JP2000297306A - Production of magnetic powder - Google Patents

Production of magnetic powder

Info

Publication number
JP2000297306A
JP2000297306A JP11105558A JP10555899A JP2000297306A JP 2000297306 A JP2000297306 A JP 2000297306A JP 11105558 A JP11105558 A JP 11105558A JP 10555899 A JP10555899 A JP 10555899A JP 2000297306 A JP2000297306 A JP 2000297306A
Authority
JP
Japan
Prior art keywords
powder
complex
magnetic
rare earth
aspect ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11105558A
Other languages
Japanese (ja)
Inventor
Masaya Kawabe
雅也 川辺
Akio Hasebe
章雄 長谷部
Hideki Matsuzawa
秀樹 松沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP11105558A priority Critical patent/JP2000297306A/en
Publication of JP2000297306A publication Critical patent/JP2000297306A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0573Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes obtained by reduction or by hydrogen decrepitation or embrittlement

Abstract

PROBLEM TO BE SOLVED: To easily and inexpensively obtain rare earth alloy powder having a high aspect ratio by subjecting acicular powder contg. Fe as essential components to surface treatment with a rare earth elemental complex, a transition metal complex and a B complex with acetylacetonate as ligands and executing heat treatment in a reducing atmosphere. SOLUTION: Acicular powder contg. Fe of goethite, hematite, magnetite or the like as eccential components and having about 12 to 22 aspect ratio is stirred in isopropyl alcohol together with an R (rare earth elements including Y) complex, a T (transition metal) complex and a B (boron) complex, and surface treatment is executed. The powder is, if required, added with a reducing assistant such as metal Ca powder or the like, and heat treatment of about 700 deg.C×4 hr is executed in a reducing atmosphere of Ar or the like. In this way, the magnetic powder of acicular R.T.B series rare earth alloy powder having about >=10 aspect ratio is obtd. By making the magnetic powder into a powder magnetic core or the like, its magnetic properties such as magnetic permeability can be improved.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、磁性粉末の製造方
法に関し、特に、R・T・B系希土類合金粉末の製造方
法及び軟磁性金属粉末の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a magnetic powder, and more particularly, to a method for producing an RTB-based rare earth alloy powder and a method for producing a soft magnetic metal powder.

【0002】[0002]

【従来の技術】永久磁石は、各種の電気製品からモータ
ー、アクチュエーター等幅広い分野で使用されており、
重要な材料の一つとなっている。近年の機器の小型化、
高効率化の要求から高特性の永久磁石が求められてお
り、これらの要求に対応して高特性を有する希土類磁石
の需要が急速に伸びている。希土類磁石の主なものには
焼結タイプとボンド磁石タイプがある。
2. Description of the Related Art Permanent magnets are used in a wide range of fields from various electric products to motors and actuators.
It is one of the important materials. Recent equipment miniaturization,
Permanent magnets having high characteristics have been demanded from demands for higher efficiency, and the demand for rare earth magnets having high characteristics has rapidly increased in response to these demands. The main types of rare earth magnets include a sintered type and a bonded magnet type.

【0003】これらの希土類磁石の成形に供される原料
粉末は、通常の機械的粉砕法では粉末化ができず、得ら
れないとされてきた。そのため、溶湯噴霧法により合金
粒子を得る方法や、液体急冷法により薄帯を製造した
後、粉砕し、合金粉末とする方法が一般的な製造方法と
されてきた。
[0003] Raw material powders used for forming these rare-earth magnets cannot be powdered by ordinary mechanical pulverization methods and have not been obtained. Therefore, a method of obtaining alloy particles by a molten metal spraying method or a method of manufacturing a ribbon by a liquid quenching method and then pulverizing the ribbon to obtain an alloy powder has been generally used.

【0004】しかしながら、これらの製造方法で得られ
た粉末では、高特性を得るために成形の際、磁場を印加
し、磁性粉末の磁化容易方向を同一方向に配向させる必
要がある。しかし、これらの製造方法で得られた粉末
は、粉末自体が磁気的に等方性であるため、永久磁石が
本来有している磁気特性のポテンシャルを十分に出し切
れないという問題があった。
However, with the powders obtained by these production methods, it is necessary to apply a magnetic field during molding to obtain high characteristics, and to orient the magnetic powder in the same easy direction. However, the powders obtained by these production methods have a problem that the potential of the magnetic properties inherent to the permanent magnet cannot be sufficiently exhibited because the powder itself is magnetically isotropic.

【0005】また、高価な設備を導入する必要があるこ
と、処理量が少ないこと、安定した製造条件が狭いこと
等の工業的な不利益も多い。
In addition, there are many industrial disadvantages such as the need to introduce expensive equipment, the small amount of processing, and the narrow stable production conditions.

【0006】一方、軟磁性金属粉末は、チョークコイル
等としての圧粉磁芯等、幅広い分野にわたって使用され
ている。
On the other hand, soft magnetic metal powders are used in a wide range of fields such as dust cores as choke coils.

【0007】従来の軟磁性金属粉末は、材料となる金属
元素を溶解炉を用いて溶解して、所定の温度と時間で熱
処理を行って粉砕する工程を経て得られていた。
A conventional soft magnetic metal powder has been obtained through a process in which a metal element as a material is melted using a melting furnace, heat-treated at a predetermined temperature and time, and pulverized.

【0008】しかしながら、従来の方法で製造された軟
磁性金属粉末は、粉末のアスペクト比(長軸/短軸)が
低く、例えば、圧粉磁芯においては、透磁率が低くなる
という問題があった。
However, the soft magnetic metal powder produced by the conventional method has a problem that the powder has a low aspect ratio (major axis / minor axis) and, for example, in a dust core, the magnetic permeability is low. Was.

【0009】[0009]

【発明が解決しようとする課題】本発明は、上記の課題
を解決し、アスペクト比が大きい磁性粉末を容易に安価
に得ることができる磁性粉末の製造方法を提供すること
にある。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems and to provide a method for producing a magnetic powder capable of easily and inexpensively obtaining a magnetic powder having a large aspect ratio.

【0010】[0010]

【課題を解決するための手段】本発明のR・T・B系希
土類合金粉末は、Feを必須成分とする針状粉末を、配
位子をアセチルアセトナートとしたR錯体、T錯体、B
錯体で表面処理した後、還元雰囲気中で熱処理を行うこ
とにより製造され、針状形状を有し、アスペクト比が2
以上であることを特徴とする。
The RTB rare earth alloy powder according to the present invention comprises a needle-like powder containing Fe as an essential component and an R complex, a T complex, and a B complex containing acetylacetonate as a ligand.
Manufactured by heat treatment in a reducing atmosphere after surface treatment with the complex, having a needle-like shape and an aspect ratio of 2
It is characterized by the above.

【0011】本発明の軟磁性金属粉末は、Feを必須成
分とする針状粉末を、配位子をアセチルアセトナートと
した錯体で表面処理した後、還元雰囲気中で熱処理を行
うことにより製造され、針状形状を有し、アスペクト比
が2以上であることを特徴とする。
The soft magnetic metal powder of the present invention is produced by subjecting an acicular powder containing Fe as an essential component to a surface treatment with a complex having acetylacetonate as a ligand, and then performing a heat treatment in a reducing atmosphere. , Having an acicular shape and an aspect ratio of 2 or more.

【0012】即ち、本発明は、鉄(Fe)を必須成分と
する針状粉末を、配位子をアセチルアセトナートとした
R(イットリウムを含む希土類元素のうち少なくとも1
種)錯体、T(遷移金属)錯体、B(ホウ素)錯体で表
面処理した後、還元雰囲気中で熱処理を行い、針状のR
・T・B系希土類合金粉末を得る磁性粉末の製造方法で
ある。
That is, according to the present invention, an acicular powder containing iron (Fe) as an essential component is made of at least one of R (yttrium-containing rare earth elements) containing acetylacetonate as a ligand.
Seed) complex, T (transition metal) complex, and B (boron) complex, and then heat-treated in a reducing atmosphere to obtain acicular R
This is a method for producing a magnetic powder for obtaining a TB rare earth alloy powder.

【0013】また、本発明は、鉄(Fe)を必須成分と
する針状粉末を、配位子をアセチルアセトナートとした
錯体で表面処理した後、還元雰囲気中で熱処理を行い、
針状の軟磁性金属粉末を得る磁性粉末の製造方法であ
る。
Further, the present invention provides a method for treating a needle-like powder containing iron (Fe) as an essential component with a complex having a ligand of acetylacetonate, followed by heat treatment in a reducing atmosphere.
This is a method for producing a magnetic powder for obtaining acicular soft magnetic metal powder.

【0014】また、本発明は、前記磁性粉末の製造方法
において、還元助剤を添加する磁性粉末の製造方法であ
る。
The present invention also provides a method for producing a magnetic powder, wherein the method for producing a magnetic powder further comprises adding a reduction aid.

【0015】[0015]

【発明の実施の形態】長手方向に磁化容易方向をもつF
e異方性針状粉末の表面に、他の元素を被覆し、その後
熱処理により所望である組成のR・T・B系希土類合金
粉末を得る。これにより得られた合金粉末も針状形状を
有し、個々の粉末が異方性を有するものとなる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS F having an easy magnetization direction in the longitudinal direction.
e The surface of the anisotropic acicular powder is coated with another element, and then heat-treated to obtain an RTB-based rare earth alloy powder having a desired composition. The alloy powder thus obtained also has a needle shape, and each powder has anisotropy.

【0016】さらにアスペクト比も大きく、形状異方性
も向上するため、磁石化した際の磁気特性が向上する。
Further, since the aspect ratio is large and the shape anisotropy is improved, the magnetic properties when magnetized are improved.

【0017】また、製造自体も容易にでき、高価な設備
を導入することなく、従来の溶湯噴霧法、液体急冷法に
おいて問題となっていた工業的な不利益が解消される。
Further, the production itself can be facilitated, and the industrial disadvantages which have been a problem in the conventional molten metal spraying method and liquid quenching method can be solved without introducing expensive equipment.

【0018】また、軟磁性金属粉末も同様にして得ら
れ、従来の溶解法に比べて粉末のアスペクト比が向上す
る。そのため、例えば、圧粉磁芯においては透磁率が高
くなる。
Further, a soft magnetic metal powder is obtained in the same manner, and the aspect ratio of the powder is improved as compared with the conventional melting method. Therefore, for example, in a dust core, the magnetic permeability increases.

【0019】なお、鉄を必須成分とする針状粉末に用い
られる材料としては、ゲータイト、ヘマタイト、マグネ
タイト等があるが、特に限定されるものではない。
The material used for the acicular powder containing iron as an essential component includes goethite, hematite, magnetite, etc., but is not particularly limited.

【0020】[0020]

【実施例】以下に、本発明の実施例を説明する。Embodiments of the present invention will be described below.

【0021】(実施例1)長手方向の平均粒径が0.2
μm、平均アスペクト比が12のゲータイト針状粉末
に、Ndが30.0wt%、Bが1.1wt%、残部Fe
の組成となるようにネオジムアセチルアセトナートとホ
ウ素アセチルアセトナートを投入して、イソプロピルア
ルコール中で攪拌した。
(Example 1) The average particle size in the longitudinal direction was 0.2.
In a goethite acicular powder having an average aspect ratio of 12 μm, Nd is 30.0 wt%, B is 1.1 wt%, and the balance Fe
And neodymium acetylacetonate and boron acetylacetonate were added thereto, and stirred in isopropyl alcohol.

【0022】次に、イソプロピルアルコールを蒸発させ
乾燥し、還元助剤として金属Ca粉末を混合し、Ar中
で700℃、4時間熱処理を行い、長手方向の平均粒径
が2.5μm、平均アスペクト比10のNdFe14
B合金を作製した。
Next, the isopropyl alcohol is evaporated and dried, mixed with a metal Ca powder as a reducing aid, and heat-treated in Ar at 700 ° C. for 4 hours to have an average longitudinal particle size of 2.5 μm and an average aspect ratio of 2.5 μm. Nd 2 Fe 14 with a ratio of 10
A B alloy was produced.

【0023】次に、この粉末97wt%に対し、バイン
ダーとしてエポキシ樹脂を3wt%の割合で混合した
後、約20kOeの磁界中5ton/cmの圧力で成
形した。その成形体を80℃で5時間保持し、バインダ
ーを硬化させてボンド磁石とした。
Next, 3 wt% of an epoxy resin was mixed as a binder with 97 wt% of the powder, and the mixture was molded at a pressure of 5 ton / cm 2 in a magnetic field of about 20 kOe. The molded body was kept at 80 ° C. for 5 hours, and the binder was cured to obtain a bonded magnet.

【0024】(実施例2)長手方向の平均粒径が0.5
μm、平均アスペクト比が15のマグネタイト針状粉末
に、実施例1と同量のネオジムアセチルアセトナートと
ホウ素アセチルアセトナートを投入して、同様の方法に
より、長手方向の平均粒径が3.0μm、平均アスペク
ト比13のNdFe14B合金を作製した。さらに実
施例1と同様の方法でボンド磁石を作製した。
(Example 2) The average particle size in the longitudinal direction was 0.5.
The same amounts of neodymium acetylacetonate and boron acetylacetonate as in Example 1 were added to a magnetite needle-like powder having an average aspect ratio of 15 μm, and the average particle size in the longitudinal direction was 3.0 μm by the same method. A Nd 2 Fe 14 B alloy having an average aspect ratio of 13 was produced. Further, a bonded magnet was produced in the same manner as in Example 1.

【0025】(比較例1)純度97wt%のNd(残部
はCe、Prを主体とする他の希土類元素)、フェロボ
ロン(B純度分約20wt%)及び電解鉄を使用し、実
施例1と同様の組成になるようにAr雰囲気中で高周波
加熱により溶解し、合金インゴットを得た。
(Comparative Example 1) As in Example 1, Nd with a purity of 97 wt% (the remainder is another rare earth element mainly composed of Ce and Pr), ferroboron (B purity: about 20 wt%), and electrolytic iron were used. Was melted by high-frequency heating in an Ar atmosphere to obtain an alloy ingot to obtain an alloy ingot.

【0026】次に、このインゴットを使用して、Ar雰
囲気中で高周波加熱により再溶解した後、周速度を約1
m/sec〜約60m/secの範囲で変化させたFe
製ロールに噴射し、片ロール法により幅約1〜10m
m、厚さ約10〜500μmの液体急冷合金を得た。こ
こで得られた液体急冷合金の結晶状態は、非晶質及び平
均粒径が約0.001〜10μm程度の微細な結晶粒子
からなっていた。これらの結晶粒度の異なるNd・Fe
・B系液体急冷合金を粗粉砕した後、ボールミルを用い
て長手方向の平均粒径が約2.5μmになるまで微粉砕
した。この粉末の平均アスペクト比は3であった。さら
に実施例1と同様にボンド磁石を作製した。
Next, after using this ingot to redissolve by high-frequency heating in an Ar atmosphere, the peripheral speed was reduced to about 1
m / sec to about 60 m / sec
Spray on rolls, width about 1-10m by single roll method
m, a liquid quenched alloy having a thickness of about 10 to 500 μm was obtained. The crystal state of the liquid quenched alloy obtained here was composed of amorphous and fine crystal particles having an average particle size of about 0.001 to 10 μm. Nd.Fe with different grain sizes
After coarsely pulverizing the B-based liquid quenched alloy, it was finely pulverized using a ball mill until the average particle size in the longitudinal direction became about 2.5 μm. The average aspect ratio of this powder was 3. Further, a bonded magnet was produced in the same manner as in Example 1.

【0027】実施例1、2、比較例1のボンド磁石の磁
気特性の測定結果を表1に示す。
Table 1 shows the measurement results of the magnetic properties of the bonded magnets of Examples 1 and 2 and Comparative Example 1.

【0028】[0028]

【表1】 [Table 1]

【0029】表1より、実施例1、2の場合、磁気特性
は、従来の製造方法に比べ著しく向上することがわかっ
た。
From Table 1, it was found that in Examples 1 and 2, the magnetic properties were significantly improved as compared with the conventional manufacturing method.

【0030】(実施例3)アスペクト比が22のゲータ
イト針状粉末に、Siが10.0wt%、Alが5.0w
t%、残部Feの組成となるようにケイ素アセチルアセ
トナートとアルミニウムアセチルアセトナートを投入し
て、イソプロピルアルコール中で攪拌した。
Example 3 In a goethite acicular powder having an aspect ratio of 22, Si was 10.0 wt% and Al was 5.0 w.
Silicon acetylacetonate and aluminum acetylacetonate were added so as to have a composition of t% and the balance of Fe, and the mixture was stirred in isopropyl alcohol.

【0031】次に、イソプロピルアルコールを蒸発させ
乾燥し、還元助剤として金属Ca粉末を添加して、大気
中で700℃、4時間熱処理を行い、アスペクト比17
の軟磁性金属粉末を作製した。
Next, isopropyl alcohol is evaporated and dried, metal Ca powder is added as a reducing aid, and heat treatment is performed at 700 ° C. for 4 hours in the air to obtain an aspect ratio of 17
Was prepared.

【0032】このようにして作製した軟磁性金属粉末9
7wt%に対して、シリコーン樹脂3wt%を投入し
て、攪拌機等により約1時間攪拌、混合した。
The soft magnetic metal powder 9 thus produced
3 wt% of silicone resin was added to 7 wt%, and the mixture was stirred and mixed by a stirrer or the like for about 1 hour.

【0033】次に、軟磁性粉末とシリコーン樹脂との混
合物を金型内に流し込み金型内に充填した後、室温で1
5ton/cmで圧縮成形し、成形体を得た。
Next, a mixture of the soft magnetic powder and the silicone resin is poured into a mold and filled in the mold.
Compression molding was performed at 5 ton / cm 2 to obtain a molded body.

【0034】圧縮成形後、成形体を金型より取り出し
て、恒温槽等により約170℃、2時間でバインダー硬
化を行うことによって硬化させた。
After the compression molding, the molded body was taken out of the mold and cured by performing binder curing at about 170 ° C. for 2 hours in a thermostatic oven or the like.

【0035】最後に、大気中で、700℃、2時間熱処
理を行って、圧粉磁芯を得た。このときの粉末充填率
は、80%である。
Finally, heat treatment was performed at 700 ° C. for 2 hours in the air to obtain a dust core. The powder filling rate at this time is 80%.

【0036】この圧粉磁芯に対して巻線をし、HP製L
CRメーター4284Aを用いて、100kHzでのイ
ンダクタンスを測定後、透磁率を計算で求めた。
Winding is performed on the dust core, and L
After measuring the inductance at 100 kHz using a CR meter 4284A, the magnetic permeability was calculated.

【0037】(比較例2)従来の溶解法で、上記と同様
の組成の粉末を作製した。粉末のアスペクト比は11で
ある。実施例3と同様に圧粉磁芯を作製し、磁気特性を
測定した。
Comparative Example 2 A powder having the same composition as described above was prepared by a conventional dissolution method. The powder has an aspect ratio of 11. A dust core was prepared in the same manner as in Example 3, and the magnetic properties were measured.

【0038】実施例3と比較例2の圧粉磁芯の磁気特性
の測定結果を表2に示す。
Table 2 shows the measurement results of the magnetic properties of the dust cores of Example 3 and Comparative Example 2.

【0039】[0039]

【表2】 [Table 2]

【0040】表2に示す測定結果から明らかなように、
本発明の表面処理法では、従来の溶解法に比べて高い透
磁率が得られた。
As is clear from the measurement results shown in Table 2,
In the surface treatment method of the present invention, higher magnetic permeability was obtained than in the conventional melting method.

【0041】本実施例のおける用途においては、圧粉磁
芯を示したが、これ以外にも磁気記録媒体等にも適用で
きる。材料としては、本実施例におけるSi−Fe−A
l合金の他にも、Fe−Si系合金及びパーマロイ等に
も適用できる。
Although the dust core is used in the present embodiment, the present invention can also be applied to magnetic recording media and the like. As a material, Si—Fe—A in the present embodiment is used.
In addition to the 1 alloy, the present invention can be applied to an Fe-Si alloy, permalloy, and the like.

【0042】[0042]

【発明の効果】以上説明したように、本発明によれば、
アスペクト比が大きい磁性粉末を容易に安価に得ること
ができる磁性粉末の製造方法を提供することができた。
As described above, according to the present invention,
A method for producing a magnetic powder capable of easily and inexpensively obtaining a magnetic powder having a large aspect ratio was provided.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4K017 AA04 BA06 BB06 BB12 CA03 DA04 EH04 EH13 EH15 EH18 FB04 FB08 4K018 AA26 AA27 BA16 BA18 BB01 BC09 BC29 BD01 KA42 5E040 AA04 BB05 CA01 HB09 HB17 5E041 AA11 AA19 BB05 HB09 HB17 ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4K017 AA04 BA06 BB06 BB12 CA03 DA04 EH04 EH13 EH15 EH18 FB04 FB08 4K018 AA26 AA27 BA16 BA18 BB01 BC09 BC29 BD01 KA42 5E040 AA04 BB05 CA01 HB09 HB17 5E09A17A05 A05

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 鉄(Fe)を必須成分とする針状粉末
を、配位子をアセチルアセトナートとしたR(イットリ
ウムを含む希土類元素のうち少なくとも1種)錯体、T
(遷移金属)錯体、B(ホウ素)錯体で表面処理した
後、還元雰囲気中で熱処理を行い、針状のR・T・B系
希土類合金粉末を得ることを特徴とする磁性粉末の製造
方法。
1. An R (at least one of rare earth elements including yttrium) complex containing iron (Fe) as an essential component and acetylacetonate as a ligand,
A method for producing a magnetic powder, comprising: performing a surface treatment with a (transition metal) complex and a B (boron) complex, and then performing a heat treatment in a reducing atmosphere to obtain a needle-shaped RTB-based rare earth alloy powder.
【請求項2】 鉄(Fe)を必須成分とする針状粉末
を、配位子をアセチルアセトナートとした錯体で表面処
理した後、還元雰囲気中で熱処理を行い、針状の軟磁性
金属粉末を得ることを特徴とする磁性粉末の製造方法。
2. A needle-like soft magnetic metal powder, which is obtained by subjecting an acicular powder containing iron (Fe) as an essential component to a surface treatment with a complex having a ligand of acetylacetonate, and then performing a heat treatment in a reducing atmosphere. A method for producing a magnetic powder, comprising:
【請求項3】 請求項1または2記載の磁性粉末の製造
方法において、還元助剤を添加することを特徴とする磁
性粉末の製造方法。
3. The method for producing a magnetic powder according to claim 1, wherein a reduction aid is added.
JP11105558A 1999-04-13 1999-04-13 Production of magnetic powder Pending JP2000297306A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11105558A JP2000297306A (en) 1999-04-13 1999-04-13 Production of magnetic powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11105558A JP2000297306A (en) 1999-04-13 1999-04-13 Production of magnetic powder

Publications (1)

Publication Number Publication Date
JP2000297306A true JP2000297306A (en) 2000-10-24

Family

ID=14410889

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11105558A Pending JP2000297306A (en) 1999-04-13 1999-04-13 Production of magnetic powder

Country Status (1)

Country Link
JP (1) JP2000297306A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005142374A (en) * 2003-11-07 2005-06-02 Hitachi Ltd Powder for high-resistance rare earth magnet, manufacturing method thereof, rare earth magnet, manufacturing method thereof, rotor for motor, and motor
JP2005191282A (en) * 2003-12-25 2005-07-14 Hitachi Ltd Rare earth magnet and its production process, and motor
JP2006307342A (en) * 2005-03-31 2006-11-09 Toda Kogyo Corp METHOD FOR PRODUCING Sm-Fe-N BASED MAGNETIC PARTICLE POWDER, RESIN COMPOSITION FOR BOND MAGNET COMPRISING Sm-Fe-N BASED MAGNETIC PARTICLE POWDER, AND BOND MAGNET

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005142374A (en) * 2003-11-07 2005-06-02 Hitachi Ltd Powder for high-resistance rare earth magnet, manufacturing method thereof, rare earth magnet, manufacturing method thereof, rotor for motor, and motor
JP2005191282A (en) * 2003-12-25 2005-07-14 Hitachi Ltd Rare earth magnet and its production process, and motor
JP2006307342A (en) * 2005-03-31 2006-11-09 Toda Kogyo Corp METHOD FOR PRODUCING Sm-Fe-N BASED MAGNETIC PARTICLE POWDER, RESIN COMPOSITION FOR BOND MAGNET COMPRISING Sm-Fe-N BASED MAGNETIC PARTICLE POWDER, AND BOND MAGNET
JP4662061B2 (en) * 2005-03-31 2011-03-30 戸田工業株式会社 Method for producing Sm-Fe-N magnetic particle powder, resin composition for bonded magnet containing Sm-Fe-N magnetic particle powder, and bonded magnet

Similar Documents

Publication Publication Date Title
JP4371188B2 (en) High specific electric resistance rare earth magnet and method for manufacturing the same
JPS6325904A (en) Permanent magnet and manufacture of the same and compound for manufacture of the permanent magnet
JPH03236202A (en) Sintered permanent magnet
JP2576671B2 (en) Rare earth-Fe-B permanent magnet powder and bonded magnet with excellent magnetic anisotropy and corrosion resistance
JPH0316761B2 (en)
JPS62177101A (en) Production of permanent magnet material
JP2000297306A (en) Production of magnetic powder
JP3519443B2 (en) Permanent magnet alloy powder and method for producing the same
JPH0696926A (en) Resin-bonded rare-earth-cobalt magnet
JPH03177544A (en) Permanent magnet alloy
JPH04143221A (en) Production of permanent magnet
JPS63216307A (en) Alloy powder for magnet
JP2611221B2 (en) Manufacturing method of permanent magnet
JPH07176417A (en) Iron based bonded magnet and its manufacture
JP2992808B2 (en) permanent magnet
JPH0613212A (en) Rare earth magnetic particle, manufacturing method thereof and rare earth bond magnet
JP2966168B2 (en) Rare earth magnet, alloy powder for rare earth magnet and method for producing the same
JPS6230845A (en) Production of anisotropic permanent magnet material
JPH09330842A (en) Manufacture of anisotropic bond magnet
JPS6136362B2 (en)
JPH07166206A (en) Permanent magnet alloy powder and production thereof
JPH06192795A (en) Permanent magnet alloy
JPS63287007A (en) Manufacture of permanent magnet
JPS61124553A (en) Alloy for permanent magnet
JPH03153004A (en) Manufacture of rare-earth permanent magnet