. Therefore, when an insulating component-coated powder made of such a quenched alloy powder is used as a starting material and a densified bulk magnet is formed only by hot forming, the temperature of hot forming is the crystallization temperature of the quenched magnet powder ( Although it varies depending on the composition and heat treatment conditions, it should be approximately 550 ° C. to 800 ° C.) to 850 ° C. By crystallization until 90% by volume or more of the magnet portion in the densified bulk magnet is in a crystalline state, a densified bulk magnet having more excellent magnet characteristics can be obtained. In addition, when hot-forming an insulating component-coated powder made of a powder in which the individual particles constituting the rapidly-cooled alloy powder have a high proportion of crystalline state, the hot-forming temperature depends on the composition of the rapidly-cooled alloy powder. Depending on the type of insulating component, it is preferably set appropriately from the range of 550 ° C. to 850 ° C., more preferably from the range of 600 ° C. to 750 ° C.
[0015]
Insulating component coated powder consisting of a powder in which the individual particles constituting the quenched alloy powder are in an amorphous state of 30% by volume or more are used as a starting material, and a high-density bulk magnet is formed only by hot forming. For example, due to the heat generated by the crystallization reaction, the temperature control of the insulating component coating powder inside the apparatus cannot be performed well, so that the fine crystal grains in the magnet are coarsened and the magnet characteristics are greatly deteriorated. Because there is, you should pay attention. Such a situation is caused by hot forming under the conditions of a pressure of 10 MPa or more and a temperature of 400 ° C. to the crystallization temperature of the rapidly cooled alloy powder, and proceeding only with densification in the process of densification to increase the density of the bulk. A crystallization heat treatment is performed on the densified bulk body under a pressure of 1 MPa or less (for example, in an inert gas atmosphere such as argon gas or nitrogen gas or in a vacuum), and the temperature of the alloy powder is rapidly cooled. This can be avoided by controlling the temperature to ˜850 ° C. As described above, the crystallization temperature of the quenched alloy powder is approximately 550 ° C. to 800 ° C., although it varies depending on the composition and heat treatment conditions. In the case of a rapidly-cooled alloy magnet for producing a nanocomposite magnet, depending on the composition, the crystallization temperature is different between the hard magnetic phase and the soft magnetic phase. When thermal analysis such as analysis is performed, there are cases where two or more exothermic peaks are observed. In the case of a quenched alloy powder having such a composition, the crystallization temperature of the powder should be based on the crystallization temperature of the crystal phase that crystallizes at the highest temperature. Therefore, as described above, when hot forming and crystallization heat treatment are performed in separate steps, the temperature for performing hot forming is the crystallization temperature of the crystal phase that crystallizes at 400 ° C. to the highest temperature. . However, it is desirable that the temperature is a crystallization temperature of a crystal phase that is crystallized at 400 ° C. to the lowest temperature so as not to cause as much heat as possible during the crystallization reaction during hot forming. .
[0016]
Various methods for hot forming are known, but any of them can be adopted in the present invention, and compression molding, extrusion molding, rolling molding, etc. are appropriately performed based on the shape of the bulk magnet. Adopt it. For example, when compression molding is performed, a known apparatus such as a hot press sintering (HP) apparatus or a discharge plasma sintering (SPS) apparatus may be used.
[0017]
In hot forming, a binder may be added to the starting material for the purpose of promoting the progress of densification in the process of densification and improving the magnet strength. Examples of the binder include a vitreous material and a heat-resistant resin (such as a silicone resin or a polyimide resin) that are easily deformed under the above-described hot forming conditions and exhibit excellent insulating properties. The binder may be used by being mixed with the insulating component coating powder, for example. When mixed with an insulating component coating powder, the reaction between the quenched alloy powder and the binder (particularly the reaction between R and the binder contained in the particles constituting the quenched alloy powder) is reliably suppressed by the presence of the insulating component. Is done. The aforementioned rare earth oxides, boron nitride, aluminum nitride, silicon nitride, etc. are insulating components that effectively suppress the reaction between the quenched alloy powder and the binder. It is desirable to use the binder so that the volume ratio in the high-density bulk magnet is 15% by volume or less as a total amount with the usage of the insulating component so that the volume ratio is 10% by volume or less. It is more desirable to use it, and it is further desirable to use it so that it may become 5 volume% or less.
[0018]
【Example】
The present invention will be described in more detail with reference to the following examples, but the present invention is not limited thereto.
[0019]
Example 1
<About quenched alloy powder>
Commercially available MQP-A (manufactured by MQI: average particle diameter of 150 μm and individual particles in a crystalline state of 90% by volume or more) was used as a quenched alloy powder for producing an Nd—Fe—B type quenched magnet.
[0020]
<About sample powder>
1. Powder A
MQP-A itself was directly used as powder A.
[0021]
2. Powder B
An insulating layer having a thickness of about 4 μm made of boron nitride (volume resistivity: about 10 14 Ω · cm) as an insulating component is formed on the surface of each particle constituting powder A to obtain a boron nitride-coated powder. The powder was designated as powder B. The boron nitride-coated powder was produced by high-frequency plasma CVD in an argon gas atmosphere using hexagonal boron nitride powder having an average thickness of about 0.4 μm. The obtained boron nitride-coated powder was pulverized and the amount of boron nitride in the powder was measured with a fluorescent X-ray apparatus and found to be about 10% by volume.
[0022]
3. Powder C
After the powder A and hexagonal boron nitride powder having an average thickness of about 0.4 μm are uniformly mixed (9: 1 by volume), the individual powders constituting the powder A are subjected to a high-speed air flow impact method in an argon gas atmosphere. An insulating layer made of boron nitride and having a thickness of about 4 μm was formed on the surface of the particles to obtain a boron nitride-coated powder. This powder was designated as powder C.
[0023]
4). Powder D
A powder dispersion of hexagonal boron nitride powder having an average thickness of about 0.4 μm is sprayed on the powder A stirred in an argon gas stream, and then sprayed in an argon gas atmosphere. Dry at 10 ° C. for 10 minutes to obtain a powder in which powder A and boron nitride are in a volume ratio of 9: 1, and the surface of each particle constituting powder A is coated with boron nitride. did.
[0024]
5. Powder E
Powder A and hexagonal boron nitride powder having an average thickness of about 0.4 μm were uniformly mixed using a ball mill in an argon gas atmosphere (9: 1 by volume).
[0025]
<Production Examples 1-5 of bulk magnet>
Using the above five types of powders A to E, cylindrical bulk magnets having a diameter of 20 mm were produced from 35 g of each powder. Hot forming was performed by compression forming using a discharge plasma sintering apparatus. Specifically, as shown in FIG. 1, a die composed of a cemented carbide die having a sleeve provided inside and a cemented carbide punch is used, and after the quenched alloy powder is filled into the die. After setting in a discharge plasma sintering apparatus and reducing the pressure in the apparatus to 1 Pa or less, pulse current sintering was performed under a pressure of 196 MPa. The rate of temperature increase in pulse electric current sintering was set to 40 ° C./min. After holding at 650 ° C. for 5 minutes, the electric current was stopped and then allowed to cool to obtain a bulk magnet. The temperature at the time of spark plasma sintering was measured by opening a hole in the die up to the portion in contact with the sleeve and inserting a thermocouple into the hole.
[0026]
<Evaluation of bulk magnet>
The 5 types of bulk magnets obtained in the above Production Examples 1 to 5 were cut and polished, 5 mm × 5 mm × 5 mm cubic test pieces were created from each bulk magnet, and the density was determined from the dimensions and weights. . The test piece was magnetized using a 3.2 MA / m pulsed magnetic field, and the magnet characteristics were measured using a BH tracer. Further, five types of bulk magnets were cut and polished, and 5 mm × 5 mm × 15 mm rectangular parallelepiped test pieces were prepared from the respective bulk magnets, and the specific resistance of these test pieces was measured by a four-terminal method. The results are shown in Table 1.
[0027]
[Table 1]
Figure 0004337300
[0028]
As is apparent from Table 1, the bulk magnets obtained in Production Examples 2 and 3 are powder B and powder C, that is, an insulating layer made of boron nitride as an insulating component on the surface of each particle constituting powder A. Is produced using a boron nitride-coated powder formed with a starting material, which has excellent magnetic properties and high electrical resistance, and has a density of 6.5 g / cm 3 or more. Bulk magnet. On the other hand, the bulk magnet obtained in Production Example 1 is produced using powder A as a starting material, but is superior in terms of magnet characteristics and density because it does not use an insulating component. However, it has the disadvantage of low electrical resistance. The bulk magnet obtained in Production Example 4 was produced using powder D as a starting material, and boron nitride was deposited on the surfaces of individual particles constituting powder A by a wet method. Therefore, since the powder A was oxidized, it had a defect that it was inferior in terms of magnet characteristics. The bulk magnet obtained in Production Example 5 was produced using powder E as a starting material, and an insulating layer made of boron nitride was reliably and uniformly formed on the surface of each particle constituting powder A. Since it could not be formed, sufficient electrical resistance was not given.
[0029]
Example 2
In an argon gas atmosphere with an absolute pressure of 30 kPa, a copper alloy cooling roll having a diameter of 350 μm on which a chromium plating layer having a thickness of 5 μm to 15 μm is formed is rotated at a peripheral speed of 15 m / min, and Nd 2 Fe 14 is obtained by a single roll method. A quenched alloy ribbon having a composition of Nd 5.5 Fe 66 B 18.5 Co 5 Cr 5 for producing a nanocomposite magnet composed of B (hard magnetic phase) and Fe 3 B (soft magnetic phase) It was created. When the obtained quenched alloy ribbon was observed with a transmission electron microscope, almost 100% was amorphous. Moreover, it was 570 degreeC when the crystallization temperature of this quenched alloy thin body was measured using the differential scanning calorimeter (DSC). The amorphous quenched alloy ribbon was pulverized using a power mill and a bin disk mill, and then the particle size was adjusted to obtain an amorphous quenched alloy powder having an average particle size of about 75 μm.
An insulating layer having a thickness of about 4 μm made of boron nitride, which is an insulating component, is formed on the surface of each particle constituting the amorphous quenched alloy powder in the same manner as the method for preparing powder B in Example 1 Thus, boron nitride-coated powder was obtained, and a bulk magnet was produced in the same manner as in Example 1 using the powder as a starting material. When this bulk magnet was evaluated by the same method as in Example 1, it was a bulk magnet that had excellent magnet characteristics and high electrical resistance, and had a density of 6.5 g / cm 3 or more. .
[0030]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, the simple manufacturing method of the densification R-Fe-B type | system | group quenching bulk magnet which has a high electrical resistance while having the outstanding magnet characteristic is provided.
[Brief description of the drawings]
FIG. 1 is a schematic view (partially perspective view) of a mold used for manufacturing a bulk magnet in an example.

Claims (3)

R−Fe−B系急冷磁石を製造するための急冷合金粉末を構成する個々の粒子の表面に、体積抵抗率が1×10−1Ω・cm以上の絶縁成分として窒化硼素からなる厚みが0.1μm〜5μm(但し0.1μmを除く)の絶縁層を、不活性ガス雰囲気中または真空中で乾式法により形成することによって絶縁成分被覆粉末を作成した後、この絶縁成分被覆粉末を出発材料として使用し、これを圧力が10MPa以上、温度が400℃〜850℃の条件下で熱間成形して、密度が6.5g/cm以上の、少なくとも磁石部分と絶縁成分とからなる高密度化バルク磁石とすることを特徴とする希土類系永久磁石の製造方法。On the surface of each particle constituting the quenched alloy powder for producing an R—Fe—B quenched magnet, the thickness of boron nitride as an insulating component having a volume resistivity of 1 × 10 −1 Ω · cm or more is 0 Insulating component coated powder was formed by forming an insulating layer of 1 μm to 5 μm (excluding 0.1 μm) in an inert gas atmosphere or in a vacuum by a dry method, and then this insulating component coated powder was used as a starting material. This is hot-molded under conditions where the pressure is 10 MPa or more and the temperature is 400 ° C. to 850 ° C., and the density is 6.5 g / cm 3 or more. A rare earth-based permanent magnet manufacturing method, characterized in that it is a magnetized bulk magnet. 不活性ガス雰囲気中または真空中で行う乾式法が気相成膜法であることを特徴とする請求項1記載の製造方法。  2. The production method according to claim 1, wherein the dry method performed in an inert gas atmosphere or in a vacuum is a vapor phase film forming method. 請求項1または2記載の製造方法で製造されたことを特徴とする高密度化R−Fe−B系急冷バルク磁石 A high-density R-Fe-B-based quenched bulk magnet manufactured by the manufacturing method according to claim 1 or 2 .
JP2002053750A 2002-02-28 2002-02-28 Rare earth permanent magnet manufacturing method Expired - Lifetime JP4337300B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002053750A JP4337300B2 (en) 2002-02-28 2002-02-28 Rare earth permanent magnet manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002053750A JP4337300B2 (en) 2002-02-28 2002-02-28 Rare earth permanent magnet manufacturing method

Publications (2)

Publication Number Publication Date
JP2003257763A JP2003257763A (en) 2003-09-12
JP4337300B2 true JP4337300B2 (en) 2009-09-30

Family

ID=28665091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002053750A Expired - Lifetime JP4337300B2 (en) 2002-02-28 2002-02-28 Rare earth permanent magnet manufacturing method

Country Status (1)

Country Link
JP (1) JP4337300B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8003964B2 (en) 2007-10-11 2011-08-23 Still River Systems Incorporated Applying a particle beam to a patient
US8907311B2 (en) 2005-11-18 2014-12-09 Mevion Medical Systems, Inc. Charged particle radiation therapy
US9706636B2 (en) 2012-09-28 2017-07-11 Mevion Medical Systems, Inc. Adjusting energy of a particle beam
US10155124B2 (en) 2012-09-28 2018-12-18 Mevion Medical Systems, Inc. Controlling particle therapy
US10254739B2 (en) 2012-09-28 2019-04-09 Mevion Medical Systems, Inc. Coil positioning system
US10368429B2 (en) 2012-09-28 2019-07-30 Mevion Medical Systems, Inc. Magnetic field regenerator
US10434331B2 (en) 2014-02-20 2019-10-08 Mevion Medical Systems, Inc. Scanning system
US10456591B2 (en) 2013-09-27 2019-10-29 Mevion Medical Systems, Inc. Particle beam scanning
US10646728B2 (en) 2015-11-10 2020-05-12 Mevion Medical Systems, Inc. Adaptive aperture
US10653892B2 (en) 2017-06-30 2020-05-19 Mevion Medical Systems, Inc. Configurable collimator controlled using linear motors
US10675487B2 (en) 2013-12-20 2020-06-09 Mevion Medical Systems, Inc. Energy degrader enabling high-speed energy switching
US10925147B2 (en) 2016-07-08 2021-02-16 Mevion Medical Systems, Inc. Treatment planning
US11311746B2 (en) 2019-03-08 2022-04-26 Mevion Medical Systems, Inc. Collimator and energy degrader for a particle therapy system

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4238114B2 (en) * 2003-11-07 2009-03-11 株式会社日立製作所 Powder for high resistance rare earth magnet and method for producing the same, rare earth magnet and method for producing the same, rotor for motor and motor
JP2005251995A (en) * 2004-03-04 2005-09-15 Nissan Motor Co Ltd Permanent magnet
JP4784173B2 (en) * 2005-06-27 2011-10-05 日産自動車株式会社 Rare earth magnet and manufacturing method thereof
JP2008130781A (en) * 2006-11-21 2008-06-05 Hitachi Ltd Magnet, motor using magnet, and manufacturing method of magnet
JP2011181942A (en) * 2011-04-18 2011-09-15 Nissan Motor Co Ltd Permanent magnet

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8907311B2 (en) 2005-11-18 2014-12-09 Mevion Medical Systems, Inc. Charged particle radiation therapy
US9925395B2 (en) 2005-11-18 2018-03-27 Mevion Medical Systems, Inc. Inner gantry
US10279199B2 (en) 2005-11-18 2019-05-07 Mevion Medical Systems, Inc. Inner gantry
US10722735B2 (en) 2005-11-18 2020-07-28 Mevion Medical Systems, Inc. Inner gantry
US8003964B2 (en) 2007-10-11 2011-08-23 Still River Systems Incorporated Applying a particle beam to a patient
US9706636B2 (en) 2012-09-28 2017-07-11 Mevion Medical Systems, Inc. Adjusting energy of a particle beam
US10155124B2 (en) 2012-09-28 2018-12-18 Mevion Medical Systems, Inc. Controlling particle therapy
US10254739B2 (en) 2012-09-28 2019-04-09 Mevion Medical Systems, Inc. Coil positioning system
US10368429B2 (en) 2012-09-28 2019-07-30 Mevion Medical Systems, Inc. Magnetic field regenerator
US10456591B2 (en) 2013-09-27 2019-10-29 Mevion Medical Systems, Inc. Particle beam scanning
US10675487B2 (en) 2013-12-20 2020-06-09 Mevion Medical Systems, Inc. Energy degrader enabling high-speed energy switching
US10434331B2 (en) 2014-02-20 2019-10-08 Mevion Medical Systems, Inc. Scanning system
US10646728B2 (en) 2015-11-10 2020-05-12 Mevion Medical Systems, Inc. Adaptive aperture
US11213697B2 (en) 2015-11-10 2022-01-04 Mevion Medical Systems, Inc. Adaptive aperture
US10925147B2 (en) 2016-07-08 2021-02-16 Mevion Medical Systems, Inc. Treatment planning
US10653892B2 (en) 2017-06-30 2020-05-19 Mevion Medical Systems, Inc. Configurable collimator controlled using linear motors
US11311746B2 (en) 2019-03-08 2022-04-26 Mevion Medical Systems, Inc. Collimator and energy degrader for a particle therapy system

Also Published As

Publication number Publication date
JP2003257763A (en) 2003-09-12

Similar Documents

Publication Publication Date Title
JP4337300B2 (en) Rare earth permanent magnet manufacturing method
CN104919546B (en) For producing the method for permanent magnet and permanent magnet
JP4591633B2 (en) Nanocomposite bulk magnet and method for producing the same
WO2006043348A1 (en) Method for producing rare earth permanent magnet material
WO2005091315A1 (en) R-Fe-B BASED THIN FILM MAGNET AND METHOD FOR PREPARATION THEREOF
KR102265782B1 (en) Soft magnetic alloy and magnetic device
JP5125818B2 (en) Magnetic compact and manufacturing method thereof
JP4700578B2 (en) Method for producing high resistance rare earth permanent magnet
EP1154445A2 (en) Alloy for high-performance rare earth permanent magnet and manufacturing method thereof
US20200357547A1 (en) Soft magnetic alloy and magnetic component
EP0921533A1 (en) Method of producing laminated permanent magnet
JP2013021015A (en) Rare earth nano composite magnet and manufacturing method thereof
JP4186478B2 (en) Rare earth permanent magnet manufacturing method
JP2004146713A (en) Manufacturing methods of r-t-n-based magnetic powder and r-t-n-based bond magnet
US20200357546A1 (en) Soft magnetic alloy and magnetic component
JP2000003808A (en) Hard magnetic material
JPH07263210A (en) Permanent magnet, alloy powder for permanent magnet and their production
JP3856869B2 (en) Resin-containing rolled sheet magnet and method for producing the same
JP4703987B2 (en) Alloy ribbon for rare earth magnet, method for producing the same, and alloy for rare earth magnet
JP2013098319A (en) METHOD FOR MANUFACTURING Nd-Fe-B MAGNET
JP3178848B2 (en) Manufacturing method of permanent magnet
JP7192069B1 (en) permanent magnets and devices
JPH1132453A (en) Stepping motor and manufacture of hard magnetic alloy therefor
JPH05135929A (en) Rare-earth magnet and alloy powder for rare-metal magnet and their production
JP2004356544A (en) Thick-film-exchange spring magnet, manufacturing method thereof, and magnet motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041213

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070607

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080819

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080902

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090609

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090622

R150 Certificate of patent or registration of utility model

Ref document number: 4337300

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120710

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130710

Year of fee payment: 4

EXPY Cancellation because of completion of term