JP4238114B2 - Powder for high resistance rare earth magnet and method for producing the same, rare earth magnet and method for producing the same, rotor for motor and motor - Google Patents

Powder for high resistance rare earth magnet and method for producing the same, rare earth magnet and method for producing the same, rotor for motor and motor Download PDF

Info

Publication number
JP4238114B2
JP4238114B2 JP2003377626A JP2003377626A JP4238114B2 JP 4238114 B2 JP4238114 B2 JP 4238114B2 JP 2003377626 A JP2003377626 A JP 2003377626A JP 2003377626 A JP2003377626 A JP 2003377626A JP 4238114 B2 JP4238114 B2 JP 4238114B2
Authority
JP
Japan
Prior art keywords
rare earth
earth magnet
powder
magnet
high resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003377626A
Other languages
Japanese (ja)
Other versions
JP2005142374A (en
Inventor
祐一 佐通
又洋 小室
典行 渡部
哲朗 田湯
秀昭 小野
眞 加納
宗勝 島田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Nissan Motor Co Ltd
Original Assignee
Hitachi Ltd
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Nissan Motor Co Ltd filed Critical Hitachi Ltd
Priority to JP2003377626A priority Critical patent/JP4238114B2/en
Publication of JP2005142374A publication Critical patent/JP2005142374A/en
Application granted granted Critical
Publication of JP4238114B2 publication Critical patent/JP4238114B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

本発明は、高電気抵抗を有する新規な高抵抗希土類磁石用粉末とその製造方法及びその粉末を用いた希土類磁石とその製造方法並びにモータ用ロータとそれを用いたモータに関する。   The present invention relates to a novel high resistance rare earth magnet powder having high electrical resistance, a method for producing the same, a rare earth magnet using the powder, a method for producing the same, a motor rotor, and a motor using the same.

従来、永久磁石式モータに用いられる磁石としては、フェライト磁石が多用されていたが、回転電気の小型化・高性能化に伴い、より高性能な希土類磁石の使用量が年々増加している。代表的な希土類磁石としては、Sm-Co系磁石、Nd-Fe-B系磁石が挙げられ、さらなる高性能化、低価格化を達成するための開発が進行している。   Conventionally, ferrite magnets have been frequently used as magnets used in permanent magnet motors. However, the use of higher performance rare earth magnets has been increasing year by year as rotary electricity has become smaller and higher in performance. Typical rare earth magnets include Sm-Co magnets and Nd-Fe-B magnets, and developments are underway to achieve higher performance and lower costs.

しかしながら、希土類磁石は金属磁石であるため電気抵抗が低い。このため、モータに組み込んだ場合の渦電流損が増大し、モータ効率を低下させる問題が生じる。そこで、希土類磁石自体の電気抵抗を高めて、この問題を解決する技術が各種提案されている。   However, since the rare earth magnet is a metal magnet, its electric resistance is low. For this reason, the eddy current loss when it is incorporated in the motor is increased, resulting in a problem of lowering the motor efficiency. Therefore, various techniques for solving this problem by increasing the electric resistance of the rare earth magnet itself have been proposed.

例えば、特許文献1には、希土類磁石用粉末がSiO及びAlO粒子の少なくとも一方で結着された構造を有する希土類磁石が提案されている。 For example, Patent Document 1 proposes a rare earth magnet having a structure in which a rare earth magnet powder is bound with at least one of SiO 2 and Al 2 O 3 particles.

特開平10-321427号公報Japanese Patent Laid-Open No. 10-321427

特許文献1においては、希土類磁石用粉末の間にSiO及びAlOの少なくとも一方が存在していると、希土類磁石の電気抵抗を高めることができる。しかしながら、SiO及びAlOを希土類磁石に対して単独に加えると磁石特性は大きく低下してしまう。これでは、中〜大出力モ−タには適用が難しい。更に、希土類磁石の電気抵抗を上昇させることができても、その一方で磁石特性の大幅な低下を引き起こしてしまう。 In Patent Document 1, when at least one of SiO 2 and Al 2 O 3 is present between the rare earth magnet powders, the electric resistance of the rare earth magnet can be increased. However, if SiO 2 and Al 2 O 3 are added individually to the rare earth magnet, the magnet characteristics are greatly deteriorated. This is difficult to apply to medium to large output motors. Furthermore, even if the electric resistance of the rare earth magnet can be increased, on the other hand, the magnetic characteristics are greatly deteriorated.

本発明の目的は、高電気抵抗を有し、磁石特性の低下を最小限に抑えられる高抵抗希土類磁石用粉末とその製造方法及び希土類磁石とその製造方法並びにその希土類磁石を用いたモータ用ロータとそれを用いたモータを提供することにある。   An object of the present invention is to provide a high resistance rare earth magnet powder having high electrical resistance and minimizing deterioration in magnet characteristics, a method for producing the same, a rare earth magnet, a method for producing the same, and a rotor for a motor using the rare earth magnet. And providing a motor using the same.

本発明は、希土類磁石用粉末の一粒一粒について、磁石特性の低下を最小限に抑えることが可能な耐熱性の高い被膜を薄く均一にコートすることと、そのコート膜上に電気抵抗の大きい耐熱性の高い被膜を薄く均一にコートすることとが重要であることに鑑みなされたものである。即ち、希土類磁石の磁石特性の低下を抑えるには希土類磁石用粉末の体積分率を上げることが必要であるが、同時に高い電気抵抗を獲得する必要がある。このため希土類磁石用粉末の各粒子表面の少なくとも一部、好ましくは各粒子の全面に前述の2種の被膜を薄く均一に形成させることが必須となる。一粒一粒の各粒子の表面に薄く均一な被膜を形成するには化学反応を用いた湿式法による表面処理が有効である。各々の被覆の厚さは0.05〜1.0μm、好ましくは0.05〜0.5μm、より好ましくは0.05〜0.3μm、各々の被覆量の合計は粉末に対して0.5〜20体積%、好ましくは0.5〜10体積%、より好ましくは0.5〜5体積%である。   According to the present invention, for each grain of rare earth magnet powder, a thin film with high heat resistance capable of minimizing deterioration of magnet characteristics is coated thinly and uniformly, and electric resistance is applied on the coated film. This is made in view of the importance of thinly and uniformly coating a large heat-resistant film. That is, to suppress the deterioration of the magnet characteristics of the rare earth magnet, it is necessary to increase the volume fraction of the rare earth magnet powder, but at the same time, it is necessary to obtain a high electric resistance. For this reason, it is essential to form the above-described two kinds of coatings thinly and uniformly on at least a part of each particle surface of the rare earth magnet powder, preferably on the entire surface of each particle. Surface treatment by a wet method using a chemical reaction is effective for forming a thin and uniform film on the surface of each particle. The thickness of each coating is 0.05 to 1.0 μm, preferably 0.05 to 0.5 μm, more preferably 0.05 to 0.3 μm, and the total amount of each coating is 0.5 to 20% by volume, preferably 0.5 to 10 volume with respect to the powder. %, More preferably 0.5 to 5% by volume.

本発明は、希土類磁石用粉末表面の少なくとも一部が、テルビウム(Tb)、ジスプロシウム(Dy)、ホルミウム(Ho)、エルビウム(Er)、ツリウム(Tm)、イッテルビウム(Yb)及びルテチウム(Lu)の少なくとも1種の希土類酸化物(Rは希土類元素)を含む化合物で被覆され、該希土類酸化物を含む化合物が被覆された前記希土類磁石粒子表面の少なくとも一部に、AlO、SiO、窒化ケイ素、TiO、ZnO及びZrOの少なくとも1種の金属化合物で被覆されていることを特徴とする高電気抵抗希土類磁石用粉末にあり、更にこの粉末を用いて圧縮成形後、熱間成形されたことを特徴とする希土類磁石にある。 In the present invention, at least a part of the powder surface for rare earth magnets is made of terbium (Tb), dysprosium (Dy), holmium (Ho), erbium (Er), thulium (Tm), ytterbium (Yb) and lutetium (Lu). At least a part of the surface of the rare earth magnet particle coated with a compound containing at least one rare earth oxide (R is a rare earth element) and coated with the compound containing the rare earth oxide , Al 2 O 3 , SiO 2 , It is a powder for a high electric resistance rare earth magnet characterized by being coated with at least one metal compound of silicon nitride, TiO 2 , ZnO and ZrO 2 , and after this, using this powder, it is hot formed It is a rare earth magnet characterized by the above.

希土類磁石用粉末はその表面に対して、希土類酸化物を含む化合物とAlO等の金属化合物とによって後述するようにこれらの被覆物を溶液によって形成するので、粉末の個々の粒子に均一に全面に被覆されるのが好ましいが、部分的に被覆されるものも僅かに形成されるので、少なくとも一部に被覆されているとするものである。その被覆は部分的でも膜状に形成されるのが特徴である。 As described later, the rare earth magnet powder is formed by a solution containing a rare earth oxide-containing compound and a metal compound such as Al 2 O 3 in a solution, so that it is uniform on the individual particles of the powder. It is preferable that the entire surface is covered, but a portion that is partially covered is also formed slightly, so that at least a portion is covered. The coating is characterized in that it is partially formed into a film.

希土類酸化物及び金属化合物は、非晶質及び結晶質の少なくとも一方を有し、希土類磁石用粉末はその表面が部分的又は全面が被覆されているものであるが、非晶質が殆どである。   The rare earth oxide and the metal compound have at least one of amorphous and crystalline, and the rare earth magnet powder is partially or entirely coated on the surface, but is mostly amorphous. .

希土類磁石用粉末は、一般に金属及び有機化合物との反応、表面酸化等の化学的変化を生じ易く、磁石特性の低下が問題となる。高温でも磁石特性の維持可能な表面コーティング剤が望まれている。   Rare earth magnet powders generally tend to cause chemical changes such as reaction with metals and organic compounds, surface oxidation, and the like, and deterioration of magnet properties becomes a problem. A surface coating agent capable of maintaining magnet properties even at high temperatures is desired.

本発明者らは鋭意検討し、希土類磁石用粉末の表面に耐熱性の高い、テルビウム(Tb)、ジスプロシウム(Dy)、ホルミウム(Ho)、エルビウム(Er)、ツリウム(Tm)、イッテルビウム(Yb)及びルテチウム(Lu)の少なくとも1種である希土類酸化物を生成させるに当たって、その体積分率を大きくすることなく、磁石特性を保持するには、式RL[Rは前記希土類酸化物のR 、Lは有機物の配位子であり、{CO(CH)CHCO(CH)}イオン、{CO(C(CH)CHCO(C(CH)}イオン、{CO(CF)CHCO(C(CH)}イオン、{CO(CF)CHCO(CF3)}イオンいずれかのβ−ジケトナトイオン、(O−i−CHイオン及び(O−CH−OCHイオンいずれかの陰イオンの有機基である]の溶液を用いた湿式処理を用いることが有効であることを見出した。 これは湿式処理を用いることで、希土類磁石用粉末表面の殆どがその全面に希土類酸化物を均一かつ好ましくは0.1〜0.3μmの薄い膜で被覆することが可能になったからである。 The present inventors diligently studied, and the surface of the rare earth magnet powder has high heat resistance, terbium (Tb), dysprosium (Dy), holmium (Ho), erbium (Er), thulium (Tm), ytterbium (Yb). In order to maintain the magnet characteristics without increasing the volume fraction of the rare earth oxide, which is at least one of lutetium and lutetium (Lu), the formula RL 3 [R is R of the rare earth oxide, L is a ligand of the organic, {CO (CH 3) CHCO (CH 3)} - ions, {CO (C (CH 3 ) 3) CHCO (C (CH 3) 3)} - ions, {CO (C 3 F 7) CHCO ( C (CH 3) 3)} - ions, {CO (CF 3) CHCO (CF 3)} - ions either β- Jiketonatoion, (O-i-C 3 H 7) - ions and (O-C 2 H 4 -OCH 3) - use the solution of ions is an organic group of any of the anions] Be a wet process was found to be effective. This is because almost all of the surface of the rare earth magnet powder can be coated uniformly and preferably with a thin film of preferably 0.1 to 0.3 μm on the entire surface by using wet processing.

また、式RLを溶解する溶媒にはアルコール系の低沸点溶媒を用いることで希土類磁石用粉末の表面を酸化等の変質を生じさせることなく、希土類磁石用粉末の表面に希土類酸化物を生成させることが可能になった。また、配位子であるLに500℃以下の低温かつ無酸素の状態で分解除去が可能な、前述と同じいずれかの陰イオンの有機基を用いることで、希土類磁石用粉末表面に炭素化合物の生成を極力抑えることが可能になった。この希土類酸化物を表面に生成させた希土類磁石用粉末を用いて熱間成形して得たバルク磁石は熱的に安定であり、800℃の熱処理を施した後でも、室温での磁石特性は熱処理前後で変化が小さいものであった。この希土類酸化物による表面処理膜は、希土類磁石用粉末を用いて圧縮成形した磁石の熱処理に対する磁気特性の安定化に有効であることが分かった。 Also, without causing deterioration such as oxidation of the surface of the powder for rare earth magnet by the solvent which dissolves the formula RL 3 using low-boiling alcoholic solvent, produce a rare earth oxide on the surface of the powder for rare earth magnet It became possible to make it. Also, by using one of the same anionic organic groups as described above, which can be decomposed and removed at a low temperature of 500 ° C. or less and in an oxygen-free state, the ligand L is a carbon compound on the surface of the rare earth magnet powder. It became possible to suppress the generation of. The bulk magnet obtained by hot forming using the rare earth magnet powder with the rare earth oxide formed on the surface is thermally stable, and even after heat treatment at 800 ° C, the magnet properties at room temperature are The change was small before and after the heat treatment. It has been found that this surface-treated film made of rare earth oxide is effective in stabilizing the magnetic properties against heat treatment of a magnet compression-molded using rare earth magnet powder.

更に、希土類磁石用粉末表面の絶縁性を向上させるには、希土類磁石用粉末表面の希土類酸化物膜上に、高絶縁性耐熱性の高いAlO、SiO、窒化ケイ素、TiO、ZnO、ZrOを1種又は複数種金属化合物を薄く均一な膜として生成させることが重要である。これらの高絶縁性耐熱性の金属化合物を希土類磁石用粉末表面の希土類酸化物膜上に薄く均一な膜として生成させるには、以下の湿式処理を用いた絶縁膜形成法が有効であることを見出した。
(1)AlO、SiO、TiO、ZnO、ZrOを1種又は複数種金属酸化物を生成させる際に、金属アルコキシド及び金属ジケトネートの少なくとも1種を含む金属化合物を用いる場合、その金属化合物を150℃以下の沸点を有する有機溶媒に溶解した溶液を用い、その溶液を希土類磁石用粉末と混合し、好ましくは100〜600℃の脱酸素中で熱処理を施すことで、希土類磁石用粉末の表面を変質させることなく、希土類酸化物膜上に前述の金属酸化物を生成させることが可能になった。また、配位子であるアルコキシドとジケトネートに好ましくは600℃以下の低温かつ無酸素の状態で分解除去が可能な、{CO(CH)CHCO(CH)}イオン、{CO(C(CH)CHCO(C(CH)}イオン、{CO(CF)CHCO(C(CH)}イオン、{CO(CF)CHCO(CF)}イオンのいずれかのβ−ジケトナトイオン、(O−i−CHイオン、(O−S−CHイオン、(O−n−CHイオン及び(O−CH−OCHイオンのいずれかの陰イオンの有機基を用いることで、希土類磁石用粉末表面に炭素化合物の生成を極力抑えることが可能になった。
(2)AlO、SiO、TiO、ZnO、ZrOを1種又は複数種金属酸化物を生成させる際に、金属アルコキシド及び金属ジケトネートの少なくとも1種を含む金属化合物を用いる場合、その金属化合物を水と水溶性有機溶媒とを用いた混合溶液を用い、その溶液を希土類磁石用粉末と混合し、好ましくは100〜400℃の脱酸素中で熱処理を施すことで、希土類磁石用粉末表面を変質させることなく、希土類酸化物の膜上に前述の金属酸化物を生成させることが可能になった。金属化合物と水とのゾルゲル反応を制御するにはアルコール系の低沸点溶媒を用いて希釈することが有効で、この希釈液を用いた溶液で希土類磁石用粉末表面を変質させることなく、希土類磁石用粉末表面に前述の金属酸化物の生成が可能になった。
Furthermore, in order to improve the insulation properties of the rare earth magnet powder surface, Al 2 O 3 , SiO 2 , silicon nitride, TiO 2 , high insulating and high heat resistance are formed on the rare earth oxide film on the rare earth magnet powder surface. It is important to produce one or more kinds of ZnO and ZrO 2 as a thin and uniform film. In order to produce these highly insulating heat-resistant metal compounds as a thin and uniform film on the rare earth oxide film on the surface of the rare earth magnet powder, the following insulating film forming method using a wet process is effective. I found it.
(1) In the case of using a metal compound containing at least one of a metal alkoxide and a metal diketonate when generating one or more kinds of metal oxides of Al 2 O 3 , SiO 2 , TiO 2 , ZnO, ZrO 2 , Using a solution obtained by dissolving the metal compound in an organic solvent having a boiling point of 150 ° C. or less, mixing the solution with the rare earth magnet powder, and preferably performing a heat treatment in deoxidation at 100 to 600 ° C. It has become possible to produce the above metal oxide on the rare earth oxide film without altering the surface of the magnet powder. In addition, the ligands alkoxide and diketonate can be decomposed and removed at a low temperature of 600 ° C. or lower and in an oxygen-free state, {CO (CH 3 ) CHCO (CH 3 )} - ion, {CO (C ( CH 3) 3) CHCO (C (CH 3) 3)} - ions, {CO (C 3 F 7 ) CHCO (C (CH 3) 3)} - ions, {CO (CF 3) CHCO (CF 3) } - either β- Jiketonatoion ion, (O-i-C 3 H 7) - ion, (O-S-C 4 H 9) - ion, (O-n-C 4 H 9) - ions and By using an anionic organic group of any one of (O—C 2 H 4 —OCH 3 ) ions, it has become possible to suppress the generation of a carbon compound on the rare earth magnet powder surface as much as possible.
(2) In the case of using a metal compound containing at least one of a metal alkoxide and a metal diketonate when generating one or more kinds of metal oxides of Al 2 O 3 , SiO 2 , TiO 2 , ZnO, and ZrO 2 The rare earth magnet is obtained by using a mixed solution of the metal compound in water and a water-soluble organic solvent, mixing the solution with the powder for the rare earth magnet, and preferably performing heat treatment in deoxygenation at 100 to 400 ° C. The above-described metal oxide can be formed on the rare earth oxide film without altering the surface of the powder for use. In order to control the sol-gel reaction between a metal compound and water, it is effective to dilute with an alcohol-based low-boiling solvent, and a rare earth magnet can be used without altering the surface of the rare earth magnet powder with a solution using this diluent. The aforementioned metal oxide can be generated on the powder surface.

このゾルゲル反応の制御において、通常用いられる酸及び塩基性化合物の添加は好ましくない。それは酸及び塩基性化合物が希土類磁石用粉末を腐食するため、その腐食した粉末を用いた磁石の磁気特性は著しく損なわれる。一方、ゾルゲル反応を伴う金属化合物中の配位子であるジケトネートは好ましくは400℃以下の低温かつ無酸素の状態で分解除去が可能となった。   In the control of this sol-gel reaction, it is not preferable to add commonly used acids and basic compounds. That is, since acid and basic compounds corrode rare earth magnet powders, the magnetic properties of magnets using the corroded powders are significantly impaired. On the other hand, diketonate, which is a ligand in a metal compound accompanied by a sol-gel reaction, can be decomposed and removed at a low temperature of 400 ° C. or lower and in an oxygen-free state.

ジケトネートの配位子として、前述の(1)に記載のいずれかの陰イオンの有機基を用いることで、希土類磁石用粉末表面に炭素化合物の生成を極力抑えることが可能になった。
(3)SiOを含む化合物を生成させる際に、
CH2n+1O−{Si(CH2n+1O)−O}m−CH2n+1
(ここで、nは1〜2、mは1〜10の整数である)のシラン化合物と水と水溶性有機溶媒とを用いた混合溶液を用い、その溶液を希土類磁石用粉末と混合し、好ましくは100〜200℃の脱酸素中で熱処理を施すことで、希土類磁石用粉末表面を変質させることなく、希土類酸化物の膜上にSiOを生成させることが可能になった。また、前述のシラン化合物と水とのゾルゲル反応を制御するにはアルコール系の低沸点溶媒を用いて希釈することが有効で、この希釈液を用いた溶液で希土類磁石用粉末表面を変質させることなく、希土類磁石用粉末表面にSiOが生成可能になった。このゾルゲル反応の制御において、通常用いられる酸及び塩基性化合物の添加は前述と同様に好ましくない。
By using any one of the anionic organic groups described in (1) above as the diketonate ligand, it has become possible to suppress the formation of carbon compounds on the rare earth magnet powder surface as much as possible.
(3) When generating a compound containing SiO 2 ,
C n H 2n + 1 O- { Si (C n H 2n + 1 O) 2 -O} m -C n H 2n + 1
(Where n is an integer of 1 to 2 and m is an integer of 1 to 10), using a mixed solution using a silane compound, water and a water-soluble organic solvent, and mixing the solution with the rare earth magnet powder, Preferably, by performing heat treatment in deoxygenation at 100 to 200 ° C., SiO 2 can be formed on the rare earth oxide film without altering the surface of the rare earth magnet powder. In order to control the sol-gel reaction between the above-mentioned silane compound and water, it is effective to dilute with an alcohol-based low-boiling solvent, and the rare earth magnet powder surface can be altered by a solution using this diluted solution. As a result, SiO 2 can be generated on the surface of the rare earth magnet powder. In the control of this sol-gel reaction, addition of commonly used acids and basic compounds is not preferable as described above.

一方、シラン化合物中の有機基にCH2n+1O(nは1〜2の整数である)を用いることで150℃以下の低温かつ無酸素の状態で有機基の除去が可能であり、希土類磁石用粉末表面に炭素化合物の生成を極力抑えることができるようになった。{Si(CH2n+1O)−O}mのSiの繰り返しの単位であるmは10以上でもよいが、現実的には反応の制御が容易で、入手し易い1〜10の材料が良い。
(4)窒化ケイ素を生成させる際には、ポリシラザンを低極性有機溶媒に溶解した溶液を希土類磁石用粉末と混合し、600〜800℃の脱酸素中で熱処理を施すことで、希土類磁石用粉末表面を変質させることなく、希土類酸化物の膜上に窒化ケイ素を生成させることが可能になった。窒化ケイ素としてはSiNが好ましい。
On the other hand, by using C n H 2n + 1 O (n is an integer of 1 to 2) as the organic group in the silane compound, the organic group can be removed at a low temperature of 150 ° C. or less and in an oxygen-free state. Generation of carbon compounds on the surface of the magnet powder can be suppressed as much as possible. {Si (C n H 2n + 1 O) 2 -O} may be m repeating a unit of the Si of m 10 or more, but in practice is easy to control the reaction, 1 to 10 of the material easily available good.
(4) When producing silicon nitride, a solution of polysilazane dissolved in a low-polar organic solvent is mixed with a rare earth magnet powder and heat treated in a deoxidized environment at 600 to 800 ° C. It has become possible to form silicon nitride on a rare earth oxide film without altering the surface. As silicon nitride, Si 3 N 4 is preferable.

尚、希土類磁石用粉末表面の絶縁性を向上させるには、希土類磁石用粉末表面の希土類酸化物の膜上に、AlO、SiO、窒化ケイ素、TiO、ZnO、ZrO の少なくとも1種の金属化合物を形成するものであるIn order to improve the insulation properties of the rare earth magnet powder surface , at least Al 2 O 3 , SiO 2 , silicon nitride, TiO 2 , ZnO, ZrO 2 is formed on the rare earth oxide film on the rare earth magnet powder surface. it is to form a kind of metal compound.

希土類磁石粉は、強磁性の主相および他成分からなる。希土類磁石がNd-Fe-B系磁石である場合には、主相はNdFe14B相である。磁石特性の向上を考慮すると、希土類磁石粉は、HDDR法や熱間塑性加工を用いて調製された異方性希土類磁石粉であることが好ましい。HDDR法や熱間塑性加工を用いて調製された異方性希土類磁石粉は後述するように多数の結晶粒の集合体となる。このとき、この結晶粒が単磁区粒径以下の平均粒径を有していると、保磁力を向上させる上で好適である。希土類磁石粉は、Nd-Fe-B系磁石の他に、Sm-Co系磁石などが挙げられる。得られる希土類磁石の磁石特性や、製造コストなどを考慮すると、Nd-Fe-B系磁石が好ましい。ただし、本発明の希土類磁石がNd-Fe-B系磁石に限定されるものではない。場合によっては、希土類磁石中には2種以上の希土類磁石粉が混在していてもよい。即ち、異なる組成比を有するNd-Fe-B系磁石が2種以上含まれてもよく、Nd-Fe-B系磁石とSm-Co系磁石とが混在していてもよい。 Rare earth magnet powder consists of a ferromagnetic main phase and other components. When the rare earth magnet is an Nd—Fe—B based magnet, the main phase is an Nd 2 Fe 14 B phase. Considering improvement in magnet characteristics, the rare earth magnet powder is preferably an anisotropic rare earth magnet powder prepared by using the HDDR method or hot plastic working. The anisotropic rare earth magnet powder prepared using the HDDR method or hot plastic working becomes an aggregate of a large number of crystal grains as described later. At this time, it is preferable to improve the coercive force if the crystal grains have an average grain size equal to or smaller than the single magnetic domain grain size. Examples of the rare earth magnet powder include Sm—Co based magnets in addition to Nd—Fe—B based magnets. Considering the magnet characteristics of the obtained rare earth magnet and the manufacturing cost, Nd—Fe—B based magnets are preferable. However, the rare earth magnet of the present invention is not limited to the Nd—Fe—B based magnet. In some cases, two or more rare earth magnet powders may be mixed in the rare earth magnet. That is, two or more types of Nd—Fe—B magnets having different composition ratios may be included, and Nd—Fe—B magnets and Sm—Co magnets may be mixed.

なお、本願において「Nd-Fe-B系磁石」とは、NdやFeの一部が他の元素で置換されている形態も包含する概念である。Ndは、Dy、Tb等の他の希土類元素で置換されていてもよい。置換にはこれらの一方のみを用いてもよく、双方を用いてもよい。置換は、原料合金の 配合量を調整することによって行うことができる。かような置換によって、Nd-Fe-B系磁石の保磁力向上が図れる。置換されるNdの量は、Ndに対して、0.01atom%以上、50atom%以下であることが好ましい。0.01atom%未満であると置換による効果が不十分となる恐れがある。50atom%を越えると、残留磁束密度を高レベルで維持できなくなる恐れがある。   In the present application, the “Nd—Fe—B system magnet” is a concept including a form in which a part of Nd or Fe is substituted with another element. Nd may be substituted with other rare earth elements such as Dy and Tb. Only one of these may be used for substitution, or both may be used. The substitution can be performed by adjusting the amount of the raw material alloy. By such replacement, the coercive force of the Nd—Fe—B magnet can be improved. The amount of Nd to be substituted is preferably 0.01 atom% or more and 50 atom% or less with respect to Nd. If it is less than 0.01 atom%, the effect of substitution may be insufficient. If it exceeds 50 atom%, the residual magnetic flux density may not be maintained at a high level.

一方、Feは、Co等の他の遷移金属で置換されていてもよい。かような置換によって、Nd-Fe-B系磁石のキュリー温度(Tc)を上昇させ、使用温度範囲を拡大させることができる。置換されるFeの量は、Feに対して、0.01atom%以上、30atom%以下であることが好ましい。0.01atom%未満であると置換による効果が不十分となる恐れがある。30atom%を越えると、保磁力の低下が大きくなる恐れがある。   On the other hand, Fe may be substituted with another transition metal such as Co. By such replacement, the Curie temperature (Tc) of the Nd—Fe—B magnet can be increased and the operating temperature range can be expanded. The amount of Fe to be substituted is preferably 0.01 atom% or more and 30 atom% or less with respect to Fe. If it is less than 0.01 atom%, the effect of substitution may be insufficient. If it exceeds 30 atom%, the coercive force may decrease significantly.

希土類磁石における希土類磁石粉の平均粒径は、1〜500μmが好ましい。希土類磁石粉の平均粒径が1μm未満であると、磁粉の比表面積が大きく酸化劣化による影響が大きく、それを用いた希土類磁石の磁石特性の低下が懸念される。一方、希土類磁石粉の平均粒径が500μmより大きいと、製造時の圧力によって磁石粉が砕け、十分な電気抵抗を得ることが難しくなる。加えて、異方性希土類磁石粉を原料として異方性磁石を製造する場合には、500mmを越えるサイズにわたり、希土類磁石粉における主相(Nd-Fe-B系磁石においては、NdFe14B相)の配向方向を揃えることは難しい。希土類磁石粉の粒径は、磁石の原料である希土類磁石粉の粒径を調節することによって、制御される。なお、希土類磁石粉の平均粒径はSEM像から算出することができる。 The average particle diameter of the rare earth magnet powder in the rare earth magnet is preferably 1 to 500 μm. When the average particle size of the rare earth magnet powder is less than 1 μm, the specific surface area of the magnetic powder is large and the influence of oxidative degradation is great, and there is a concern that the magnet properties of the rare earth magnet using the rare earth magnet powder may deteriorate. On the other hand, if the average particle size of the rare earth magnet powder is larger than 500 μm, the magnet powder is crushed by the pressure during production, and it becomes difficult to obtain sufficient electric resistance. In addition, when an anisotropic magnet is produced using anisotropic rare earth magnet powder as a raw material, the main phase in rare earth magnet powder (Nd 2 Fe 14 in Nd—Fe—B magnets) extends over a size exceeding 500 mm. It is difficult to align the orientation direction of (B phase). The particle size of the rare earth magnet powder is controlled by adjusting the particle size of the rare earth magnet powder that is the raw material of the magnet. The average particle size of the rare earth magnet powder can be calculated from the SEM image.

本発明は等方性磁石粉から製造される等方性磁石、異方性磁石粉をランダム配向させた等方性磁石、および異方性磁石粉を一定方向に配向させた異方性磁石のいずれにも適用可能である。高エネルギー積を有する磁石が必要であれば、異方性磁石粉を原料とし、これを磁場中配向させた異方性磁石が好適である。   The present invention relates to an isotropic magnet manufactured from an isotropic magnet powder, an isotropic magnet in which anisotropic magnet powder is randomly oriented, and an anisotropic magnet in which anisotropic magnet powder is oriented in a certain direction. It is applicable to both. If a magnet having a high energy product is required, an anisotropic magnet using anisotropic magnet powder as a raw material and oriented in a magnetic field is suitable.

希土類磁石粉は、製造する希土類磁石の組成に応じて、原料を配合して製造する。主相がNdFe14B相であるNd-Fe-B系磁石を製造する場合には、Nd、Fe及びBを所定量配合する。希土類磁石粉は、公知の手法を用いて製造したものを用いてもよいし、市販品を用いても良い。好ましくは、HDDR法や熱間塑性加工を利用したUPSET法を用いて製造された異方性希土類磁石粉を用いる。かような異方性希土類磁石粉は、多数の結晶粒の集合体となっている。異方性希土類磁石粉を構成する結晶粒は、その平均粒径が単磁区臨界粒子径以下であると、保磁力を向上させる上で好適である。具体的には、結晶粒の平均粒径は、500nm以下であるとよい。なお、HDDR法とは、Nd-Fe-B合金を水素化させることにより、主相であるNdFe14B化合物をNdH、α-Fe及びFeBの三相に分解させ、その後、強制的な脱水素処理によって再びNdFe14Bを生成させる手法である。UPSET法とは、超急冷法により作製したNd-Fe-B系合金を、粉砕、仮成型後、熱間で塑性加工する手法である。 The rare earth magnet powder is produced by blending raw materials according to the composition of the rare earth magnet to be produced. When producing an Nd—Fe—B based magnet whose main phase is the Nd 2 Fe 14 B phase, a predetermined amount of Nd, Fe and B is blended. As the rare earth magnet powder, one produced by a known method may be used, or a commercially available product may be used. Preferably, an anisotropic rare earth magnet powder manufactured using the HDDR method or the UPSET method using hot plastic working is used. Such anisotropic rare earth magnet powder is an aggregate of many crystal grains. The crystal grains constituting the anisotropic rare earth magnet powder are suitable for improving the coercive force when the average particle diameter is not more than the single domain critical particle diameter. Specifically, the average grain size of the crystal grains is preferably 500 nm or less. In the HDDR method, the Nd—Fe—B alloy is hydrogenated to decompose the Nd 2 Fe 14 B compound as the main phase into three phases of NdH 3 , α-Fe and Fe 2 B, and then In this method, Nd 2 Fe 14 B is generated again by forced dehydrogenation. The UPSET method is a technique in which an Nd—Fe—B alloy produced by an ultra-quenching method is plastically processed hot after pulverization and temporary molding.

表面処理後の異方性希土類磁石粉は成形型中に充填される。成形型の形状は特に限定されず、磁石が適用される部位に応じて決定すると良い。成形型に充填する際には、適当な圧力を加えて仮成形するとよい。仮成形の圧力は0.5〜5t/cm程度である。なお、用いる希土類磁石粉が異方性磁石粉である場合には、希土類磁石粉を磁場配向させながら仮成形することによって、異方性の希土類磁石を得ることができる。なお、加える配向磁場は796〜1592kA/m(10〜20kOe)程度である。 The anisotropic rare earth magnet powder after the surface treatment is filled in a mold. The shape of the mold is not particularly limited, and may be determined according to the part to which the magnet is applied. When filling the mold, an appropriate pressure may be applied for temporary molding. The pressure for temporary molding is about 0.5 to 5 t / cm 2 . In addition, when the rare earth magnet powder to be used is an anisotropic magnet powder, an anisotropic rare earth magnet can be obtained by temporarily forming the rare earth magnet powder while orienting the magnetic field. The orientation magnetic field applied is about 796 to 1592 kA / m (10 to 20 kOe).

成形型中に充填された表面処理後の異方性希土類磁石粉を成形して、バルク磁石を得る。なお、上述の仮成形によって表面処理後の異方性希土類磁石粉を固める作業は、本願における「成形」には該当しないものとする。成形は、磁石製造に通常用いられる公知の装置を用いることができる。好ましくは、熱間成形によって成形することが好ましい。熱間成形法を用いて成形した場合には、原料である希土類磁石粉末を十分に塑性変形させ、高密度な希土類磁石を得ることができる。熱間成形方法としては特に規定しないが、ホットプレスを用いることができる。成形の圧力は1〜10t/cm程度である。また、成形温度は600〜800℃でプレス時間は5〜30分が適当である。通常の熱間成形雰囲気は10Pa以下の真空または不活性ガスフロー下である。 The surface-treated anisotropic rare earth magnet powder filled in the mold is molded to obtain a bulk magnet. In addition, the operation | work which hardens the anisotropic rare earth magnet powder after surface treatment by the above-mentioned temporary forming shall not correspond to "forming" in this application. For the molding, a known apparatus usually used for magnet production can be used. Preferably, it is preferable to form by hot forming. When the hot forming method is used, the rare earth magnet powder as a raw material can be sufficiently plastically deformed to obtain a high density rare earth magnet. Although it does not prescribe | regulate especially as a hot forming method, a hot press can be used. The molding pressure is about 1 to 10 t / cm 2 . The molding temperature is suitably 600 to 800 ° C. and the pressing time is suitably 5 to 30 minutes. The normal hot forming atmosphere is a vacuum of 10 Pa or less or an inert gas flow.

原料磁石粉末として異方性磁石粉を使用する場合には、よく知られているように成形時に磁場配向させてもよい。原料磁石粉の磁化容易軸を揃えた状態で成形することで、配向方向での残留磁化を大きくでき、磁石のエネルギー積を向上させることができる。なお、加える配向磁場は796〜1592kA/m(10〜20kOe)程度である。   When anisotropic magnet powder is used as the raw material magnet powder, it may be magnetically oriented during molding as is well known. By forming the raw magnet powder with the easy magnetization axes aligned, the residual magnetization in the orientation direction can be increased, and the energy product of the magnet can be improved. The orientation magnetic field applied is about 796 to 1592 kA / m (10 to 20 kOe).

成形後には、加工(切断、研磨など)、表面処理(保護膜の形成、塗装など)、着磁などの処理を行う。   After molding, processing (cutting, polishing, etc.), surface treatment (protection film formation, painting, etc.), magnetization, etc. are performed.

希土類磁石の加工には各種公知技術を適宜適用できる。即ち、研削(外面研削、内面研削、平面研削、成形研削)、切断(外周切断、内周切断)、ラッピング、面取りなどの加工を実施できる。加工用具としては、ダイヤモンド、GC砥石、外内周切断機、外内周研削機、平面研削機、NC旋盤、フライス盤、マニシングセンターなどを用いることができる。   Various known techniques can be appropriately applied to the processing of the rare earth magnet. That is, processing such as grinding (external grinding, internal grinding, surface grinding, forming grinding), cutting (peripheral cutting, inner peripheral cutting), lapping, and chamfering can be performed. As the processing tool, diamond, GC grindstone, outer / inner peripheral cutting machine, outer / inner peripheral grinder, surface grinder, NC lathe, milling machine, machining center and the like can be used.

希土類磁石は酸化されやすいので、磁石表面に保護膜を設けてもよい。保護膜の構成は特に限定されるものではなく、磁石特性に応じて好適な組成を選択し、充分な保護効果が得られるように厚さを決定すればよい。保護膜の具体例としては、金属膜、無機化合物膜、有機化合物膜が挙げられる。金属膜としては、Ti、Ta、Cr、Mo、Ni等が挙げられ、無機化合物膜としては、TiN、FeN、CrN等の遷移金属窒化物膜や、NiO、FeO等の遷移金属酸化物膜が挙げられ、有機化合物膜としては、エポキシ樹脂、フェノール樹脂、ポリウレタン、ポリエステル等からなる樹脂膜が挙げられる。保護膜の厚さは、保護膜を金属膜または無機膜から構成する場合は、0.01〜10μm程度とすることが好ましく、保護膜を有機化合物から構成する場合は、1〜10μm程度であることが好ましい。   Since rare earth magnets are easily oxidized, a protective film may be provided on the magnet surface. The configuration of the protective film is not particularly limited, and a suitable composition may be selected according to the magnet characteristics and the thickness may be determined so as to obtain a sufficient protective effect. Specific examples of the protective film include a metal film, an inorganic compound film, and an organic compound film. Examples of the metal film include Ti, Ta, Cr, Mo, Ni, etc., and examples of the inorganic compound film include transition metal nitride films such as TiN, FeN, and CrN, and transition metal oxide films such as NiO and FeO. Examples of the organic compound film include a resin film made of epoxy resin, phenol resin, polyurethane, polyester, or the like. The thickness of the protective film is preferably about 0.01 to 10 μm when the protective film is made of a metal film or an inorganic film, and about 1 to 10 μm when the protective film is made of an organic compound. preferable.

着磁は、静磁場またはパルス磁場によって行うことができる。飽和に近い着磁状態を得るための目安は、自発保磁力の2倍以上、望ましくは4倍程度の着磁磁場強度である。
本願発明の希土類磁石用磁粉表面の絶縁性を向上させた本発明の高抵抗希土類磁石が適用された集中巻の表面磁石型モータについて説明する。本発明の希土類磁石は、高い電気抵抗を有し、その上、磁石特性にも優れる。このため、本発明の希土類磁石を用いて製造されたモータを利用すれば、モータの連続出力を高めることが容易に可能であり、中から大出力のモータとして好適といえる。また、本発明の希土類磁石を用いたモータは、磁石特性が優れるため、製品の小型軽量化が図れる。例えば、自動車用部品に適用した場合には、車体の軽量化に伴う燃費の向上が可能である。さらに、特に電気自動車やハイブリッド電気自動車の駆動用モータとしても有効である。これまではスペースの確保が困難であった場所にも駆動用モータを搭載することが可能となり、電気自動車やハイブリッド自動車の汎用化に大きな役割を果たすと考えられる。
Magnetization can be performed by a static magnetic field or a pulsed magnetic field. A standard for obtaining a magnetization state close to saturation is a magnetization magnetic field strength of at least twice the spontaneous coercive force, preferably about four times.
A concentrated-winding surface magnet type motor to which the high resistance rare earth magnet of the present invention with improved insulation on the surface of the magnetic powder for rare earth magnets of the present invention is applied will be described. The rare earth magnet of the present invention has a high electric resistance and also has excellent magnet characteristics. For this reason, if the motor manufactured using the rare earth magnet of the present invention is used, the continuous output of the motor can be easily increased, and it can be said that it is suitable as a medium to high output motor. In addition, since the motor using the rare earth magnet of the present invention has excellent magnet characteristics, the product can be reduced in size and weight. For example, when applied to automotive parts, fuel efficiency can be improved as the vehicle body becomes lighter. Furthermore, it is particularly effective as a drive motor for electric vehicles and hybrid electric vehicles. Drive motors can be installed in places where it was difficult to secure space so far, and it will play a major role in the generalization of electric vehicles and hybrid vehicles.

本発明においては、希土類元素との反応性に乏しい希土類酸化物が希土類磁石用磁粉表面に形成されたため熱間成形などの厳しい製造条件下であっても、優れた磁石特性を有し、さらに希土類酸化物を有する希土類磁石用磁粉間にAlO、SiO、窒化ケイ素、TiO、ZnO、ZrO1種または複数種が存在し、該非晶質または/および結晶質のAlO、SiO、窒化ケイ素、TiO、ZnO、ZrO1種または複数種の金属化合物が存在し、これらの金属化合物の存在によって希土類磁石用磁粉が連結された構造を有するため、高い電気抵抗を有すると共に強度の高い希土類磁石が得られる。 In the present invention, a rare earth oxide having poor reactivity with a rare earth element is formed on the surface of a magnetic powder for a rare earth magnet, so that it has excellent magnet characteristics even under severe manufacturing conditions such as hot forming, One or more types of Al 2 O 3 , SiO 2 , silicon nitride, TiO 2 , ZnO, and ZrO 2 exist between the magnetic particles for rare earth magnets having oxides, and the amorphous or / and crystalline Al 2 O 3 , SiO 2 , silicon nitride, TiO 2 , ZnO, ZrO 2 One or more kinds of metal compounds exist, and the presence of these metal compounds has a structure in which the magnetic powders for rare earth magnets are connected. A rare earth magnet having high strength is obtained.

本発明によれば、高電気抵抗を有し、磁石特性の低下を最小限に抑えられる高抵抗希土類磁石用粉末とその製造方法及び希土類磁石とその製造方法並びにその希土類磁石を用いたモータ用ロータとそれを用いたモータを提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, it has high electrical resistance, the powder for high resistance rare earth magnets which can suppress the fall of a magnet characteristic to the minimum, its manufacturing method, rare earth magnet, its manufacturing method, and the rotor for motors using the rare earth magnet And a motor using the same.

以下、本発明を実施するための最良の形態を説明する。なお、本発明は以下に示す実施例に限定されるものではない。   Hereinafter, the best mode for carrying out the present invention will be described. In addition, this invention is not limited to the Example shown below.

希土類磁石用粉末として、公知のHDDR法を用いて調製したNd-Fe-B系異方性磁石用粉末である原子比で組成Nd12.6Co17.4B6.5Ga0.3Al0.5Zr0.1Febalの成分の鋳塊を準備した。この鋳塊を1120℃で20時間保持して均質化した。均質化した鋳塊は、水素雰囲気中で室温から500℃まで昇温させて保持し、さらに、850℃まで昇温させて保持した。引き続いて、850℃の真空雰囲気中に保持した後、冷却して、微細な強磁性相の再結晶集合組織(結晶粒)を有する合金を得た。この合金をジョークラッシャー及びブラウンミルを用いてアルゴンガス中で粉体化し、平均粒径300μm以下の希土類磁石用粉末とした。 As a rare earth magnet powder, a composition of Nd 12.6 Co 17.4 B 6.5 Ga 0.3 Al 0.5 Zr 0.1 Fe bal with an atomic ratio which is a powder for an Nd-Fe-B anisotropic magnet prepared using a known HDDR method. An ingot was prepared. The ingot was homogenized by holding at 1120 ° C. for 20 hours. The homogenized ingot was heated from room temperature to 500 ° C. and held in a hydrogen atmosphere, and further heated to 850 ° C. and held. Subsequently, the alloy was held in a vacuum atmosphere at 850 ° C. and then cooled to obtain an alloy having a recrystallized texture (crystal grains) of a fine ferromagnetic phase. This alloy was pulverized in an argon gas using a jaw crusher and a brown mill to obtain a rare earth magnet powder having an average particle size of 300 μm or less.

希土類磁石用粉末への希土類酸化物による表面処理には、希土類錯体であるジスプロシウム(Dy)2、4-ペンタンジオネイト1gをイソプロピルアルコール100mlに溶解して用いた。また、同じくSiO表面処理には、CHO-(Si(CHO)−O)m−CH(mは3〜5、平均は4)を12.5ml、水2.4ml、メチルアルコール3.75ml、ジラウリン酸ジブチル錫0.025mlを混合し、1昼夜25℃の温度で放置した溶液を用い、以下の工程を順次行って表面処理及び成形を行った。
(1)希土類磁石用粉末1kgに対し、100mlのDyO表面処理溶液を添加して攪拌し、次いで、真空中で150℃、1時間と、350℃、1時間の熱処理を行い、希土類磁石用粉末の全面にDy酸化物の被覆を有する処理粉末を得た。この処理粉末には若干の有機基が残存している。被覆の厚さは約0.1〜0.2μm、粉末の約1体積%であり、殆どが非晶質で、若干の結晶質を有し、希土類磁石用粉末自身の表面処理による高温処理によっては酸化皮膜は実質的には形成されていないものである。
(2)処理粉末1kgに対し、50mlのSiO表面処理溶液を添加して攪拌し、次いで、真空中で150℃、1時間の熱処理を行い、希土類磁石用粉末の表面のDy酸化物被覆にSi酸化物被覆を有する処理粉末を得た。被覆の厚さは約0.2〜0.3μm、粉末の約1体積%であり、殆どが非晶質で、若干の結晶質を有する。
(3)処理粉末を成形型に充填し、続いて、成形型中の混合体に配向磁場796kA/m(10kOe)の磁場をかけることによって磁場配向させながら仮成形圧力0.5t/cmによって希土類磁石粉末の仮成形体を形成した。
(4)熱源を有する成形装置を用いて、仮成形体をAr中で、成形温度800℃、保持時間10分、成形圧力5t/cmにより熱間成形し、バルクの希土類磁石を得た。図1は得られた希土類磁石の断面を模式的に示した断面図である。図1に示すように希土類磁石1は希土類磁石粒子2の表面に希土類酸化物3である厚さ約0.1μmのDy酸化物被覆が均一に形成され、更にその表面に金属化合物4であるSi酸化物がやや厚く形成され、希土類磁石粒子2同士を結合している。又、図1(a)の破線で示した拡大図の図1(b)に示すように、異方性磁石粉は多数の結晶粒5の集合体となる。このとき、結晶粒5が単磁区粒径以下の平均粒径を有していると、保磁力を向上させる上で好適である。
For the surface treatment of rare earth magnet powder with rare earth oxide, 1 g of dysprosium (Dy) 2,4-pentanedionate, which is a rare earth complex, was dissolved in 100 ml of isopropyl alcohol. Similarly, for SiO 2 surface treatment, 12.5 ml of CH 3 O— (Si (CH 3 O) 2 —O) m —CH 3 (m is 3 to 5, average is 4), 2.4 ml of water, methyl alcohol Surface treatment and molding were performed by sequentially mixing the following steps using a solution in which 3.75 ml and 0.025 ml of dibutyltin dilaurate were mixed and allowed to stand at a temperature of 25 ° C. overnight.
(1) 100 kg of Dy 2 O 3 surface treatment solution is added to 1 kg of rare earth magnet powder and stirred, and then heat-treated in vacuum at 150 ° C. for 1 hour and 350 ° C. for 1 hour. A treated powder having a Dy oxide coating on the entire surface of the magnet powder was obtained. Some organic groups remain in this treated powder. The thickness of the coating is about 0.1-0.2μm, about 1% by volume of the powder. Most of the coating is amorphous and has some crystallinity. Depending on the surface treatment of the rare earth magnet powder itself, the oxide film Is substantially not formed.
(2) Add 50 ml of SiO 2 surface treatment solution to 1 kg of the treated powder, stir, then heat-treat in vacuum at 150 ° C for 1 hour to cover the surface of the rare earth magnet powder with Dy oxide A treated powder with Si oxide coating was obtained. The thickness of the coating is about 0.2-0.3 μm, about 1% by volume of the powder, most is amorphous and has some crystallinity.
(3) The processing powder is filled into a mold, and then the rare earth is applied at a temporary molding pressure of 0.5 t / cm 2 while being magnetically oriented by applying a magnetic field of 796 kA / m (10 kOe) to the mixture in the mold. A temporary compact of magnet powder was formed.
(4) Using a molding apparatus having a heat source, the temporary compact was hot molded in Ar at a molding temperature of 800 ° C., a holding time of 10 minutes, and a molding pressure of 5 t / cm 2 to obtain a bulk rare earth magnet. FIG. 1 is a cross-sectional view schematically showing a cross section of the obtained rare earth magnet. As shown in FIG. 1, in the rare earth magnet 1, the surface of the rare earth magnet particles 2 is uniformly formed with a Dy oxide coating of about 0.1 μm thick, which is a rare earth oxide 3, and the surface is further oxidized with Si, which is a metal compound 4. The object is formed a little thicker and binds the rare earth magnet particles 2 to each other. Further, as shown in FIG. 1B of the enlarged view shown by the broken line in FIG. 1A, the anisotropic magnet powder becomes an aggregate of a large number of crystal grains 5. At this time, if the crystal grains 5 have an average grain size equal to or smaller than the single magnetic domain grain size, it is preferable to improve the coercive force.

得られた希土類磁石の密度、保磁力、最大エネルギー積及び電気抵抗率を測定した。磁石密度は希土類磁石の寸法及び質量とから求めた。磁石特性は試験片を3184kA/m(40kOe)で着磁後、振動試料型磁力計(理研電子社製BHV−525)を用いて測定した。また、電気抵抗率は、KYOWARIKEN社製K705RMを用い4探針法により測定した。   The density, coercive force, maximum energy product and electrical resistivity of the obtained rare earth magnet were measured. The magnet density was determined from the size and mass of the rare earth magnet. The magnet characteristics were measured using a vibrating sample magnetometer (BHV-525 manufactured by Riken Denshi Co., Ltd.) after the test piece was magnetized at 3184 kA / m (40 kOe). The electrical resistivity was measured by a four-probe method using a K705RM manufactured by KYOWARIKEN.

表1はその結果を示すものである。得られた希土類磁石は、密度7.3g/cm以上、保磁力716.4 kA/m (9.0kOe)以上、最大エネルギー積159.2MJ/m3(20MGOe)以上、電気抵抗率2000μΩcm以上の共に優れた特性を有しており、更に熱間成形によって形成されているので強度が高いものであることが明らかである。 Table 1 shows the results. The obtained rare earth magnet has excellent properties such as a density of 7.3 g / cm 3 or more, a coercive force of 716.4 kA / m (9.0 kOe) or more, a maximum energy product of 159.2 MJ / m 3 (20 MGOe) or more, and an electric resistivity of 2000 μΩcm or more. It is clear that it has high strength because it is formed by hot forming.

一方、本発明への希土類酸化物による表面処理とSiO表面処理の組み合わせは保磁力が1544.2 kA/m(19.4kOe)を有する原子比でNd12.4Dy0.6Co20B6.2Ga0.4Al1.5Zr0.1Febalの成分組成を有する異方性HDDR粉末にも有効であることが分かった。即ち、磁石用粉末を用いて作製した磁石は、磁石密度7.6g/cm、保磁力1512.4kA/m(19.0kOe)、最大エネルギー積199MJ/m3(25MGOe)、電気抵抗率3500μΩcmの特性値を有した。このことから、Nd−Fe−B系異方性磁石用粉末に対して、本発明を用いることにより磁石特性は用いる粉末の特性を損なうことなく、高電気抵抗を有すると共に強度の高い磁石の作製を可能にした。
On the other hand, the combination of the surface treatment with rare earth oxide and the SiO 2 surface treatment according to the present invention is Nd 12.4 Dy 0.6 Co 20 B 6.2 Ga 0.4 Al 1.5 Zr 0.1 in terms of atomic ratio having a coercive force of 1544.2 kA / m (19.4 kOe). It was also found to be effective for anisotropic HDDR powder with Fe bal component composition. That is, the magnet produced by using the powder for a magnet, the magnet density 7.6 g / cm 3, the coercive force 1512.4 k A / m (19.0kOe) , the maximum energy product 199MJ / m 3 (25MGOe), characteristics of the electrical resistivity 3500μΩcm Had a value. From this, it is possible to produce a magnet having high electric resistance and high strength without impairing the characteristics of the powder used by using the present invention for the Nd-Fe-B anisotropic magnet powder. Made possible.

Figure 0004238114
Figure 0004238114

希土類磁石用粉末への希土類酸化物による表面処理には、希土類錯体であるホルミウム(Ho)2、2、6、6−テトラメチル−3、5−ヘプタンジオネイト1.6gをイソプロピルアルコール300mlに溶解して用いた。また、同じくAlO表面処理には、アルミニウム2、4−ペンタンジオネイト40gをトルエン300mlに溶解して用い、以下の工程を順次行って表面処理及び成形を行った。
(1)希土類磁石用粉末1kgに対し、300mlのHoO表面処理溶液を添加し、溶媒を蒸発させながら攪拌し、次いで、真空中で190℃、1時間と、500℃、1時間の熱処理を行い、実施例1と同様な処理粉末を得た。
(2)処理粉末1kgに対し、300mlのSiO表面処理溶液を添加し、溶媒を蒸発させながら攪拌し、次いで、真空中で600℃、1時間の熱処理を行った。
(3)処理粉末を成形型に充填し、実施例1と同様に磁場配向させながら希土類磁石粉末の仮成形体を形成した。
(4)仮成形体を実施例1と同様に熱間成形し、バルクの希土類磁石を得た。
For surface treatment of rare earth magnet powder with rare earth oxide, 1.6g of rare earth complex holmium (Ho) 2,2,6,6-tetramethyl-3,5-heptanedionate is dissolved in 300ml of isopropyl alcohol. Used. Similarly, in the Al 2 O 3 surface treatment, 40 g of aluminum 2,4-pentane dionate was dissolved in 300 ml of toluene, and the following steps were sequentially performed for surface treatment and molding.
(1) To 1 kg of rare earth magnet powder, add 300 ml of Ho 2 O 3 surface treatment solution, stir while evaporating the solvent, and then in vacuum at 190 ° C for 1 hour and 500 ° C for 1 hour Heat treatment was performed to obtain a treated powder similar to that in Example 1.
(2) To 1 kg of the treated powder, 300 ml of SiO 2 surface treatment solution was added, stirred while evaporating the solvent, and then heat-treated in vacuum at 600 ° C. for 1 hour.
(3) The processing powder was filled into a mold, and a rare-earth magnet powder temporary compact was formed while orienting the magnetic field in the same manner as in Example 1.
(4) The temporary compact was hot-molded in the same manner as in Example 1 to obtain a bulk rare earth magnet.

得られた希土類磁石の密度、保磁力、最大エネルギー積及び電気抵抗率を実施例1と同様の方法で測定した。表1に示すように、得られた希土類磁石は、密度7.3g/cm以上、保磁力716.4 kA/m(9.0kOe)以上、最大エネルギー積159.2MJ/m3(20MGOe)以上、電気抵抗率2000μΩcm以上の共に優れた特性を有していることが分かった。 The density, coercive force, maximum energy product and electrical resistivity of the obtained rare earth magnet were measured in the same manner as in Example 1. As shown in Table 1, the obtained rare earth magnet has a density of 7.3 g / cm 3 or more, a coercive force of 716.4 kA / m (9.0 kOe) or more, a maximum energy product of 159.2 MJ / m 3 (20 MGOe) or more, and an electrical resistivity. It was found that both have excellent characteristics of 2000 μΩcm or more.

希土類磁石用粉末への希土類酸化物による表面処理には、希土類錯体であるジスプロシウム(Dy)2、4−ペンタンジオネイト2gをイソプロピルアルコール200mlに溶解して用いた。また、同じくTiO表面処理には、チタニウムジイソプロポキサイド(ビス2、4−ペンタンジオネイト)26g、水1ml、ジラウリン酸ジブチル錫0.025mlをイソプロビルアルコール100mlに溶解して用い、以下の工程を順次行って表面処理及び成形を行った。
(1)希土類磁石用粉末1kgに対し、200mlのDyO表面処理溶液を添加して攪拌し、次いで真空中で150℃、1時間と350℃、1時間の熱処理を行い、処理粉末を得た。
(2)処理粉末1kgに対し、100mlのTiO表面処理溶液を添加して攪拌し、次いで、真空中で400℃、1時間の熱処理を行い、実施例1と同様な処理粉末を得た。
(3)処理粉末を成形型に充填し、実施例1と同様に磁場配向させながら希土類磁石粉末の仮成形体を形成した。
(4)仮成形体を実施例1と同様に熱間成形し、バルクの希土類磁石を得た。
For the surface treatment of rare earth magnet powder with rare earth oxide, 2 g of dysprosium (Dy) 2,4-pentanedionate, which is a rare earth complex, was dissolved in 200 ml of isopropyl alcohol. Similarly, for the TiO 2 surface treatment, 26 g of titanium diisopropoxide (bis 2,4-pentane dionate), 1 ml of water, 0.025 ml of dibutyltin dilaurate are dissolved in 100 ml of isopropyl alcohol and used in the following steps. The surface treatment and molding were performed sequentially.
(1) To 1 kg of rare earth magnet powder, 200 ml of Dy 2 O 3 surface treatment solution is added and stirred, and then heat treated at 150 ° C for 1 hour and 350 ° C for 1 hour in vacuum. Obtained.
(2) To 1 kg of the treated powder, 100 ml of the TiO 2 surface treatment solution was added and stirred, and then heat-treated at 400 ° C. for 1 hour in a vacuum to obtain a treated powder similar to Example 1.
(3) The treated powder was filled in a mold, and a rare-earth magnet powder temporary compact was formed while orienting the magnetic field in the same manner as in Example 1.
(4) The temporary compact was hot-molded in the same manner as in Example 1 to obtain a bulk rare earth magnet.

得られた希土類磁石の密度、保磁力、最大エネルギー積及び電気抵抗率を実施例1と同様の方法で測定した。表1に示すように、得られた希土類磁石は、密度7.3g/cm以上、保磁力716.4A/m(9.0kOe)以上、最大エネルギー積159.2MJ/m3(20MGOe)以上、電気抵抗率2000μΩcm以上の共に優れた特性を有していることが分かった。 The density, coercive force, maximum energy product and electrical resistivity of the obtained rare earth magnet were measured in the same manner as in Example 1. As shown in Table 1, the obtained rare earth magnet has a density of 7.3 g / cm 3 or more, a coercive force of 716.4 A / m (9.0 kOe) or more, a maximum energy product of 159.2 MJ / m 3 (20 MGOe) or more, and an electrical resistivity. It was found that both have excellent characteristics of 2000 μΩcm or more.

希土類磁石用粉末への希土類酸化物による表面処理には、希土類錯体であるツリウム(Tm)2、2、6、6−テトラメチル−3、5−ヘプタンジオネイト1.56gをメチルアルコール300mlに溶解して用いた。また、同じくSiO表面処理には、CHO−(Si(CHO)−O)m−CH(mは6〜8、平均は7)を0.025ml、水2.2ml、エチルアルコール0.025ml、ジラウリン酸ジブチル錫0.025mlを混合し、1昼夜25℃の温度で放置した溶液を用い、以下の工程を順次行って表面処理及び成形を行った。
(1)希土類磁石用粉末1kgに対し、300mlのTmO表面処理溶液を添加して攪拌し、次いで、真空中で180℃、1時間と、450℃、1時間の熱処理を行い、実施例1と同様な処理粉末を得た。
(2)処理粉末1kgに対し、50mlのSiO表面処理溶液を添加して攪拌し、次いで、真空中で150℃、1時間の熱処理を行った。
(3)処理粉末を成形型に充填し、実施例1と同様に、磁場配向させながら希土類磁石粉末の仮成形体を形成した。
(4)熱源を有する成形装置を用い、仮成形体をAr中で、成形温度750℃、保持時間20分、成形圧力5t/cmとし熱間成形によってバルクの希土類磁石を得た。
For surface treatment of rare earth magnet powder with rare earth oxides, 1.56 g of thulium (Tm) 2,2,6,6-tetramethyl-3,5-heptanedionate, a rare earth complex, is dissolved in 300 ml of methyl alcohol. Used. Similarly, for SiO 2 surface treatment, 0.025 ml of C 2 H 5 O— (Si (C 2 H 5 O) 2 —O) m —C 2 H 5 (m is 6 to 8, average is 7), Surface treatment and molding were carried out by sequentially performing the following steps using a solution in which 2.2 ml of water, 0.025 ml of ethyl alcohol and 0.025 ml of dibutyltin dilaurate were mixed and left at a temperature of 25 ° C. overnight.
(1) To 1 kg of rare earth magnet powder, add 300 ml of Tm 2 O 3 surface treatment solution and stir, then heat-treat in vacuum at 180 ° C for 1 hour and 450 ° C for 1 hour. A treated powder similar to Example 1 was obtained.
(2) To 1 kg of the treated powder, 50 ml of SiO 2 surface treatment solution was added and stirred, followed by heat treatment at 150 ° C. for 1 hour in vacuum.
(3) The treated powder was filled in a mold, and a rare earth magnet powder temporary compact was formed in the same manner as in Example 1 while aligning the magnetic field.
(4) Using a molding apparatus having a heat source, a bulk molded rare earth magnet was obtained by hot molding in Ar, with a molding temperature of 750 ° C., a holding time of 20 minutes, and a molding pressure of 5 t / cm 2 .

得られた希土類磁石の密度、保磁力、最大エネルギー積及び電気抵抗率を実施例1と同様の方法で測定した。表1に示すように、得られた希土類磁石は、密度7.3g/cm以上、保磁力716.4 kA/m(9.0kOe)以上、最大エネルギー積159.2MJ/m3(20MGOe)以上、電気抵抗率2000μΩcm以上の共に優れた特性を有していることが分かった。 The density, coercive force, maximum energy product and electrical resistivity of the obtained rare earth magnet were measured in the same manner as in Example 1. As shown in Table 1, the obtained rare earth magnet has a density of 7.3 g / cm 3 or more, a coercive force of 716.4 kA / m (9.0 kOe) or more, a maximum energy product of 159.2 MJ / m 3 (20 MGOe) or more, and an electrical resistivity. It was found that both have excellent characteristics of 2000 μΩcm or more.

希土類磁石用粉末への希土類酸化物による表面処理には、希土類錯体であるイッテルビウム(Yb)6、6、7、7、8、8、8−ヘプタフルオロ−2.2−ジメチル−3、5−オクタンジオネイト2.30gをエチルアルコール200mlに溶解して用いた。また、同じくSiO表面処理には、CHO−(Si(CHO)−O)m−CH(mは3〜5、平均は4)を0.025ml、水4.8ml、メチルアルコール0.025ml、ジラウリン酸ジブチル錫0.025mlを混合し、1昼夜25℃の温度で放置した溶液を用い、以下の工程を順次行って表面処理及び成形を行った。
(1)希土類磁石用粉末1kgに対し、300mlのYbO表面処理溶液を添加して攪拌し、次いで、真空中で170℃、1時間と、400℃、1時間の熱処理を行い、実施例1と同様な処理粉末を得た。
(2)処理粉末1kgに対し、50mlのSiO表面処理溶液を添加して攪拌し、次いで、真空中で150℃、1時間の熱処理を行った。
(3)処理粉末を成形型に充填し、実施例1と同様に、磁場配向させながら希土類磁石粉末の仮成形体を得た。
(4)仮成形体を実施例1と同様に熱間成形し、バルクの希土類磁石を得た。
For surface treatment of rare earth magnet powder with rare earth oxide, ytterbium (Yb) 6, 6, 7, 7, 8, 8, 8-heptafluoro-2.2-dimethyl-3, 5-octanedio, which is a rare earth complex, is used. Nate 2.30 g was dissolved in 200 ml of ethyl alcohol and used. Similarly, for the SiO 2 surface treatment, 0.025 ml of CH 3 O— (Si (CH 3 O) 2 —O) m —CH 3 (m is 3 to 5, average is 4), water 4.8 ml, methyl alcohol 0.025 ml and 0.025 ml of dibutyltin dilaurate were mixed, and the solution was left at a temperature of 25 ° C. for one day and night.
(1) To 1 kg of rare earth magnet powder, 300 ml of Yb 2 O 3 surface treatment solution was added and stirred, and then heat-treated at 170 ° C for 1 hour and 400 ° C for 1 hour in vacuum. A treated powder similar to Example 1 was obtained.
(2) To 1 kg of the treated powder, 50 ml of SiO 2 surface treatment solution was added and stirred, followed by heat treatment at 150 ° C. for 1 hour in vacuum.
(3) The treated powder was filled in a mold and, as in Example 1, a temporary molded body of rare earth magnet powder was obtained while being magnetically oriented.
(4) The temporary compact was hot-molded in the same manner as in Example 1 to obtain a bulk rare earth magnet.

得られた希土類磁石の密度、保磁力、最大エネルギー積、及び電気抵抗率を実施例1と同様の方法で測定した。表1に示すように、得られた希土類磁石は、密度7.3g/cm以上、保磁力716.4 kA/m(9.0kOe)以上、最大エネルギー積159.2MJ/m3(20MGOe)以上、電気抵抗率2000μΩcm以上の共に優れた特性を有していることが分かった。 The density, coercive force, maximum energy product, and electrical resistivity of the obtained rare earth magnet were measured in the same manner as in Example 1. As shown in Table 1, the obtained rare earth magnet has a density of 7.3 g / cm 3 or more, a coercive force of 716.4 kA / m (9.0 kOe) or more, a maximum energy product of 159.2 MJ / m 3 (20 MGOe) or more, and an electrical resistivity. It was found that both have excellent characteristics of 2000 μΩcm or more.

希土類磁石用粉末への希土類酸化物による表面処理には、希土類錯体であるイッテルビウム(Yb)6、6、7、7、8、8、8−ヘプタフルオロ−2.2−ジメチル−3、5−オクタンジオネイト4.60gをエチルアルコール400mlに溶解して用いた。また、同じくZrO表面処理には、ジルコニウムnブトキサイドを17.1g、水1ml、ジラウリン酸ジブチル錫0.025mlをn―ブチルアルコール100mlに混合した溶液を用い、以下の工程を順次行って表面処理及び成形を行った。
(1)希土類磁石用粉末1kgに対し、400mlのYbO表面処理溶液を添加して攪拌し、次いで、真空中で170℃、1時間と400℃、1時間の熱処理を行い、実施例1と同様な処理粉末を得た。
(2)処理粉末1kgに対し、100mlのZrO表面処理溶液を添加して攪拌し、次いで、真空中で200℃、1時間の熱処理を行った。
(3)処理粉末を成形型に充填し、実施例1と同様に磁場配向させながら希土類磁石粉末の仮成形体を形成した。
(4)仮成形体を実施例1と同様に熱間成形し、バルクの希土類磁石を得た。
For surface treatment of rare earth magnet powder with rare earth oxide, ytterbium (Yb) 6, 6, 7, 7, 8, 8, 8-heptafluoro-2.2-dimethyl-3, 5-octanedio, which is a rare earth complex, is used. 4.60 g of Nate was dissolved in 400 ml of ethyl alcohol. Similarly, ZrO 2 surface treatment uses a solution in which 17.1 g of zirconium n-butoxide, 1 ml of water, and 0.025 ml of dibutyltin dilaurate are mixed with 100 ml of n-butyl alcohol. Molding was performed.
(1) 400 kg of Yb 2 O 3 surface treatment solution was added to 1 kg of rare earth magnet powder, stirred, and then heat-treated in vacuum at 170 ° C. for 1 hour and 400 ° C. for 1 hour. A treated powder similar to 1 was obtained.
(2) To 1 kg of the treated powder, 100 ml of ZrO 2 surface treatment solution was added and stirred, followed by heat treatment at 200 ° C. for 1 hour in vacuum.
(3) The processing powder was filled into a mold, and a rare-earth magnet powder temporary compact was formed while orienting the magnetic field in the same manner as in Example 1.
(4) The temporary compact was hot-molded in the same manner as in Example 1 to obtain a bulk rare earth magnet.

得られた希土類磁石の密度、保磁力、最大エネルギー積、及び電気抵抗率を実施例1と同様の方法で測定した。表1に示す様に、得られた希土類磁石は、密度7.3g/cm以上、保磁力716.4 kA/m(9.0kOe)以上、最大エネルギー積159.2MJ/m3(20MGOe)以上、電気抵抗率2000μΩcm以上の共に優れた特性を有していることが分かった。 The density, coercive force, maximum energy product, and electrical resistivity of the obtained rare earth magnet were measured in the same manner as in Example 1. As shown in Table 1, the obtained rare earth magnet has a density of 7.3 g / cm 3 or more, a coercive force of 716.4 kA / m (9.0 kOe) or more, a maximum energy product of 159.2 MJ / m 3 (20 MGOe) or more, and an electrical resistivity. It was found that both have excellent characteristics of 2000 μΩcm or more.

希土類磁石用粉末への希土類酸化物による表面処理には、希土類錯体であるエルビウム(Er)(III)イソプロポキシド2.25gをイソプロピルアルコール300mlに溶解して用いた。また、同じくZnO表面処理には、亜鉛2、4−ペンタンジオネイト21gをトルエン100mlに溶解して用い、以下の工程を順次行って表面処理及び成形を行った。
(1)希土類磁石用粉末1kgに対し、300mlのE希土類酸化物による表面処理溶液を添加して攪拌し、次いで、真空中で350℃、1時間の熱処理を行い、実施例1と同様な処理粉末を得た。
(2)処理粉末1kgに対し、100mlのZnO表面処理溶液を添加し、攪拌し、次いで、真空中で300℃、1時間の熱処理を行った。
(3)処理粉末を成形型に充填し、実施例1と同様に磁場配向させながら希土類磁石粉末の仮成形体を形成した。
(4)仮成形体を実施例1と同様に熱間形成し、バルクの希土類磁石を得た。
For the surface treatment of rare earth magnet powder with rare earth oxide, 2.25 g of erbium (Er) (III) isopropoxide, which is a rare earth complex, was dissolved in 300 ml of isopropyl alcohol. Similarly, in the ZnO surface treatment, 21 g of zinc 2,4-pentanedionate was dissolved in 100 ml of toluene, and the following steps were sequentially performed for surface treatment and molding.
(1) A surface treatment solution of 300 ml of E rare earth oxide is added to 1 kg of rare earth magnet powder and stirred, followed by heat treatment at 350 ° C. for 1 hour in a vacuum, and the same treatment as in Example 1. A powder was obtained.
(2) To 1 kg of the treated powder, 100 ml of ZnO surface treatment solution was added and stirred, followed by heat treatment at 300 ° C. for 1 hour in vacuum.
(3) The processing powder was filled into a mold, and a rare-earth magnet powder temporary compact was formed while orienting the magnetic field in the same manner as in Example 1.
(4) A temporary molded body was hot-formed in the same manner as in Example 1 to obtain a bulk rare earth magnet.

得られた希土類磁石の密度、保磁力、最大エネルギー積及び電気抵抗率を実施例1と同様の方法で測定した。その結果を表1に示す様に、得られた希土類磁石は、密度7.3g/cm以上、保磁力716.4 kA/m(9.0kOe)以上、最大エネルギー積159.2MJ/m3(20MGOe)以上、電気抵抗率2000μΩcm以上の共に優れた特性を有していることが分かった。 The density, coercive force, maximum energy product and electrical resistivity of the obtained rare earth magnet were measured in the same manner as in Example 1. As shown in Table 1, the obtained rare earth magnet has a density of 7.3 g / cm 3 or more, a coercive force of 716.4 kA / m (9.0 kOe) or more, a maximum energy product of 159.2 MJ / m 3 (20 MGOe) or more, It was found that both have an excellent electrical resistivity of 2000 μΩcm or more.

希土類磁石用粉末への希土類酸化物による表面処理には、希土類錯体であるジスプロシウム(Dy)2、4−ペンタンジオネイト1gをイソプロピルアルコール100mlに溶解して用いた。また、同じく窒化ケイ素表面処理には、分子量が500〜900のポリ(1、1−ジメチルシラザン)11.1gをトルエン100mlに溶解して用い、以下の工程を順次行って表面処理及び成形を行った。
(1)希土類磁石用粉末1kgに対し、100mlのDyO表面処理溶液を添加して攪拌し、次いで、真空中で150℃、1時間と、350℃、1時間の熱処理を行い、実施例1と同様な処理粉末を得た。
(2)処理粉末1kgに対し、100mlの窒化ケイ素表面処理溶液を添加して攪拌し、次いで、真空中で800℃、1時間の熱処理を行った。
(3)処理粉末を成形型に充填し、実施例1と同様に磁場配向させながら希土類磁石粉末の仮成形体を形成した。
(4)仮成形体を実施例1と同様に熱間成形し、バルクの希土類磁石を得た。
For the surface treatment of rare earth magnet powder with rare earth oxide, 1 g of dysprosium (Dy) 2,4-pentanedionate, which is a rare earth complex, was dissolved in 100 ml of isopropyl alcohol. Similarly, in the surface treatment of silicon nitride, 11.1 g of poly (1,1-dimethylsilazane) having a molecular weight of 500 to 900 was dissolved in 100 ml of toluene, and the following steps were sequentially performed for surface treatment and molding. .
(1) Add 100 ml of Dy 2 O 3 surface treatment solution to 1 kg of rare earth magnet powder, stir, and then heat-treat in vacuum at 150 ° C for 1 hour and 350 ° C for 1 hour. A treated powder similar to Example 1 was obtained.
(2) To 1 kg of the treated powder, 100 ml of a silicon nitride surface treatment solution was added and stirred, followed by heat treatment at 800 ° C. for 1 hour in a vacuum.
(3) The processing powder was filled into a mold, and a rare-earth magnet powder temporary compact was formed while orienting the magnetic field in the same manner as in Example 1.
(4) The temporary compact was hot-molded in the same manner as in Example 1 to obtain a bulk rare earth magnet.

得られた希土類磁石の密度、保磁力、最大エネルギー積、及び電気抵抗率を実施例1と同様の方法で測定した。その結果を表1に示す様に、得られた希土類磁石は、密度7.3g/cm以上、保磁力716.4 kA/m(9.0kOe)以上、最大エネルギー積159.2MJ/m3(20MGOe)以上、電気抵抗率2000μΩcm以上の共に優れた特性を有していることが分かった。 The density, coercive force, maximum energy product, and electrical resistivity of the obtained rare earth magnet were measured in the same manner as in Example 1. As shown in Table 1, the obtained rare earth magnet has a density of 7.3 g / cm 3 or more, a coercive force of 716.4 kA / m (9.0 kOe) or more, a maximum energy product of 159.2 MJ / m 3 (20 MGOe) or more, It was found that both have an excellent electrical resistivity of 2000 μΩcm or more.

希土類磁石粉末は、公知のUPSET法を用いて調製したNd−Fe−B系異方性磁石粉末を用いた。具体的な手順は以下の通りである。まず、原子比で組成Nd13.7Co6.5B5.5Ga0.6FeBalの成分組成の鋳塊を準備した。この鋳塊を高周波溶解し、溶湯を周速度30m/sで回転する片ロールに噴射することにより、Nd-Fe-B系超急冷薄帯を得た。これを乳鉢により粉砕し、平均粒径350μm以下に調製した。次に、粉砕された超急冷薄帯を軟鋼製の円筒状容器に充填し、容器内を真空引きした後、円筒状容器を密閉した。この容器を800℃に高周波加熱した後、プレス機を用いて一軸に圧縮した。続いて、容器からNd−Fe−B系磁石材料を取り出し、コーヒーミルを用いて平均粒径300μm以下の希土類磁石粉末とした。 As the rare earth magnet powder, Nd—Fe—B based anisotropic magnet powder prepared by using a known UPSET method was used. The specific procedure is as follows. First, an ingot having a component composition of atomic composition Nd 13.7 Co 6.5 B 5.5 Ga 0.6 Fe Bal was prepared. The ingot was melted at high frequency, and the molten metal was sprayed onto a single roll rotating at a peripheral speed of 30 m / s to obtain an Nd—Fe—B-based ultra-quenched ribbon. This was pulverized with a mortar to prepare an average particle size of 350 μm or less. Next, the pulverized ultra-quenched ribbon was filled into a cylindrical container made of mild steel, the inside of the container was evacuated, and the cylindrical container was sealed. The container was heated at a high frequency to 800 ° C. and then compressed uniaxially using a press. Subsequently, the Nd—Fe—B magnet material was taken out from the container, and a rare earth magnet powder having an average particle size of 300 μm or less was obtained using a coffee mill.

希土類磁石用粉末への希土類酸化物による表面処理には、希土類錯体であるエルビウム(Er)(III)イソプロポキシド0.75gをイソプロピルアルコール100mlに溶解して用いた。また、同じくSiO表面処理には、CHO−(Si(CHO)−O)m−CH(mは3〜5、平均は4)を5ml、水1ml、メチルアルコール45ml、ジラウリン酸ジブチル錫0.025mlを混合し、1昼夜25℃の温度で放置した溶液を用い、以下の工程を順次行って表面処理及び成形を行った。
(1)希土類磁石用粉末1kgに対し、100mlのE希土類酸化物による表面処理溶液を添加して攪拌し、次いで、真空中で350℃、1時間の熱処理を行い、実施例1と同様な処理粉末を得た。
(2)処理粉末1kgに対し、50mlのSiO表面処理溶液を添加して攪拌し、次いで、真空中で150℃、1時間の熱処理を行った。
(3)処理粉末を成形型に充填し、実施例1と同様に磁場配向させながら希土類磁石粉末の仮成形体を形成した。
(4)仮成形体を実施例1と同様に熱間成形し、バルクの希土類磁石を得た。
For surface treatment of rare earth magnet powder with rare earth oxide, 0.75 g of erbium (Er) (III) isopropoxide, which is a rare earth complex, was dissolved in 100 ml of isopropyl alcohol. Similarly, for SiO 2 surface treatment, 5 ml of CH 3 O— (Si (CH 3 O) 2 —O) m —CH 3 (m is 3 to 5, average is 4), 1 ml of water, 45 ml of methyl alcohol, Surface treatment and molding were performed by sequentially mixing the following steps using a solution which was mixed with 0.025 ml of dibutyltin dilaurate and allowed to stand at a temperature of 25 ° C. overnight.
(1) To 1 kg of rare earth magnet powder, 100 ml of a surface treatment solution of E rare earth oxide was added and stirred, followed by heat treatment at 350 ° C. for 1 hour in a vacuum, and the same treatment as in Example 1 A powder was obtained.
(2) To 1 kg of the treated powder, 50 ml of SiO 2 surface treatment solution was added and stirred, followed by heat treatment at 150 ° C. for 1 hour in vacuum.
(3) The processing powder was filled into a mold, and a rare-earth magnet powder temporary compact was formed while orienting the magnetic field in the same manner as in Example 1.
(4) The temporary compact was hot-molded in the same manner as in Example 1 to obtain a bulk rare earth magnet.

得られた希土類磁石の密度、保磁力、最大エネルギー積、及び電気抵抗率を実施例1と同様の方法で測定した。表1に示す様に、得られた希土類磁石は、密度7.3g/cm以上、保磁力716.4 kA/m(9.0kOe)以上、最大エネルギー積159.2MJ/m3(20MGOe)以上、電気抵抗率2000μΩcm以上の共に優れた特性を有していることが分かった。 The density, coercive force, maximum energy product, and electrical resistivity of the obtained rare earth magnet were measured in the same manner as in Example 1. As shown in Table 1, the obtained rare earth magnet has a density of 7.3 g / cm 3 or more, a coercive force of 716.4 kA / m (9.0 kOe) or more, a maximum energy product of 159.2 MJ / m 3 (20 MGOe) or more, and an electrical resistivity. It was found that both have excellent characteristics of 2000 μΩcm or more.

比較例1Comparative Example 1

希土類酸化物による表面処理とSiO表面処理を施さない希土類磁石用粉末を用いて、以下の工程を順次行って表面処理及び成形を行った。実施例1と同様の方法で希土類磁石を作製した。
(1)表面処理を施していない希土類磁石磁石用粉末を成形型に充填し、次いで、実施例1と同様に磁場配向させながら希土類磁石粉末の仮成形体を形成した。
(2)仮成形体を実施例1と同様に熱間成形し、バルクの希土類磁石を得た。
Using the rare earth magnet powder not subjected to the surface treatment with the rare earth oxide and the SiO 2 surface treatment, the following steps were sequentially performed for the surface treatment and the molding. A rare earth magnet was produced in the same manner as in Example 1.
(1) Rare earth magnet magnet powder not subjected to surface treatment was filled in a mold, and then a rare earth magnet powder temporary compact was formed while orienting the magnetic field in the same manner as in Example 1.
(2) The temporary compact was hot-molded in the same manner as in Example 1 to obtain a bulk rare earth magnet.

得られた希土類磁石の密度、保磁力、最大エネルギー積、及び電気抵抗率を実施例1と同様の方法で測定した。表1に示す様に、得られた希土類磁石は、最大エネルギー積が優れた特性を有していた。しかしながら、希土類磁石磁石用粉末に対して希土類酸化物による表面処理とSiO表面処理を施していないため、電気抵抗率が140μΩcmと著しく低い希土類磁石であった。 The density, coercive force, maximum energy product, and electrical resistivity of the obtained rare earth magnet were measured in the same manner as in Example 1. As shown in Table 1, the obtained rare earth magnet had the characteristic that the maximum energy product was excellent. However, since the rare earth magnet powder was not subjected to surface treatment with rare earth oxides or SiO 2 surface treatment, it was a rare earth magnet with an extremely low electrical resistivity of 140 μΩcm.

比較例2Comparative Example 2

希土類磁石用粉末のSiO表面処理には、CHO−(Si(CHO)−O)m−CH(mは6〜8、平均は7)を25ml、水2.2ml、エチルアルコール25ml、ジラウリン酸ジブチル錫0.025mlを混合し、1昼夜25℃の温度で放置した溶液を用い、以下の工程を順次行って表面処理及び成形を行った。尚、本比較例では希土類磁石用粉末への希土類酸化物による表面処理は施すことなく、SiO表面処理のみを施した。
(1)希土類磁石用粉末1kgに対し、50mlのSiO表面処理溶液を添加して攪拌し、次いで、真空中で150℃、1時間の熱処理を行い、処理粉末を得た。
(2)処理粉末を成形型に充填し、実施例1と同様に磁場配向させながら希土類磁石粉末の仮成形体を形成した。
(3)仮成形体を実施例1と同様に熱間成形し、バルクの希土類磁石を得た。
For the SiO 2 surface treatment of rare earth magnet powder, 25 ml of C 2 H 5 O— (Si (C 2 H 5 O) 2 —O) m —C 2 H 5 (m is 6 to 8, average is 7) Then, 2.2 ml of water, 25 ml of ethyl alcohol, and 0.025 ml of dibutyltin dilaurate were mixed, and the solution was allowed to stand at a temperature of 25 ° C. for one day and night. In this comparative example, only the SiO 2 surface treatment was applied to the rare earth magnet powder without performing the surface treatment with the rare earth oxide.
(1) To 1 kg of the rare earth magnet powder, 50 ml of SiO 2 surface treatment solution was added and stirred, and then heat treatment was performed in vacuum at 150 ° C. for 1 hour to obtain a treated powder.
(2) The treated powder was filled in a mold, and a rare-earth magnet powder temporary compact was formed while orienting the magnetic field in the same manner as in Example 1.
(3) The temporary compact was hot-molded in the same manner as in Example 1 to obtain a bulk rare earth magnet.

得られた希土類磁石の密度、保磁力、最大エネルギー積、及び電気抵抗率を実施例1と同様の方法で測定した。その結果を表1に示す様に、得られた希土類磁石は、電気抵抗率が優れた特性を有していた。しかしながら、希土類磁石磁石用粉末に対して希土類酸化物による表面処理を施していないため、最大エネルギー積が57.3MJ/m3(7.2MGOe)と低い希土類磁石であった。 The density, coercive force, maximum energy product, and electrical resistivity of the obtained rare earth magnet were measured in the same manner as in Example 1. As shown in Table 1, the obtained rare earth magnet had a characteristic of excellent electrical resistivity. However, since the surface treatment with rare earth oxides was not performed on the rare earth magnet magnet powder, the rare earth magnet had a maximum energy product as low as 57.3 MJ / m 3 (7.2 MGOe).

比較例3Comparative Example 3

希土類磁石用粉末への希土類酸化物による表面処理には、希土類錯体である酢酸ジスプロシウム(Dy)(III)0.74gを水100mlに溶解して用いた。また、同じくSiO表面処理には、CHO−(Si(CHO)−O)m−CH(mは3〜5、平均は4)を25ml、水4.8ml、メチルアルコール25ml、ジラウリン酸ジブチル錫0.025mlを混合し、1昼夜25℃の温度で放置した溶液を用い、以下の工程を順次行って表面処理及び成形を行った。
(1)希土類磁石用粉末1kgに対し、100mlのDyO表面処理溶液を添加して攪拌し、次いで、真空中で150℃、1時間と350℃、1時間の熱処理を行い、処理粉末を得た。
(2)処理粉末1kgに対し、50mlのSiO表面処理溶液を添加して攪拌し、次いで、真空中で150℃、1時間の熱処理を行った。
(3)処理粉末を成形型に充填し、次いで実施例1と同様に磁場配向させながら希土類磁石粉末の仮成形体を形成した。
(4)仮成形体を実施例1と同様に熱間成形し、バルクの希土類磁石を得た。
For the surface treatment of rare earth magnet powder with rare earth oxide, 0.74 g of dysprosium acetate (Dy) (III), which is a rare earth complex, was dissolved in 100 ml of water and used. Similarly, for SiO 2 surface treatment, 25 ml of CH 3 O— (Si (CH 3 O) 2 —O) m —CH 3 (m is 3 to 5, average 4), water 4.8 ml, methyl alcohol 25 ml Then, using a solution mixed with 0.025 ml of dibutyltin dilaurate and allowed to stand at a temperature of 25 ° C. for one day and night, the following steps were sequentially performed for surface treatment and molding.
(1) To 1 kg of rare earth magnet powder, 100 ml of Dy 2 O 3 surface treatment solution is added and stirred, and then heat treated at 150 ° C. for 1 hour and 350 ° C. for 1 hour in vacuum. Got.
(2) To 1 kg of the treated powder, 50 ml of SiO 2 surface treatment solution was added and stirred, followed by heat treatment at 150 ° C. for 1 hour in vacuum.
(3) The treated powder was filled in a mold, and then a rare earth magnet powder temporary compact was formed while orienting the magnetic field in the same manner as in Example 1.
(4) The temporary compact was hot-molded in the same manner as in Example 1 to obtain a bulk rare earth magnet.

得られた希土類磁石の密度、保磁力、最大エネルギー積及び電気抵抗率を実施例1と同様の方法で測定した結果を表1に示す。得られた希土類磁石は、電気抵抗率に関して優れた特性を有していた。しかしながら、希土類磁石磁石用粉末に対して水溶液を用いた希土類酸化物による表面処理の場合、保持力が103.5 kA/m (1.3kOe)、最大エネルギー積が13.1MJ/m3(1.64MGOe)と低い値の希土類磁石となった。これは水による粉末の酸化が原因と考えられる。 Table 1 shows the results of measuring the density, coercive force, maximum energy product, and electrical resistivity of the rare earth magnets obtained in the same manner as in Example 1. The obtained rare earth magnet had excellent characteristics with respect to electrical resistivity. However, in the case of surface treatment with rare earth oxides using an aqueous solution for rare earth magnet magnet powder, the holding power is as low as 103.5 kA / m (1.3 kOe) and the maximum energy product is 13.1 MJ / m 3 (1.64 MGOe). Value of rare earth magnet. This is thought to be due to the oxidation of the powder with water.

比較例4Comparative Example 4

希土類磁石用粉末への希土類酸化物による表面処理には、希土類錯体であるジスプロシウム(Dy)2、4−ペンタンジオネイト1gをイソプロピルアルコール100mlに溶解して用いた。本比較例ではSiO表面処理の代わりに、リン酸塩化成処理を希土類酸化物による表面処理を施した希土類磁石用粉末に対して施した。処理液の組成はリン酸20g/l、ほう酸4g/l、酸化マグネシウム4g/lである。以下の工程を順次行って表面処理及び成形を行った。
(1)希土類磁石用粉末1kgに対し、100mlのDyO表面処理溶液を添加して攪拌し、次いで、真空中で150℃、1時間と、350℃、1時間の熱処理を行い、処理粉末を得た。
(2)処理粉末1kgに対し、50mlのリン酸塩化成処理液を添加して攪拌し、次いで、真空中で180℃、1時間の熱処理を行った。
(3)処理粉末を成形型に充填し、次いで、成形型中の混合体に実施例1と同様に磁場配向させながら希土類磁石粉末の仮成形体を形成した。
(4)仮成形体を実施例1と同様に熱間成形し、バルクの希土類磁石を得た。
For the surface treatment of rare earth magnet powder with rare earth oxide, 1 g of dysprosium (Dy) 2,4-pentanedionate, which is a rare earth complex, was dissolved in 100 ml of isopropyl alcohol. In this comparative example, instead of the SiO 2 surface treatment, a phosphate chemical conversion treatment was performed on the rare earth magnet powder subjected to the surface treatment with the rare earth oxide. The composition of the treatment liquid is 20 g / l phosphoric acid, 4 g / l boric acid, and 4 g / l magnesium oxide. Surface treatment and molding were performed by sequentially performing the following steps.
(1) Add 100 ml of Dy 2 O 3 surface treatment solution to 1 kg of rare earth magnet powder, stir, then heat-treat in vacuum at 150 ° C for 1 hour and 350 ° C for 1 hour. A powder was obtained.
(2) To 1 kg of the treated powder, 50 ml of a phosphate chemical conversion treatment solution was added and stirred, and then heat treatment was performed at 180 ° C. for 1 hour in a vacuum.
(3) The treated powder was filled in a mold, and then a rare earth magnet powder temporary molded body was formed in the mixture in the mold while being magnetically oriented in the same manner as in Example 1.
(4) The temporary compact was hot-molded in the same manner as in Example 1 to obtain a bulk rare earth magnet.

得られた希土類磁石の密度、保磁力、最大エネルギー積及び電気抵抗率を実施例1と同様の方法で測定した。表1に示す様に、得られた希土類磁石は、保磁力が55.7 kA/m (0.7kOe)、最大エネルギー積が4.8MJ/m3(0.6MGOe)及び電気抵抗率が180μΩcmといずれも低い値となった。これは800℃の熱間成形の際、リン酸塩が溶融してしまい、また希土類酸化物膜をも破壊してしまったことが原因と考えられる。 The density, coercive force, maximum energy product and electrical resistivity of the obtained rare earth magnet were measured in the same manner as in Example 1. As shown in Table 1, the obtained rare earth magnet has a low coercive force of 55.7 kA / m (0.7 kOe), maximum energy product of 4.8 MJ / m 3 (0.6 MGOe), and electrical resistivity of 180 μΩcm. It became. This is presumably because the phosphate melted during the hot forming at 800 ° C. and the rare earth oxide film was destroyed.

図3は本発明の高抵抗希土類磁石を適用した集中巻の表面磁石モータ(ステータ12極、ロータ8極)の1/4断面図である。外側がアルミケース17、その内側がステータ18であり、u相巻線11、12、v相巻線13、14、w相巻線15、16を有する。また、ステータ18は電磁鋼板の積層体である。ロータ鉄20上には実施例1で得た希土類磁石を用い、図示するような断面形状の表面磁石19を配置した。なお、21は軸である。実施例1の希土類磁石を用いて製造されたモータは、連続出力が1.8kWと高いものであった。   FIG. 3 is a 1/4 cross-sectional view of a concentrated winding surface magnet motor (12 stator poles, 8 rotor poles) to which the high resistance rare earth magnet of the present invention is applied. The outer side is an aluminum case 17, the inner side is a stator 18, and has u-phase windings 11 and 12, v-phase windings 13 and 14, and w-phase windings 15 and 16. The stator 18 is a laminated body of electromagnetic steel sheets. On the rotor iron 20, the rare earth magnet obtained in Example 1 was used, and a surface magnet 19 having a cross-sectional shape as shown in the figure was arranged. Reference numeral 21 denotes an axis. The motor manufactured using the rare earth magnet of Example 1 had a high continuous output of 1.8 kW.

更に、本実施例における希土類磁石は、電気抵抗が高く渦電流損失が低いため、磁石発熱が少なく、熱設計において有利である。   Furthermore, since the rare earth magnet in this embodiment has high electrical resistance and low eddy current loss, it generates less heat from the magnet and is advantageous in thermal design.

比較例5Comparative Example 5

比較例1で得た希土類磁石を用いた以外は実施例10と同様にモータを製造した。製造されたモータは、連続出力が1.2kWで、低いものであった。   A motor was manufactured in the same manner as in Example 10 except that the rare earth magnet obtained in Comparative Example 1 was used. The manufactured motor had a low continuous output of 1.2kW.

本発明の希土類磁石の断面模式図。The cross-sectional schematic diagram of the rare earth magnet of this invention. 本発明の高電気抵抗希土類磁石を用いた集中巻の表面磁石型モータの1/4断面図。FIG. 4 is a quarter cross-sectional view of a concentrated winding surface magnet type motor using the high electric resistance rare earth magnet of the present invention.

符号の説明Explanation of symbols

1…希土類磁石、2…希土類磁石用粉末、3…非晶質又は/及び結晶質の希土類酸化物、4…非晶質又は/及び結晶質のAlO、SiO、窒化ケイ素、TiO、ZnO、ZrO1種又は複数種、5…結晶粒、11、12…u相巻線、13、14…v相巻線、15、16…w相巻線、17…アルミケース、18…ステータ、19…磁石、20…ロータ鉄、21…軸。
1 ... rare-earth magnet, 2 ... powder for rare earth magnet, 3 ... amorphous or / and rare earth oxide crystalline, 4 ... Al amorphous or / and crystalline 2 O 3, SiO 2, silicon nitride, TiO 2 , ZnO, ZrO 2 1 type or plural types, 5 .. crystal grains, 11, 12... U-phase winding, 13, 14... V-phase winding, 15, 16. ... stator, 19 ... magnet, 20 ... rotor iron, 21 ... shaft.

Claims (16)

希土類磁石粒子表面の少なくとも一部に、テルビウム(Tb)、ジスプロシウム(Dy)、ホルミウム(Ho)、エルビウム(Er)、ツリウム(Tm)、イッテルビウム(Yb)及びルテチウム(Lu)の少なくとも1種の希土類酸化物を含む化合物が被覆され、該希土類酸化物を含む化合物が被覆された前記希土類磁石粒子表面の少なくとも一部にAlO、SiO、窒化ケイ素、TiO、ZnO及びZrOの少なくとも1種金属化合物が被覆されていることを特徴とする高抵抗希土類磁石用粉末。 At least a part of the surface of the rare earth magnet particle includes at least one rare earth of terbium (Tb), dysprosium (Dy), holmium (Ho), erbium (Er), thulium (Tm), ytterbium (Yb) and lutetium (Lu). A compound containing an oxide is coated, and at least a part of the surface of the rare earth magnet particle coated with the compound containing the rare earth oxide is coated with at least Al 2 O 3 , SiO 2 , silicon nitride, TiO 2 , ZnO and ZrO 2 . A powder for a high-resistance rare earth magnet, which is coated with one kind of metal compound. 請求項1において、前記希土類磁石粒子の全面に、前記希土類酸化物を含む化合物が被覆されていることを特徴とする高抵抗希土類磁石用粉末。 In claim 1, the entire surface of the rare-earth magnet particles, a high resistance earth powder for a magnet of a compound characterized in that it overturned be containing the rare earth oxide. 請求項1又は2において、前記希土類磁石粒子の平均粒径が1〜500μmであることを特徴とする高抵抗希土類磁石用粉末。   3. The high resistance rare earth magnet powder according to claim 1, wherein the rare earth magnet particles have an average particle size of 1 to 500 [mu] m. 請求項1〜3のいずれかにおいて、前記希土類磁石粒子がNd-Fe-B系合金であることを特徴とする高抵抗希土類磁石用粉末。   4. The powder for a high resistance rare earth magnet according to claim 1, wherein the rare earth magnet particles are an Nd—Fe—B alloy. 請求項1〜4のいずれかにおいて、前記希土類磁石粒子が異方性を有することを特徴とする高抵抗希土類磁石用粉末。   The powder for high resistance rare earth magnet according to any one of claims 1 to 4, wherein the rare earth magnet particles have anisotropy. 請求項1〜5のいずれかにおいて、前記希土類酸化物及び金属化合物は、非晶質及び結晶質の少なくとも一方からなることを特徴とする高抵抗希土類磁石用粉末。   6. The powder for a high resistance rare earth magnet according to claim 1, wherein the rare earth oxide and the metal compound are made of at least one of amorphous and crystalline. 希土類磁石用粉末式RL [ Rは、テルビウム(Tb)、ジスプロシウム(Dy)、ホルミウム(Ho)、エルビウム(Er)、ツリウム(Tm)、イッテルビウム(Yb)及びルテチウム(Lu)の少なくとも1種の希土類酸化物、Lは有機物の配位子であり、{CO(CH)CHCO(CH)}イオン、{CO(C(CH)CHCO(C(CH)}イオン、{CO(CF)CHCO(C(CH)}イオン、{CO(CF)CHCO(CF)}イオンのいずれかのβ−ジケトナトイオン、(O−i−CHイオン及び(O−CH−OCHイオンのいずれかの陰イオンの有機基である]で表わされる希土類錯体の有機溶媒を添加して攪拌し、次いで脱酸素中で熱処理を行い、前記希土類磁石用粉末表面に前記希土類酸化物を含む化合物を被覆する工程後、AlO、SiO、窒化ケイ素、TiO、ZnO及びZrOの少なくとも1種の金属化合物を被覆させる工程を有することを特徴とする高抵抗希土類磁石用粉末の製造方法。 In the rare earth magnet powder , the formula RL 3 [R is at least one of terbium (Tb), dysprosium (Dy), holmium (Ho), erbium (Er), thulium (Tm), ytterbium (Yb) and lutetium (Lu). species of the rare earth oxide, L is a ligand of the organic, {CO (CH 3) CHCO (CH 3)} - ions, {CO (C (CH 3 ) 3) CHCO (C (CH 3) 3) } Ion, {CO (C 3 F 7 ) CHCO (C (CH 3 ) 3 )} ion, {CO (CF 3 ) CHCO (CF 3 )} β-diketonato ion of any of the ions, (O— i-C 3 H 7) - ions and (O-C 2 H 4 -OCH 3) - is added and stirred organic solvent of rare earth complex represented by an organic group of any of the anions of the ion] Then , after performing a heat treatment in deoxygenation and coating the rare earth magnet powder surface with the compound containing the rare earth oxide , Al 2 O 3 , SiO 2 , silicon nitride, TiO 2 , ZnO and ZrO 2 are coated with at least one metal compound. テルビウム(Tb)、ジスプロシウム(Dy)、ホルミウム(Ho)、エルビウム(Er)、ツリウム(Tm)、イッテルビウム(Yb)及びルテチウム(Lu)の少なくとも1種の希土類酸化物を含む化合物が被覆された希土類磁石用粉末、AlO、SiO 、TiO、ZnO及びZrOの少なくとも1種の金属化合物を生成させる金属アルコキシド及び金属ジケトネートの少なくとも1種を含む金属化合物の有機溶媒を添加して攪拌し、次いで脱酸素中で熱処理を行い、又は前記希土類酸化物を含む化合物が被覆された希土類磁石用粉末、窒化ケイ素の金属化合物を生成させるポリシラザンの低極性有機溶媒を添加して攪拌し、次いで脱酸素中で熱処理を行い、前記希土類磁石用粉末に前記Al O 、SiO 、窒化ケイ素、TiO 、ZnO及びZrO の少なくとも1種の金属化合物を被覆させる工程を有することを特徴とする高抵抗希土類磁石用粉末の製造方法。 Rare earth coated with a compound containing at least one rare earth oxide of terbium (Tb), dysprosium (Dy), holmium (Ho), erbium (Er), thulium (Tm), ytterbium (Yb) and lutetium (Lu) the powder for a magnet, an organic solvent medium of Al 2 O 3, SiO 2, T iO 2, ZnO and metallic compound containing at least one metal alkoxide and a metal diketonate to generate at least one metal compound of ZrO 2 are added and stirred, followed by heat treatment in oxygen, or the powder for rare earth magnet compound is coated comprising the rare earth oxide, a low polar organic solvent medium in the polysilazane to generate silicon nitride of a metal compound are added and stirred, followed by heat treatment in oxygen, the powder for the rare-earth magnet Al 2 O 3, SiO 2, silicon nitride, TiO 2, of ZnO and ZrO 2 small With method of producing a powder for a high-resistance earth magnet characterized by having the step of coating the one metal compound. テルビウム(Tb)、ジスプロシウム(Dy)、ホルミウム(Ho)、エルビウム(Er)、ツリウム(Tm)、イッテルビウム(Yb)及びルテチウム(Lu)の少なくとも1種の希土類酸化物を含む化合物が被覆した希土類磁石用粉末に、AlO、SiO、TiO、ZnO及びZrOの少なくとも1種の金属化合物を生成させる金属アルコキシド及び金属ジケトネートの少なくとも1種を含む金属化合物と、水及び水溶性有機溶媒との混合物を添加して攪拌し、次いで脱酸素中で熱処理を行い、前記希土類磁石用粉末に前記AlO、SiO、TiO、ZnO及びZrOの少なくとも1種の金属化合物を被覆させる工程を有することを特徴とする高抵抗希土類磁石用粉末の製造方法。 Rare earth magnet coated with a compound containing at least one rare earth oxide of terbium (Tb), dysprosium (Dy), holmium (Ho), erbium (Er), thulium (Tm), ytterbium (Yb) and lutetium (Lu) to use powder, Al 2 O 3, SiO 2 , and a metal compound containing at least one metal alkoxide and a metal diketonate to produce TiO 2, at least one metal compound of ZnO and ZrO 2, water and a water-soluble organic A mixture with a solvent is added and stirred, followed by heat treatment in deoxygenation, and at least one metal compound of Al 2 O 3 , SiO 2 , TiO 2 , ZnO and ZrO 2 is added to the rare earth magnet powder. The manufacturing method of the powder for high resistance rare earth magnets characterized by having the process to coat | cover. 請求項7〜9のいずれかにおいて、前記希土類磁石用粉末は異方性を有することを特徴とする高抵抗希土類磁石用粉末の製造方法。   10. The method for producing a powder for a high resistance rare earth magnet according to claim 7, wherein the rare earth magnet powder has anisotropy. 請求項7〜10のいずれかにおいて、前記希土類酸化物及び前記Al O 、SiO 、窒化ケイ素、TiO 、ZnO及びZrO のいずれかの金属化合物は、非晶質及び結晶質の少なくとも一方からなることを特徴とする高抵抗希土類磁石用粉末の製造方法。 11. The metal compound according to claim 7, wherein the rare earth oxide and the metal compound of any one of Al 2 O 3 , SiO 2 , silicon nitride, TiO 2 , ZnO, and ZrO 2 are at least amorphous and crystalline. The manufacturing method of the powder for high resistance rare earth magnets characterized by consisting of one side. 請求項1〜6のいずれかに記載の高抵抗希土類磁石用粉末の熱間成形体よりなることを特徴とする希土類磁石。   A rare earth magnet comprising a hot-formed body of powder for a high resistance rare earth magnet according to any one of claims 1 to 6. 請求項1〜6のいずれかに記載の前記高抵抗希土類磁石用粉末又は請求項7〜11のいずれかに記載の製造方法によって製造された前記高抵抗希土類磁石用粉末を成形型に充填する充填工程と、前記高抵抗希土類磁石用粉末を磁場配向させながら加圧し前記成形型内で仮成形体を形成する仮成形工程と、該仮成形体の熱間成形工程とを含むことを特徴とする希土類磁石の製造方法。   Filling a mold for filling the powder for a high resistance rare earth magnet according to any one of claims 1 to 6 or the powder for a high resistance rare earth magnet produced by the production method according to any one of claims 7 to 11. A step of forming a temporary molded body in the mold by pressurizing the high-resistance rare earth magnet powder while orienting the magnetic field, and a hot forming step of the temporary molded body. A method for producing a rare earth magnet. 請求項13において、前記熱間成形工程を加熱圧縮によって行うことを特徴とする希土類磁石の製造方法。 The method for producing a rare earth magnet according to claim 13, wherein the hot forming step is performed by heat compression. 軸部と、胴部と、該胴部の外周面に形成された磁石とを有するモータ用ロータにおいて、前記磁石が請求項12に記載の希土類磁石、請求項13又は14に記載の製造方法によって製造された希土類磁石のいずれかよりなることを特徴とするモータ用ロータ。 The rotor for motors which has a shaft part, a body part, and a magnet formed in the outer peripheral surface of the body part, The magnet is the rare earth magnet according to claim 12, The manufacturing method according to claim 13 or 14 A rotor for motors comprising any of the rare earth magnets manufactured by ステータ及びロータを有するモータにおいて、前記ロータは請求項15に記載のロータからなることを特徴とするモータ。   A motor having a stator and a rotor, wherein the rotor comprises the rotor according to claim 15.
JP2003377626A 2003-11-07 2003-11-07 Powder for high resistance rare earth magnet and method for producing the same, rare earth magnet and method for producing the same, rotor for motor and motor Expired - Fee Related JP4238114B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003377626A JP4238114B2 (en) 2003-11-07 2003-11-07 Powder for high resistance rare earth magnet and method for producing the same, rare earth magnet and method for producing the same, rotor for motor and motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003377626A JP4238114B2 (en) 2003-11-07 2003-11-07 Powder for high resistance rare earth magnet and method for producing the same, rare earth magnet and method for producing the same, rotor for motor and motor

Publications (2)

Publication Number Publication Date
JP2005142374A JP2005142374A (en) 2005-06-02
JP4238114B2 true JP4238114B2 (en) 2009-03-11

Family

ID=34688254

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003377626A Expired - Fee Related JP4238114B2 (en) 2003-11-07 2003-11-07 Powder for high resistance rare earth magnet and method for producing the same, rare earth magnet and method for producing the same, rotor for motor and motor

Country Status (1)

Country Link
JP (1) JP4238114B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107470611A (en) * 2017-08-25 2017-12-15 杭州氢源科技有限公司 A kind of hydrogen manufacturing alumina particles and preparation method thereof

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1744328B1 (en) * 2005-06-10 2012-07-25 Nissan Motor Co., Ltd. Rare earth magnet having high strength and high electrical resistance
JP2006344855A (en) * 2005-06-10 2006-12-21 Mitsubishi Materials Pmg Corp Rare earth magnet having high strength and high resistance
JP2006344854A (en) * 2005-06-10 2006-12-21 Mitsubishi Materials Pmg Corp Rare earth magnet having high strength and high resistance
JP2006344856A (en) * 2005-06-10 2006-12-21 Mitsubishi Materials Pmg Corp Rare earth magnet having high strength and high resistance
JP4784173B2 (en) * 2005-06-27 2011-10-05 日産自動車株式会社 Rare earth magnet and manufacturing method thereof
JP5125818B2 (en) * 2007-07-24 2013-01-23 日産自動車株式会社 Magnetic compact and manufacturing method thereof
JP5359383B2 (en) * 2009-03-05 2013-12-04 日産自動車株式会社 Magnet molded body and manufacturing method thereof
JP5494056B2 (en) * 2010-03-16 2014-05-14 Tdk株式会社 Rare earth sintered magnet, rotating machine and reciprocating motor
JP2011181942A (en) * 2011-04-18 2011-09-15 Nissan Motor Co Ltd Permanent magnet
DE102012203898A1 (en) * 2012-03-13 2013-09-19 Robert Bosch Gmbh Permanent magnet, and electric machine including such, as well as method for producing the electrical machine
GB2540150B (en) 2015-07-06 2020-01-08 Dyson Technology Ltd Rare earth magnet with Dysprosium treatment
KR102357085B1 (en) 2018-08-10 2022-01-28 주식회사 엘지화학 Magnetic powder and manufacturing method of magnetic powder
WO2020032547A1 (en) * 2018-08-10 2020-02-13 주식회사 엘지화학 Magnetic powder and method for producing magnetic powder
CN109560263B (en) * 2018-10-24 2021-06-18 赵金保 Preparation method of zinc oxide coated silicon negative electrode material

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0669009A (en) * 1992-08-19 1994-03-11 Matsushita Electric Ind Co Ltd Manufacture of rare earth-iron based magnet
JPH1083908A (en) * 1996-09-09 1998-03-31 Shin Etsu Chem Co Ltd High-resistance rare-earth magnet and manufacture thereof
JPH11260612A (en) * 1998-03-16 1999-09-24 Kinya Adachi Method for stabilizing rare-earth iron based magnetic material powder and manufacture of bonded magnet using the same
JP2000082610A (en) * 1998-09-03 2000-03-21 Sumitomo Special Metals Co Ltd High electric resitivity rare earth permanent magnet and its manufacture
JP2000297306A (en) * 1999-04-13 2000-10-24 Tokin Corp Production of magnetic powder
JP4419245B2 (en) * 1999-06-28 2010-02-24 日立金属株式会社 Rare earth permanent magnet and method for producing the same
JP4371188B2 (en) * 2000-08-22 2009-11-25 信越化学工業株式会社 High specific electric resistance rare earth magnet and method for manufacturing the same
JP2003051418A (en) * 2001-01-22 2003-02-21 Sumitomo Metal Ind Ltd Method for recycling rare-earth magnet scrap
JP4337300B2 (en) * 2002-02-28 2009-09-30 日立金属株式会社 Rare earth permanent magnet manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107470611A (en) * 2017-08-25 2017-12-15 杭州氢源科技有限公司 A kind of hydrogen manufacturing alumina particles and preparation method thereof

Also Published As

Publication number Publication date
JP2005142374A (en) 2005-06-02

Similar Documents

Publication Publication Date Title
JP4525072B2 (en) Rare earth magnet and manufacturing method thereof
US7147686B2 (en) Rare earth magnet, method for manufacturing the same, and motor using rare earth magnet
US6984271B2 (en) Rare earth magnet, process for producing same, and motor using rare earth magnet
JP4656325B2 (en) Rare earth permanent magnet, manufacturing method thereof, and permanent magnet rotating machine
JP4737431B2 (en) Permanent magnet rotating machine
TWI408705B (en) A rare earth permanent magnet, a method for manufacturing the same, and a permanent magnet rotating machine
EP2254131B1 (en) MANUFACTURING METHOD OF A Nd-BASED SINTERED MAGNET
JP4238114B2 (en) Powder for high resistance rare earth magnet and method for producing the same, rare earth magnet and method for producing the same, rotor for motor and motor
WO2011122638A1 (en) Sintered magnet, motor, automobile, and method for producing sintered magnet
JP4867632B2 (en) Low loss magnet and magnetic circuit using it
EP3118971B1 (en) Rotary electrical machine and vehicle
JP2011211069A (en) Sintered magnet, motor, automobile, and method for producing the sintered magnet
JP2005191187A (en) Rare-earth magnet and its manufacturing method
JP4700578B2 (en) Method for producing high resistance rare earth permanent magnet
JP2012212808A (en) Manufacturing method of rear earth sintered magnet
JP5586648B2 (en) Permanent magnet and motor and generator using the same
JP4919109B2 (en) Permanent magnet rotating machine and method for manufacturing permanent magnet segment for permanent magnet rotating machine
JP2009283568A (en) Magnet molded body and its method for manufacturing
JP4234581B2 (en) Rare earth magnet, manufacturing method thereof and motor
JP2004031780A (en) Rare earth magnet, its manufacturing method and motor using the same
JP6606027B2 (en) Rotating electric machine and vehicle
JP2011019401A (en) Method of manufacturing permanent magnet segment for permanent magnet rotating machine
JP7180479B2 (en) Motor core manufacturing method
JP2005191281A (en) Rare earth magnet and its production process, and motor
JP6084720B2 (en) Automobile

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080610

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080731

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081209

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081219

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111226

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111226

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111226

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111226

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121226

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121226

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131226

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees